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Preface 
The work presented in the this thesis was conducted during my PhD project at the Center of Bioprocess 

Engineering (BioEng), Department of Chemical and Biochemical Engineering at the Technical University of 

Denmark (DTU), between December 2012 and December 2015. 

The work was funded by Mejeriernes Forsknings Fond (MFF) and through a DTU stipend. The work was 

carried out as part of a larger project with participation of several academic research groups as well as 

researchers from industry. The project was intentionally designed to cover as many aspects of the overall 

project within the scope of enzymatic production of the relevant prebiotic oligosaccharides. Thus is was 

very appropriate that the main supervisor for my PhD project was the project leader of the overall project, 

Jørn Dalgaard Mikkelsen (BioEng) but due to the broad nature of the project supervision was given by 

several co-supervisors Manuel Pinelo and Carsten Jers.  
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Summary 
A group of prebiotic oligosaccharides known as human milk oligo-saccharides (HMOs) are currently 

receiving a lot of attention due to the prospect of their addition to infant formula. Whereas prebiotics in 

general are used as mediators for modulating the gut microbiome in human individuals, HMOs play an 

important role in development of this organ, where it contributes to the selective growth stimulation of the 

beneficial microorganism Bifidobacterium infantis. The effects of HMOs are not only prebiotic and a range 

of beneficial effects have been postulated, with varying amounts of scientific evidence backing them up.  

Since chemical synthesis of carbohydrates is extremely cumbersome, it is generally accepted that HMOs 

must be produced biochemically and enzymatic in vitro production is a popular strategy. Thus, the purpose 

of this PhD project was to encompass as many of the aspects of the enzymatic production of HMOs as 

possible, and identify opportunities to improve the enzymes, reaction efficiencies and processes involved.  

For enzymatic in vitro production of HMOs, industrial side stream products are often used as substrates to 

reduce the final product price. However, to use these substrates it is generally necessary to identify glycosyl 

hydrolases with trans-glycosidase activity or ideally rare trans-glycosidases. The BioEng group has 

previously developed a state of the art engineered trans-sialidase used for the synthesis of sialylated 

HMOs. Thus, synthesis of the simple genuine mono-sialylated HMO, 3’sialyllactose(3’SL), received particular 

attention in this PhD project. The BioEng state of the art trans-sialidase was, during this PhD project, 

further mutated, raising the bar for competing enzymes. For further improvement of the current leading 

enzyme, it was concluded that new knowledge would be required and that such knowledge could be 

provided by identification of novel trans-sialidases, which have, however, only been identified in a single 

genus. Never the less, as part of this PhD project a novel trans-sialidase was identified which was capable of 

producing 3’SL and a novel trans-sialylation product, 3SL, the properties of which are unknown.  

With the goal to further improve 3’SL production, the process strategy underwent scrutiny and weak points 

were identified and improved upon. At the start of the PhD project, 3’SL was purified in a three step 

process including ultrafiltration, with subsequent column chromatography and removal of eluent. As part 

of this PhD project, an innovative nanofiltration approach eliminated the necessity for column 

chromatography and eluent removal.  Furthermore, by moving the HMO enzymatic synthesis to a 

membrane reactor, an integrated membrane system strategy was constructed and proof of concept was 

demonstrated.       

From the beginning of the PhD project, it was known that future endeavors would include the synthesis of 

larger HMO structures, for which enzymes and substrates for HMO backbone synthesis would be required. 

Progress in this aspect of HMO production was also achieved during this PhD project, as two novel β-N-

acetylhexosaminidases were identified through screening of metagenomic libraries. Both enzymes were 

successfully used to produce HMO backbone precursors, which have previously been used for HMO 

backbone synthesis.   
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Resumé 
For tiden bliver der forsket meget i en bestemt gruppe af prebiotiske oligosaccharider kaldet HMO’er 

(mælke-oligosaccharider af human oprindelse), med det formål at fremstille og tilsætte dem til 

modermælkserstatning. Hvor prebiotika generelt anvendes til at modulere på et individs tarmflora, er 

HMO’erne ekstra interessante fordi de er stærkt medvirkende til at udvikle den første tarmflora der 

etableres i et spædbarn. Dette sker bl.a. igennem en stimulering af væksten af Bifidobacterium infantis, 

som er en gavnlig bakterie. HMO’er menes, foruden at være prebiotiske, at have en række gavnlige 

egenskaber som, i varierende grad, kan bakkes op videnskabeligt. 

Da kemisk syntese af kulhydrater er besværligt er der generelt en opfattelse af at det er nødvendigt at 

anvende biokemisk syntese til HMO-fremstilling og in vitro enzymatisk fremstilling er en populær metode. 

Det var således formålet med dette PhD-projekt at omfatte så mange aspekter af enzymatisk HMO 

production som muligt, med det formål at identificere muligheder for at forbedre enzymer, 

reaktionsbetingelser og processer.  

Til in vitro produktion af HMO’er bruges industrielle bi-produkter ofte som substrater for at reducere 

produktionsomkostningerne. For at anvende disse substrater er det, til gengæld ofte nødvendigt at 

tilvejebringe hydrolytiske enzymer med trans-glycosidaseaktivitet eller ideelt de sjældne trans-glycosidaser. 

Forskningsgruppen, BioEng, har tidligere udviklet en gen-manipuleret trans-sialidase der, som en del af 

dette projekt, blev videreudviklet og har sat barren endnu højre for konkkurerende enzymer. For at 

videreudvikle på dette enzym var der enighed om at ny viden ville være en nødvendighed og at sådan viden 

kunne opnås hvis en ny trans-sialidase kunne identificeres. Trans-sialidaser er dog, indtil videre, kun 

identificeret i en enkelt slægt. Ikke desto mindre blev en ny trans-sialidase identificeret som en del af dette 

PhD-projekt og det nye enzym var i stand til at syntetisere 3’SL samt et nyt trans-sialyleringsprodukt, 3SL, 

hvis egenskaber er ukendte.  

Med det mål at forbedre 3’SL fremstilling blev den anvendte proces taget nøje I betragtning, så svage led 

kunne identificeres og forbedres. Ved PhD-projektets begyndelse udførtes oprensning af 3’SL i en tretrins 

proces: Ultrafiltrering efterfulgt af kolonne-oprensning og separation af eluent. Som del af dette PhD-

projekt blev kolonne-oprensning og eluent-separation erstattet af en innovativ anvendelse af nano-

filtrering. Endvidere blev et integreret membran-system udviklet og anvendt til produktion af 3’SL. 

Fra PhD-projektets begyndelse var det klart at det I fremtiden vil være målet at syntetisere større HMO 

strukturer. For at dette kan lade sig gøre vil det være nødvendigt at identificere enzymer og substrater til 

formålet. Dette PhD-projekt bidrog også med fremgang i denne henseende idet to nye β-N-

acetylhexosaminidaser blev identificeret ved hjælp af et DNA-bibliotek fremstillet af oprenset DNA fra en 

jordprøve. Begge enzymer blev med succes anvendt til at fremstille molekyler der er forstadier til HMO-

backbones og som tidligere er anvendt til at fremstille disse.     
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Chapter 1: Introduction 
This PhD project is rooted in the industrial application of enzymes for the production of human milk oligo-

saccharides (HMOs) and throughout the thesis industrial application has been kept in mind, thus the 

reported PhD project has strived to live up to the DTU mantra “Det blir’ til noget”, which for unimaginable 

reasons is written in Danish, but roughly translates to: “something becomes of it” or translated in essence: 

“real life solutions”.  

Goals 

- Identification of novel enzymes applicable for production of genuine HMOs 

- Improvement of in house enzymes for production of HMOs 

- Optimization of HMO production with special attention to scalability, purification and substrate 

utilization.  

 

Thesis structure  

In the reminder of this Chapter, key aspects of enzymatic production of prebiotics will be introduced. Upon 

reaching the end of Chapter 1 you, the reader of this thesis should be prepared to appreciate the proposed 

hypotheses and be invigorated to dive into the scientific work carried out as part of this PhD project. In 

each of the Chapters 2-6, the publications will be preceded by four parts; motivation, hypotheses and 

objectives, experimental considerations, and conclusion, to put the article into the context of the overall 

PhD project. Hence, the actual publications may include additional hypotheses and conclusions (than 

highlighted in the Chapter introduction) because it was occasional beneficial to scientific progress to 

venture outside the scope of the overall PhD project. In Chapters 2 and 3, the aspects of novel enzyme 

discovery are covered using two different routes to identification of trans-glycosidases, and dealing with 

the challenges involved with identifying this ingenious class of enzymes. Chapter 4, deals with the aspects 

of enzyme optimization is addressed and the state of the art engineered trans-sialidase Tr13 developed by 

our research group was modified by a rational approach and evaluated in vitro. In Chapter 5, the last steps 

of HMO production are carried out, when an innovative application of NF is used to purify the HMO 3’SL. 

Several pieces of the PhD project come together, in Chapter 6, as a process for optimized 3’SL production is 

proposed with the concepts demonstrated. Finally, the overall conclusions of the PhD project as a whole 

will be drawn up in Chapter 7. 
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Prebiotic oligosaccharides 

The term ‘Prebiotic’ was coined in 1956, describing molecular species prior to, but leading to life. However 

the term was kidnapped in 1995 Gibson and Roberfroid who thoroughly introduced the prebiotic concept 

and defined the term prebiotics as “non-digestible oligosaccharides that reach the colon without being 

hydrolysed and are selectively metabolized by health-positive bacteria such as bifidobacteria and 

lactobacilli thereby exerting a beneficial effect on the host health”(G. R. Gibson & Roberfroid, 1995).  The 

concept, upon introduction, received much attention from both academia and industry and many foods 

were proclaimed to have prebiotic activity. As a consequence the concept was revised several times(Glenn 

R Gibson, Probert, Loo, Rastall, & Roberfroid, 2004; Roberfroid, 2007) and in 2007 same Roberfroid offered 

a refined definition of prebiotics as: “a selectively fermented ingredient that allows specific changes, both 

in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-

being and health”(Roberfroid, 2007). Although the definition was changed the overall concept still revolve 

around the growth stimulation of bifidobacteria and lactobacilli and the usual suspect for such growth 

stimulation continues to be oligosaccharides such as fructo-oligosaccharids (FOS), galacto-oligosaccharides 

(GOS) and polysaccharides such as inulin(Charalampopoulos & Rastall, 2012).  

Commercially applied Prebiotics, infant formula and HMOs 

Whereas some foods are inherent prebiotic due to a natural content of a prebiotic component (i.e. 

Jerusalem Artichokes containing large amounts of the prebiotic inulin)(Moshfegh, 1999) a variety of 

commercially available products have prebiotics added to them in an effort to improve the health benefits 

of the product(Charalampopoulos & Rastall, 2012). One of the most pronounced uses of prebiotics is in the 

preparation of infant formula(Sabater, Prodanov, Olano, Corzo, & Montilla, 2016), which is also the main 

topic of this PhD thesis. Human milk contains, besides lactose, a tremendous amount of oligosaccharides 

collectively designated as HMOs(Bode, 2012). The complexity and nature of the HMOs will be further 

introduced, but among other beneficial effects they serve as prebiotics initializing and guiding the 

constitution of the infant microbiome(Clemens Kunz & Rudloff, 1993). Since the production of HMOs for 

infant formula is in its infancy, FOS and GOS is currently  added to most infant formulas where they serve as 

an HMO substitute(Sabater et al., 2016). The composition of HMOs is incredibly diverse and varies from 

individual to individual as well as over the course of the breast feeding period as reviewed by Kunz et al.(C 

Kunz, Rudloff, Baier, Klein, & Strobel, 2000). MHOs specifically stimulates the growth of beneficial bacteria 

such as Bifidobacterium infantis, which is especially efficient at metabolizing HMOs as it processes a large 

gene cluster dedicated to HMO consumption(Sela & Mills, 2010). The prebiotic effect of HMOs are however 

just one of many, to the infant, beneficial effects claimed to be associated with HMOs as summarized in Fig. 

1 from an excellent review on the subject by Bode(Bode, 2012). 
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Figure 1 (adopted from Bode 2012(Bode, 2012)): Many beneficial effects have been suggested by the 

scientific community: (A) As prebiotics HMOs serve as energy source enabling the beneficial 

bifidobacteria to outcompete potential harmful microorganisms. (B) The HMOs resemble structures on 

the human epithelium and are thus adhere to glycan receptors of pathogen organisms preventing its 

attachment. (C)HMOs affect gene regulation in epithelial cells, which in turn changes the cell 

glycosylation pattern and other cell responses. (D) HMOs affect the lymphocyte cytokine production 

which is suggested to aid a healthier Th1/Th2 response.  (E) HMOs inhibit the leukocyte rolling and on 

endothelial cells, activated by the immune system, through inhibition of selectin-mediated cell-cell 

interactions. (F) Sialic acid is an essential building block in brain tissue and sialylated HMOs may 

therefore serve as a source thereof, improving brain cognitive development. 

 

Production of prebiotic oligosaccharides 

Although some foods contain prebiotic oligosaccharides as a naturally occurring component (e.g. FOS and 

inulin in chicory root(Franck, 2002) of GOS in soybean(Espinosa-Martos & Rupérez)) most of 

oligosaccharides used for food functionalization are prepared by enzymatic reactions(Patel & Goyal, 2012). 

In principal there are two different strategies for obtaining oligosaccharides enzymatically – a top down and 
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a bottom up strategy(Patel & Goyal, 2012). In the top down approach carbohydrate polymers are partially 

degraded into their constitutive oligo-mers. This approach has long been used for the production of FOS 

from inulin(Bornet, Brouns, Tashiro, & Duvillier, 2002), but promising research apply the approach to 

produce compounds with prebiotic effects from more complex polymers such as pectin(Holck et al., 2011). 

The alternative bottom up strategy, which is the strategy investigated in this PhD study, relies on enzymes 

to build the oligosaccharides by addition of 1-2 glycosides at a time. The bottom up strategy is the strategy 

used by most living organisms for synthesis of their native polysaccharides, but whereas these reactions in 

living organisms are carried out by a class of enzymes known as glycosyltransferases(Ban et al., 2012) 

another class of enzymes are investigated in this PhD study. The enzymes studied in this PhD study all 

belong to classes of enzymes with hydrolytic activity towards carbohydrates, a decision that might at first 

seem idiotic but which have been successfully applied(Zeuner, Jers, Mikkelsen, & Meyer, 2014) and, 

hopefully, will seem convincing at the end of the thesis. The reason for looking away from the 

glycosyltransferases is due to their limitation in substrate specificity. Whereas glycosyltransferases are 

generally relying on nucleotide activated glycoside substrates, it is the hope that the promiscuity of 

hydrolases showing affinity for a range of polysaccharides will enable the use of industry side-stream 

products as substrates for prebiotic oligosaccharide production.  

HMO synthesis – building the holy grail of prebiotics bottom up  

 As mentioned human breast milk contain vast amounts of HMOs. HMOs are intrinsically of human origin, 

but similar structures can be obtained in the breast milk from other mammalian species such as elephants 

and camels(C. Kunz, 1999; Urashima, Taufik, Fukuda, & Asakuma, 2013). In bovine milk however HMO-like 

structures are very limited (with concentrations at about a 5% of Human milk) and variation in structure 

from human milk reduces the applicability further(Urashima et al., 2013). Thus natural sources of HMOs are 

limited and thus strategies to produce them are being developed(Holck et al., 2014; Michalak et al., 2014; 

Zeuner, Jers, et al., 2014; Zeuner, Luo, et al., 2014) – an effort which this PhD project revolves around. 

Lactose is the precursor of all HMOs identified so far(Bode, 2012). The lactose can then either be elongated 

by N-acetyllactosamine in a β1→6 or β1→3 fashion or by lacto-N-biose in a β1→3 fashion (Bode, 2012). As 

if these possible elongations did not permit enough diversity the resulting branched or unbranched 

backbone can be further decorated with fucose and or sialic acid. Fucose is found in HMOs in an α1→2, 

α1→3, and an α1→4 bound fashion whereas sialic acid is found in an α2→3 or α2→6 bound fashion (Bode, 

2012). The general principle of HMO structures is shown in Fig. 2, which however gives a slightly distorted 

picture of HMO diversity. The possible diversity of structures and associated complexity is vast and nature 

utilizes the possibilities to their fullest, making life harder for the scientists trying to replicate the synthesis 

of these structures (e.g. the author of this thesis). Thus more than 200 different HMO structures have been 
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identified so far(Ninonuevo et al., 2006) and thus it is extremely difficult to establish which HMOs are 

essential to gain each of the claimed beneficial effects of the HMOs. Among the structures shown in Fig. 2 

are four molecules, which have been the target for the enzymatic reactions and processes developed in this 

PhD thesis: 3’Sialyllactose (3’SL), 6’-sialyllactose (6’SL), Lacto-N-tetraose (LTN) and Lacto-N-neotetraose 

(LNnT).        

 

 

Figure 2 (adapted from Bode 2012(Bode, 2012)): HMOs are a complex mixture of oligosaccharides 

synthesized from up to five building blocks (A); lactose, lacto-N-biose, Nacetyllactosamine, sialic acid, and 

fucose. lactose act as the initial precursor for all HMOs and is recognized in all HMOs at the reducing end. 

A longer backbone may be generated by addition of lacto-N-biose or N-acetyllactosamine units before 

the HMOs may be (D) fucosylated (in an α1→2, α1→3, and an α1→4) or (E) sialylated (in an α2→3 or 

α2→6 fashion). The structures that are produced during the research of this PhD thesis are (green 

frames) 3’SL, 6’SL, LNT and LNnT.  
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The building blocks for HMOS 

When developing the process for HMO production it is of utmost importance to be well acquainted with 

the substrates that are to be utilized. Substrates for the enzymatic reactions, involved in the production of 

HMOs should originate from non-toxic or ideally food-grade compounds to ensure that the final product is 

safe and appropriate for consumption. Safety is however not the only factor to take into account when 

deciding on the substrates for the process. As mentioned the HMOs are intended for improving infant 

formula which is a large bulk product in a competitive market(Kent, 2015). Although infant health is 

important to the parents around the world, the price must be at a level where parents can be persuaded to 

pay for the new product. Thusly, availability and the associated price is another key factor to take into 

account. Thus industrial side stream products are often taken into consideration when substrates are 

searched for. Furthermore, to optimize feasibility of the HMO production process, it must be evaluated 

whether the substrates can be used or reused for a different purpose as it will further reduce the price (due 

to a second revenue stream) as well as the overall sustainability of the process.  

Since this PhD project revolves around the development of enzymatic HMO production in a bottom up 

fashion, the required substrates are: A suitable HMO backbone precursor as well as donors of sialic acid, 

fucose and N-acetyl glucosamine. In this regard the term donor describes a substrate, in which the sugar of 

interest is covalently bound and thusly has the energy needed to form the enzyme-substrate intermediate 

(CI) as further discussed in the section regarding enzymes for HMO production.    

HMO-precursor Lactose 

As lactose is the basis for all HMOs, residing at the reducing end of all identified structures, it is the natural 

choice for an HMO backbone precursor. Lactose is readily available in high quantities and is already used as 

the substrate for GOS synthesis(Wang et al., 2012). In the enzymatic reactions lactose will act as the 

acceptor molecule, in the transfer-glycosylation reaction mediated by the enzyme – a reaction which has 

also been demonstrated for 3’SL production(Holck et al., 2014).  

N-acetylgalactosamine donor - Chitin  

For more complex backbone molecules it is necessary to elongate the lactose precursor with either of the 

two disaccharides lacto-N-biose or N-acetyllactosamine. An enzymatic process transferring either of the di-

saccharides directly to a lactose molecule could be imagined, but no suitable donor substrates have been 

identified. Thus another strategy is necessary and Murata et al. have shown that synthesis of LNT and LNnT 

can be carried out enzymatically in a two-step reaction adding one mono-saccharide moiety at a 

time(Murata, Inukai, Suzuki, Yamagishi, & Usui, n.d.). In the first reaction step, a nucleotide-activated 

substrate was used as the donor substrate for a β-1,3-N-acetylglucosaminyltransferase from bovine serum 
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to carry out the transfer of N-acetylglucosamine (GlcNAc) to the acceptor; lactose(Murata et al., n.d.). 

Genuine HMOs (LNT and LNnT) were synthesized by subsequent addition of a galactose (respectively β1→3 

and β1→4 bound) in two different β-D-galactosidase-mediated trans-glycosylations(Murata et al., n.d.). 

Murata argues that the synthesizing process is suitable for large-scale operations(Murata et al., n.d.), but as 

previously described the nucleotide activated donors are undesired due to price and availability. Thus an 

alternative donor is required for HMO production and a candidate has been identified in the form of 

polymer chitin, which is the polymer composing the exo-skeleton of arthropods (insects, crustaceans, 

arachnids and myriapods)(Prabu, 2012) and have demonstrably been isolated from industrial shellfish 

waste (shells) (Arbia, 2013; Ghorbel-Bellaaj, Younes, Maâlej, Hajji, & Nasri, 2012). Thus, using chitin as an 

GlcNAc-donor valorize large amounts of industrial shrimp shells waste and could therefore be an ideal 

donor from an availability point of view. Another advantage of using shrimp shell is that its origin grants it 

food grade status. However, using shrimp shell is not without challenges as chitin is insoluble as a 

polymer(Arbia, 2013) (which is appreciated by the arthropods) and therefore needs preprocessing before it 

can be utilized for its intended purpose. Finally using chitin from this source could pose a threat to 

individuals with shellfish allergy. 

Sialic acid donor - CGMP 

Casein glycol macro peptide (CGMP) is as 64 AA peptide chain, which as the name suggests originates from 

the milk protein, casein, which takes up 80% of the protein in bovine milk. The peptide forms due to partial 

degradation of the κ-casein by chymosin during cheese production, where it end up in the liquid fraction as 

the cheese sets (Brody, 2000). The CGMP takes up 10-20%(Brody, 2000; Daddaoua et al., 2005) of the whey 

protein available as a side stream product from the cheese production which is used or sold as a food 

additive or protein supplement(Fitzpatrick, 2012). However, due to several unique properties, the CGMP is 

purified and sold as a separate product. The CGMP protein sequence is rather defined with very little 

variation as seen in Fig.3.  When inspecting the sequence it is soon realized that there is a very low level of 

aromatic AAs in the sequence, and thus CGMP an ideal protein source for individuals with the metabolic 

disorder; phenylketonuria (PKU). Numerous other beneficial effects can be attributed to CGMP as reviewed 

by Brody et. al.(Brody, 2000) but most importantly, with regards to HMO production, CGMP is O-

glycosylated at up to five available glycosylation sites (see Fig. 1). Data was collected from literature to 

discuss the complete glycosylation pattern of CGMP and it suggests that five different glycosylation 

structures can occur(Brody, 2000). The saccharides occurring in the CGMP glycosylation pattern are 

anchored to the peptide by an initial GalNAc unit which can be glycosylated to form a disaccharide Gal 

β1→3 GalNAc. The disaccharide can be decorated with sialic acid in an α2→3 Gal and/or α2→6 GalNAc 

fashion, rendering a total of 5 possible glycosylation structures shown in Fig.1. It has been observed that 
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the sialic acid content of CGMP may vary from batch to batch and it has been shown that the variation may 

be due to the heat-treatment that CGMP undergoes during the industrial preparation(Li & Mine, 2004; 

Taylor & Woonton, 2009; Villumsen et al., 2015). However there is generally an even distribution of α2→3 

and α2→6 bound sialic acid (if it has not been treated with a sialidase).  As a substrate for HMO sialylation 

CGMP has several advantages. Whey is produced at a rate of 180 to 190×106 ton/year – such an amount, 

that large quantities are disposed of through waste channels polluting the environment and recycling of 

whey is therefor of interest(F, 1983). Going through the enzymatic reaction sialylating HMOs CGMP may 

lose some of it claimed beneficial properties, but it can subsequently serve as a protein supplement (suited 

perfectly for individuals with PKU) which was one of its original applications. Thus the CGMP is indeed 

reusable as long as process design allows for recovery of the, albeit necessary to investigated to what 

extend the properties of the CGMP has changed after the de-sialylation.     

    

Figure 3, (adapted from www.arla.dk): The sequence of CGMP is well preserved, but occurs in two 

variants which differ at two positions (as indicated in grey). O-linked glycosylation can occur threonine of 

serine residues, but in the sequence only four of the threonine residues (blue) serve as glycosylation sites 

whereas the only serine serves as a phosphorylation site. Whereas there is agreement on CGMP being 

glycosylated at up to four sites and on the location of the first three glycosylation sites (T131, T133, and 
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T135) the fourth site has been reported to instead be T142 (adopting nomenclature from Eigel et 

al.)(Eigel et al., 1984). Five glycosylation structures which have been found on CGMP (right hand side) and 

the distribution is reportedly 0.8%, 6.3%, 18.4%, 18.5%, and 56.0%(Saito, Yamaji, & Itoh, 1991). 

A fucose donor candidate – Xyloglucan 

Finding a good natural source of fucose for production of fucosylated of HMOs has proven difficult and will 

not be discussed in the thesis beyond this paragraph. However to fully appreciate the effort that is put into 

the area of HMO development it is worth mentioning that a potential donor substrate, xyloglucan, has 

been applied for production of fucosylated oligosaccharides by BioEng (paper in preparation). Despite the 

successful synthesis of fucosylated oligosaccharides, the xyloglucan (mainly due to its complexity) is not an 

ideal substrate and the search for one continues. 

 

Carbohydrate-acting enzymes 

Since this PhD project is on the production of prebiotic oligosaccharides by novel enzymatic catalysis and 

since all documented prebiotics are carbohydrates(Roberfroid, 2007), this project will exclusively deal with 

carbohydrate acting enzymes, collectively known as CAZymes(Lombard, Golaconda Ramulu, Drula, 

Coutinho, & Henrissat, 2014b). For the past two decades information on CAZymes have been collected and 

made publicly available in the CAZy database (http://www.cazy.org) (Lombard, Golaconda Ramulu, Drula, 

Coutinho, & Henrissat, 2014). With the CAZy database followed some terminology which have been 

generally accepted by the scientific community. CAZymes are largely classified due to sequence similarity 

and sub classified in families based on significant similarity of sequence and structure(Naumoff, 2011), with 

at least one biochemically founding member(Henrissat, 1991). Currently the database is comprised of 6 

classes of enzymes which catalyze assembly (glycosyltransferases) and degradation (glycoside hydrolase, 

polysaccharide lyases, carbohydrate esterases and auxiliary activities) of carbohydrates(Lombard, 

Golaconda Ramulu, Drula, Coutinho, & Henrissat, 2014a). The sixth category (which will not be further 

discussed in this thesis) is carbohydrate binding modules, which occur as subunits in larger enzymes which 

could be hydrolases or even non-catalytic proteins(Peter Tomme, R. Antony J. Warren, Robert C. Miller, 

Douglas G. Kilburn, & Neil R. Gilkes, 1996) and which are mostly responsible for carbohydrate 

recognition(Boraston, Bolam, Gilbert, & Davies, 2004). The classification in families is generally well 

correlated to the catalytic mechanisms of the enzymes, but this PhD project will revolve around the 

exceptions to the rules – more specifically the use of enzymes from carbohydrate degrading families, the so 

called glycoside hydrolases (GH),  to carry out carbohydrate synthesis.   



20 
 

Enzymes used for HMO production 

Due to the increasing interest in HMO synthesis, the applicability of an array of enzymes has been 

addressed in recent years. Recently a thorough review of enzymes for HMO production has been 

published(Zeuner, Jers, et al., 2014). To produce HMOs cost efficiently, the enzymes requested for the 

production of HMOs must be able to utilize cheap available substrates as the ones described in the 

previous section. Aforementioned review therefore focuses on enzymes of different GH families, which 

have such structures as their natural substrates. More specifically the enzymes are retaining glycoside 

hydrolases, which follow the so-called classical Koshland retaining mechanism(KOSHLAND, 1953). The first 

step in the reaction mechanism is the formation of a covalent enzyme-substrate complex (CI)(KOSHLAND, 

1953). For retaining GHs hydrolysis occurs when the CI is attacked by a water molecule facilitating the 

release of the hydrolyzed substrate and restoration of the active site. For trans-glycosylation to occur a 

hydroxyl group (e.i. from a sugar or an alcohol) must instead attack the CI(Zeuner, Jers, et al., 2014). Trans-

glycosylation activity was observed for all three enzyme classes reviewed by Zeuner et al. which included 

were wild-type hydrolytic sialidases, fucosidases, and β-galactosidases(Zeuner, Jers, et al., 2014).  However 

enzymes (including the ones in the aforementioned review) have more often than not been tested on e.g. 

para-nitrophenol (pNP) activated substrates. Thus the most common suspect enzymes; sialidases, 

fucosidases, and β-galactosidases have in general been tested on Sia-α-pNP, Fuc-α-pNP, and Gal-β-oNP 

respectively(Zeuner, Jers, et al., 2014). There are a few examples of enzymes belonging to different GH 

families which prefer glycoside transfer (to an acceptor)(María Fernanda Amaya et al., 2004; Montagna et 

al., 2002). However, hydrolysis (as the name suggests) is the prevalent activity observed within the GH 

families(Naumoff, 2011). The enzymes’ hydrolytic activity naturally hampers their application for glycan 

synthesis but several examples of directing the activity of the enzymes towards reduced hydrolysis, 

favoring transfer-glycosylation, has been demonstrated (Jers et al., 2014; Michalak et al., 2014; Paris et al., 

2005). Trans-glycosylation in the form of trans-sialylation is schematically drawn in Fig. 4. As illustrated, 

both donor and formed product can be subject to hydrolysis as the product is similar to the donor 

molecule. The trans-sialylation reaction drawn in Fig. 4 differs from other trans-glycosylation reactions 

(carried out by retaining GHs) only by the type of donor, (although an enzyme with the correct specificity is 

needed for a specific trans-glycosylation reaction). 
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Figure 4, (Adapted from Zeuner et al. (Zeuner, Jers, et al., 2014)): In this example of a trans-glycosylation 

reaction by a retaining glycoside hydrolase, a sialic acid residue is first captured by the enzyme in the 

Sialyl-enzyme CI, before the CI is attacked by either (synthesis) a (nucleophile) hydroxyl group on a 

glycoside or by (hydrolysis) a water molecule. The synthesized product can also be hydrolyzed post-

synthesis (Secondary hydrolysis) as indicated by the dashed arrow. For obvious reasons limiting the 

hydrolytic activity of GHs is a main concern when application for glycan synthesis.    

 

 

Case study – TcTS 

Despite having the same basic mechanistic traits as their family members, enzymes from several of the 

retaining GH families are capable of catalyzing the transfer of the glycoside retained in the covalent 

intermediate to an acceptor molecule. Some of these enzymes almost exclusively carry out the transfer 

reaction and one of the best studied enzyme is the trans-sialidase from Trypanosoma cruzi (TcTS(María 

Fernanda Amaya et al., 2004; Buscaglia, Campo, Frasch, & Di Noia, 2006; Holck et al., 2014; Osorio, Ríos, 

Gutiérrez, & González, 2012; Paris et al., 2005; Pereira, Zhang, & Gong, 1996; Smith & Eichinger, 1997)). 

There are several reasons why the TcTS have received attention. Like most of the identified members of the 

Trypanosoma family, T. cruzi is a pathogen and it causes Chagas’ disease in humans(Osorio et al., 2012). 

The TcTS has been identified as a virulence factor(Osorio et al., 2012) and several of the other pathogenic 

trypanosomes have similar trans-sialidases(Montagna et al., 2002; Tiralongo, Martensen, Grötzinger, 

Tiralongo, & Schauer, 2003). The fact that the simple mono-sialylated trans-sialylation product 3’SL and is 

genuine HMO may be the predominant cause of interest in this enzyme. Due to its role in pathogenesis, 

however, the TcTS is not “ideal” enzyme for production of sialylated HMOs. Furthermore its product 

specificity only allows for α2→3 sialylation(María Fernanda Amaya et al., 2004; Holck et al., 2014). The 

search for a trans-sialidase of non-pathogenic origin has commenced and an obvious source to investigate 

was the non-pathogenic trypanosome T. rangeli. However it seems to be the case that the non-pathogenic 
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T. rangeli, possesses only an exclusively hydrolytic sialidase (TrSA)(Pontes-de-Carvalho, Tomlinson, & 

Nussenzweig, 1993).  The TrSA have 70% sequence similarity to the TcTS and a tertiary structure which is 

extremely similar(M.F Amaya, Buschiazzo, Nguyen, & Alzari, 2003), raising the question if trans-sialidases 

are intrinsically related to pathogenesis.  

Enzyme Discovery and Development  

Enzyme development is the general term for the process of acquiring novel enzymes, which can be done in 

a variety of refined ways. The first enzyme was discovered in 1833, Anselme Payen and Jean-François 

Persoz described the isolation of an amylolytic substance from germinating barley(Polaina, 2007). This 

discovery, however, was very different from the systematic enzyme development approaches which go on 

today, driven by demands from industry and societies for green, cost-efficient and sustainable solutions to 

increase the productivity and solve some of humanity’s biggest challenges.  

Many of the traditional strategies for enzyme development have been used for decades and are still in use 

today. However, new techniques constantly emerge not least because of the rapid progress in the field of 

bioinformatics where a dramatic expansion of the amount of sequenced based data drives the 

development of new tools – some of which are intended or suitable for enzyme development. At this point 

it is hard to argue that one strategy is superior and demonstrating this fact several strategies were used to 

acquire novel enzymes during this PhD study. All the strategies used in this study and a few more, will in 

the following be further discussed, highlighting their pros and cons. 

At the root enzyme development can be split into two paths. One is the search in nature for enzymes which 

through millions of years of evolution have been developed by living organisms to serve their needs and 

survival. These enzymes are often referred to as wild-type enzymes which passively imply the existence of 

the other source of novel enzymes”. Wild type enzymes are often not suitable for the harsh industrial 

processes and a focused enzyme development program can be necessary to achieve the desired task. 

Enzyme development is done by genetically modifying the coding gene-sequence to obtain an enzyme 

mutant with new or different properties.  

In vitro enzyme discovery 

The first enzymes were identified alongside or as the result of observed biological processes, and a variety 

of enzymes were identified in this way as science progressed in the endeavor(Bornscheuer et al., 2012). 

Increasingly, however, application is the main driver for enzyme identification, calling for enzymes to 

catalyze very well characterized reactions or solve specific problems (i.e. the transfer of a sialic acid residue 
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from a defined donor molecule to a defined acceptor molecule(Zeuner, Jers, et al., 2014) or to remove a 

stains from textiles(Niyonzima & More, 2015)).  

As mentioned, enzymes are used as catalysts in in vitro industrial production of food, food ingredients, 

feed, Biofuel, Biorefinery and Biochemicals(Bornscheuer et al., 2012). Only a few of the millions of enzymes 

found in vivo in microorganisms and other higher spp. have been exploited for commercial applications. 

One reason is that nature’s vast enzyme diversity also means that identification of “the best” enzyme (for a 

given reaction) is a quest, which leaves “finding the needle in the haystack” seem elementary. Hence a 

variety of strategies to screen for interesting enzymes have been developed.  

High throughput in vitro screening assays  

Almost all high throughput techniques for enzyme discovery rely to some extend on plate assays. The 

simplest plate assays rely on only the agar plate itself with addition of an organic substrate of interest. Any 

bacterial or fungal microorganism colony successfully growing on the plate will be capable of breaking 

down and utilizing the carbon source and therefore express enzymes which can break it down. This type of 

plate assay are referred to as a functional screening and can in a high throughput manner be used to screen 

libraries of bacteria or fungi capable of degrading the starch, but it can also be used to evaluate enzyme 

preparations. 

For the plate assay to be effective in comparison of enzymes, the substrate must change visual appearance 

upon reaction. Such a color change can be used in two ways: 

1)  The substrate is colored in its native state and loses color upon enzyme action as is the case of the 

starch plate assay where a change from a “milky white” appearance to transparent takes place 

treated with an α-amylase. The clearing zone around the colony or applied enzyme sample is an 

indication of enzyme activity towards the breakdown of starch.  

2) The substrate is colorless in its native state, but the breakdown product produces a color. An array 

of artificial substrate substitutes with caged chromophores have been produced for this purpose, 

some of which have been used in this PhD project (e.g. pNP-GlcNAc). 

The artificial substrate plate assays have been used to discover a myriad of enzymes and continues to be 

used(Uchiyama & Miyazaki, 2009). It is however important to keep in mind, that using such assays can 

cause the identification of false positives and prohibit identification of false negatives, since “you get what 

you screen for”. Furthermore the traditional use of plate assays relies on identifying enzymes in organisms 

which can be cultivated on agar plates. It is commonly accepted that the vast majority of microorganisms 
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(maybe more than 99%)(Amann, Ludwig, & Schleifer, 1995) cannot be cultivated in a laboratory setting 

(using the present techniques). 

Metagenomic library screening assays 

Different strategies are pursued to access the genes from the estimated 99% of microorganisms that 

cannot be cultivated. One of the most successful approaches is, however, the creation metagenomic 

libraries(Rondon et al., 2000). A genomic library is the entire genome of an organism transformed, as 

fractions inserted in identical vectors, into a monoculture of bacteria of fungi. By cloning the metagenome 

(which is defined as the collected genomic material from an environmental sample), in a similar fashion a 

metagenomic library is created(Rondon et al., 2000). The metagenomic library can subsequently be 

cultivated and screened using a plate assay as previously discussed and such approaches have produced 

enzymes of many different classes including classes of CAZymesa(Lorenz & Eck, 2005). The metagenomic 

library screening approach has its own drawbacks since it relies on the enzymes of interest being 

successfully expressed in the library host organism. Expression in the host organism depends on recognition 

of the native promotor preceding the foreign gene and can be effected by the lack or presence of 

transcription factors in the host organism(Handelsman, 2004).  

In silico enzyme discovery 
An alternative to the traditional wet chemistry screening assays is to search in publicly available gene 

sequence databases for sequences encoding relevant enzymes. Such endeavors are however 

simultaneously empowered and hampered by the increasing amounts of sequence data available. The 

amount of sequence data published in publicly available databases has since collection started increased 

almost exponentially(Kircher & Kelso, 2010; Lander et al., 2001; Venter et al., 2001), and continues to do so 

due the continuous development of new sequencing tools(Kircher & Kelso, 2010). Thus more than 16 

million gene sequences are at the moment (numbers from September 2014) available as a hunting ground 

for in silico enzyme identification in the largest sequence database available which is the NCBI 

GenBank(Brown et al., 2015).  

The vast amounts of generated data require automated computational tools for sequence and gene 

annotation. While the tools are generally effective, many sequences are labeled as hypothetical genes (e.g. 

ORFs which are not verifiably expressed) and other sequences are annotated incorrectly(Schnoes, Brown, 

Dodevski, & Babbitt, 2009). One of the more difficult features to annotate is gene product (protein) 

functionality(Kihara, 2011), which for obvious reasons is the key feature is relation to sequence based 

enzyme discovery. Functionality prediction for carbohydrate active enzymes is difficult because enzymes 

with low sequence identity may have similar activity(Busk & Lange, 2013), but the reverse challenge is also 
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encountered where enzymes with similar sequence and tertiary structure does not share substrate 

specificity(Yu et al., 2005). Furthermore there is the case of the trans-glycosidases: These enzymes can have 

almost identical active sites and tertiary structure, and share substrate specificity, while the activity is 

completely reversed with only minor changes to the coding sequence as it is the case for TcTS and TrSA 

(María Fernanda Amaya et al., 2004; Paris et al., 2005). When it comes to CAZymes, another limitation of 

the automated annotation is that enzymes are simply allocated to a GH groups based on a blast or HMM 

analysis leaving proteins without a functional classification(Bech, Busk, & Lange, 2015).  

 

 

Figure 5, (Adopted from (Loh, Baym, & Berger, 2012)): In the past decades improvements in sequencing 

techniques have meant that sequence-data (blue, primary axis) is generated at a rate that is significantly 

faster than the rate in which computer power is generated (green (secondary axis). Thus computation 

becomes an increasingly difficult challenge and development of refined (or clever) approaches is 

necessary. 

The enormous amount of data is not only a challenge due to error prone annotation algorithms. Searching 

the established databases becomes increasingly cumbersome as the data generation is outperforming the 



26 
 

optimization and generation of computer power(Gross, 2011; Kahn, 2011) as shown in Fig. 5(Loh et al., 

2012). Thus development of sophisticated algorithms is necessary to effectively mine the sequence data for 

the best enzyme candidates. However the field of sequence based enzyme discovery is still in its infancy 

and although some interesting enzyme discovery tools have emerged(Busk & Lange, 2013; Yu et al., 2005) 

aiding the endeavor, BLAST analysis is still the primary tool used. 

Enzyme modification by mutagenesis and directed evolution 

As mentioned the alternative to novel enzyme identification is the invention of new enzymes through 

modification of known enzymes, optimizing the desired enzyme property. The range of properties that can 

be optimized is vast and there are many examples of enzyme optimization. Thus enzyme optimization have 

been used to successfully  change the temperature optimum, change pH optimum, enhance 

thermostability(Miyazaki & Arnold, 1999), enhance pH stability (Koksharov & Ugarova, 2008; Kretz et al., 

2004), improve substrate specificity(A, 1985; Kretz et al., 2004), enantioselectivity (Kretz et al., 2004), 

binding affinity (Kretz et al., 2004), protein folding(Kretz et al., 2004), protein expression(Ghazi, 2014; Kretz 

et al., 2004), and productivity(Kretz et al., 2004), and to infer anchoring sites for enzyme 

immobilization(Zeuner, Luo, et al., 2014). As it is the case for novel enzyme discovery, enzyme optimization 

can be done using more or less rational strategies. Rational approaches to enzyme optimization rely on 

insight to the structural properties of the subject enzyme and can be based on computational modeling 

and/or sequence investigation(Bornscheuer et al., 2012). The least rational approach to enzyme 

optimization is random mutagenesis. However a rational approach to random mutagenesis can be taken, 

utilizing the power of directed evolution, which is also widely applied to enhance the performance of 

rational enzyme optimization approaches. The concept of directed evolution simply covers the 

experimental evaluation of (a group of) obtained mutant(s) before submitting the best candidate(s) for 

subsequent rounds of mutagenesis, although the term precedes many of the modern techniques and have 

been used for experiments based on cell cultures(Francis & Hansche, 1972) experiments which may 

experience a revival for enzyme development(Badran & Liu, 2015).    

Site saturated mutagenesis    

Site saturated mutagenesis (SSM) is the experimental evaluation of the substitution on an amino acid at a 

specific position in a sequence by any other amino acid residue, which will naturally give rise to 20 mutants. 

This approach is specifically effective with regard to alteration of substrate and /or product specificity when 

it is used on a residue which is known to be part of the catalytic site of an enzyme. Often several sites will 

be tested, but it is clear that the work load is increased with the construction and handling of 19 mutants 

for every site that is investigated. Although SSM is a powerful tool for enzyme optimization is depends on 

the prior knowledge about which sites to investigate. This limitation was overcome by the invention of 
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Gene Site Saturation MutagenesisTM (GSSM)(Kretz et al., 2004). In GSSM every residue in the enzyme 

sequence undergoes SSM without any prior knowledge to the structure or mechanism of the enzyme(Kretz 

et al., 2004). Contrary to SSM(Kretz et al., 2004), GSSM can efficiently be used in a directed evolution set-

up, but is nonetheless relying on the effect of the inferred mutations being somewhat additive.  

Random mutagenesis 

All enzyme optimization rely on the alteration of the protein sequence of the enzyme. Traditionally in 

random mutagenesis the DNA material coding for the enzyme is damaged by a chemical agent(Myers, 

Lerman, & Maniatis, 1985; Ohnuma et al., 1996) or radiation(Ghazi, 2014). The mutagenesis is completed 

when the expression host organism tries to repair the DNA, but fails to incorporate the correct base in the 

sequence. Random mutagenesis have also been carried out by the use of an error-prone DNA-polymerase, 

introducing in random fashion during PCR amplification of an enzyme gene(Cadwell & Joyce, 1992). The 

properties of the mutated enzymes will most likely be worse than the wildtype and it is therefore necessary 

to identify improved enzyme mutants using one of the aforementioned assays. For decades random 

mutagenesis have been used to obtain enzymes with enhanced properties d(Autenrieth & Ghosh, 2015; M, 

1988; Moore & Arnold, 1996; Zaccolo & Gherardi, 1999), although the strategies for obtaining the mutants 

have developed throughout. As have been, and will be described, an array of refined methods for enzyme 

modification has been developed. However there are several advantages to random mutagenesis meriting 

its continued use - for example little or no knowledge about the assayed enzyme is needed. Furthermore it 

is possible to identify improvements caused by complex non-additive poly-mutated specimens, which might 

be lost in approaches where individual mutations are evaluated. 

Sequence Alignment and Analysis 

Sequence analysis is the corner stone in almost all rational design and is encompassed in the enormous 

field of Bioinformatics. As mentioned in relation to in silico screening the access to sequence data is ever 

increasing, but when it comes to using sequence analysis for enzyme optimization only sequences with 

descriptive information is of use. In essence parallels are drawn between the enzyme of interest and any 

sequence or motif described in literature.  

As discussed BLAST can be a very useful tool for enzyme identification, but it can also assist in the 

development of rational enzyme optimization strategies. Based on BLAST analysis conserved residues, 

which due to their conservation may be important to functionality, can be identified. Naturally such 

analysis works better if a collection of related sequences are known. Based on the similarity, strategies for 

enzyme optimization can be developed as exemplified in the case study on Tr13. Furthermore, a BLAST 

analysis can be used to identify which purposes individual domains serve (for multi-domain enzymes).    
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3D structure analysis and homology modeling 

Another tool that has become increasingly popular for protein optimization is the analysis of the 3-

dimentional structure of proteins. An accurate 3D structure of a protein is determined by either X-ray or 

NMR analysis of the enzyme (Krishnan, V and Rupp, 2012). X-ray analysis relies on a successful crystalline 

preparation of the enzyme of interest, which in some cases can be difficult to obtain(Krishnan, V and Rupp, 

2012). However the X-ray analysis will in turn generally produce models of the 3-dimentional structure of 

the protein of better resolution(Krishnan, V and Rupp, 2012). Whereas great amounts of work is required 

to obtain 3-dimentional structure models experimentally existing protein models may serve as scaffolds to 

obtain so called homology models(Nielsen, Lundegaard, Lund, & Petersen, 2010; Söding, Biegert, & Lupas, 

2005). The quality of the models created can vary with the homology to, and quality of the reference model 

(especially in the detail), but the overall tertiary structures are generally predicted well since even remotely 

homologous enzymes share 3-dimensional structure(Kinch & Grishin, 2002).        

The visualization of an enzymes 3-dimentional structure compliments many of the aforementioned tools 

and techniques, but is a brilliant tool on its own as well. Whereas the secondary structure of a protein is 

difficult to comprehend and difficult to intuitively translate to functionality 3-dimetional models are ideal 

for this purpose. Thus the visual inspection of the 3-dimensional structure of the TcTS was the prime 

inspiration to the study in Chapter two, where also homology modeling played an important role.      

Computational modeling 

Both sequence and 3-dimentional structure analysis can be the basis for an ever increasing array of 

computational tools for protein optimization(Bornscheuer et al., 2012). To highlight an example the 

PoPMuSiC algorithm(Gilis, 2000) has repeatedly demonstrated its use for increasing the stability of 

proteins(Zhang & Wu, 2011). However increased stability is not necessarily the same as increased activity, 

the loss of which may sometimes be the cost of the increased stability, when applied on enzymes. 

Computational modeling can be extremely refined as exemplified in a study by Pierdominici-Sotile et 

al.(Pierdominici-Sottile, Palma, & Roitberg, 2014) which was the basis for the study described in Chapter 4. 

Case study – Tr13 

An example of BLAST analysis applied for protein optimization is the further development of the 

engineered trans-sialidase, Tr6, which was engineered from the exclusively hydrolytic sialidase of 

Trypanosoma rangeli (Paris et al., 2005). Based on a BLAST analysis where this sialidase was aligned to 

trans-sialidases found in its close cousins; T. cruzi, T. brucei and T. congolense, an enzyme optimization 

strategy was developed. In this case the sequence target that was identified was a stretch of 7 AA, where 

the Tr6 differed significantly from its cousins (Fig. 6). By introduction of the 7 AA stretch into the Tr6 the 
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hydrolytic activity of the enzyme was dramatically reduced and the superior Tr13 was created(Jers et al., 

2014).  

 

Figure 6, (adopted from Jers et al.(Jers et al., 2014)): The above multiple alignment resulted in the 

identification of a seven AA residue stretch (indicated by ●) where the hydrolytic sialidase TrSA differ 

from the efficient trans-sialidases of T. cruzi, T. congolense and T. Brucei. Upon genetic modification of an 

already genetically modified TrSA mutant (with trans-sialidase activity) the hydrolytic activity was 

drastically decreased rendering an superior trans-sialidase. 

Processes development in relation to HMO production  

In an effort to follow the HMO production (3’SL production) through to completion, the process was 

considered as a whole. Since the product is a high bulk product process optimization is paramount and 

since it is a food grade product sanitary and food grade processes are necessary. The research studies that 

were borne as a result of these reflections are unraveled in Chapters 5 and 6. Where Chapter 5 considers 
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product purification, Chapter 6 considers integrating the entire HMO production and purification process 

into one. However the proposed solutions to the identified challenges in both Chapters include membrane 

separation technology.      

Ultra- and Nanofiltration 

Both ultra- and nanofiltration (UF and NF) are commonly carried out as pressure driven membrane 

filtrations. Pressure is applied across a porous membrane resulting in solvent and solutes smaller than a 

specific cut off (determined by the membrane and the setup) pass through the membrane. Thus two 

fraction (permeate and retentate) can be recovered. Ideally the permeate fraction is without impurities 

(depending on the stringency of the cutoff and the composition of the sample). This is not the case for the 

retentate fraction which for completely un-retained solutes contains the same concentration as in the feed 

solution whereas retained solutes are up-concentrated. The difference between UF and NF is primarily 

commonly thought of as a difference in MW cutoffs of the membranes. However there is an overlap in the 

cutoffs as the difference between UF and NF is actually more accurately a difference in separation 

behavior. As mentioned several factors can affect the molecular weight cutoff (MWCO)size of a membrane. 

For UF separation is almost exclusively depending on particle and pore size, whereas other factors such as 

osmotic pressure, hydrophobicity and electrostatic interaction play important roles in NF.    

Biocatalytic productivity 

For the optimization of enzymatic reactions one of the best measures to evaluate is the biocatalytic 

productivity which is the amount of produced product per amount of enzyme (on a weight basis unless 

stated otherwise). Optimization of the biocatalytic productivity aims to reduce the cost of enzyme, which is 

often a large proportion of the total cost of an enzymatically driven process. The biocatalytic productivity is 

a valuable measure since it encompasses the process as a whole on an enzyme basis. However whereas the 

measure makes comparison between processes easy it is important to appreciate any differences in 

starting and end point. Furthermore it is immediately understood that other measures must be evaluated 

to compare processes, such as energy and water consumption, time, manpower and factory volume to 

mention a few. For example heavy pretreatment may improve biocatalytic productivity drastically, whereas 

the adhered energy consumption may render such pretreatment completely unmerited.  

Improvement of biocatalytic productivity is however not always accompanied by disadvantages. By the use 

of enzyme membrane reactors, where product is continuously removed have been shown to be an 

effective way of improving biocatalytic activity in reactions where the formed product inhibit the 

reaction(Gavlighi, Meyer, & Mikkelsen, 2013) or where the product is not stabile in the reactor. Since the 

central theme in this thesis, enzymatic synthesis of prebiotic saccharides by GH family enzymes, involve an 
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imminent risk of product hydrolysis taking place, enzymatic membrane reactors are useful in optimizing 

biocatalytic productivity as it has been shown by Zeuner et al. for 3’SL production(Zeuner, Luo, et al., 2014). 

Biocatalytic productivity may also be increased by immobilization, which apart from allowing enzyme 

recycling, also may increase enzyme stability and/or activity – trans-sialidase-relevant examples include 

immobilization on concanavalin A-sepharose(Scudder, Doom, Chuenkova, Manger, & Pereira, 1993; Shiian 

et al.), VA-epoxy(THIEM & SAUERBREI, 2010) and on Cu2+-iminodiacetic acid (IDA)-functionalized carbon-

coated magnetic nanoparticles (MNPs) via His-tag, which enable enzyme recollection by magnetic 

attraction(Zeuner, Luo, et al., 2014).   
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Hypotheses  

Hypothesis 2.1: The family of sialidases is extremely conserved and it can be speculated that trans-

sialidases could have developed in parallel with the TcTS inferring aromatic sandwiches in similar positions 

as it is found in TcTS. 

Hypothesis 2.2: If hypothesis 2.1 is correct, sialidases with an aromatic sandwich above the active site will 

be excellent trans-sialidase candidates. 

Hypothesis 2.3: A novel identified trans-sialidase will be able to produce 3’SL from CGMP and lactose in the 

same way as TcTS.  

Hypothesis 3.1: Because GlcNAc in the polymeric form of chitin as exoskeleton in many lower eukaryotes 

such as insects and arachnids inhabiting soil, occurrence of GHs capable of degrading GlcNAc structures are 

expected to be possible to identify from a soil derived metagenomics library. 

Hypothesis 3.2: Among GH20 enzymes identified from metagenomics libraries, specimens can be found 

which are able to transfer a GlcNAc residue to various acceptor molecules. 

Hypothesis 4.1: The mutations suggested by Pierdominici-Sottile et al.(Pierdominici-Sottile et al., 2014) will 

improve trans-sialidase activity in TrSA mutants, but the trans-sialidase activity will be further improved by 

combination with the loop mutations suggested by Jers et al.(Jers et al., 2014). 

Hypothesis 4.2: The improved trans-sialidase activity will enable efficient trans-sialylation at reaction 

conditions with low levels of acceptor substrate. 

Hypothesis 4.3: By implementation novel mutations in groups it will be possible to gain knowledge about 

the mechanistic traits on the individual mutations (in groups) contribution to trans-sialidase activity. 

Hypothesis 5.1: Since NF efficiency can be heavily affected by the membrane zeta potential (charge), and 

since the charge difference between lactose and 3’SL is large, NF it will be an efficient tool for separating 

3’SL and lactose despite similar size of the molecules (from a high molecular weight NF perspective). 

Hypothesis 1: The following observations from large scale cross-flow UF unit will translate well to a 

laboratory experimental setup using dead-end stirred tank filtration setup: 

- Fouling is the main concern with regard to CGMP UF. 

- Hydrophobic membranes are unsuitable for CGMP filtration due to heavy fouling. 

- UF is a viable method for separation of product mixture (3’SL and lactose) from the remaining 

reaction components.  

Hypothesis 2: An additional hypothesis that was tested in this study was that the biocatalytic productivity 

could be greatly enhanced by application of the integrated membrane system as enzyme could be retained 

in the EMR and reused accordingly. 
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Chapter 2: A Rational Approach to Identification of Wild Type Sialidases with “Trans-

sialidase” Activity for the Production of Human Milk Oligo Saccharides 

2.1 Motivation 

Throughout this PhD study, the enzymatic reaction which has received most attention is the sialylation of 

lactose. Most often genetically modified specimens of the TrSA have been used, but while progress has 

been made these mutants still rely on high acceptor concentrations in the reactions to eliminate 

hydrolysis(Jers et al., 2014; Michalak et al., 2014). As mentioned the most efficient trans-sialidases are the 

trans-sialidases found in the trypanosomal species with the TcTS being the most studied. However the use 

of the TcTS for industrial purposes is problematic for several reasons: 1) The TcTS has been identified as a 

virulence factor and extensive purification and quality control would be necessary before any component 

of a reaction using this enzyme could be used (or reused in the case of the starting materials). 2) In our 

research group expression of the TcTS has proven difficult and much work will go into enzyme production 

at decent levels. 3) The use of the TcTS for HMO production is protected by patents. 4) TcTS cannot 

synthesize 6’-sialylated compounds. 

The primary motivation for this study was the challenge of identification of a genuine trans-sialidase, which 

did not originate from the Trypanosomas genus. Through reading this PhD thesis it is clear that focus on the 

challenge is rooted in the application for HMO production. However, the following paper is written with a 

different scope. The scope was changed because of the approach, taken to develop the screening strategy, 

could have a broader impact and hopefully inspire a wider audience within the field of enzyme discovery 

(more specifically scientist working with identification of trans-glycosidases).     

2.2 Hypotheses and objectives 
The research leading to the following paper had a very clear objective; to identify a novel, non-

trypanosomal trans-sialidase. The paper describes very well how this objective was approached, and how 

the approach resulted in construction of several hypotheses. 

Hypothesis 2.1: The family of sialidases is extremely conserved and it can be speculated that trans-

sialidases could have developed in parallel with the TcTS inferring aromatic sandwiches in similar positions 

as it is found in TcTS. 

It is clear that hypothesis 2.1 does not perform well as a scientific hypothesis as it is very hard to disprove, 

but if it is true another more experimentally approachable hypothesis can be strung: 

Hypothesis 2.2: If hypothesis 2.1 is correct, sialidases with an aromatic sandwich above the active site will 

be excellent trans-sialidase candidates. 

Hypothesis 2.3: A novel identified trans-sialidase will be able to produce 3’SL from CGMP and lactose in the 

same way as TcTS.  
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2.3 Experimental considerations 

In this study a structure based approach to identification of new trans-sialidases was rapidly designed. The 

screening for enzyme candidates was done in silico and the first step was carried out on sequence basis 

identifying a search motif. The role of the search motif was to identify whether an aromatic residue was 

present at a specific position in a specific loop in each enzyme. Undoubtedly a more refined strategy, first 

identifying the region, then the loop and eventually the presence of the aromatic residue could have been 

developed using delicate bioinformatics tools, but one of the messages of the following paper is the 

essentiality of quick verification of predictions using wet chemistry thereby justifying further endeavors to 

refine predictions. Endless time could have been spend developing advanced screening tools but instead It 

was determined that a premise of the study would be strategic focus on simplicity and prove of concept.  

With simplicity in mind, the development of the search motif was more iterative and less stringent than it 

may appear in the paper. Search motifs were tried, changed and refined until a suitable enzyme candidate 

was identified. However, it is the hope that other members of the scientific community will be inspired by 

the intrinsic simplicity of the applied method and apply similar strategies to identify other trans-sialidases 

or trans-glycosidases in general. Additional enzymes are needed to build a foundation enabling 

development of more refined methods that could lead to a breakthrough in the field of trans-glycosidase 

discovery and consequently in the field of glycobiology.  

2.4 Conclusions 

The following paper will report on the identification of the first identified non-tryponosomal trans-sialidase 

and thus the objective of the study was fulfilled. The enzyme was identified based on a rational in silico 

screening strategy tailored specifically to identify such and enzyme. Whereas the strategy is not believed to 

be widely applicable, its simplicity and efficiency should be an inspiration to develop similar simple, tailored 

approaches. The aromatic sandwich above the TcTS active site proved successful as a trans-sialidase marker 

and more such structures should be screened for with the aim of identification of other trans-sialidases or 

trans-glycosidases in general.  

The identified enzyme was capable of producing 3’SL from CGMP and lactose, but in In the process of 

evaluating the reaction performance a novel trans-sialylation product, 3SL, was identified. This product has 

not previously been described and its properties are not known.    
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Chapter 3: Backbone structures in human milk oligosaccharides: trans-

glycosylation by metagenomic β-N-acetylhexosaminidases 

3.1 Motivation 

While the main focus of this PhD project has been 3’SL production, another goal of the overall HMO project 

(of which this PhD study was a part), was to produce a wider range of HMOs. Thus it was necessary to 

develop the means to produce the backbone structures of the HMOs which as described are comprised of 

lacto-N-biose and N-acetyllactosamine. The strategy for HMO backbone production was predefined with 

the first step being elongation of lactose by a GlcNAc unit. The motivation for this strategy was partly the 

availability of cheap donor source as well as the suspicion that members of the otherwise hydrolytic β-N-

acetylhexosaminidase enzyme family (GH 20) would be able to efficiently carry out transfer of the GlcNAc 

to an acceptor molecule (as it has been shown to be the case for other GH type enzymes). 

3.2 Hypotheses and objectives 

An objective of this study was to identify novel β-N-acetylhexosaminidases and to evaluate trans-

glycosylation activity of any such enzymes. Thus the following hypotheses were stated. 

Hypothesis 3.1: Because GlcNAc in the polymeric form of chitin as exoskeleton in many lower eukaryotes 

such as insects and arachnids inhabiting soil, occurrence of GHs capable of degrading GlcNAc structures are 

expected to be possible to identify from a soil derived metagenomics library. 

Hypothesis 3.2: Among GH20 enzymes identified from metagenomics libraries, specimens can be found 

which are able to transfer a GlcNAc residue to various acceptor molecules.  

3.3 Experimental considerations 

Since no enzymes with exclusive trans-hexosaminidase activity has been discovered it was decided that the 

best strategy for enzyme identification in this case was a screening for hydrolytic enzymes with subsequent 

assessment of trans-activity by a method applicable to the quantity of identified hydrolases.  

For the initial hydrolase identification it was decided to screen a metagenomic library. As described the use 

of metagenomics libraries have many advantages. However the choice of metagenomics library, used for 

this screening, might seem strange as its origin was from soil. Although soil derived metagenomics libraries 

have successfully been used for identification of GH family enzymes, the main reason for choosing this 

library was that it had already been constructed (for a different purpose) and was readily available. It can 

thus be speculated that better results could have been obtained if a genomic library had been constructed 

from a source where hexosaminidase activity would be expected to overrepresented. However it is not 

immediately obvious where such an environment can be found and the metagenomics library at hand was 

used, improving the return of investment on the resources already put into its construction. 

In this study the screening of the metagenomic library was hampered by the limitations on reporter-

substrate. The substrate used was X-GlcNAc and thus it was only possible to identify clones expressing 

enzymes capable of degrading this substrate. Thus it was also here necessary to use a natural substrate for 

enzymatic reactions followed by HPLC analysis. Fortunately the trans-glycosylation results were good, but 

no such outcome was predictable. The amounts of experimental work that went into this screening, once 

again emphasize the need for a high throughput trans-glycosylation screening method.  
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The characterization of the enzymes were done using the synthetic substrates pNP-GlcNAc and pNP-GalNAc 

(pNP-N-acetylgalactosamine), which proved troublesome as the substrates were very unstable in standard 

laboratory conditions. Much work was undertaken to develop a suitable assay, which in the end relied 

primarily on speedy execution to achieve good results. However, it is worth noting that 1) these substrates 

are different from the natural substrates and that 2) these results only reflect the hydrolytic activity of the 

enzymes.  

No attempts were made to optimize the reaction conditions for the trans-glycosylation reaction as the 

executed study with its scope produces a comprehensive publication. Furthermore suggested strategies for 

reaction optimization may include product removal which would have taken the publication in a different 

direction.    

3.4 Conclusions 

By the means of metagenomics library screening on X-GlcNAc loaded agar plates two novel β-N-

acetylhexosaminidases HEX1 and HEX2 were identified. In enzymatic reaction setups with a natural donor- 

and acceptor-substrates (chitin oligomers and lactose respectively) the enzymes proved capable of 

synthesizing an HMO backbone precursor structure (lacto-N-triose)  with fair yields (2 % and 8 % on donor 

for Hex1 and Hex2 respectively). Thus product concentrations reached levels of up to 8 mM which might be 

applicable for industrial use depending on efficiency of product purification. Additionally GlcNAc transfer to 

sucrose, maltose, galactose, and glucose was also successfully carried out by both enzymes.  
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Chapter 4: Enhancing trans-sialidase activity in a Trypanosoma rangeli sialidase by site-

directed mutagenesis 

4.1 Motivation 

Genetically engineered mutants of the TrSA have been the preferred enzyme by our research group for 

trans-sialylation reactions. This is not least due to the fact that BioEng (or more accurately DTU) holds 

several patents on TrSA mutants. The patents will become commercially interesting if it is successfully 

established that the TrSA mutants are superior to other enzymes and that HMOs can be produced cost-

efficiently. The primary motivation for this study was a publication by another research group who in silico 

predicted several novel mutations in the TrSA based engineered trans-sialidases which if implemented was 

claimed to improve trans-sialidase activity. Since no wet chemistry was carried out to confirm the 

predictions and since the base enzyme was different to Tr13 (the state of the art engineered trans-sialidase 

from this group), the motivation for this study was straight forward; to once more take the lead on 

engineering the TrSA into a better trans-sialidase. However the secondary motivation was clear as well; 

through implementation of the suggested mutations, establish better understanding of the reaction 

mechanism(s) of trans-sialylation by trypanosomal (trans-)sialidases.       

4.2 Hypotheses and objectives 

Three hypotheses from this study are relevant for the overall PhD project: 

Hypothesis 4.1: The mutations suggested by Pierdominici-Sottile et al.(Pierdominici-Sottile et al., 2014) will 

improve trans-sialidase activity in TrSA mutants, but the trans-sialidase activity will be further improved by 

combination with the loop mutations suggested by Jers et al.(Jers et al., 2014). 

Hypothesis 4.2: The improved trans-sialidase activity will enable efficient trans-sialylation at reaction 

conditions with low levels of acceptor substrate. 

Hypothesis 4.3: By implementation of mutations in groups it will be possible to gain knowledge about the 

mechanistic traits on the individual mutations (in groups) contribution to trans-sialidase activity. 

 

4.3 Experimental considerations 

The main consideration to do with experimental setup in this study was how to implement the mutations 

to gain most possible knowledge about how the individual mutations contribute to trans-sialidase activity. 

It was decided to use a mutant first produced by Paris et al.(Paris et al., 2005) as a reference enzyme since 

it is claimed that the 5 mutations will be crucial to any TrSA trans-sialidase. That still left an additional 12 

mutations and a complete combinatory mutagenesis strategy was therefore ruled out due to the workload 

that would be involved. Instead the mutations suggested by Jers et al.(Jers et al., 2014) was considered as 

one group whereas the mutations suggested by Pierdominici-Sottile et al.(Pierdominici-Sottile et al., 2014) 

was split into two groups because they had been predicted based on two different approaches. 

(Pierdominici-Sottile et al., 2014) 

Another experimental consideration was dealt with during the study since one mutation led to weak or no 

expression. I would maybe have been possible to produce enough enzyme to carry out the reactions 
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required for comparison, if high density fermentations were carried out, but since such weak expressing 

enzymes would be of even weaker commercial interest, it was decided to disregard this mutations and 

remove it from the experimental design.   

4.4 Conclusions 

Two different mutants (TrSA16mut and TrSA15mut) with dramatically improved trans-sialidase activity were 

produced by introduction of combinations of the suggested mutations. TrSA16mut was the enzyme with the 

lowest hydrolytic activity and was also the most mutated specimen with 16 of the suggested 17 mutations. 

The remaining mutation resulted in un-successful expression in all mutants into which it was introduced 

and a suggestion for causation was given.  TrSA15mut was lacking one additional mutation, but whereas the 

hydrolytic activity was only slightly higher the overall activity of the enzyme was almost 20 X that of 

TrSA16mut. 

From the time series experiment using the popular donor substrate CGMP it was evident that the improved 

enzymes could efficiently produce 3’SL at a low acceptor concentration (with a donor to acceptor ratio of 

1:4 compared to 1:88(Jers et al., 2014)).  

By analyzing the combinatory introduction of enzymes it was possible to discuss the mechanism with which 

the groups of mutants affect the trans-sialidase activity of engineered TrSA-type mutants. However no 

definitive conclusions could be drawn in this regard and more studies will be required to unveil the 

remaining unknowns about the mechanism of the TcTS (and other trans-sialidases).       
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Chapter 5: Separation of 3′-sialyllactose and lactose by nanofiltration: A trade-off 

between charge repulsion and pore swelling induced by high pH 
 

5.1 Motivation 
The process for production of sialylated HMOs set up by the group relies of the use of engineered (trans-) 

sialidases (from hydrolytic wild type enzymes). The optimized reaction conditions rely on high 

concentrations of acceptor (Lactose) to avoid hydrolysis and product concentrations have never reached 

more than 4 mM compared to an acceptor concentration of approximately 350 mM. Furthermore the 

standard concentration of CGMP used as donor molecule for the reactions is 40 g/l (corresponding to 4 mM 

3’-bound SA). Hence a strategic purification scheme is necessary to economically optimize the HMO 

production process with the following three main goals: 1) obtaining product of suitable purity applicable 

for infant formula supplementation, 2) separation of the de-sialylated CGMP which retain several of its 

properties as a food additive, and 3) separation of lactose to be recycled as acceptor substrate in the 

reaction. This study primarily sought to achieve goal 1 whereas goals 2 and 3 were included in the study 

described in Chapter 6. A strong motivating factor for this study was that large quantities of pure HMOs 

were needed in order to research the functionality of the produced HMOs, in relation to human 

consumption. HMO functionality is however outside the scope of this PhD project and the scientific work 

conducted is therefore framed in the context of production throughout the published material. 

5.2 Hypotheses and objectives 
The objective of this study was well defined and entailed purification of 3’SL at sufficient purity (99%) 

suitable not only for application in infant formula but for scientific evaluation of functional properties. 

Besides the high grade of purity it was important that any impurities would be immunological inert and 

non-toxic to microorganisms.    

The main hypothesis relevant to the overall goal of the PhD project was concerning the objective of 

separating 3’SL from lactose achieving 99% purity of 3’SL. The hypothesis was constructed on the basis of 

the experimental considerations and reads:  

Hypothesis 5.1: Since NF efficiency can be heavily affected by the membrane zeta potential (charge), and 

since the charge difference between lactose and 3’SL is large, NF it will be an efficient tool for separating 

3’SL and lactose despite similar size of the molecules (from a high molecular weight NF perspective). 

5.3 Experimental considerations 
The initial approach to purification was column chromatography, on an anion exchange resin. This has 

previously been applied successfully for 3’SL purification in a lab-setting, but using the unfavorable (due to 

toxicity) eluent acetonitrile. To avoid using this eluent it was suggested that NaCl could be used instead, 

which turned out to be the case. The motivation for identification of a different way of purifying the 
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product was, however, mainly due to a forthcoming task of up-scaling the reaction to 50l scale. Here 

purification would be a considerable bottleneck as no large scale column was available. Combining this with 

a subsequent NF step being an inescapable consequence of elution by NaCl, the idea of using NF to 

separate 3’SL and lactose was considered. NF had in the first place been ruled out as the size difference 

between 3’SL and lactose was not evaluated to be large enough to ensure efficient separation. Due to the 

high concentration of lactose compared to 3’SL lack of efficient separation would thusly result in an 

inacceptable loss of product.    

The idea to revisit the possibility of NF separation of 3’SL and lactose was sparked by failure to separate 

CGMP and enzyme from the remaining reaction components in the preceding ultrafiltration (UF) step. In 

large scale the first attempt of separation resulted in no permeation of 3’SL across the membrane despite a 

MWCO of 10000 Da. The cause of 3’SL retention was speculated to be CGMP fouling rendering negatively 

charged surface efficiently repelling the 3’SL. Thus it was decided to set up experiments using a charged NF 

membrane to efficiently separate 3’SL and lactose.   

5.4 Conclusions 

The application of NF for separation of 3’SL and lactose was successful using a suitable negatively charged 

membrane. Despite the membrane having, reportedly (by the manufacturer), a molecular weight cutoff of 

600-800 Da – a MWCO which should allow for 3’SL permeation – high 3’SL retention was observed (~100%). 

It was evaluated that the retention was due to charge difference and mathematical modeling showed that 

high purity could be achieved (with an acceptable loss of product) by dia-filtration. To confirm the model 10 

rounds of dia-filtration was carried out using a model solution (pure chemicals) and a “real” solution (the 

product mixture of a trans-sialylation reaction). Both dia-filtration experiments outperformed the model 

suggesting that NF based on solute charge differences is indeed a suitable method for separation of the two 

reaction products.      
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Chapter 6: An integrated membrane system for the biocatalytic production of 3′-

sialyllactose from dairy by-products 

6.1 Motivation 

In this Chapter the advantage of expanding the scope of a PhD project to an overall process, at the 

interfaces between the different aspects and related technologies is demonstrated.  A clear motivator for 

this study was the upcoming upscaling where handling would undoubtedly become a challenge. An 

integrated membrane system was not the immediate solution, but was mediated by numerous 

shortcomings of the pilot plant. A request for a stirred tank reactor for enzyme reaction could not be met 

and the UF unit used for the pretreatment of the CGMP had an incomprehensive dead-volume which would 

result in high levels of waste. This led to a realization which in turn was the motivation for the study 

reported in the following paper: Whereas all steps of 3’SL production in the lab had been done separately 

at different laboratory benches, by conducting as much of the work as possible in the UF unit almost all of 

the deficiencies could be turned into advantages. CGMP could be purified in the UF unit and remaining 

reaction components could be added directly eliminating the handling and dead-volume issues. By 

circulation of the reaction mixture using the pump on the UF unit without pressure across the membrane 

the process would be continuously mixed without stirring and the temperature could be maintained by the 

water cooling system attached. Furthermore this strategy had the benefit of allowing both enzyme and 

acceptor to pass across the membrane and react with any CGMP which might have adsorbed on the 

membrane, an improvement compared to the lab scale experiments where donor adsorbed during initial 

purification was always lost. Finally reaction stop by heat inactivation was redundant since product 

purification could be started by a turn of a knot, reapplying pressure across the membrane, thereby 

separating the product (3’SL), and unreacted acceptor (lactose) from CGMP and enzyme.  

The main motivation for the study described in this paper was therefore to report the achievement of 

having designed an integrated membrane system for biocatalytic production of 3’SL, with the added 

possibility to improve the developed large scale process by identification of a superior UF membrane for 

the specific purpose.      

6.2 Hypotheses and objectives 

The objective of this study was to comprehensively communicate the advantages of the integrated 

membrane system developed during the up-scaling of HMO production carried out in the pilot plant, 

backed up with sound scientific data. 

Thus the main hypothesis to be tested in this study was: 

Hypothesis 1: The following observations from large scale cross-flow UF unit will translate well to a 

laboratory experimental setup using dead-end stirred tank filtration setup: 

- Fouling is the main concern with regard to CGMP UF 

- Hydrophobic membranes are unsuitable for CGMP filtration due to heavy fouling. 

- UF is a viable method for separation of product mixture (3’SL and lactose) from the remaining 

reaction components.  
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Hypothesis 2: An additional hypothesis that was tested in this study was that the biocatalytic productivity 

could be greatly enhanced by application of the integrated membrane system as enzyme could be retained 

in the EMR and reused accordingly. 

In the paper several hypotheses were addressed on the topic of NF as well. However, the previous study 

deals with this topic in greater detail and is therefore not considered further. 

6.3 Experimental considerations 

Designing the experiments for this study was a little awkward as part of “the result” was already known. At 

the time where the scientific experiments for this study were carried out production had been carried out 

in the pilot plant and NF had been applied for product separation with varying success. Since the NF part of 

the process had undergone heavy scrutiny in the previous study, only a small series of showcase filtration 

experiments were set up to report the applicability of the process in its entirety.  The main focus on 

experimental design in this study was concerning the enzymatic membrane reactor. Here identification of a 

suitable UF membrane was the main focus since the fouling behavior of CGMP had previously caused 

serious issues in the large scale production. Due to the previous experience with CGMP fouling a suitable 

10000 Da regenerated cellulose (RC) UF-membrane had been identified during the development of the 

pilot plant scale 3’SL production.  

However in order to evaluate the various aspects of the proposed membrane system scientifically it was 

decided to downscale the process again. A disadvantage of the downscaling was that our experimental 

setup for membrane evaluation relied on the application of dead-end stirred tank filtration units compared 

to the spiral membrane crossflow filtration unit which was applied in the pilot plant. Thus there was no 

guarantee that the RC membrane (already identified) would perform as well in the laboratory setting, but 

this was accepted as a premise because the possibility to identify other suitable membranes (worthy of 

pilot plant testing) was advantageous. Furthermore it was evaluated that any ideal membrane identified in 

the stirred tank reactor would be likely perform better, due to reduced fouling, if applied as a spiral 

membrane in a crossflow setup. Thus it was reasoned that overestimated performance was unlikely to 

occur with the chosen setup.  

6.4 Conclusions 
The results from the pilot plant translated well with the laboratory scale experiments as the hydrophilic RC 

membranes generally outperformed the other types of membranes. 

Fouling was a severe influence on membrane performance and the exclusion of charged solutes (Sialic acid 

and 3’SL) was repelled by the hydrophobic membrane as it was observed in the pilot plant. Additional data 

supporting that this repulsion was indeed the result of a charged fouling layer (CGMP layer) was also 

obtained. 

A difference between the laboratory and pilot plant experiments were seen with regard to MWCO. It can 

be concluded that the CGMP during UF behave like a compound around the size of 10000 Da since it 

(surprisingly) was noted that application of a 10000 Da RC membrane (contrary to the results obtained in 

the pilot plant) resulted in severe loss of substrate (permeation of CGMP) during pretreatment.   
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Chapter 7: Overall conclusion and perspectives 

7.1 Enzyme discovery 

A total of six novel wild type enzymes were analyzed in the PhD project of which three (one trans-sialidase 

and two β-N-acetylhexosaminidases with trans-hexosaminidase activity) were found to have relevance to 

HMO production. The novel trans-sialidase (of Haemophilus parasuis) was identified based on an in silico 

3D prediction approach where an aromatic sandwich was identified as a trans-glycosylation marker. The 

successful prediction is believed to be a result of a correct assessment, that the aromatic sandwich found in 

trypanosomal trans-sialidases could have (did) evolve (presumably in parallel) in a different species. 

Furthermore, the additional enzymes, expressed and evaluated in the trans-sialidase identification study, 

reiterate the (in literature) repeated suggestion that the aromatic sandwich is crucial to trans-sialidase 

activity in the TcTS. Further analysis of the novel trans-sialidase should be carried out to investigate 

whether additional traits of this interesting enzyme can be used to identify more trans-sialidases. The proof 

of concept on the aromatic sandwich as a trans-sialidase marker should result in establishment of more 

research studies where refined algorithms are used to screen for sialidases with aromatic sandwiches in the 

correct constellation. It should also be investigated if aromatic sandwiches can be found in other GH 

families and whether such enzymes have enhanced trans-glycosylation activity. 

A classical enzyme discovery approach, in the form of metagenomic library screening, was used for the 

successful identification of the two novel β-hexosaminidases. The identified β-hexosaminidases were 

capable of carrying out trans-glycosylation using both natural and synthetic GlcNAc donor substrates 

(whereas only a synthetic GalNAc donor substrate was tested). Thus precursors for HMOs were produced in 

the form of LNT2, using the new enzymes in enzymatic reactions.  

7.2 Enzyme development 

A total of 8 mutants of which 5 have not previously been synthesized were constructed, expressed and 

evaluated for trans-sialidase activity. Integrating a range of mutations suggested by different research 

groups led to the development of two novel TrSA mutants with heavily improved trans-sialidase activity. To 

set this achievement in perspective it was evaluated that the enzymes are now at a state where it may be 

possible to sell the rights to use them for industrial application. 

However, identification of common structural features between the trypanosomal trans-sialidases and the 

newly identified trans-sialidase of H. parasuis should be carried out, to identify further possibilities for 

improvements. It is therefore advised that a model of the novel trans-sialidase is produced based on a 

crystal structure, since the created homology model may be subject to inconsistencies with the actual 

structure. 

7.3 Reaction and Process optimization   

In the BioEng research group product purification was prior to this study only approached with academic 

use of the products in mind. During this PhD project however and integrated UF and NF membrane system 

was developed for the production of 3’SL. The process is believed to be industrially viable since several 

concerns such as product purity, sanitation, and substrate economy is catered to. By application of the 

integrated membrane system two major improvements were achieved: 
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- Improved substrate economy due to reduced loss of CGMP in preprocessing, enabled CGMP 

recovery, and lactose recovery for reuse in synthesis.  

- Improved biocatalytic productivity, since product can be removed without compromising the 

enzyme.    

7.4 Evaluation of PhD project goals   

In all areas where HMO production was researched, in this PhD project, scientific as well as applicational 

progress was made. In the past chapter the scientific work has been presented and it clear that all goals of 

the PhD project was achieved. 
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