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Introduction 

The use of transported Probability Density Func-

tion (PDF) methods allows a single model to compute 

the auto-ignition, premixed mode and diffusion flame 

of diesel combustion under engine-like conditions 

[1,2]. The Lagrangian particle based transported PDF 

models have been validated across a wide range of 

conditions [2,3]. Alternatively, the transported PDF 

model can also be formulated in the Eulerian frame-

work [4]. The Eulerian PDF is commonly known as 

the Eulerian Stochastic Fields (ESF) model. When the 

same chemical mechanism and micro-mixing model 

were used, both ESF model and its Lagrangian coun-

terpart generated similar results. The principal moti-

vation for ESF compared to Lagrangian particle based 

PDF is the relative ease of implementation of the 

former into Eulerian computational fluid dynamics 

(CFD) codes [5]. Several works have attempted to 

implement the ESF model for the simulations of die-

sel spray combustion under engine-like conditions. 

The current work aims to further evaluate the perfor-

mance of the ESF model in this application, with an 

emphasis on examining the convergence of the num-

ber of stochastic fields, nsf. Five test conditions, cover-

ing both the conventional diesel combustion and low 

temperature combustion regimes, are used. The associ-

ated ambient conditions and injection characteristics 

are provided in Table 1. 

 

Table  1: Test cases used in the convergence study. 

Case 𝜌 (kg/m3) T (K) [O2] Pinj (bar) Dinj (𝜇m) 

1 22.8 900 15% 1500 90 

2 14.8 800 15% 1400 108 

3 14.8 1100 15% 1400 108 

4 14.8 800 21% 1400 108 

5 14.8 1100 21% 1400 108 
Note: ρ, T and [O2] represent the ambient density temperature and 

oxygen concentration (by mole fraction). Pinj denotes the injection 
pressure while Dinj is the injector hole diameter. 

 

Numerical model formulation 

The multi-dimensional CFD spray combustion sim- 
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ulations are carried out using the open-source code, 

OpenFOAM version 3.0.1. The fuel spray, flow and 

combustion processes are modelled using the Eulerian-

Lagrangian approach. The liquid phase of the diesel 

fuel is modelled with discrete parcels whose motion is 

described using the Lagrangian particle tracking ap-

proach. The gas phase is described in the Eulerian 

framework using the unsteady Reynolds-averaged Na-

vier–Stokes equations where the standard k−ε model is 

implemented for turbulence modelling. The skeletal n-

heptane mechanism developed by Liu et al. [5] is used 

as the diesel surrogate model. The interaction between 

the turbulence and chemistry is simulated using the 

ESF method [1]. The turbulent reactive flows are rep-

resented by nsf stochastic fields. The governing equa-

tion for the n-th stochastic field is 
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where ϕα denotes the mass fraction of species (Yi) or 

the enthalpy of the mixture (h), and ϕ
(n)

 = [Y1
(n)

, …, 

Yi
(n)

, h
(n)

]. Γt = μt/σt is the turbulent diffusivity, where μt 

is the turbulent viscosity and σt is the turbulent Schmidt 

number in the transport equations for chemical species 

or the Prandtl number in the enthalpy equation. 
( )( )r nS dt   and ( )( )S nS dt   are the source term in-

crements due to the chemical reactions and the spray 

evaporation, respectively. The term involving Cϕ in 

Equation (1) represents the molecular mixing, which is 

modelled using the Interaction with Exchange to the 

Mean model. The mixing constant, Cϕ value is fixed to 

two. ωt is the turbulence frequency obtained from ωt = 

ε/k. dW
(n)

 represents a vector Wiener process that is 

spatially uniform but different for each field. The 

Chemistry Coordinate Mapping (CCM) method is cou-

pled with the ESF solver to integrate the source terms 

due to chemical reactions efficiently. Details about the 

ESF-CCM method can be found in [1].  
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Figure 1: Comparisons of OH mass fraction, CO2 mass 

fraction and CO mass fraction using different number 

of stochastic fields across the diffusion flame. 

Results and conclusions 

Effects of nsf are evaluated based on combustion char-

acteristics such as ignition delay time and lift-off 

length. Apart from those, radial profiles of OH, CO and 

CO2 mass fractions near the lift-off position and across 

the diffusion flame are also used to evaluate the effects 

of nsf. The convergence study is first carried out using 

Case 1, which is also known as the Spray A case of the 

Engine Combustion Network. The convergence per-

formance of 2, 4, 8, 16, 32, 64 and 128 stochastic fields 

is assessed. The use of 2 and 4 stochastic fields unex-

pectedly predicts reasonable ignition delay time and 

lift-off length. However, the associated flame struc-

tures are consistently wider than those generated using 

larger nsf. Also, the associated OH and CO2 profiles 

from the 2 and 4 stochastic fields show several distinct 

peaks, indicating that the results are spatially un-

smooth. Relative differences (R.D.) of peak tempera-

ture as well as peak mass fractions of OH, CO2 and CO 

are evaluated based on the results generated using 128 

stochastic fields. The R.D. are computed using R.D. = 

|α nsf,i–αnsf=128|/αnsf=128 x 100%, where α represents dif-

ferent combustion properties and i is results calculated 

using different nsf. It is found that with 8 and more sto-

chastics fields, the R.D. remains below 25%. 

The convergence study is extended to 800 K and 

1100 K at the ambient density of 14.8 kg/m
3
. These are 

used to represent low and high ambient temperature 

conditions, respectively. The convergence study is car-

ried out for both 15% and 21% O2 with 8, 16 and 32 

stochastic fields. These configurations are selected as 

they reach a balance between computational efficiency 

and accuracy. Here, 32 stochastic field results serve as 

the new base for comparison purposes. In all these con-

figurations, the ignition delay time and lift-off length 

are identical. Near the lift-off position, the temperature 

and species concentration fields predicted by 16 sto-

chastics fields are found to converge reasonably well, 

apart from the CO results in Case 2. Across the diffu-

sion flame, results are generated by all three configura-

tions are close in most of the conditions but those gen-

erated by 16 stochastic fields converge better. The as-

sociated R.D. remains within 25% and 14% for the 

ambient O2 of 15% and 21%, respectively. On the other 

hand, those of 8 stochastic fields have a maximum val-

ue of 71% and 21%, respectively.  

Results produced by the 16 stochastic fields are 

next validated using experimental data. It is shown that 

the ESF-CCM model with 16 stochastic fields repro-

duces reasonably well the ignition delays and lift-off 

lengths. The transient development of the spray flame 

in Case 1 is also predicted. Although further model val-

idation may have to be carried out for a wider range of 

operating conditions, the current results show that the 

ESF-CCM model is a promising alternative to model-

ling turbulence chemistry interaction in diesel engines 

where multiple combustion modes are observed.  
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