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ABSTRACT. The paper presents calibration and efficiency analyses for two different configurations
of a resonant vibration absorber consisting of a spring, a damper and an inerter element. In the two
configurations the damper is either in parallel with the spring or with the inerter element. A calibration
procedure is described for the idealized single structuralmass system, starting from the desired level of
dynamic amplification, and leading to explicit formulae forthe device parameters. The procedure is then
extended to a flexible structure by accounting for flexibility and inertia effects from the non-resonant
modes. The calibration procedure is given a unified format for the two absorber types, and the high
efficiency – evaluated as the ability to reproduce the selected dynamic amplification level of the resonant
mode – is demonstrated.

KEYWORDS: Resonant damping, inerter absorber, absorber calibration, non-resonant modes.

1 INTRODUCTION

Damping of resonant vibrations of structures is one of the classic problems of structural dynamics.
A particular class is vibration absorber devices using an induced resonance in the device. The classic
case is the tuned mass absorber, in which a mass is suspended by a parallel spring-damper. The classic
method of calibration consists in adjusting the device parameters to obtain desirable properties of the
dynamic response curve, [1]. It has been demonstrated that these attractive properties can be formulated
quite simply in terms of the root locus curve generated by thecharacteristic equation, [2]. An advantage
of this approach is that it is easily extended to other resonant absorbers. Recently, an alternative to the
absolute motion of a mass has been introduced in the form of the so-called inerter, imposing a pair of
inertial forces via the relative motion of two points of fixture, [3, 4], and applications to damping of
vibrations of structures have emerged, [5, 6].

While mechanical as well as electromechanical damping devices are easily incorporated into finite
element models to enable analysis of the response of the damped structure, there is a need for a design
procedure that, based on the essential properties of structure and absorber device, leads to direct formulae
for the optimal device parameters. A direct and simple procedure can be developed from the relations
obtained in [2]. As it turns out the level of dynamic amplification, contained in the dynamic amplifi-
cation factorDAF, directly determines the damping ratio of the device, and itis then a simple matter
to determine the necessary stiffness and inertia parameters. This procedure was described in detail for
the tuned mass absorber in [7], where it was also extended to include the flexibility associated with the

1



EACS 2016 – 6th European Conference on Structural Control Sheffield, England: 11-13 July 2016
Paper No. 194

non-resonant background modes. The deformation represented by these modes leads to an increase in
the optimal device parameters. This theory was extended in [8], demonstrating the complete equivalence
between the tuned mass absorber and an inerter based device in which the inerter is coupled in series
with a parallel spring-damper. At the same time a more general representation of the effect of the non-
resonant modes was developed, consisting of an inertia termin addition to the more classic background
flexibility term.

The present paper gives a brief presentation of an extensionof the results from [7, 8] to different
resonant inerter based absorber devices and a more direct derivation of the modification of the device
parameters arising from the background flexibility and inertia effects. Additional details and examples
can be found in [9].

2 STRUCTURE WITH RESONANT AND BACKGROUND MODES

The structure is described by its stiffness, mass and viscous damping matricesK, M andC, respec-
tively. The motion of the structure is described by the displacement vectoru, satisfying the equation of
motion

Mü + Cu̇ + Ku + fd = fe, (1)

wherefe is the external load, and−fd is the load exerted on the structure by the device. The calibration
of the device depends on the frequency response around a resonance frequency and is carried out via a
modal analysis.

The calibration of the device is based on a modal analysis of the undamped structure in which the
response and forces are assumed implicitly to contain the time variation factor exp(iωt), whereby

[ K − ω2M ] u = f, (2)

The eigenfrequenciesω j and the corresponding mode shape vectorsu j are determined from the corre-
sponding homogeneous equation

[ K − ω2
jM ] u j = 0 , j = 1, · · · , n (3)

wheren is the number of degrees-of-freedom of the structural system. When introducing a representation
of the responseu in terms of the mode shape vectorsu j the solution to (2) is found in the form

u =
[

n∑

j=1

ω2
j

ω2
j − ω2

u juT
j

uT
j Ku j

]

f. (4)

This formula containsn terms and a central part of the calibration procedure is to use a simplified ap-
proximate form that permits analytical solution of the corresponding characteristic equation.

The calibration procedure considers a load corresponding to the forces from the device acting on the
structure. The device connects two degrees of freedom of thestructure and the corresponding displace-
ment and force can therefore be expressed in terms of an integer array of the formw = [ 0, 0,−1, · · · , 1, 0 ]
by the relations

u = wT u , f = w f . (5)
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Figure 1: Structure with resonant inerter device.

When using these relations in (4), the local response relation takes the form

u =
[

n∑

j=1

ω2
j

ω2
j − ω2

1
k j

]

f . (6)

where 1/k j is the modal flexibility

1
k j
=

(wT u j)2

uT
j Ku j

. (7)

corresponding to the mode shape vectoru j/(wT uj), normalized to unity at the device.
In the calibration of the device for damping of vibrations around a selected resonant modal frequency

ωr it is desirable to represent the structural response aroundthe resonant frequency as the sum of the
resonant response of moder, plus a suitable simplified representation of the response from the non-
resonant modes,j , r. As demonstrated in [8] a convenient and rather accurate representation of the
response around the resonance frequency can be obtained in the form

u =
[ ω2

r

ω2
r − ω2

1
kr
+

1
k′r
−

1
m′r

1

ω2

]

f . (8)

The background stiffness and mass parametersk′r andm′r are determined to give the correct full response
and the correct frequency derivative atω = ωr.

It was demonstrated that the stiffness and mass parametersk′r andm′r can be calculated from a modal
analysis based on only the properties of the resonant moder. First a mass matrixMr is introduced, in
which the contribution corresponding the the mass of the resonant mode has been removed,

Mr = M −
(Mur)(uT

r M)

uT
r Mur

. (9)

This mass matrix is used to define a ‘frequency shifted’ stiffness matrix

Kr = K − ω2
r Mr, (10)
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in which the resonant mode is left unaffected by the frequency shift. The background flexibility and
inertia parameters are then determined explicitly in termsof the system matrices as

1
k′r
= wT K−1

r K K−1
r w −

1
kr
,

1

ω2
r m′r

= wT K−1
r K K−1

r w − wT K−1
r w . (11)

It follows from the detailed derivation in [8] that both the background flexibility and inertia coefficients
are positive.

3 FREQUENCY RESPONSE OF STRUCTURE WITH DEVICE

The device frequency properties are given by a relation between the displacementud over the device
and the corresponding forcefd = − f ,

ud = H′d(ω) fd (12)

whereH′d(ω) is the frequency response function of the device. When including this contribution in the
response equation (8) the resulting frequency response relation takes the form

u =
[ ω2

r

ω2
r − ω2

1
kr
+

1
k′r
− 1

m′r

1

ω2
︸                               ︷︷                               ︸

structure with background terms

+ H′d(ω)
︸︷︷︸

absorber

]

f . (13)

In this relation the first term represents the resonant response of moder, the following two terms represent
the approximate response of the non-resonant background modes, and the last term the displacement over
the device, characterized by the response functionH′d(ω) in terms of the stiffness, mass and damping
parametersk′d, m′d andc′d.

The calibration procedure developed in the following consists in finding the optimal – or near optimal
– location of the complex roots of the response relation (13). This is attained in two steps. The first step
identifies the optimal device parameterskd, md andcd of the corresponding single-mode system

u =
[ ω2

r

ω2
r − ω2

1
kr

︸        ︷︷        ︸

modal response

+ Hd(ω)
︸︷︷︸

equivalent
absorber

]

f , (14)

in which the equivalent device response functionHd(ω) is of the same form as the original device re-
sponse functionHd(ω). The device parameterskd, md andcd that are optimal for (14) solve the single-
mode problem, often used in calibration of resonant deviceson structures.

The solution for the device parametersk′d, m′d andc′d accounting for the non-resonant background
modes are then obtained by consideringHd(ω) as an equivalent representation of the original system,
corresponding to including the background effects into the equivalent device by changing the device
parameters. This defines the equivalence relation

Hd(ω) =
1
k′r
− 1

m′r

1
ω2
+ H′d(ω), (15)
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that in turn enables identification of the background modified parametersk′d, m′d andc′d from the classic
single-mode parameterskd, md andcd.

4 TWO THREE-COMPONENT RESONANT VIBRATION ABSORBERS

Two resonant inerter based vibration absorbers are shown inFig. 2. They both consist of a spring , a
damper and a mass element consisting of an inerter with an equivalent mass, giving the force in terms of
the acceleration of the extension of the element. The devicestiffnesskd and massmd are characterized
by the stiffness ratio and the mass ratio,

κ =
kd

kr
, µ =

md

mr
, (16)

wherekr andmr are the modal stiffness and modal mass of the resonant mode of the structure, defined
by (7) andmr = kr/ω

2
r , respectively. The device damping is described by the damping ratio

ζd =
cd

2
√

kd md
. (17)

The single-mode design problem consists in finding optimal values of these parameters.

(a)

ud

u j uk

md
kd

cd

fdfd

(b)

ud

u j uk

md kd

cd

fdfd

Figure 2: Resonant absorbers. a) parallel spring-damper, b) parallel inerter-damper.

The design is based on a root locus analysis, in which the complex vibration frequencies of the two
vibration modes are defined to have identical damping ratio.For the device with parallel spring-damper
in Fig. 2a the characteristic equation of the problem follows from the frequency response relation (14) in
the form

ω4 −
[

(1+ µ)ω2
d + ω

2
r
]

ω2 + ω2
rω

2
d + 2iζdωωd

[

(1+ µ)ω2 − ω2
r
]

= 0 . (18)

whereωd =
√

kd/md is the device frequency. In the procedure, described in detail in [2, 7], the device
frequencyωd is determined by balancing the coefficients of the linear and cubic terms, using a reference
frequency determined by the constant term. This determinesthe frequency tuning in terms of the mass
ratioµ and secures equal damping ratio of the two complex frequencies of the 2-DOF system. Atζd = 0
the system is undamped, while increasing damping leads to a bifurcation point in the root-locus diagram.
The optimal frequency is a balance between too low damping and the reduction occurring for a double
root at the bifurcation point. This determines the device damping ratioζd as function of the mass ratioµ.

5



EACS 2016 – 6th European Conference on Structural Control Sheffield, England: 11-13 July 2016
Paper No. 194

0.6 0.7 0.8 0.9 1 1.1 1.2
0

4

8

12(a)

ω/ωs

|u
r

k r
/

f| 1
2ζmode

0.6 0.7 0.8 0.9 1 1.1 1.2
0

10

20

30(b)

ω/ωs

|u
p

k r
/

f|

1

8ζ2mode

Figure 3: Dynamic amplification of parallel spring-damper for µ = 0.05. a) structure motionur and
b) relative parallel device element motionup. Damping parameter: - -ζclassic, — ζopt, - · - ζbif .

A simple design procedure consists in reversing the order ofthe formulae relative to the derivation.
The response of single-mode structure and the corresponding responseup over the parallel elements in the
device are illustrated in Fig. 3 for a mass ratio ofµ = 0.05. The design procedure leads to equal damping
ζmode of the two modes, in which the device splits the original undamped single mode. Furthermore,
the modal damping ratio is quite accurately represented byζmode ≃ 1

2ζd. The amplification levels are
indicated in the figure in terms of this modal damping ratioζmode. It is observed that the near-level
plateau of the dynamic amplification – given by the Dynamic Amplification FactorDAF – is described
by DAF ≃ 2ζmode. In real structures there will be some structural damping, here represented by the
damping ratioζstruc. It has been found in numerical examples that the effective damping ratio describing
the amplification similat to those in Fig. 3 can be approximated by the sum of the contribution from the
resonant device and the structural damping in the form

ζmode ≃ 1
2ζd + ζstruc. (19)

The design procedure then consists of the following simple steps, shown in the left column of Table 1.
First the modal damping ratioζmode is determined from the dynamic amplification selected for design.
The modal damping ration is then used to calculate the devicedamping ratio by (19). The device damping
ratio determines the mass ratio, and the mass ratio in turn determines the stiffness ratio. In total that gives
the physical device parameters given in the last row of the table.

The design of the device with parallel inerter-damper in Fig. 2b is carried out in a similar manner.
The characteristic equation following from (14) now takes the form

ω4 −
[
ω2

d + (1+ κ)ω2
r
]
ω2 + ω2

rω
2
d + 2iζdωωd

[
ω2 − (1+ κ)ω2

r
]
= 0 . (20)

It is seen that this equation appears rather similar to (18) for the other device, and that the role of the
mass ratioµ here is taken over by the stiffness ratioκ. The derivation of the design formulae are the
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Table 1: Single-mode design procedure.

Parallel stiffness-damper Parallel inerter-damper

Modal damping: 2ζmode =
1

DAF

Device damping: ζd = 2(ζmode − ζstruc)

µ =
2ζ2d

1− 2ζ2d
κ =

2ζ2d
1− 2ζ2d

Mass/stiffness ratio:
κ =

µ

(1+ µ)2
µ =

κ

(1+ κ)2

Device parameters: md = µmr, kd = κ kr, cd = 2ζd
√

mdkd

same, and the result – organized in design format – is shown inthe right column of Table 1. It is seen
that the procedure is quite similar when interchanging the roles ofκ andµ. In practical design the values
of κ andµ are not too different, but while the parallel spring-damper device tunes the device frequency
below the structural frequency, the parallel inerter-damper device tunes the device frequency above the
structural frequency.

5 CORRECTION FOR BACKGROUND MODES

In the calculation of the parametersk′d, m′d andc′d the effect of the background flexibility and inertia
is described by the non-dimensional coefficients

κ′r =
kr

k′r
, µ′r =

mr

m′r
. (21)

By the definition of the background parameters in terms of their reciprocals the absence of these effects
corresponds toκ′r = 0 andµ′r = 0, respectively.

The device parameters corrected for the effect of the non-resonant background modes are obtained
from the equivalence relation (15) by expressing the deviceresponse functionH′d(ω) in terms of the
parametersk′d, m′d andc′d and the equivalent device response functionHd(ω) in terms of the single-mode
parameterskd, md andcd, determined as described in Table 1. Each device has a set of parallel elements
as well as a series element. The parameter of the series element can be found directly, whereas the
two parameters of the parallel elements require an approximation - essentially consisting in omitting the
magnitude of the damping force relative to the direct deviceforce, [8]. The procedure is described in
detail in [9]. The results are collected in Table 2. It is seenthat all device parameters are increased
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Table 2: Correction for background modes.

Parallel stiffness-damper Parallel inerter-damper

Background parameters: κ′r =
kr

k′r
, µ′r =

mr

m′r

Device stiffness: k′d =
kd

1− κ′r κ

Device mass: m′d =
md

1− µ′r µ

Device damping: c′d =
cd

(1− κ′r κ)2
c′d =

cd

(1− µ′r µ)2

by the correction for the background modes. The device stiffness and mass are adjusted in the same
way for both absorber types via the background parametersκ′r andµ′r, respectively. The correction of
the damper parameterc′r is larger, and for the parallel stiffness-damper device it is adjusted via the
background stiffness coefficient κ′r, while the damping of the parallel inerter-damper device isadjusted
via the background inertia coefficientµ′r.

6 EXAMPLE

The effect of the correction for background modes is illustrated byconsidering the first three modes
of the simple shear frame shown in Fig. 1. Further examples can be found in [8, 9]. The shear building
has 10 storeys and the absorber device is connected to the ground and the first floor. The results of the
calibration with respect to any one of the first three modesr = 1, 2, 3 are given in Table 3 for three
different calibration procedures. The first three rows in the table refer to the single-mode calibration
described in Table 1. The next block of three rows refers to the so-called quasi-static correction, which
is based on a stiffness correction corresponding to settingω2 equal toω2

r in the background term in (8).
The final block of three rows gives the results for the full quasi-dynamic correction procedure including
both a background stiffness and an inertia term. The type of calibration is clear from the parameters
κ′r andµ′r in the table. In the single-mode procedure they are both zero, in the quasi-static procedure
a background stiffness parameterκ′r is included, and in the quasi-dynamic procedure both background
coefficients contribute.

The first block of three rows shows the classic single-mode calibration corresponding to Table 1. The
equivalent device damping ratioζd = 1/DAF = 0.10 for all the three modes, and from this follows the
mass ratiom′d/mr = 0.0204, common to all three modes. For an ideal single-mode structure this results
in ζ1 = ζ2 = 1

2ζd = 0.05. However, as the table shows the effect of the non-resonant background modes
leads to considerable unbalance in the modal damping ratios, and thereby to considerable deviation from
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Table 3: Absorber in shear frame structure withDAF = 10.

r κ′r µ′r
m′d
mr

ω′d
ωr

ζ′d ζ1,2

1 0.0204 0.9800 0.1000 0.0587 0.0301
2 0.0204 0.9800 0.1000 0.0575 0.0304
3 0.0204 0.9800 0.1000 0.0546 0.0310

1 4.2795 0.0204 1.0239 0.1140 0.0500 0.0501
2 4.5235 0.0204 1.0266 0.1149 0.0474 0.0519
3 5.0587 0.0204 1.0325 0.1170 0.0416 0.0553

1 4.6877 0.2130 0.0204 1.0261 0.1153 0.0495 0.0516
2 5.7240 1.4584 0.0210 1.0245 0.1177 0.0495 0.0518
3 7.9976 4.1908 0.0223 1.0206 0.1235 0.0494 0.0524

the level plateau marking the dynamic amplification around resonance as illustrated for moder = 2 in
Fig. 4, showing the computed response amplification for a mode 2 load distribution.

The results from the quasi-static calibration are shown by the next three-row block. The assumption
of this calibration corresponds to the first mode, and this isconfirmed by excellent balance of the modal
damping ratiosζ1 ≃ ζ2 ≃ 0.05 for this mode. For mode 2 and mode 3 an unbalance appears, but
considerably smaller than in the case of single-mode calibration. Finally, the quasi-dynamic calibration
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Figure 4: Dynamic amplification with parallel spring-damper for DAF = 10. a) structure motionur and
b) parallel element device motionup. Single-mode (- -), quasi-static correction (-· -) and quasi-dynamic
correction (—).
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procedure with both background coefficients is illustrated in the last three rows. It is seen that the
results for the first mode exhibit a slightly larger unbalance than for the quasi-static correction, which is
specifically directed towards the first mode. However, the quasi-dynamic correction retains the balance
of the modal damping ratiosζ1 andζ2. The good quality of the calibration when including the effect of
the background modes is illustrated in Fig. 4.

7 CONCLUSIONS

An overview has been given of a calibration method for a resonant inerter based absorber device
targeting a selected mode of a flexible structure, and two inerter based devices are described in detail.
The procedure consists of two steps. In the first step the device stiffness, damping and inertia parameters
are determined from a selected level of dynamic amplification for the idealized case of a device acting via
a single mode representation of the structure. In the secondstep the preliminary device parameters are
modified by simple explicit formulae to account for the non-resonant background modes of the structure,
represented by a two-term approximate representation of the additional response from these modes.
The whole procedure is explicit in terms of coefficients obtained from the stiffness and mass matrix
of the structure plus the frequency and mode-shape of the targeted resonant mode. The calibration
procedure appears to be quite accurate – both with respect toreproducing the selected level of dynamic
amplification, as well as providing a fairly uniform level ofdynamic amplification about the resonance
frequency.
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