

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

CCM-R: Secure Counter Synchronization for IoT Wireless Link

Roy, Upal; Yin, Jiachen; Andersen, Birger

Published in:
Proceedings of the Global Wireless Summit

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Roy, U., Yin, J., & Andersen, B. (2016). CCM-R: Secure Counter Synchronization for IoT Wireless Link. In
Proceedings of the Global Wireless Summit

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84001816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/ccmr-secure-counter-synchronization-for-iot-wireless-link(0436a6a5-15c8-4340-909b-d76f69fe0728).html

CCM-R: Secure Counter Synchronization for IoT
Wireless Link

Upal Roy
DTU Compute

Technical University of Denmark
Copenhagen, Denmark

Email: s127819@student.dtu.dk

Jiachen Yin
DTU Compute

Technical University of Denmark
Copenhagen, Denmark

Email: s127628@student.dtu.dk

Birger Andersen
DTU Diplom

Technical University of Denmark
Copenhagen, Denmark
Email: birad@dtu.dk

Abstract—In this paper we propose and evaluate a new
version of the CCM mode of operation, CCM-R, which is
an extended and alternate version of the original CBC-MAC
with Counter Mode(CCM) that was created to address the
problem of counter synchronization. While CCM is considered
secure when used/implemented correctly, it is still vulnerable to
Denial of Service (DoS) attacks where packages in the stream
are removed or modified with the purpose of destabilizing the
synchronization of the counter states. Another possible way
it can be destabilised is through random loss of packets due
to noise or weak signals on wireless link. Therefore, in order
to solve this problem, we have proposed a solution where we
have embedded a secure counter synchronization approach into
the original CCM mode of operation. The approach makes it
immune to package loss and DoS attacks. The overhead is also
kept at a minimum, making it suitable for low-power wireless
IoT devices.

Keywords—CCM-R; IoT wireless link; CCM; counter syn-
chronization; Network Security.

I. INTRODUCTION
CCM (CBC-MAC with CTR mode) was created by Niels

Ferguson, Doug Whiting and Russ Housely [3]. Concern was
the main issues of wireless IoT devices, such as data link
issues where messages are usually small (need low overhead)
and energy efficiency.

Often the messages are not retransmitted in cases where
messages are lost or received with errors in order to save
energy and not to use more bandwidth. In our case (with
our protocol stack developed with wireless weather stations
in mind), the messages lost or received not in order will be
retransmitted three more times and then withdrawn in cases
messages are still not received correctly.

At this time, many points of contention came up in the
sense that while implementing the RFC version of CCM
mode would definitely work it would lead to problems in
case the recipient loses track of the counter and would not
be able to authenticate and decrypt the message. According
to these issues, it is very urgent to have efficient counter
synchronization and therefore we modified and extended
CCM to fit in with our purpose and to actually customize
the code so that it would function best with our situation. At
the same time, we carefully considered the possible attacks

against counter synchronization that could lead to, 1) counter
would become unknown, 2) synchronization would fail (DoS
attack) and/or, 3) a battery powered device would use up the
power during many synchronization attempts (power drain
attack). The security concerns of our proposed solution will
also be then discussed. Finally, we want to introduce as
little overhead as possible by only adding few bits/bytes
to messages, which can be important in a battery powered
domain.

II. ENVIRONMENT
We are here describing hardware and software used. The

most important software that was used to build and run
application with protocol stack is MPLABX [11], which
was used to code and build the software directly to the
hardware. The connection kit we used is the PICkit connector
[12], which allowed us to build and execute the program by
using MPLABX. We were using MPLABX 3.10 to code and
program a 16-bit PIC micro-controller, which is made by
microchip complied by using a XC16 complier. For testing
purpose we had circuit boards of a weather station and
an IoT gateway both with wireless transceivers with PIC
microcontrollers. More precisely, our hardware was a RF1
module, which consists of three individual printed circuit
boards (PCBs), a 9V battery and a switch, as well as a RF2
module that consists of two 1.5V batteries, a PCB with serial
connector and a switch. RF1 was for weather station while
RF2 was for IoT gateway.

III. ALGORITHM
The CCM-R algorithm consists of three essential parts:

the authentication algorithm, the encryption algorithm, and
the random number generator.

A. Authentication
The authentication part is one of the most important parts

because it ensures that the message has not been modified
by any means and that the message is from expected source.
The first step is to compute the authentication tag T. This acts
as the MAC tag. This is done by using CBC-MAC. First a
sequence of blocks has to be defined, B0, B1, ... , Bn and
then the CBC encryption operation is run on these. CBC-

MAC uses an initialization vector(IV) of 0. The first plain-
text block is XOR’ed with this IV and this result is then
encrypted with the key to form the cipher-text for the first
block. This continues till the result of the second to last block
i.e. the cipher text of it is XOR’ed with the last block plain-
text and then this is encrypted with the Key to form the
cipher-text of the last block. The most significant bytes or
MSB of the cipher-text of the last block is taken. Assuming
blocks B0, B1, ... , Bn are defined, then the first ciphertext
block, X1 can be represented as:

X1 := EK, B0 ⊕ IV (1)

Based on that the final cipher text block can be represented
as:

Xn := EK, Bi ⊕Xi−1 (2)

Thus the authentication field value or the MAC tag is defined
as:

T := MSB(Xn) (3)

B. Encryption
For encryption we are using counter mode. Counter mode

uses a nonce and counter as input generally where there is
a fixed nonce and the counter is updated using the nonce
as a base. But in our case we use CTR0 = nonce and as the
counter updates by 1, CTR1 just becomes the ”nonce +1” and
CTR2 as ”nonce + 2”. The counter is generally a fixed value
throughout an entire session. For our implementation we used
a variable and secret 8-byte counter which changes for each
packet being sent. The counter is generated using a true ran-
dom number generator. This would increase the security since
using a fixed nonce with counter generates sequences which
with enough time and computation power can be broken. An-
other advantage of generating our own randomized counter is
that since we are sending it along with the packet there will
never be any counter synchronization problems. If packages
are lost the counter would become unsynchronized and cause
incorrect authentication and decryption of the packet. This is
the major advantage of our implementation as CCM-R in the
sense that it completely takes out the need for maintaining
synchronization between the counters on the receiving and
sending ends using additional synchronization messages. Due
to the entire counter being sent the only thing that needs to
be taken into account is that the counter generating sequence
is the same, i.e. counter0 + 1, counter0 + 2 and so on is the
same on both sides which is programmatically very simple.
The first CTR or CTR0 is generated using a true random
number generator function. This counter is then encrypted
with the secret key and the result is then XOR’ed with
the plain-text first block. The next keystream is block is
generated by encrypting successive values of the counter. So
for the final block to be encrypted the final counter which
is CTR0 + number of blocks encrypted is encrypted with the key and
the result is then XOR’ed with the plaintext.

For the first block being encrypted, it is represented by:

X1 := EK, CTR0 ⊕B0 (4)

And therefore the final block to be encrypted is:

Xi = EK, CTRi
⊕Bi (5)

C. Output
The output which is to be sent is then the encrypted

message from X1 to Xi in counter mode which we dub as
”m”, the MAC tag and the CTR0. While the cipher text is
secure enough to be sent as is, the MAC tag and the counter
is then encrypted with AES-128 [2] to provide added security
since this is impossible to crack as of now. To note is that
the MAC tag and the CTR0 are each 8 bytes in length to fit
in with CCM mode restrictions.

D. Decryption
For decryption the exact opposite needs to be taken place.

Using AES-128 the CTR0 and MAC tag are decrypted. The
CTR0 along with the key is passed through the encryption
cipher and the result is XOR’ed with the first cipher text
block and the plaintext of the first block is the result. Same
is repeated till the last block, where the final counter which
is basically counter + number of blocks is passed through the
encryption cipher and the result XOR’ed with the last cipher
text block to produce the plaintext.

E. Frame Format
Although not being part of CCM-R, we have present its

implementation at the link layer in details. Some parts of
frame header was already defined by the protocol in previous
version where AES-CBC was used but with only encrypted
CRC fields for protecting integrity.

Figure 1 shows the wireless link frame format while pack-
ages are transmitting. It starts with one-byte value identifying
the packet length, and 4-byte value for the address from the
destination, a 2-byte CRC16 value, and then, the AES-CTR
mode is used for encrypt the set of 4-byte source address,
1-byte command, status value along with the data that needs
to be transferred. The initial counter value as well as the
CBC-MAC Tag value are combined into one block of 16-
byte encrypted by AES-ECB mode transferred along with
the entire frame.

Fig. 1. Wireless Link Frame Format

IV. EVALUATION
Our implementation of CCM-R version deviates from the

RFC version considerably. Also concerning of the issues of
what a wireless link would occur as well as the importance
to solve the counter synchronization problem to maintain the
security of the system, a sequence of packets lost and receiver
does not know about the sequence number of the counter
and which counter will be the next one, and also an attack
could remove or change a long sequence of packets, e.g.,
DoS attack. Both of the cases discussed above could have
terminated the network communication and cause threats to
the system for instance. In such a situation, one counter syn-
chronization algorithm would not help a lot as for instance the
attacker could just simply remove or change a long sequence
of packets once again. Therefore, in order to maintain the
security level of the RFC CCM version and also improve
it by solving the counter synchronization problem, CCM-
R comes to the place. Figure 2 shows the basic overview

Fig. 2. CCM Structure and Encryption/Decryption

of the RFC CCM version. The diagram also describes the
entire encryption and authentication happening and also the
results, which are being sent. Figure 2 shows CCM-R, where
the packet structure can be easily seen. We put the 8-byte
initial counter, generated by using a true random number
generator, for the AES-CTR mode and 8-byte CBC-MAC
tag value as one block encrypted and decrypted by AES-
ECB when transfer the packet. We are using the tag value
to check if the packet is sent correctly and send the initial

Fig. 3. CCM-R Structure and Encryption/Decryption

counter for decrypt the packet in AES-CTR mode to tell the
packet sequence number. As we can see here, the difference
we make here from the RFC CCM version is that we take
out the initial counter and send it along with the CBC-
MAC tag value as one 16 bytes block by using AES-ECB
to encrypt, which can also help CCM-R to solve the counter
synchronization problem that exists in the RFC CCM version,
where if the packet is not completely transferred, the counter
synchronization will be messed up. Since using this strategy
we solved this problem by sending the encrypted initial
counter. There are several test cases are made in order to
make sure there are no such security holes in the system that
can be exploited by attackers to potentially steal the data or
cause irreparable changes to it, and also how is it better than
the current version. The tests are all on CCM-R by comparing
results on before encrypt and after decrypted, also changing
some parts of the data to see how CCM-R deals with it and
by testing for a weaker signal that leads to more packet loss.

Concerning the possible attacks against CCM-R, such as
DoS and analyzing messages. A DoS attack, which is cyber-
attack that the attackers is attempting to make the users not
able to access the information or service is immune by CCM-

R since the message itself is self-contained. Also to be noted,
the counter value is randomized with an 8-byte value, for
instance the counter might be used for a second time or
maybe even third time. CCM-R is also very secure even with
this issue, because the counter is secret, which is encrypted
sent along with the Tag by using AES-ECB. It is very rare
to happen that both of the Tag and counter will be the same
again, and we believe that CCM-R is enough secure at the
current level of the network and at least at the same security
level as the original CCM. Therefore, CCM-R should provide
the following security services:

• Confidentiality, which ensures only authorized parties
can access the information.

• Authentication, which provides proof of authority of the
user.

• Integrity, which ensures changes can be detected.
• Access control in relations with layer management.

Theoretically, the meet-in-the-middle attacks can be used
to limit the key size of 2k/2 operations, where k is the size
of the key in bits. Due to CCM-R still remains the same key
size as CCM, it is secure enough against the attacks to 264

steps of operations.

V. EXPERIMENTS
As mentioned in the previous section, there are several tests

being made. In order to prove that CCM-R works properly,
we therefore executed the program with the CCM-R cipher
on the software simulators along with two RF modules to
compare the inputs and outputs, which lead to great success
after several attempts. For the security manner of CCM-R,
we decided to test a bit more on the algorithm and see how
it reacted to protect the data packet. Therefore, we decided
first to make the signal of the packet transfer between the
gateway and the simulator for the packet sender weaker by
using attenuator, with the purpose to take into account of
reality that there may be some jamming of networks leading
weaker signal or lead to more packet loss.

By testing this, the same equipment was then being used
with an attenuator to change the strength of the signal. The
CBC-MAC tags for authentication of the messages from both
ends keep match each other until the weakest point of the
attenuator can be changed to. When the signal is very weak,
the packet cannot be received, and therefore we decided to
drop the packet that cannot be received after three times
attempts, and for testing purpose the interval of the attempts
was set to 3 seconds, but it can be changed to have longer
time interval, for instance 20 seconds for reality. There is
another test for CCM-R, which is to deliberately change of
the packet structure and the initial randomized counter, on the
purpose of where the hackers tries to attack and modify the
packet or the generated random counter. By doing the tests,
we could make sure that by solving counter synchronization
problem by CCM-R, it is also being more secure. As has

been explored, we believe that CCM-R is secure enough and
also authenticated.

VI. CONCLUSION
In this paper we have presented a simpler solution to the

counter synchronization issue faced with the use of CTR
mode. We have discussed the implementation as well as the
tests we have performed to ensure the working and security
of the algorithm. CCM in the original RFC version matches
well with the CIA (Confidentiality, Integrity and Availability)
criteria and was a very useful algorithm to use. Regarding to
the pivotal issue of synchronization of counters as well as the
possible attacks against CCM-R such as DoS and analyzing
messages, the security level of the CCM-R has been improved
by solving the counter synchronization problem as well as
the solutions against those possible attacks. In spite of this
we believe due to the simplicity of solving the counter
synchronization issue and also maintain security level it could
be used in other real life scenarios practically to complement
the original CCM.

VII. RELATED WORKS
CCM was originally designed by D. Whiting, R. Housely,

and N. Ferguson [3]. CCM is considered secure when used
correctly but does not provide a solution to the counter
synchronization problem. In case an unknown number of
packages have been lost due to link layer failures or DoS
attack, recipient will fail to decrypt because the counter
values are no more in sequence. Solutions where counters
are displayed in clear-text like in WiFi are in general unsafe
or at least risky.

One approach to counter synchronization is taken in the
SPINS protocol [7]. Here counters are agreed upon and syn-
chronized by means of plaintext messages, meaning that the
counter value is not secret and therefore the counter (assumed
never reused) only guarantees freshness and prevents against
reply attacks. However, it was suggested to send the counter
encrypted with each message in order to protect against
counter synchronization DoS attacks, but this approach was
not further developed.

Zigbee [8] has been based on the SPINS approach but does
not include encrypted counter values. IP ESP [9] takes a dif-
ferent approach and uses a window where a limited number of
succeeding counters are tried at recipient side until successful
authentication (including integrity validation). Counters are
never transmitted as plaintext. Start value is always zero. IP
ESP will fail in case the resynchronization fails. Therefore, a
DoS attach against a number of succeeding packages can
efficiently interrupt an IP ESP session. Also power drain
might be consequence.

MiniSec [10] uses the time as replacement for the counter
and messages are accepted at recipient whenever their times-
tamps (included with the packages) are within the allowed
window. This approach is exactly opposite to SPINS which

is not transmitting the counter value. MiniSec implements
weak freshness as two messages with same timestamp will
be accepted if they arrive within the window. A message
with older timestamp than the previous will not be accepted.
SPINS and IP ESP provides strong freshness (another mes-
sage with same counter will never get accepted).

ACKNOWLEDGMENT
This research was partly funded by the FP7 EU

FRAMEWORK PROGRAMME under grant agreement No.
604659(project CLAFIS) [1].

REFERENCES
[1] CLAFIS-Project, Crop, Livestock and Forests Integrated System for

Intelligent Automation, http://www.clafis-project.eu/ , Website

[2] Joan Daemen and Vincent Rijmen, The Design of Rijndael: AES-
The Advanced Encryption Standard, Dated: 2002, Springer, Journal
Submission

[3] D. Whiting, R. Housley, N. Ferguson, Counter with CBC-MAC, RFC,
https://tools.ietf.org/html/rfc3610, RFC/Website

[4] Jakob Jonsson, On the Security of CTR+CBC-MAC, RSA Laboratory
Stockholm.

[5] Pierre-Alain Fouque, Gwenalle Martinet, Frederic Valette and Sebastien
Zimmer , On the Security of the CCM Encryption Mode and of a
Slight Variant, Ecole Normale Superieure/DCSSI Crypto Lab/CELAR,
http://www.di.ens.fr/ fouque/pub/acns08.pdf, Journal/Paper/Website

[6] William Stallings, ’Network Security Essentials Applications and Stan-
dards, Fourth Edition’, 2011, Textbook

[7] Adrian Perrig, Robert Szewczyk, J.D. Tygar, Victor Wen and David
E. Culler,SPINS: Security Protocols for Sensor Networks,Wireless Net-
works 8, 521?534, Kluwer Academic Publishers 2002.

[8] Paolo Baronti, Prashant Pillai, Vince W.C. Chook, Stefano Chessa,
Alberto Gotta, Y. Fun Hu, Wireless sensor networks: A survey on
the state of the art and the 802.15.4 and ZigBee standards,Computer
Communications 30 (2007) 1655?1695, Elsevier 2007.

[9] Stephen Kent, RFC 4303 IP Encapsulating Security Payload (ESP),
IETF 2005.

[10] Mark Luk, Ghita Mezzour, Adrian Perrig, Virgil Gligor, MiniSec: A
Secure Sensor Network Communication Architecture,IPSN?07, April 25-
27, 2007, Cambridge, Massachusetts, USA, ACM 2007.

[11] MPLAB-X IDE, http://www.microchip.com/mplab/mplab-x-ide

[12] PIC KIT, www.microchip.com/pickit3

