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Abstract— Phase-sensitive four-wave mixing is 

experimentally demonstrated in a 5-mm long AlGaAsOI 

nano-waveguide. More than 7 dB of phase-sensitive extinction 

ratio are reported without neither using active biasing nor 

polarization-assisted schemes. Measurements show a good 

match with numerical predictions. 

Keywords—four-wave mixing; phase sensitive amplification; 

integrated waveguides 

I.  INTRODUCTION 

Several applications of phase-sensitive processing have 
been reported in the recent years, spanning from low-noise 
amplitication

1
, signal regeneration

2
, quadrature 

decomposition
3
 and optical filtering

4
. These demonstrations 

have been achieved mainly using four-wave mixing (FWM) 
in highly nonlinear fibers. The use of more compact devices 
would enable not only to reduce the footprint and potentially 
the energy consumption but also enable more complex 
functionality thanks to a more effective control of the phase 
of the interacting waves. 
Along this direction, very recently the first fully integrated 
phase-sensitive processor has been reported

5
 using 

semiconductor optical amplifiers (SOAs). Regardless of the 
impressive demonstration, the achievable phase-sensitive 
extinction ratio (PER) was still limited and SOAs may not 
be the most suited nonlinear medium as their speed is 
constrained by the carrier lifetime. Alternative media have 
also been investigated with very promising results reported 
in periodically poled lithium niobate

6
 (PPLN), silicon

7,8
 and 

silicon-germanium
9
 waveguides. While PPLN may be 

difficult to integrate, silicon and silicon-germanium are fully 
CMOS compatible. However, due to the presence of two-
photon absorption (TPA) at telecom wavelengths, the 
limited conversion efficiency (CE) in silicon restricts the 
achievable PER. Techniques have been reported to tackle 
this limitation by either using p-i-n junctions to prevent 
free-carrier accumulation

7
 at the expenses of additional 

fabrication steps, or by moving into narrow-band slow-light 
regimes under pulsed operation

8
 or by using 

polarization-assisted schemes
9
 which however result in a 

significant loss of optical signal-to-noise ratio. Alternatively 
to silicon, AlGaAs-on-insulator (AlGaAsOI) is an efficient 
nonlinear platform where TPA at 1550 nm can be addressed 
by proper bandgap engineering

10
.  

In this work, we report the first demonstration of 
phase-sensitive FWM in a 5-mm long AlGaAsOI nano-
waveguide without any need for active biasing, slow-light 
effects or polarization-assisted schemes. PERs up to 7.7 dB 
are achieved in good match with numerical predictions. 

II. WAVEGUIDE FABRICATION AND PROPERTIES 

The AlGaAsOI wafer is prepared by wafer growth, 
wafer bonding and substrate removal. The choice of an 
AlGaAs core (n ≈ 3.3) surrounded by the insulator cladding 
(n ≈ 1.5) significantly enhances the field confinement in the 
waveguide and thus the already strong nonlinear Kerr 
effects in AlGaAs

10
 (n2 ≈ 10

-17
 W/m

2
). The nano-

waveguides are defined by electron-beam lithography and 
dry etching using hydrogen silsesquioxane as hard mask. 
The inset in Fig. 1(a) shows a SEM image of the waveguide 
prior to SiO2 over-cladding deposition. The cross-section of 
the 5-mm long waveguide is 290×630 nm

2
 and the 

propagation loss has been estimated to 1.5 dB/cm. In order 
to increase the coupling efficiency into the waveguide, 
inverse tapers

11
 and lensed fibers have been used at both 

facets with an estimated coupling loss of 2.5 dB/facet. The 
phase-insensitive output CE, measured by coupling into the 
waveguide a strong continuous wave (CW) pump together 
with a weak CW signal, is shown in Fig. 1(a) as a function 
of the total power at the input of the waveguide. The output 
CE is defined as the ratio between idler and signal power at 
the output of the waveguide and as can be seen it increases 
almost quadratically with the input power showing no sign 
of saturation due to nonlinear loss up to a CE of -10 dB. 

 

Fig. 1. (a) Phase-insensitive output CE as a function of the input power for the 5-mm long AlGaAsOI waveguide: inset, SEM image of the nano-waveguide prior 
to PECVD deposition. (b) Experimental setup for phase-sensitive FWM characterization of the AlGaAsOI nano-waveguide. 
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III. EXPERIMENTAL SETUP 

The experimental setup is shown in Fig. 1 (b). A frequency 
comb is generated phase-modulating a CW wave at 
1550 nm from an external cavity laser (ECL) with a 40-GHz 
radio-frequency signal. The 40-GHz spaced frequency lines 
are therefore locked in frequency and phase such that phase-
sensitive processes can occur. An optical processor (Finisar, 
WaveShaper) is then used to select three neighboring lines, 
the outer two to act as pumps and the middle one as signal. 
Amplitude and phase of the three waves is independently 
controlled with the processor such that the two pump waves 
are equalized in power and the signal-to-pump power ratio 
is set to -10 dB. An erbium-doped fiber amplifier (EDFA) is 
then used to amplify the three waves, followed by an optical 
bandpass filter (OBPF) to suppress out-of-band noise. The 
optical power coupled into the AlGaAsOI nano-waveguide 
is controlled by a variable optical attenuator (VOA) and the 
state-of-polarization is aligned to the TE mode of the 
waveguide. At the output of the waveguide, the spectra are 
recorded with an optical spectrum analyzer (OSA). 

IV.   RESULTS AND DISCUSSION 

The phase-sensitive response is investigated by measuring 
the signal power at the output of the waveguide as the input 
signal phase is varied with respect to the pumps by using the 
optical processor. The normalized output signal power as a 
function of the signal phase is shown in Fig. 2(a) for 
different input power levels into the AlGaAsOI waveguide. 
The curves clearly show the expected sine-square trend with 
PER values (defined as ratio between maximum and 
minimum output power) increasing with the input power 
into the waveguide. Input and output optical spectra for an 
input power of 27.5 dBm are shown in Fig. 2(b). The output 
signal power is maximized when the signal phase is set to 
50⁰, and minimized (maximum de-amplification) when an 

additional 90⁰ phase shift is added leading to a PER of 
7.7 dB. In Fig. 2(c), the measured PER values are then 
compared with numerical predictions as a function of the 
output CE since the phase-sensitive behavior relies on the 
interference between frequency degenerate signal and idler. 
The numerical simulations have been carried out by solving 
the nonlinear Schrödinger equation using the split-step 
Fourier method, thus accounting for the contribution of 
higher-order FWM processes taking place in the waveguide. 
A good agreement can be seen between numerical 

predictions and measurements, showing that a further 
increase in CE, for example with the use of a longer 
waveguide, would enable PER values suitable for system 
applications. 

V. CONCLUSION 

We have characterized phase-sensitive FWM in a 5-mm 
long AlGaAsOI waveguide, reporting a PER above 7 dB 
without the need for active voltage biasing, slow light 
effects or polarization-assisted schemes. Comparison with 
numerical simulations shows the strong potential of this 
platform for implementing phase-sensitive processing in 
fully integrated devices. 
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Fig. 2. Experimental results. (a) Normalized output signal power as a function of the input signal phase for different input power levels; (b) spectra at the input 

(dashed) and output (solid) of the waveguide for maximum amplification (red) and de-amplification (blue) for a total input power of 27.5 dBm; (c) phase-sensitive 

extinction ratio as a function of the phase-insensitive output CE: measurements (symbols) and numerical simulations (dashed line).  
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