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Abstract

The main focus of this work is to offer an extensive investigation regarding the use of
backward swept blades for passive load alleviation on wind turbines. Sweeping blades
backward produces a structural coupling between flapwise bending towards the tower and
torsion towards feathering. This coupling mitigates loads on the wind turbine structure due
to a decrease in the angle of attack. The load alleviation can be achieved by changing the
blade geometry according to three parameters: starting point for the change of shape along
the blade span, blade tip sweep, and blade forward sweep. A parametric study is carried
out on a 10 MW wind turbine with the purpose of outlining the relation between load
variations and three geometric parameters used to introduce passive control on wind turbine
blades. The objective is to estimate and analyze extreme and fatigue loads, formulating
suggestions for the design of a wind turbine that employs backward swept blades. From
the investigation, it is concluded that mildly and purely backward swept shapes are the
best option because they allow the wind turbine to achieve load alleviations without a large
increase of the blade root torsional extreme and life-time equivalent fatigue moment. The
efficacy of the design procedure provided with this work is proved through its application
on a 5 MW wind turbine design.

Keywords: Wind Energy, Blade Design, Passive Load Alleviation

1. Introduction1

Reducing the cost of energy is a key concern for wind energy research and the ultimate goal2

for both academia and industry. An effective path to achieve this goal is to manufacture3

components that are lighter as the wind turbines capacities and dimensions increase [1].4

According to “The Economics of Wind Energy” [2], the rotor blades of a 5 MW onshore5

wind turbine contribute to the overall turbine cost with a share between 20 and 25%. For6

this reason, blade manufactures have taken up the challenge to scale down the increase in7

total mass of the blades, when designing and manufacturing rotors with increasing energy8

yield. In this context, the capability to mitigate loads on the structure during operation9

becomes an attractive characteristic for the design of modern wind turbine blades [3]. To10

Preprint submitted to Renewable Energy September 13, 2016

cpav@dtu.dk


this end, different techniques have been exploited in the last two decades to achieve load11

reduction on wind turbines, and they can be generally categorized in two branches: ac-12

tive and passive control methods. The first consists of technologies able to reduce loads13

by actively controlling the machine, e.g. blade pitch actuators [4], moving flaps [5], etc.14

The second is based on the idea of designing a structure that, without any additional15

components, deforms so as to induce a load reduction when it is loaded [6]. The work16

presented in this paper focuses only on passive control methodologies and, in particular,17

on the employment of swept blades. Sweeping blades backwards is considered a load al-18

leviation technique. This methodology produces a structural coupling between flapwise19

bending towards the tower and torsion towards feathering. This coupling mitigates loads20

on the wind turbine structure due to a decrease in the angle of attack. Opposite effect is21

obtained sweeping the blade forward. For this reason, purely forward swept shapes are not22

taken into account in this work.23

In the last two decades, several studies, both numerical and experimental, were conducted24

to show the potential of swept blades. The most complete study on the subject is called25

Sweep-Twist Adaptive Rotor Blade (STAR) and it was conducted by the Knight & Craver26

Wind Group in the SANDIA National Laboratories between 2004 and 2010 [7, 8, 9]. The27

project started after two feasibility studies: one by Ashwill et al. [10] and the other by28

Zuteck [11]. The STAR constitutes a complete study for swept blades involving aeroelastic29

simulations, manufacturing, and testing. The project showed that a swept-bladed turbine,30

with a wider rotor area compared to a straight-bladed baseline, increases the amount of31

annual energy captured undergoing similar or higher flapwise root bending moments. The32

implementation of this passive control methods and their potential on multi-mega watt33

wind turbines was not investigated. Parametric and conceptual studies were carried, but a34

full overview of the relation between different geometric parameters for the blade planform35

shape and load alleviations is missing. On a final note, the project cannot provide a ”fair”36

comparison between the swept-bladed turbine and the baseline machine because of the37

substantial difference in rotor diameter and blade aeroelastic properties.38

A detailed parametric study involving geometric parameters for swept blades was con-39

ducted by Verelst and Larsen [12]. This study is based on several swept blade configura-40

tions involving variations on both sweep curvature and sweep offset at the tip. The authors41

showed that flapwise fatigue and extreme loads can be reduced up to 10% and 15%, re-42

spectively, for a backward swept blade, whereas the edgewise fatigue and extreme loads43

can increase up to 6%. Verelst and Larsen also mapped the blade root torsional moment,44

which registered an increase up to 400%. This parametric study is based on a simple load45

case (10-minute time series with fixed turbulence intensity of 0.18 and no wind shear), and46

it does not consider a full design load basis (DLB). Consequently, the work can provide47

only a rough estimation of load variations brought by the employment of swept blades.48

Instead, a load analysis based on full a DLB would have allowed observations focused on49

standard requirements for wind turbine design. Furthermore, Verelst and Larsen do not50

apply any method to compensate the loss in AEP below rated wind speed, and they do51

not take into account the interaction between the employment of swept blades and the52

dynamics of the pitch controller.53
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Hansen [13] investigated aeroelastic properties of backward swept blades, computing fre-54

quencies, damping, and mode shapes of the aeroelastic blade modes. The aeroelastic55

properties of backward swept blades were deeply investigated, but only a quality estima-56

tion of the load alleviations brought by the employment of geometric bend-twist coupling57

is provided.58

Previous studies proved the potential for load alleviation of wind turbines that employ59

backward swept blades. The focus of the current numerical study is to investigate the60

design of swept blades through an extensive load analysis based on standard requirements61

for wind turbines construction and operation. The changes in blade geometry are classified62

through three parameters: location of the first control point of the Bezier polynomial used63

to implement the swept shapes, maximum blade tip backward sweep, and blade forward64

sweep. To ensure a ”fair” comparison based on passive-controlled wind turbines with sim-65

ilar AEP and controller dynamics comparable to the baseline, the first part of this study66

is a pre-processing phase involving aero-servo-elastic modal analysis for controller tuning67

and aerodynamic twist optimization. Subsequently, a DLB is carried with the purpose of68

obtaining extreme and fatigue loads used for a realistic wind turbine design. The trends69

associated to the loading due to the variation of each geometric parameter are analyzed.70

The general observations provided are applied to the NREL 5 MW RWT [14] to prove the71

efficacy of the proposed extensive-load-analysis approach.72

In the paper, the first section describes the parametric study architecture including details73

of the geometric parameters used and the workflow that each blade design is subject to.74

An extensive load analysis and a discussion of the results obtained through the parametric75

study follows in the next section. The last part of the paper is the application of the76

outcome of the parametric study on a different blade design, specifically, the blade of the77

NREL 5 MW RWT.78

2. Parametric Study Architecture79

This section shows the architecture of the parametric study, starting with a description80

of the different blade geometries considered. A detailed explanation of the models used is81

provided. At last, a description of the workflow and the DLB used are reported.82

2.1. Swept Blades Shapes and Geometric Parameters83

The blade shapes are obtained using Bezier polynomials [15], which provide the necessary84

flexibility to obtain the desired backward swept geometries. The control points for the85

polynomials are placed to avoid curves with very large sweep angles.86

Three parameters are selected to describe the shape of the swept blades. Each of these87

parameters is associated to a letter (s, b or f ) and a sequence of numbers having three (in88

this case, all three digits represent the integer part of the number) or four digits (three89

digits for the integer part and one for the fractional). The cataloguing system helps the90

classification of each blade shape, which can be described through a mix of three letters91

and three numbers representing the combination of the three parameters. The parameters92

are described as follows:93
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• sxxx : location of the first control point on the centerline; it roughly describes the94

spanwise length where the sweep starts;95

• bxxxx : backward sweep at the tip in percentage of the total blade length;96

• fxxxx : maximum forward sweep in percentage of the total blade length.97

For example, the swept blade classified as s080-b0025-f0005 has a shape where the sweep98

starts approximately at 80% of the blade length from the blade root, the backward sweep99

at the tip is 2.5%, and the maximum forward sweep is 0.5% of the total blade length.100

The parametric study involves a total of 25 blade geometries, divided according to the101

spanwise location where the first control point for the polynomial is placed. The considered102

swept shapes are listed as follows:103

• Family 1, the first control point for the Bezier function is placed on the pitch axis at104

25% of the total blade length from the blade root;105

• Family 2, the first control point for the Bezier function is placed on the pitch axis at106

50% of the total blade length from the blade root;107

• Family 3, the first control point for the Bezier function is placed on the pitch axis at108

80% of the total blade length from the blade root;109

• Family 4, the first control point for the Bezier function is placed on the pitch axis at110

90% of the total blade length from the blade root;111

• Family 5, the shapes are characterized by a different location of the maximum forward112

sweep along the blade span.113

The only exception is the last family of shapes (Family 5), where the geometries are selected114

varying the location of the maximum forward swept part. Family 5 is included in the study115

to investigate whether the location of the maximum forward sweep has an influence on the116

variation of the blade root torsional moment.117

Figure 1 shows a sample of shapes that belongs to the Family 1, where the x-coordinate of118

the centerline are specified according to the coordinate system defined in the aeroelastic119

software HAWC2 [16].120

2.2. Numerical Tools and Models Descriptions121

In this work, linear and nonlinear models are implemented. Linear models are used in the122

pre-processing phase for the tuning of the controller of the swept-bladed wind turbines,123

and for the aerodynamic twist optimization needed to compensate the loss in AEP (see124

the next section for detailed explanations). The nonlinear models are used to perform the125

extensive load analysis that represents the core of the study.126

Specifically, linear models are implemented in HAWCStab2 [17] and used for both closed-127

loop aero-servo-elastic eigenvalue analysis and aerodynamic twist optimization. The latter128

4



0 10 20 30 40 50 60 70 80 90

z [m]

−10
−8
−6
−4
−2

0
2
4

x
[m

]

Baseline

s025-b0100-f000

s025-b0050-f000

s025-b0025-f000

s025-b0050-f002

s025-b0025-f002

Figure 1: Backward swept shapes of Family 1. z is the coordinate along the blade centerline, whereas x
is the coordinate oriented in the edgewise direction. The first control point is located at 25% span of the
total blade length.

is carried out in the multi-disciplinary wind turbine analysis and optimization tool HAW-129

TOpt2 [18, 19, 20, 21]. A detailed description of the HAWCStab2 architecture is provided130

by Hansen [13], and its validation can be found in [22]. A full description of the HAWTOpt2131

framework and its application on aeroelastic optimization of a wind turbine is provided132

in [23].133

The nonlinear models are implemented in the time-domain aero-servo-elastic code HAWC2134

[16]. The description and the validation of the multi-body formulation used by the struc-135

tural part of HAWC2 are reported in [24]. The validation of the unsteady BEM method136

used by the program can be found in [25, 26, 27].137

The DTU 10 MW RWT [28] coupled with the Basic DTU Wind Energy Controller [29] are138

used as the baseline turbine.139

2.3. Workflow and Simulations Set-Up140

Two negative effects are associated with backward swept blades:141

• due to the geometric structural coupling, turbines with backward swept blades have a142

lower AEP compared to a turbine with a straight-bladed rotor because of the decrease143

in the angle of attack along the blade span during operation [30];144

• due to the changes in the structural and aerodynamic response of the blade, i.e.145

bend-twist coupling effect and change in the angles of attack, respectively, frequencies146

and damping ratios of the speed regulator mode of turbines with swept blades are147

significantly different compared to a baseline with straight blades [31].148

Each blade design is pre-processed to overcome these two undesired outcomes.149

To compensate the loss of AEP below rated wind speed, the aerodynamic twist of each blade150

design selected is optimized using the HAWTOpt2 framework. The numerical optimization151

problem is defined as:152

max
xp(β)

f(xp(β),p)

s.t. g(xp(β)) ≤ 0
(1)
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The cost function f depends on a set of variable xp(β) and a set of constant parameters153

p. For this simple optimization, the design variables are exclusively the parameters that154

describe the aerodynamic twist of the blade β. A free form deformation spline (FFD)155

with 5 control points is used to parametrize the aerodynamic twist as a design variable.156

The parameters p, including the blade planform, the layups of the blades, and the other157

components of the wind turbine, are kept constant throughout the optimization. The158

design variables are normalized, such that when they are equal to zero they correspond to159

the baseline value.160

The cost function, defined in Equation 2, is subject to a set of nonlinear constraints g.161

f(xp(β),p) =
AEP (0,p)

AEP (xp(β),p)
(2)

AEP (0,p) is the annual energy production of the baseline design.162

The constraints g include:163

• the rotor thrust, so that the swept-bladed turbines cannot exceed the operational164

rotor thrust of the baseline;165

• the operational lift coefficients that, along the blade span, are limited to avoid stall.166

To face the second constraint, after the optimization loop, the controller of the turbines167

with swept blades is tuned. The tuning of the PI loop of the controller in Region 4 (con-168

stant power, torque, and rotational speed) is performed with a pole placement technique.169

HAWCStab2 is used to perform this tuning adopting a method documented in [32] and [33].170

The target damping ratio and the target frequency for the pole of the speed regulator mode171

at 12m s−1 are 70% and 0.1Hz, respectively, for all the wind turbines that take part to the172

parametric study. The frequency of the pole placement for the tuning is changed according173

to a procedure reported by the authors [31].174

A description of the workflow is shown in Figure 2. On the left side of the figure, the tools175

and a summary of each step of the process are reported. On the right side, a description176

of the optimization loop explained above is shown.177

Simulating the DTU DLB [34] for the design chosen is the last step of the parametric study178

workflow. The DTU 10 MW RWT was designed based on the IEC 61400-1 load basis [35],179

disregarding the controller dependent load cases. Therefore, the following modifications180

are made to the DTU DLB to have a load basis similar to the one used to design the181

baseline turbine:182

• the controller dependent design load case DLC 2.2 is disregarded;183

• the extreme values of the loading from DLC 1.1 are not determined using any statis-184

tical extrapolation because of the uncertainty related to the choice of an appropriate185

method; instead, the GL approach [36], which requires a partial safety factor of 1.35,186

is adopted.187

Finally, a load analysis for each wind turbine configuration is carried. Extreme and life-188

time equivalent fatigue loads (LTEFL) for the blade root are analyzed, along with AEP189
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Figure 2: Description of the workflow. The tools and a summary of each step of the workflow are listed
on the left side of the figure. On the right side, the optimization loop for the aerodynamic twist is shown.

and tower clearance. The trends associated with the variation of each of the geometric190

parameters are discussed in the next section, and conclusions on the design of backward191

swept blades are outlined.192

3. Load Analysis Results193

Numerical results from the load analysis depending on the swept geometries are reported194

and discussed in this section. In the first part of the section, the blade root extreme and195

fatigue loads are analyzed, with the purpose of investigating the impact of each geometric196

parameter of a swept blade. In the second part, AEP and tower clearance are analyzed.197

198

3.1. Effects of the Location of the First Control Point, Parameter ”sxxx”199

The first geometric parameter analyzed is the first control point location along the center-200

line. This parameter is associated to the location along the blade span where the centerline201
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shape starts to change. To examine the impact of this parameter on the extreme loading,202

the blades with the tip swept backward by 2.5% of the total blade length, b0025, and203

with no forward sweep, f0000, are taken into account. Four backward swept blades are204

considered: s025-b0025-f0000, s050-b0025-f0000, s080-b0025-f0000, and s090-b0025-f0000.205

The blade centerline of each design chosen is shown in Figure 3.206

Figure 4 shows the normalized absolute maximum blade root bending moment distribu-207

tions in the blade flapwise (left plot), edgewise (center plot), and torsional (right plot)208

direction, respectively. The distributions, shown in boxplots, include all the time-series209

considered in the DLB. To facilitate the comparisons, the loads are non-dimensionalized210

by the median of the respective baseline distribution. The lower edge of the blue box repre-211

sents the first quartile, whereas the upper edge is the third quartile. The whiskers delimit212

the 5th and the 95th percentiles, respectively. Blue crosses are the outliers. The width of213

the blue box (the interquartile range, IQR), the location of the whiskers (1.8*IQR), and214

the spread of the outliers give an estimation of the statistical dispersion of the distribution.215

The uppermost values, highlighted with a green dashed line in Figure 4, are the ultimate216

loads. The trend of these loads depends on the geometry of the blade selected. However,217

the ultimate loads are extracted from a single time-series, referring to a single point in the218

distribution shown in Figure 4. Hence, a comparison between ultimate loads from different219

designs is deterministic, and it does not take into account the stochastic nature of the220

turbulent load cases. For example, it is not possible to establish whether the variation on221

the ultimate loads is caused by the change in blade geometry or the fact that the rotor sees222

a different turbulence field due to the changed structural and aerodynamic responses or223

due to tuning of the controller. Therefore in this study, the analysis of the extreme loads224

is based on the comparison of distributions of the absolute maxima instead of the ultimate225

loads. Specifically, the extreme load analysis focuses on:226

• the medians, which retain information concerning the probability of a certain design227

having higher or lower absolute maxima across the DLB compared to the baseline;228

• the IQR, which provides information on the variability of the absolute maxima across229

the DLB.230

In Figure 4, the median of the distribution is highlighted in red. The trend of the medians231

is described by a black dashed line.232
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Figure 3: The four backward blade shapes chosen to study the location of the first control point parameter.
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Figure 4: Normalized absolute maxima distributions for baseline and swept blades with ascending first
control point location along the blade span. Extreme flapwise, edgewise, and torsional moments are
plotted on the left, center, and right, respectively. Bottom plots show a close-up on the medians of the
distributions. The loads are non-dimensionalized by the median of the respective baseline distribution.

One can notice the differences between the trend of the ultimate loads and the trend of233

the medians, especially for the extreme torsional blade root moment. To have a clear view234

on the medians, the boxes of the absolute maxima distribution are zoomed and reported235

in the bottom part of Figure 4.236
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The ”aggressive” shapes, i.e. with a change in geometry closer to the root (s025-b0025-237

f000 or s050-b0025-f000 ), have a higher flapwise load alleviation potential because a larger238

portion of the blade is affected by the change in geometry resulting in the bend-twist239

coupling. The median and the IQR of the flapwise blade root moments decreases for the240

s025-b0050-f0000 and s050-b0050-f0000, but it gets closer to the baseline for the shapes241

that have the first control point close to the blade tip (see Figure 4, left plot). The decrease242

in IQR for the absolute maxima of the flapwise moment proves that the backward swept243

blades are able to reduce the peaks of the extreme blade root flapwise loads.244

The median and the IQR of the distributions of the blade root edgewise moment are not245

significantly changed compared to the baseline (see Figure 4, central plot). Furthermore,246

the variations of the medians in the edgewise direction are lower in value compared to the247

variations of the medians in the flapwise direction (compare bottom central and left plots248

of Figure 4). Therefore, the variation of the first control point location parameter does not249

affect the blade root edgewise extreme loads.250

As already shown in previous studies [9, 12], ”aggressive” blade sweeps introduce the251

largest extreme blade root torsional moments. This effect is clearly shown in the right252

plot of Figure 4: the medians and the IQRs are getting larger for more ”aggressive”253

swept blades compared to the baseline. The first control point location parameter has a254

consistent influence on the blade root torsional extreme loads. Different conclusions can be255

drawn looking at the ultimate torsional loads, where the most ”aggressive” shape (s050-256

b0025-f000 ) has the lowest ultimate torsional load. The latter observation highlights the257

importance of comparing extreme loads distribution instead of analyzing ultimate loads.258

To investigate the impact of the parameter ”sxxx” on LTEFL, a different set of four259

backward swept blades, with the blade tip swept backward is fixed at 5.0 %, is considered260

(see Figure 5): s025-b0050-f0000, s050-b0050-f0000, s080-b0050-f0000, and s090-b0050-261

f0000. In this study, the computation of the life time equivalent fatigue loads is based on262

a life-time of 20 years.263

Figure 6 shows the LTEF blade root moments in the flapwise, edgewise, and torsional264

direction for the considered blade shapes shown in Figure 5. The flapwise LTEFLs (blue265

circle dashed line) for the all swept blades are lower than the baseline. The edgewise266

LTEFLs are increased for all the shapes analyzed (red triangle dashed line), as opposed to267

the flapwise cases. The increases for the edgewise LTEFLs are caused by the increment in268
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Figure 5: The four backward blade shapes chosen to study the location of the first control point parameter.
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- flapwise, red triangle - edgewise, green square - torsional). The backward sweep parameter at the tip is
fixed at 5% of the blade length. No forward sweep is considered. Different blade radius along the span are
taken into account.

the total mass of the backward swept blades because the swept blades are longer than the269

baseline. The increase in curvilinear length results in more materials added, producing a270

design heavier than the baseline blade. An overview of the blade mass increase for all the271

designs analyzed with respect to the baseline is reported in Table 1. Table 1 shows that272

the s090-b0050-f0000 has the largest increase in blade mass (1.22%) between the shapes273

selected and, consequently, the largest increase in edgewise LTEFL (approximately 3%).274

The trend of the torsional LTEFL (green square dashed line) is similar to the one observed275

for the medians of the extreme loads distributions in Figure 4, right plot. The highest276

torsional LTEFL is observed from the most ”aggressive” shape, s025-b0050-f0000 blade277

(approximately 68% LTEFL increase).278

In conclusion, the main problem with the choice of the first control point location parameter279

to design an effective backward swept blade is the large increase in extreme and fatigue280

blade root torsional moments. Blade shapes that have a change in geometry that starts281

closer to the root are longer and heavier than the others and, consequently, present an282

increase of the edgewise LTEFL.283

3.2. Effects of Maximum Blade Tip Backward Sweep, Parameter ”bxxxx”284

The second parameter considered is the maximum blade tip backward sweep, ”bxxxx”.285

The other two parameters, “sxxx” and “fxxxx”, are fixed to 80 and 0, respectively. Figure286

7 shows the considered swept blade geometries, that can be categorized as Family 3.287

The absolute maximum load distributions of the considered swept blade geometries are288

reported in Figure 8. In the figure, the medians and the IQRs of the flapwise bending mo-289

ments for the swept blades show a marginal load alleviation effect. The edgewise moment290

distributions are substantially unchanged, even though it appears that larger sweeps in-291

crease the medians due to the total weight increment (see Table 1). Moreover, as shown in292

Figure 8 on the right plot, increasing the maximum backward sweep at the tip of the blade293

produces higher medians and IQRs on the absolute maxima distributions of the blade root294
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Table 1: Blade total mass variations for the designs analyzed. The baseline blade mass is reported in the
second row of the table. The swept blades mass are reported as variation in percentage with respect to
the baseline. The identification sequence for the swept blades is reported in the first column.

Shape Blade Mass
BASELINE 41716 [kg]
s025-b0025-f000 0.2 [%]
s025-b0025-f002 0.9 [%]
s025-b0050-f000 0.3 [%]
s025-b0050-f002 1.6 [%]
s025-b0100-f000 1.0 [%]
s050-b0025-f000 0.2 [%]
s050-b0025-f002 1.0 [%]
s050-b0050-f000 0.5 [%]
s050-b0050-f002 2.0 [%]
s050-b0100-f000 1.5 [%]
s080-b0010-f0005 0.3 [%]
s080-b0025-f0000 0.2 [%]
s080-b0025-f0005 0.6 [%]
s080-b0050-f0000 0.5 [%]
s080-b0100-f0000 1.7 [%]
s090-b0005-f0000 0.1 [%]
s090-b0005-f0002 0.2 [%]
s090-b0010-f0000 0.2 [%]
s090-b0025-f0000 0.4 [%]
s090-b0050-f0000 1.2 [%]
spe1-b0008-f0005 0.2 [%]
spe2-b0010-f0005 0.2 [%]
spe3-b0010-f0005 0.2 [%]
spe4-b0008-f0005 0.2 [%]
spe5-b0005-f0002 0.1 [%]

torsional moment.295

Figure 9 shows the blade root LTEFLs. As the blade tip backward sweep increases, 1) the296

flapwise LTEFLs are reduced due to the higher load alleviation effect brought by larger297

sweeps, 2) the edgewise LTEFLs are increased due to increment of the total blade weight,298

and 3) the torsional LTEFLs are increased due to the increasing torque except the s080-299

b0025-f0000. In the latter case, the decrease in blade root torsional fatigue loading, not300

typical for backward swept blades, can be explained as a consequence of the annual energy301

production maximization and the change in aerodynamic twist.302
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Figure 7: Swept blade shapes of Family 3. First control point for the Bezier polynomial is located on the
pitch axis at 80% of the total blade length.
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Figure 8: Normalized absolute maxima distributions for baseline and swept blades with increasing maxi-
mum backward sweep at the tip. Extreme flapwise, edgewise, and torsional moments are plotted on the
left, center, and right, respectively. The loads are non-dimensionalized by the median of the respective
baseline distribution.

The variation of the optimized twist along the blade span affects the distribution of the303

loading. For very mild swept shapes and very large variations of the aerodynamic twist304

(see the red curve in Figure 10, where the largest variation of the twist is around 5◦), it305

is possible to obtain a design that shows alleviations for both flapwise and torsional blade306
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Figure 9: Life Time Equivalent Fatigue Load blade root moments deviations in percentage from the
baseline straight blade (blue circle - flapwise, red triangle - edgewise, green square - torsional). All the
shapes belong to Family 3. No forward sweep is considered. The variation of the amount of backward
sweep at the blade tip is taken into account.

root fatigue loads. This property is difficult to exploit through a parametric study, and it307

will be the subject of future work. Very large variations of the aerodynamic twist can also308

have an impact on the flapwise load alleviation potential of some designs. For example,309

the design s080-b0050-f0000 shows no extreme and LTEF load alleviations compared to310

the baseline, the s080-b0025-f0000, and the s080-b0100-f0000 (see Figures 8 and 9). The311

distribution of the flapwise loading is heavily affected by a large variation of the optimized312

aerodynamic twist, which shows an absolute difference of 7◦ at the tip compared to the313

baseline (see the green curve in Figure 8). The changes in the distribution of the flapwise314
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Figure 10: Comparison of the aerodynamic twist of two blades: Baseline (blue star) and s080-b0025-f0000
(red triangle). Top plot shows the aerodynamic twist in degree, while the bottom one shows the absolute
value of the variation of the twist of the two swept blades with respect to the baseline blade.
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loading along the blade span have also an effect on the tower clearance. The latter problem315

is discussed in details in Section 3.4.316

Conclusions regarding the analysis of the blade tip backward sweep parameter are similar317

to the ones reported in the previous section: the parameter has to be chosen considering318

the minimum increase in torsional extreme and fatigue loading, and taking into account319

the increase in blade mass due to the increment in blade length brought by the swept320

shape. Furthermore, it is important to consider that the aerodynamic twist optimization321

has an impact on the distribution on the aerodynamic loading along the blade span, which322

can result in a reduction of the blade root torsional moment. Future studies will be carried323

on the possibility of generating a design that shows alleviations for both flapwise and tor-324

sional blade root fatigue loads, as in the case of s080-b0025-f0000. Large variations of the325

optimized aerodynamic twist can also result in blade designs that show no load alleviation326

potentials in the flapwise direction.327

3.3. Effects of Blade Forward Sweep, Parameter ”fxxxx”328

The last parameter considered is the presence of forward sweep and its location on a swept329

blade, ”fxxxx”. For this purpose, two swept blade shape families, Family 1 and Family 5,330

are used (see Figures 1 and 11). The main reason to implement the forward sweep on a331

backward swept blade is to reduce the large torsional moment at the root.332

Figure 12 shows the extreme blade root moment distributions for the shapes of Family333

1 where the forward swept blades (s025-b0025-f002 and s025-b0050-f002 ) are illustrated334

with red color.335

In general, the inclusion of forward sweep in the backward sweep jeopardizes the load alle-336

viation effect on the extreme flapwise loading (compare medians of the blue and red boxes337

of the left plot of Figure 12). The reason for this negative outcome lies behind the passive338

control mechanism used by swept blades. The benefits come from the increase in torsion339

along the blade length, and the consequent increase in twist towards feather to reduce the340

angle of attack. The efficacy of this mechanism is reduced if the shape is more ”balanced”341

with a forward sweep. Moreover, the blades with forward sweep are longer and heavier342

than the respective purely swept shapes, generating an increase in extreme edgewise blade343

root loading (see medians of the red boxes of the central plot of Figure 12). The torsional344
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Figure 11: Swept blade shapes of Family 5. Special set of shapes characterized by different locations of
the forward swept portion of the blade.
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Figure 12: Normalized absolute maxima distributions for baseline and swept blades of Family 1. Extreme
flapwise, edgewise, and torsional moments plotted on the left, center, and right, respectively. The loads
are non-dimensionalized by the median of the respective baseline distribution. Purely backward swept
shapes are denoted using the blue colour. The shapes with forward sweep are highlighted in red.

moments are also affected by the forward sweep. The right plot in Figure 12 shows that345

the median and the IQRs can be reduced compared to the purely swept back blades (s025-346

b0050-f000 and s025-b0050-f002 ).347

Figures 13 and 14 show the blade root extreme and LTEFLs for the shapes of Family 5,348

respectively. The analysis of these figures is focused on the understanding of the impact349

that changing the location of the forward sweep has on the blade root loads.350

The blade root flapwise extreme loads and LTEFLs are reduced, even though substantial351

forward sweep variations are introduced. The amount of LTEFL reductions is lower com-352

pared to the alleviations achieved varying the other two geometric parameters, ”sxxx” and353

”bxxxx”. The blade edgewise extreme loads and LTEFLs are not significantly affected354

by the forward sweep because the variation of blade mass for the shapes of Family 5 is355

very limited, as shown in Table 1. The torsional extreme and LTEFLs are increased for356

all cases, as shown on one side by the medians of the absolute maxima distributions (see357

Figure 13, right plot), and on the other side by peaks between approximately 13 and 17%358

for the LTEFL (see Figure 14). The amount of the increment is not significant compared359

to the previous geometric parameters variations analyzed (see Figures 4, 6, 8, and 9).360
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Figure 13: Normalized absolute maxima distributions for baseline and swept blades of Family 5. The loads
are non-dimensionalized by the median of the respective baseline distribution.
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Figure 14: Life Time Equivalent Fatigue Load blade root moments blade root moments deviations in
percentage from the baseline straight blade (blue - flapwise, red - edgewise, green - torsional). All the
shapes belong to Family 5. Load variations from the baseline are plotted against the location of the forward
sweep.

The conclusion is that there is a benefit in introducing forward sweep on backward swept361

blades. The blade torsional extreme loads and LTEFLs can be less affected by the back-362

ward sweep. On the other hand, the load alleviation benefits for the blade flapwise extreme363
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loads and LTEFLs are reduced due to the forward sweep.364

3.4. AEP and Tower Clearance365

The annual energy production (AEP) and the tower clearance of all considered swept blades366

are reported in this section. Table 2 shows the AEP and the tower clearance in percent367

difference from the baseline values.368

The AEP of the backward-swept-bladed turbines are kept very close to the baseline value369

Table 2: AEP and tower clearance of the blade designs analyzed. The identification sequence for the swept
blades is reported in the first column. The tower clearance results include also the identification sequence
for the simulation that showed the minimum tower clearance: ”dlc” denotes the Design Load Case, ”wsp”
the wind speed, ”wdir” the wind direction and ”s” the turbulence seed realization. The tower clearance
takes into account the safety factors assigned by the DLB used.

Shape AEP Tower Clearance
BASELINE 48.497 [GW h] dlc13 wsp12 wdir350 s3005 3.656 [m]
s025-b0025-f000 0.0 [%] dlc13 wsp12 wdir350 s3005 4.5 [%]
s025-b0025-f002 0.5 [%] dlc13 wsp12 wdir000 s1005 -4.8 [%]
s025-b0050-f000 -0.5 [%] dlc13 wsp12 wdir350 s3005 6.0 [%]
s025-b0050-f002 0.8 [%] dlc13 wsp14 wdir000 s2006 -7.3 [%]
s025-b0100-f000 0.5 [%] dlc13 wsp12 wdir350 s3005 1.3 [%]
s050-b0025-f000 -0.2 [%] dlc13 wsp12 wdir350 s3005 1.5 [%]
s050-b0025-f002 0.7 [%] dlc13 wsp12 wdir350 s3005 -1.0 [%]
s050-b0050-f000 0.1 [%] dlc13 wsp12 wdir350 s3005 -4.6 [%]
s050-b0050-f002 1.0 [%] dlc13 wsp14 wdir000 s2006 -4.1 [%]
s050-b0100-f000 0.7 [%] dlc13 wsp12 wdir350 s3005 -1.6 [%]
s080-b0010-f0005 0.8 [%] dlc13 wsp12 wdir010 s6005 -9.3 [%]
s080-b0025-f0000 -0.2 [%] dlc13 wsp12 wdir350 s3005 1.8 [%]
s080-b0025-f0005 0.5 [%] dlc13 wsp12 wdir350 s3005 0.1 [%]
s080-b0050-f0000 0.9 [%] dlc13 wsp12 wdir350 s3005 -10.1 [%]
s080-b0100-f0000 0.8 [%] dlc13 wsp12 wdir350 s3005 -5.8 [%]
s090-b0005-f0000 -0.3 [%] dlc13 wsp12 wdir350 s3005 -3.3 [%]
s090-b0005-f0002 -0.3 [%] dlc13 wsp12 wdir350 s3005 -3.9 [%]
s090-b0010-f0000 -0.3 [%] dlc13 wsp12 wdir350 s3005 -2.2 [%]
s090-b0025-f0000 0.0 [%] dlc13 wsp12 wdir350 s3005 -2.7 [%]
s090-b0050-f0000 0.8 [%] dlc13 wsp12 wdir350 s3005 -3.1 [%]
spe1-b0008-f0005 -0.3 [%] dlc13 wsp12 wdir350 s3005 4.1 [%]
spe2-b0010-f0005 -0.3 [%] dlc13 wsp12 wdir350 s3005 4.5 [%]
spe3-b0010-f0005 -0.2 [%] dlc13 wsp12 wdir350 s3005 3.0 [%]
spe4-b0008-f0005 -0.2 [%] dlc13 wsp12 wdir350 s3005 3.3 [%]
spe5-b0005-f0002 -0.4 [%] dlc13 wsp12 wdir350 s3005 2.7 [%]
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due to the aerodynamic twist optimization scheme implemented at the pre-processing phase370

(see Figure 2). The variations of AEP are always below 1%, and the drops for the turbines371

with worse performances are never greater than 0.5%.372

The tower clearance is calculated as the distance between the blade tip and the closest373

outer section of the tower. The measured tower clearance window is between 175◦ and374

185◦ azimuth, for a blade pointing upward at 0◦ azimuth. All the swept blade designs375

analyzed satisfy the requirement for tower clearance demanded by the IEC standard [35].376

The load alleviation effect brought by the sweep reduces the flapwise displacement of the377

tip. Consequently, a higher tower clearance is expected from all the turbines that takes378

part to the parametric study, but some of the designs show a substantial decrease of the379

minimum tower clearance. The reason lies behind the optimization process where the380

optimizer might need to significantly increase the aerodynamic twist at the blade tip to381

maximize the AEP, causing an increase in the angle of attack around rated wind speed. The382

change in angle of attack introduces higher loads at rated wind speed where the minimum383

tower clearance is registered. Figure 15 shows the aerodynamic twist distributions for two384

different swept blade cases and their comparison with the baseline design. On one hand,385

the s080-b0050-f0000 blade (plotted in circle with green color) has a significant increase386

of the aerodynamic twist at the blade tip (approximately 7◦ at the blade tip, as shown387

in the bottom plot of Figure 15) which results in a decrease of the tower clearance of388

approximately 10%. On the other hand, the s025-b0050-f000 blade design (plotted in389

triangle with red color) shows an increase of tower clearance of approximately 6% whereas390

the aerodynamic twist at the tip of the blade is not significantly increased (approximately391

1◦ at the blade tip shown in the bottom plot of Figure 15).392
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Figure 15: Comparison of the aerodynamic twist of three blades: Baseline (blue star), s025-b0050-f000
(red triangle), and s80-b0050-f0000 (green circle). Top plot shows the aerodynamic twist in degree, while
the bottom one shows the absolute value of the variation of the twist of the two swept blades with respect
to the baseline blade.
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To keep or increase the tower clearance, the aerodynamic twist should be constrained393

during the optimization. An alternative is to pitch the blade towards stall below rated394

wind speed, to compensate for the reduction in the angle of attack generated by the395

sweep [30]. The latter solution has the advantage of being less computationally expensive396

than the optimization routine. Particular attention must be paid to avoid stall along the397

blade span below rated wind speed.398

4. Swept Blade Design Application: the NREL 5MW RWT399

In this section, one of the obtained swept blade designs from the DTU 10 MW RWT is400

applied to a different class turbine blade to verify its performances. In this study, the401

NREL 5 MW RWT is used [14] with the Basic DTU Wind Energy Controller [29].402

The s080-b0025-f0000 backward swept blade is selected for this study based on the inves-403

tigations made in the previous sections:404

• avoid forward sweep in any part of the blade because it reduces (or completely elim-405

inate) the load alleviation effect;406

• let the backward sweep start closer to the blade tip (80% or 90% of the total blade407

length) to avoid an excessive increase in blade root torsional moment;408

• contain the maximum backward sweep at the tip within 5% of the total blade length409

to avoid a very large blade root torsional moment;410

• optimize the aerodynamic twist or pitch the blade towards stall below rated wind411

speed to compensate the loss in AEP due to the decrease in the angle of attack; be412

aware of the risks of the two strategies: the optimization of the aerodynamic twist413

to maximize the AEP can increase the loading at the blade tip around rated wind414

speed reducing the tower clearance; pitching the blade towards stall below rated wind415

speed can drive part of the blade into stall.416

The considered blade is pitched towards stall below rated wind speed to compensate the loss417

in AEP compared to the baseline design. This approach is preferred to the aerodynamic418

twist optimization because it does not have the negative impact on the tower clearance419

described earlier, and it is computationally cheap.420

The same design load cases based on [34] with the modifications reported in Section 2.3421

are considered.422

4.1. AEP and Tower Clearance423

Table 3 shows the comparison of AEP and tower clearance between the baseline wind424

turbine and the swept-bladed one. The passive-controlled wind turbine has approximately425

the same annual energy production of the baseline, registering a very small loss of 0.04%.426

An increase in tower clearance can be observed (3.5%).427
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Table 3: AEP and tower clearance of the NREL 5 MW RWT with straight and backward swept blades
(s080-b0025-f0000 ). The AEP and tower clearance for the baseline blade are reported in the second row
of the table. The tower clearance results include also the identification sequence for the simulation that
showed the minimum tower clearance: ”dlc” denotes the Design Load Case, ”wsp” the wind speed, ”wdir”
the wind direction and ”s” the turbulence seed realization. The tower clearance takes into account the
safety factors assigned by the DLB used.

Blade Design AEP Tower Clearance
NREL 5MW RWT 24.197 [GW h] dlc13 wsp12 wdir010 s5005 1.767 [m]
s080-b0025-f0000 -0.04 [%] dlc13 wsp12 wdir010 s5005 +3.5 [%]

4.2. Extreme bending and torsional loads428

Figure 16 shows the blade root load comparisons between the baseline and the considered429

swept blade. The extreme blade root flapwise load is decreased, as median and IQR of the430

distribution of s080-b0025-f0000 highlight. This reduction is qualitatively in agreement431

with the variation observed for the DTU 10 MW (see Figure 8).432

The median of blade root torsional moment distribution increases whereas the torsional433

moment distribution for the respective swept blade design of the DTU 10 MW is more434

similar to the its baseline (see Figure 8), with a slightly lower median. The differences435

between the extreme blade root torsional loading of the NREL 5 MW and the DTU 10 MW436

are due to the different strategies used to compensate the loss in AEP. The choice between437

the aerodynamic twist optimization and the pitching towards stall has an impact on the438

distribution of the loading along the blade span, as already remarked in Section 3.2 (see439

Figure 10).440

The median of the edgewise loading increases due to the increase in blade mass, reported in441

Table 4. The s080-b0025-f0000 of the DTU 10 MW RWT benefits less from the backward442

sweep due to the optimization of the aerodynamic twist which affects the blade loading443

at the tip to compensate for the loss in AEP. The s080-b0025-f0000 of the NREL 5 MW444

RWT shows improved load alleviation characteristics on the flapwise direction compared445

to the 10 MW, driven by a larger extreme torsional loading (compare Figures 8 and 16).446

Table 4: Blade mass of the NREL 5 MW RWT with straight and backward swept blades (s080-b0025-
f0000 ). The mass of the swept blade loads is reported as variation in percentage from the baseline.

Blade Design Blade Mass
NREL 5MW RWT 17740 [kg]
s080-b0025-f0000 +0.19 [%]
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Figure 16: Normalized absolute maxima distributions for baseline and swept blade of the NREL 5MW.
The loads are non-dimensionalized by the median of the respective baseline distribution.

4.3. LTEF bending and torsional loads447

Table 5 shows the comparison of the blade root LTEFLs for the two designs. The loads for448

the baseline are reported in absolute value, whereas the LTEFLs for the s080-b0025-f0000449

are reported in percent variation. The variations of LTEFLs reported for the swept blade450

design of the NREL 5 MW are in agreement with the observations made from Figure 9451

where the LTEFLs of the flapwise and torsion directions are reduced while the edgewise452

LTEFL is increased.453

Table 5: LTEFL blade root moments of the NREL 5 MW RWT with straight and backward swept blades
(s080-b0025-f0000 ). In the three rightmost columns, the blade root flapwise moment, the blade root
edgewise moment, and the blade root torsional moment are respectively reported. The fatigue loads for
the baseline blade are reported in absolute values in the second row of the table. The fatigue loads for the
swept blade are reported as variation in percentage from the baseline.

Blade Design LTEFL BR Flap LTEFL BR Edge LTEFL BR Tors.
NREL 5MW RWT 10092.379 [kN m] 7218.318 [kN m] 184.232 [kN m]
s080-b0025-f0000 -6.3 [%] +0.2 [%] -2.8 [%]
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From the investigation with the NREL 5 MW RWT, it can be concluded that the outcomes454

of the extensive load analysis of the DTU 10 MW RWT can be applied to other wind455

turbines, ensuring the creation of a swept blade design able to provide beneficial passive456

load alleviations.457

5. Conclusions458

This paper studies extensive load analyses to investigate the backward swept blade designs459

for passive load alleviation on multi-megawatt wind turbines. To introduce various swept460

geometries, three representative parameters are considered:461

• position along the blade span where the sweep starts;462

• maximum backward sweep at the blade tip;463

• maximum forward sweep.464

Based on these three parameters, 25 shapes divided in 5 families were selected. The blade of465

the DTU 10 MW RWT was used as baseline. In general, the backward swept blades produce466

less electrical energy compared to the straight blade. Therefore, all the considered swept467

blades were pre-processed to provide the same amount of the annual energy production468

(AEP). An optimization approach was introduced. The aerodynamic twist was updated469

for each swept blade design to maximize the annual energy production, compensating the470

AEP loss below rated wind speed. After that, the tuning of the controller according to a471

specific frequency placement of the regulator mode was performed as well. A full design472

load basis was adapted and analyzed for each of the swept designs selected.473

The variation of each geometric parameter was analyzed separately producing the following474

observations:475

• ”sxxx”: the choice of the first control point location parameter is driven by the large476

increase in extreme and fatigue blade root torsional moment, and the increase of the477

edgewise LTEFL due to the increase in blade length more pronounced as the sweep478

starts closer to the root;479

• ”bxxxx”: the parameter has to be chosen considering the minimum increase in tor-480

sional extreme and fatigue loading, and taking into account the increase in blade481

mass due to the increment in blade length brought by the swept shape;482

• ”fxxxx”: the presence of forward sweep helps compensating excessive increments of483

the torsional moment, but it also reduces or cancels the beneficial effects due to the484

sweep; moreover, the location of the forward sweep along the blade span does not485

have a relevant influence on the loading.486

To summarize, mildly and purely backward swept shapes are the best option for the de-487

sign of passive-controlled wind turbines because they can achieve load alleviations without488

causing large increases in blade root torsional moment.489
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Annual energy production and tower clearance were monitored as well. The optimization490

of the aerodynamic twist to maximize AEP produces negative effects on the tower clear-491

ance of some of the designs analyzed. The optimizer increases the aerodynamic twist at492

the blade tip to fulfil the loss in AEP below rated wind speed, resulting in higher angles493

of attack and higher loads at the tip around rated wind speed compared to the baseline494

design. This process causes a reduction of the tower clearance with respect to the RWT495

and a different distribution of the loading along the blade span.496

The observations obtained through the load analysis of all the DTU 10 MW RWT were ap-497

plied to a different wind turbine, specifically, the NREL 5 MW RWT. From this study simi-498

lar trends between the DTU 10 MW RWT and the NREL 5 MW RWT were observed. The499

outcome of the parametric study can be generally applied to produce a passive-controlled500

wind turbine with reduced flapwise extreme and fatigue loads, and inevitable increase in501

extreme and fatigue blade root torsional moment.502
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