
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Supramolecular Derivation of Graphene Nanomaterials for Chemical Sensors

Olsen, Gunnar; Chi, Qijin; Ulstrup, Jens

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Olsen, G., Chi, Q., & Ulstrup, J. (2016). Supramolecular Derivation of Graphene Nanomaterials for Chemical
Sensors. DTU Chemistry.

http://orbit.dtu.dk/en/publications/supramolecular-derivation-of-graphene-nanomaterials-for-chemical-sensors(f3ee08f2-9aeb-4574-a35c-5d08a1cc090f).html


     

 

 

 

 

  

 

Supramolecular Derivation of Graphene 

Nanomaterials for Chemical Sensors 

A dissertation by Gunnar Olsen 

 

 

 

 

Submitted to 

The Department of Chemistry 

In partial fulfilment of the requirements 

For the degree of 

Doctor of Philosophy (Ph.D.) 

In the subject of Chemistry 

 

 

 

 

 

 

 

Kongens Lyngby April 2016 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

“The chemists are a strange class of mortals, impelled by an almost insane 

impulse to seek their pleasures amid smoke and vapour, soot and flame, 

poisons and poverty; yet among all these evils I seem to live so sweetly that 

may I die if I were to change places with the Persian king” 

– Johann Joachim Becher 1667 
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Abstract  

With properties such as high surface area, high conductivity, and low production cost with 

easy up-scaling, graphene-like materials provide a promising support for many applications, 

one of which is for chemical sensors. By functionalization with molecular receptors such as 

supramolecular moieties, which have long been used for chemical sensing, graphene-like, 

materials can be endowed with increasing selectivity to form better and cheaper sensing 

composite materials.  

In this Ph.D. project, reduced graphene oxide (RGO) has been covalently functionalized with 

supramolecular moieties to create active sensing materials. Two different strategies have been 

applied to achieve specific functionalization: The first approach consisted of covalently 

attaching chemically resistant supramolecular moieties, in the present work crown-ethers to 

graphene oxide (GO); the functionalized GO was then reduced chemically. This resulted in 

monolayer RGO nanosheets functionalized with crown-ether to an extent of up to 30% of the 

theoretically available surface area (Figure 1). These materials were shown to selectively 

bind alkali metal ions, and potentiometric sensing based on the materials was achieved with 

a detection limit of 10−5 M. 

 

Figure 1: Schematic representation of the synthesized RGO nanosheet functionalized with crown-

ether. 

In the second approach Azido-RGO was prepared as a general platform for post reduction 

modification. GO was here functionalized with a short linker terminated in an alcohol. The 

intermediate material was then reduced effectively with NaBH4, followed by chemical 

transformation of the alcohol into azide, thus providing a chemical handle for click chemistry 

in the form of CuAAC (Figure 2).  

This platform material has then functionalized with ferrocene as a redox probe to accurately 

determine surface coverage which showed that the material one azido-functionality was 

attached per 16 RGO-sheet carbon atoms or slightly more than one azide per nm2 of 

RGO-sheet.  
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Figure 2: Schematic representation of the synthesized Azido-RGO, a RGO nanosheet 

functionalized with azides, which can be further functionalized with desirable groups or 

molecules after the reduction step by CuAAC. 

This Azido-RGO was used in successful functionalization with the large supramolecular 

receptor molecules TTF-calix[4]pyrrole which function as a sensor for Cl− and potentially 

for TNB. The coverage achieved was one molecule per 50 – 60 carbon atoms in the 

RGO-sheet. In view of the size of this molecular moiety, the coverage is actually very high. 

The material was used for Cl− sensing showing sensitivity at very low concentration with 

linear response in the concentration range 10−8 – 10−5 M.  
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Résumé  

Grafen-ligende materials egenskaber som stort overfladeareal, høj ledningsevne, lave 

produktionsomkostninger samt gode muligheder for opskalering, gør grafen-baserede 

materialer til lovende supportmateriale for en række anvendelser. En af disse for anvendelse 

i kemiske sensorer. Ved funktionalisering af grafen med molekylære receptorer som 

supramolekylære enheder, som længe har været anvendt som kemiske sensorer, kan disse 

egenskaber overføres til grafenmaterialet og resulterer i øget selektivitet medførende bedre 

og billigere sensormaterialer. 

I dette Ph.d. projekt er RGO blevet kovalent funktionaliseret med supramolekylære enheder 

for at skabe aktive sensormaterialer. For at opnå denne funktionalisering er to forskellige 

strategier blevet anvendt: Den første strategi bestod i først at anvende kovalent kemi til 

fastgørelse af supramolekylære enheder som kroneether til GO, hvorefter det 

funktionaliserede GO reduceres kemisk. Dette resulterede i et atomart monolag af RGO 

funktionaliseret med kroneether op mod 30% af det teoretisk tilgængelige overfladeareal 

(Figur 3). Det blev vist, at disse materialer har egenskaber til selektivt at binde 

alkalimetalioner. Dermed kunne dette materiale anvendes at fremstille en potentiometrisk 

sensor med en detektionsgrænse på 10−5 M. 

 

Figur 3: Skematisk illustration af det syntetiserede RGO funktionaliseret med kroneether. 

Den anden strategi til funktionalisering af RGO med supramolekylærer enheder var at 

fremstille et nyt materiale, azido-RGO som platform. Hvorpå disse enheder kunne påsættes 

efter reduktion af GO til RGO. Dette er en stor fordel for enheder, som ikke er kemisk 

resistente over for reduktion. GO blev funktionaliseret med en kortmolekylær kæde med en 

alkoholgruppe yderst. Det funktionaliserede materiale blev derefter reduceret effektivt med 

NaBH4 efterfulgt af kemisk substitution af alkoholen med azid. Denne azid kan anvendes 

som et kemisk ”håndtag” ved brug af click-kemi i form af CuAAC. Dette platformmateriale 

blev studeret ved at funktionalisere det med, en redox probe ferrocen, som kan bruges til 

nøjagtigt at bestemme overfladedækning via elektrokemi. Dette viste, at materialet havde én 
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azidgruppe pr 16 kulstofatomer i RGO materialet hvilket svarer til lidt mere end én 

azidgruppe per nm2 af RGO (Figur 4). 

 

Figur 4: Skematisk illustration af det syntetiserede azido-RGO, et RGO ”nanolag” 

funktionaliseret med azider, som kan funktionaliseres efter reduktionstrinet ved CuAAC. 

Dette azido-RGO blev også brugt til at funktionalisere RGO med et stort supramolekylært 

receptormolekyle TTF-calix[4]pyrrol, der kan fungere som er en Cl− sensor. Det lykkes at 

funktionalisere RGO med én TTF-calix[4]pyrrol per 50 – 60 kulstofatomer i RGO materialet. 

Dette er meget høj dækning når størrelse af denne TTF-calix[4]pyrrol tages i betragtning. Det 

producerede materiale blev brugt til Cl- detektion og viste følsomhed ved meget lav 

koncentration af Cl- med lineært respons i koncentrationsområdet 10−8 – 10−5 M. 
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Thesis Structure 

The thesis is structured in seven chapters. Chapter 1 provides a brief introduction to the core 

concepts that form the foundation of this work. Chapter 2 provides a more specific 

introduction to the key materials used in this thesis namely graphene related materials as well 

as a brief overview on how these materials in conjunction with supramolecular moieties have 

been used to construct chemical sensors. The following three chapters describe the work 

carried out in the Ph.D. project. They are structured in such a way that a short introduction to 

relevant previous work or important theory not covered in chapter 1 or 2 is first given, 

followed by synthesis, characterization and functional tests of the materials of presented. 

Chapter 3 describes the work on covalent functionalization of reduced graphene oxide (RGO) 

with crown-ether moieties to produce sensing materials for alkali metals. Chapter 4 describes 

Azido-RGO as a platform material, onto which any chemical sensing components can in 

principle straight forwardly be attached. Chapter 5 describes, how a complex chemical sensor 

moiety TTF-calix[4]pyrrole can be attached to Azido RGO, in order to achieve a surface 

confined electrochemically active sensing system. Chapter 6 summarizes and concludes on 

the produced work. Chapter 7 provide the detailed experimental procedures used in the thesis 

work.  
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Motivation 

The detection and monitoring of chemical compounds is of tremendous importance in a  

number of important areas in our society1. Chemical species such as ions and small 

molecules have for example important roles in our body functions, and detection and 

monitoring of these compounds are therefore crucial for always accurate medical 

diagnostics2,3. Most important targets can be detected today, but there is intense interest in 

better, faster and cheaper systems4,5. Especially cheap disposable detection units for use in 

resource-limited environments and disaster zones are a pressing concern6–8. The growing 

environmental awareness also increases requirements of chemical sensors to monitor 

environmental systems such as water supplies, air quality, underground and so forth9,10. 

Graphene-like materials such as RGO and chemically modified graphene (CMG) show 

high promise for electrochemical sensing due to their high surface area, high conductivity 

and low production cost with easy up-scaling. They have, therefore been used extensively 

in sensor manufacturing11–13. However, these materials themselves have limited selectivity. 

Hybrid structures are therefore prepared mostly with enzymes in biosensor manufacturing, 

but the stability and high cost of enzymes can be obstacles limiting their usefulness. 

Supramolecular moieties have, however been used for decades as receptor units for 

chemical sensors, and serve as a strong alternative to enzymes for introducing increased 

levels of selectivity to graphene-like materials 14–18. Despite comprehensive research in 

graphene materials for sensing applications, there is, however still ample opportunities 

within graphene materials functionalized by supramolecular moieties, so much the more as 

most current work in the field use physical adsorption rather than covalent attachment, 

which would be expected to add to more robust and reproductive sensing19–25. 

This project is focused on covalent functionalization of graphene-like materials with 

supramolecular moieties in the preparation of novel sensing materials. We used two 

strategies towards this goal. One was to functionalize graphene oxide (GO) efficiently with 

supramolecular moieties, and then reduce it to a RGO based CMG. The other approach was 

to synthesize a RGO material with a chemical handle, which can be used post in reduction 

to functionalize the RGO. This approach serves to spare the supramolecular moiety from 

potential unwanted chemical transformation during the reduction step. 
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Chapter 1 Introduction  

This chapter provides a brief introduction to the concepts essential for the thesis, including 

chemical sensors, nanostructures, and supramolecular chemistry.  

1.1 Chemical Sensors 

Evolutionarily, one of the key factors for survival is the ability to use our human senses to 

observe and react to changes in the environment, from visual to auditory, but also chemical 

sensing. This is why we are capable of detecting more than 10 000 different odorants despite 

humans being primarily visual and underappreciate olfactory sensing26. Likewise, our society 

has a growing appreciation of the importance of chemical detection. From the general public 

to government and industry there is an ever-expanding urge to understand our chemical and 

biological environment1. 

 

Chemicals in general, from toxins to simple ions, have tremendous impact on our bodily 

functions, health and diseases. The detection or monitoring of specific compounds or ions in 

our body therefore offers crucial clues for medical diagnostics2,3. The increase in 

environmental awareness also implies a growing need for adequate detection of chemicals in 

our environment, such as water supply or air quality9,10. Chemical sensors for explosives,27 

and chemical warfare agents28 are also increasingly important in controlling previous 

warzones, air security, and other security risk areas. 

In general, a sensor is a device that can detect and convert an external stimulus into a readable 

output. For example, a motion sensor can detect motion and convert this stimulus into a signal 

such as an alarm or electrical recording. A chemical sensor is a sensor, which can recognize 

a specific chemical and give an analytically useful output signal allowing us to identify and 

possibly quantify this specific compound in a mixture of many compounds.  

A chemical sensor is in itself not a sensing device or an analyser, but rather an essential 

component of such devices. In order to construct an operational device further components 

are required: signal processing unit (detector, amplifier and/or signal transformation), data 
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processing unit (reference sample or database), and monitor for readout. Further components 

can be added to improve the system; these include but are not limited to sampling unit (auto 

sampler), sample transport (stirring or flow device)29. 

Chemical sensors have two primary functional criteria: one is selectivity; being able to 

selectively recognize a specific compound out of a mixture, either by a receptor picking out 

specific property or compound or by a separator such as a membrane only allowing specify 

compounds through. The other criteria is transduction, having the ability to transduce a 

stimulus into a readable signal. A number of types of signals can be generated, depending on 

the transducers used. The signal can be optical such as colorimetric30, fluorescent31 and 

circular dichroism32; or electrochemical including potentiometric33, amperometric34 and 

conductometric10; or thermometric35 etc. 

Due to these two central components required, one rational design of a sensor is to have a 

recognition unit or binding site covalently linked to a probe also called the “receptor-spacer-

reporter approach”36 (Figure 5). This is regarded a recurring design for synthetic molecular 

sensors37. 

 

Figure 5: Schematic of supported “receptor-spacer-reporter” type sensor. 

Support for a chemical sensor is also important. If the chemical sensors work as 

homogeneous sensors, the re-use could be very complicated if not impossible. However, if 

the sensor can be immobilized on a surface, it can then be cleaned and re-used. Supporting 

the sensor also opens the possibility of using it for continuous monitoring via heterogeneous 

flow devices38. A sensor for gaseous detection also requires a heterogeneous interface where 

the support material becomes important. It is important to make sure that the material does 

not interfere with the signalling type when using a support material, e.g. if a fluorescence 

probe is used, the support should not quench the fluorescence, or if an electronic signal is 

used the support needs to be electronically conductive to carry the signal through the material.  
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There are two main ways to achieve a high selectivity for chemical sensors. One is direct 

sensing and has its origin in “the lock and key principle” first postulated by Emil Fischer in 

189439. In “the lock and key principle” a recognition unit has a very high affinity towards one 

specific compound thereby generating a one-to-one relationship between stimuli and sensor 

output. Examples of such an approach are biological signalling receptors such as 

seven-transmembrane receptors40, antibody recognition systems41, synthetic sensors36 or 

molecular imprinting42. The advantage of this approach is a one-to-one identification of a 

compound, resulting in very high selectivity for sensors, perfectly matched to the compound. 

The drawback is that some compounds are extremely similar and a perfect sensor can be hard 

if not impossible to achieve. Even in biology, systems that have evolved over millions of 

years can be tricked. The basis of most medicinal chemistry is to find alternative molecules 

to trigger certain receptors. Another potential drawback is the need of one unique sensor for 

each compound.  

The other approach is to construct a sensory array, which has its origin in olfactory sensing. 

Where a series of sensors are arrayed, each sensing different properties, the collective signal 

fingerprint can then be analysed in order to identify the specific compounds. The benefit of 

array sensing is that the use of many sensors enables detecting an even larger library of 

compounds, by using the data from each receptor to piece together the overall detection of 

all the compounds. One drawback of such a system is its inherent complexity, as multiple 

receptors are needed that together create a complete array. Another drawback is that two or 

more compounds in a mixture of compounds can be interpreted as a single one and thereby 

give positive detection where it should give a negative result.  

1.2 Nanotechnology and Nanochemistry 

Richard Feynman first introduced the idea of engineering at the nanoscale that later inspired 

nanotechnology. December 29, 1959, he presented the now famous and popular words: 

“there is plenty of room at the bottom” at the annual meeting of the American Physical 

Society, at California Institute of Technology43. Back then the tools needed to manipulate 

materials at the nanoscale were not available, so his talk was purely speculative. The message 

of this talk was that the laws of physics do not prevent the manipulation of single molecules 

or atoms and the reason this was not achieved was lack of appropriate methods. We now 

know that he correctly predicted these would inevitably arrive. He also advocated for the 

potentials of nanoscale technology in storage of information and computer technology. 

Looking at the progress in these fields over the last few decades, his advocation was definitely 

warranted. However, even today we are still not at his imagined limits. 

“Nano” comes from Greek word “nanos” meaning “dwarf”. Now it is used as a prefix 

describing a billionth (10-9) of a measuring unit. Nano in nanotechnology refers to the size 



1.2 Nanotechnology and Nanochemistry 

4 

scale nature of the technology, further specified by the European Commission definition of 

nanomaterials in 201144:  

“A natural, incidental or manufactured material containing particles, in 

an unbound state or as an aggregate or as an agglomerate and where, for 

50 % or more of the particles in the number size distribution, one or more 

external dimensions is in the size range 1 nm – 100 nm.” 

What we readily observe is in the macroscopic scale (103 – 10−3 m). Zooming into the 

microscopic scale (10−3 – 10−6 m), biological cells and cellular organelles are visible by 

optical microscopes. Further beyond the microscopic scale is the nanoscale with single 

molecules and molecular clusters (Figure 6). To observe nanoscale objects, the crucial 

development of advanced microscopic techniques such as transmission electron microscopy 

(TEM) by Ernst Ruska in the 1930s45 and scanning tunnelling Microscopy (STM) by Gerd 

Binning and Heinrich Rohrer in the 1980s46 who later jointly got the Nobel prize in 198647. 

Later the atomic force microscopy developed by G. Binning, C.F. Quate and Ch. Gruber in 

the 1980s joins the list of important microscopy techniques for the observation of objects at 

the nanoscale48.  

Beyond the sheer size difference between the macroscopic scale and the nanoscale some 

physical and chemical phenomena also change in this size range due to decreased effects of 

gravitation, coulombic forces dominating, increased importance of quantum mechanical 

effects, faster electron/ion transport, stronger effects of Brownian motion etc.49,50  

 

Figure 6: Depiction of the size regime from macroscopic (yellow) through microscopic (green) to 

the nanoscale (blue) and beyond, with examples of objects the size of which diminish roughly by 

a factor of ten. This figure is adapted from an interactive figure by Cary & Michael Huang51. 
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Nanostructures exist in a multitude of shapes52,53 from 0D structures such as roughly spherical 

nanoparticles54, nanoflowers55 etc., to 1D structures56 such as nanotubes, rods or wires, to 2D 

structures57 such as nanodiscs or nanosheets. Furthermore, nanostructures can be composed 

from a huge number of materials or combination of materials making the diversity of 

nanomaterials almost endless. Their properties often depend on all of these three key factors, 

i.e. size, shape and composition.  

In principle, there are two main approaches to manufacture nanomaterials. One is the 

top-down approach of traditional workshop manufacturing in microfabrication methods, 

where tools are used to cut, mill, shape edging, and evaporating materials into desired shapes 

and functions58.  

The other approach is bottom-up, where nanomaterials are synthesized from smaller 

components. This can be thought of as the chemical approach of building up with atoms and 

molecules.54–56 Advances in STM59 or AFM60 techniques have also made it possible to do as 

Feynman envisioned in engineering the motion of single atoms or molecules with the tip to 

generate nanostructures. 

1.3 Supramolecular Chemistry  

Jean-Marie Lehn first described the concept of supramolecular chemistry in 197861:  

“Just as there is a field of molecular chemistry based on the covalent bond, 

there is a field of supramolecular chemistry, the chemistry of molecular 

assemblies and the intermolecular bond.” 

The Nobel prize in chemistry 198762 was awarded to Donald J. Cram, Jean-Marie Lehn and 

Charles J. Pedersen for their work on supramolecular chemistry, specifically supramolecular 

hosts: spherands, cryptands and crown ethers63. After the Nobel Prize award, Jean-Marie 

Lehn further detailed his description of supramolecular chemistry64: 

Supramolecular chemistry may be defined as “chemistry beyond the 

molecule,” bearing on the organized entities of higher complexity that 

result from the association of two or more chemical species held together 

by intermolecular forces. Its development requires the use of all resources 

of molecular chemistry combined with the designed manipulation of 

noncovalent interactions so as to form supramolecular entities, 

supermolecules possessing features as well defined as those of molecules 

themselves. One may say that supermolecules are to molecules and the 

intermolecular bond what molecules are to atoms and the covalent bond. 

In terms of the definition, it can be said that supramolecular chemistry adds an extra level of 

complexity to traditional synthetic chemistry where clusters of traditional molecules can be 

assembled into larger architectures. These advanced systems find many applications e.g. as 
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functional materials65, sensors36, self-assembly66 and molecular machines67. Some of the 

major differences between traditional synthetic chemistry and supramolecular chemistry are 

summarized in Table 168.  

Table 1: Summary of differences between covalent bonds and supramolecular interactions 

1.3.1 Host-Guest Complexes  

Host-guest complexation is one of the key subfields of supramolecular chemistry, which 

focus on designing large host complexes for recognition and binding of smaller guests such 

as cations70,71, anions72,73, or small neutral compounds74,75. The molecular host is designed so 

that direction specific interactions help to selectively bind the target compound and often 

have a size-limiting cavity or binding site.  

1.3.2 Intermolecular Interactions  

Table 2: Electrostatic interactions, and their strength and range/direction dependency. 

 Covalent Bond Supramolecular interaction 

Constituent bond type Covalent Ionic, hydrogen bond, π–π and 

hydrophobic interaction  

Bond strengths 150 – 1075 [kJ mol−1]69  0 – 350 [kJ mol−1]68 

Kinetic stability Kinetically stable  Kinetically reversible 

Contribution to ∆G ∆H dominated ∆H and ∆S  Comparable 

Solvent dependence Secondary Primary 

Interactions Ion – Ion Ion – Dipole Dipole – Dipole 

Example 

 

Na+ Cl− 
 

K+⊂18-crown[6] 

 

Carbonyl bonding 

Strength68 100 – 350 kJ mol−1 50 – 200 kJ mol−1 5 – 50 kJ mol−1 

Range 

dependency 
R−1 R−2 R−3 

Directionality No Yes Yes 
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 There are several different types of intermolecular interactions: the most important ones are 

briefly described here. Most of these are electrostatic interactions governed by coulombic 

forces, the most common of which are listed in Table 2.  

The hydrogen bond is an intermolecular interaction of high importance in chemistry, 

physical chemistry and biochemistry76–79. It is now more than 100 years80 since the discovery 

of the hydrogen bond by T. S. Moore and T. F. Winmill81. Since then very much has been 

learned about the nature of the hydrogen bond and it has proven a quite complex interaction. 

As a result International Union of Pure and Applied Chemistry (IUPAC) has recently (2011) 

recommended a new definition of the hydrogen bond82,83: 

The hydrogen bond is an attractive interaction between a hydrogen atom 

from a molecule or a molecular fragment X–H in which X is more 

electronegative than H, and an atom or a group of atoms in the same or a 

different molecule, in which there is evidence of bond formation. 

A hydrogen bond is primarily an electrostatic interaction of the dipole – dipole type, but many 

reports show it also involves partial charge-transfer (below) interaction leading to partial 

covalent bond and dispersion forces76,77. 

 

π–π interaction is electrostatic mutual polarization interaction between π systems typically 

aromatic rings. There are two types of 

attractive π–π interactions; face-to-edge and 

face-to-face (Figure 7). Face-to-face 

interaction is mostly between offset rings 

rather than directly superimposed rings. This 

is because π–π electron density interactions 

between electron poor and electron rich 

π-systems are enhanced84 (blow).  

Van der Waal’s interactions can be divided into two different forces attractive dispersion 

(London) forces and exchange-repulsion. The dispersion arises from electrostatic interaction 

between temporary polarizations of the electron cloud, inducing a small dipole moment. The 

point interaction decreases with increasing distance as r−6. Exchange-repulsion is the force 

that prevents atomic overlap and decreases with increasing distance as r−12.85 

Charge transfer (CT) interaction is an attractive interaction between an electron donor and 

an electron acceptor, where the energy gap between occupied molecular orbitals of the donor 

and unoccupied molecular orbitals of the acceptor is relatively small. In a CT complex the 

donor and acceptor orbitals mix into new complex orbitals. This is often but not necessarily 

always a (HOMO – LUMO) interaction84. The new complex orbitals have a lower lying 

occupied orbital with a higher electron density around the acceptor resulting in partial 

Figure 7: Interactions between aromatic 

π- systems A) Face-to-face; B) Face-to-edge. 
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electron transfer from donor to acceptor and a stabilizing energy. Charge transfer complexes 

are often highly coloured due to photo-induced charge transfer excitation between mixed 

orbitals and often lie in the visible area π-π interaction below to this category of 

supramolecular interactions85–87. 

 

Figure 8: Illustration of an energy diagram of a HOMO – LUMO dominated CT-complex, 

showing the CT-stabilization energy ΔEInteraction and the CT excitation band energy ΔEExcitation. 

Solvation effects are governed by the interaction between the solvent with itself and with the 

solutes, and can have tremendous effect on the supramolecular complex stability as well as 

aggregation. If the interaction between solvent and solute is strong, e.g. a sodium ion in water, 

a solvation sphere will form. In order to make a complex where the sodium ion is included, 

these strong interactions must be broken, so the solvent effects work against the formation of 

the complex. If the interactions between solvent and solute are similar to those between 

solvent molecules themselves, this effect is less important68. In the other extreme, if the 

interaction between solute and solvent is weaker than the interaction among the solvent 

molecules e.g. hexane in water, there will be a different type of solvation sphere. This sphere 

consists of high-energy solvent molecules, which can be released if the solute can be 

encapsulated by a host molecule or by aggregation. Solvation thus contributes significantly 

to complex formation68.  
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Chapter 2 Graphene-Like Materials 

 

Throughout the work of this Ph.D.-study the materials used are two-dimensional carbon 

materials. This chapter focuses on introducing graphene and graphene-like materials, their 

properties, and advantages for applications as sensor materials. A modified version of the 

chapter has been provisionally accepted as a book chapter in “Nanomaterials and 

Nanotechnology” by “One Central Press” co-authored by Arnab Halder and Qijin Chi. The 

work done by Arnab Halder on biosensors is not included in this chapter88. 

 

Graphene is a single atomic layer of graphite (Figure 9). First discovered five centuries ago 

in Borrowdale89, graphite is a black, soft and mechanically weak material. Initially, graphite 

was used for marking sheep, before it has found its practical application for military purpose 

as a heat resistant solid lubricant for canon ball molding2. Since then, graphite has been used 

for a variety of applications from pencils to nuclear reactors90. As a freestanding material 

graphene has been discussed theoretically for more than 60 years91–93. Yet it was widely 

believed to be too unstable to exist94–96. However, in 2004, Novoselov, Geim and 

co-workers97–99 demonstrated that graphene can be obtained by mechanical exfoliation using 

a scotch tape on graphite, and these graphene sheets are stable enough for characterization. 

In 2010, Novoselov and Geim were awarded the Nobel Prize100 in physics for their pioneering 

work and following studies of graphene and its unique properties. 

 

Figure 9: Hexagonal network of sp2 carbon, the chemical structure of graphene. 
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After the discovery by Novoselov and Geim, a new area of research on graphene has quickly 

sparked, and received tremendous attention in the scientific community, and has grown 

rapidly ever since.  

2.1 Properties of Pristine Graphene 

The structure of graphene is an atomically flat hexagonal pattern of sp2-hybridized carbon 

with a bond length of 1.42 Å. The theoretical specific surface area is tremendously large 

(2630 m2/g) or 5.25Å2 per carbon atom101. The conjugated π-system of delocalized electrons 

gives rise to its remarkable electron mobility and optical properties. The low opacity  

(≈ 2.3 %) of graphene makes it optimal for devices where optical transparency is needed102. 

AFM via nano-indentation was used to study the mechanical properties of freestanding 

single-layer graphene membranes suspended over holes on a Si substrate103. These 

experiments showed graphene to be the strongest material ever discovered. However, 

thickness is a determining factor for mechanical strength. Graphene also has high thermal 

conductivity measured as 600 W m−1 K−1 on a SiO2 support104, and even as high as 5000 W 

m−1 K−1 for suspended graphene105. Its electronic properties are, however, most impressive, 

particularly high electron mobility. Novoselov et al.97–99 reported the electronic mobility of 

SiO2 supported graphene at room temperature to be ≈ 2000-15 000 cm2 V−1s−1. Bolotin et 

al.106 measured even higher electron mobility of suspended graphene extensively cleaned to 

remove impurities reaching 230 000 cm2 V−1s−1, which shows that as for thermal 

conductivity, electronic mobility is also strongly affected by the support material. Graphene 

also exhibits a range of quantum effects, including ballistic transport of electrons on the 

sub-micrometer scale up to ≈ 0.3 μm at 300 K96, quantum hall effect at room 

temperature107,108, zero energy band gap, and electrons traveling across the conjugated 

π-system can be described as mass-less Dirac fermions99. All these unique properties are 

highly dependent on the quality, purity, and grain boundaries in graphene sheets. 

2.2 Methods of Synthesis 

The first graphene nanosheets were obtained by micro-mechanical exfoliation also called 

“the scotch tape method”. However, other synthesis methods are needed due to the scalability 

limitations of this micro-mechanical exfoliation approach. Some of these other methods are 

outlined below.  

2.2.1 Bottom-Up Growth of Graphene 

Chemical vapour deposition (CVD) and epitaxial growth on SiC can be used to grow 

graphene on a substrate from the bottom-up making high-quality large-area graphene sheets. 
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However, epitaxial growth is hardly suitable for large-scale production, due to the need for 

atomically flat SiC requiring cumbersome preparation. Transfer of graphene sheets from SiC 

is also complicated109. 

On the other hand, CVD growth has proven to produce very large single graphene sheets, 

among which the most notable report is of a 30-inch roll-to-roll graphene film by Lijima et 

al.110 (Figure 10). Flexible Cu foil substrate was used to grow the graphene monolayer sheets, 

which were then stacked layer by layer to form four-layer films with 90% transparency and 

a surface resistance of 30 Ω sq−1.  

 

Figure 10. Schematic illustration of roll-based graphene grown on Cu foil reported by Lijima et 

al. (reproduced with permission from ref.110 Copyright 2010 Macmillan Publishers Limited.) 

In CVD, a gaseous carbon source usually consisting of methane and hydrogen gas is heated 

to high temperatures (800 – 1500 oC) to break C–H bonds in order to form atomic carbon, 

which then forms graphene on the substrate surface. Catalytic metals are often needed111 to 

reduce the required heat. The supports used are most often transition metals,112 especially 

Cu113 and Ni.114  

The most concerning challenge in growing graphene is the presence of grain boundaries 

resulting in polycrystalline graphene sheets115,116 as a result of multiple nucleation sites. 

These grain boundaries reduce the outstanding properties of graphene.117,118 Another 

limitation is high energy requirements, resulting in a very costly industrial scale 

production.112 Finally, it is challenging to safely lift the grown graphene from the substrate, 

a process that can easily damage the structure of graphene sheets. 

2.2.2 Top-Down Exfoliation of Graphite to Graphene 

Another approach to potential large-scale production of graphene is solvent exfoliation 

(Figure 11). The main challenge is to completely separate graphitic layers to monolayer 

graphene. Vigorous sonication for extended time can be used to break the weak interaction 

between graphene layers. The separation can be stabilized by minimizing the solid/liquid 

interfacial tension, thereby facilitating the separation and preventing from re-aggregation.119 

In order to minimize the interfacial tension, the surface energy of the solvent and graphene 

should be approximately at the same level. The surface energy of graphene is predicted to be 
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approximately the same as that for nanotubes and graphite (70 mJ m−2)120 corresponding to a 

surface tension of (γ ≈ 40 mJ m−2)120. The most effective solvents for dispersion of graphene 

include N-methyl-2-pyrrololidone (NMP) γ = 40.25 mJ m−2;121 N,N-dimethylformamide 

(DMF) γ = 39.07 mJ m−2;122 and dimethyl sulfoxide (DMSO) γ = 41.76 mJ m−2.122 

 

 

Figure 11. Schematic illustration of basic principles in liquid exfoliation. 

Exfoliation in NMP by long-time sonication was reported to achieve high concentration of 

≈ 1 mg mL−1, where about 25% of the sheets are mono-layer and the majority < 5 layers 123. 

The exfoliated graphene was reported to be up-concentrated to stable dispersions of 20 mg 

mL−1.124 The use of these solvents could be, however, problematic due to their toxicity125,126 

and high boiling points.  

The high boiling point makes it difficult to completely remove residual solvent, which is why 

several attempts using less toxic and lower boiling solvents have been performed. Water is 

an ideal solvent from an environmental point of view. However, the problem with water is its 

high surface tension127 γ = 71.99 mJ m−2 resulting in very poor interfacial interactions with 

the hydrophobic surface of graphene, making it almost impossible to exfoliate graphite into 

graphene in pure water. There are some reports with limited success using other polar organic 

solvents such as ethanol, acetone and acetonitrile128.  

Surfactants have been extensively studied128 to facilitate exfoliation in water. Intercalating 

surfactants such as pyrene salts are of particular interest and have been used e.g. by Green 

and co-workers129 to stabilize dispersion of graphene in water at 0.8–1.0 mg mL−1. Polymers 

have also attracted attention to stabilize graphene in aqueous dispersion128.  

The main benefit of exfoliated graphene over grown graphene is a small number of crystal 

defects, as it originates from large crystalline graphite samples. Additionally, scaling up 

solvent exfoliation is less problematic. The disadvantage is due to long-term sonication 

giving relatively small ≈ 1 µm2 produced graphene sheets130,131. Another problem is 

polydispersity. This problem was, however, largely solved by Green and Hersam132. They 

showed that density gradient ultra-centrifugation (DGU) can be employed to efficiently 

separate single-layer, double-layer, and multi-layered graphene.  

Finally, residual solvent and other impurities can be problematic to be removed completely, 

therefore reducing the electrical properties of the product. 
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2.3 Graphene Oxide and Reduced Graphene Oxide 

The particular method discussed here is wet-chemical exfoliation by sequential oxidation, 

exfoliation and reduction of graphite into a graphene-like material, i.e. RGO. This method is 

arguably the most effective approach for large-scale production, due to easy scale-up of the 

process. However, the reduction is not a complete recovery process, as the final product RGO 

contains significant amounts of structural defects. 

Graphite oxide was first synthesized and studied by Brodie already in 1859133. Brodie’s 

original interest was to determine the molecular formula of graphite, later he further studied 

the properties of graphite oxide. Brodie used KClO4 in fuming nitric acid for the oxidation 

of graphite. Brodie carried out the oxidation over four individual reactions, achieving 

graphite oxide with a C:O ratio of ≈ 2:1 and observed that the graphite oxide was dispersable 

in water. However, he did not know that this was because graphite oxide readily exfoliates in 

water (Figure 12). Thus, he could not realize that he was working with what was properly the 

first ever two-dimensional material of atomic height suspended in water. Later the method of 

making graphite oxide was improved first by Staudenmaier in 1898134 and then further by 

Hummers and Offeman in 1958135. “The Hummer’s method” often slightly modified is today 

the most common method for preparation of graphite oxide. Here, KMnO4 oxidizes graphite 

in sulfuric acid in a single step. All these methods can achieve approximately the same ratio 

of carbon to oxygen (C:O ≈ 2:1). 

 

Figure 12. Schematic representation of oxidation and exfoliation of graphite into GO (reproduced 

with permission from ref.136 Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) 

The structure of graphite changes significantly during oxidation of the sp2 carbon network, 

by transforming into mostly sp3 covered with oxygen functionalities. This completely 

interrupts electron transport in the material, making graphite oxide or GO be an insulator in 

solid state. However, new interesting properties arise from this transformation. The chemical 

reactivity of GO is high, making it easy to be modified chemically (section 2.4.2 page 20). 

Graphite oxide is readily exfoliated in slightly acidic, in neutral and in alkaline aqueous 

solutions at high concentration (Figure 12). This is attributed to a strong interaction between 
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the oxygen functionalities and water, allowing water to intercalate,137,138 with subsequent 

separation of the sheets in solution. Separation is further helped by electrostatic repulsion, 

due to a net negative charge of GO mainly arising from carboxylic acid edge groups.139  

The exfoliation still needs to be assisted by either sonication or intensive stirring. Sonication 

is a more effective method but it can cause fracturing of GO sheets.130,131 Graphite oxide can 

also be exfoliated in other polar solvents, such as ethylene glycol, DMF, NMP and 

tetrahydrofuran (THF).140 High-speed centrifugation can separate exfoliated GO layers from 

stacked graphite oxide.  

GO is not a defined material like molecules but rather a mixture of materials with different 

sheet size, oxidation level, and specific functional groups on basal plane and edges. This 

depends on a number of parameters some of which cannot be fully controlled, resulting in 

batch-to-batch variations. Detailed studies of GO are therefore problematic due to variation 

in conditions such as heat, oxidant, acid, graphite source and so forth.141  

Dimiev et al.142 discovered that post-reaction work-up also has significant impact on the GO 

product, showing that the normal water work-up effectively changes the reactive properties 

of GO. They performed experiments using organic solvent for the post reaction work-up. The 

resulting solid product was not a grey but a yellow, and in some cases white graphite oxide. 

They hypothesized that epoxides or covalent sulfur species dominate the sp3 hybridized basal 

plane after oxidation of most of the basal planes. These can be hydrolysed to some extent 

under aqueous work-up and thus partially restore sp2 hybridization resulting in an increased 

absorption of light. 

2.3.1 Structure of Graphene Oxide  

The chemical structure of graphite oxide has been debated and studied extensively in the 

scientific community for several decades. Its exceeding complexity stemming from non-

stoichiometry, amorphicity and sample-to-sample variations makes precise characterization 

very difficult. 

Several models of graphite oxide have been proposed throughout the years e.g. by 

Hofmann143, Scholz-Boehm144, and Nakajima-Matsuo145. All of these had regular lattices and 

compositions. Now it is, however, established that the structure of GO is truly amorphous. 

The currently most accepted model was proposed by Lerf and Klinowski146, based on solid-

state NMR spectroscopy of graphite oxide (Figure 13).  
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Figure 13. Structural model of graphite oxide proposed by Lerf and Klinowski147 (reproduced 

with permission from ref.147 Copyright 1998 Elsevier Science B.V) 

The NMR studies show functionalities of tertiary alcohols (δ = 60 ppm), epoxides 

(δ = 70 ppm) and alkenes or aromatic functionalities (δ = 130 ppm) confirming previous 

models based on reactivity studies. However, the study does not elucidate the distribution of 

these groups nor fully explain whether the alkenes are separated or clustered in conjugated 

or aromatic assemblies148.  

Based on further synthesis studies by Lerf et al.146 showed that isolated double bonds would 

not resist the strongly oxidative media thus concluding that aromatics or part of conjugated 

systems must be the sources of the δ = 130 ppm peaks.  

2.3.2 Reduction of Graphene Oxide 

Easy availability of 2D-structure coupled with the loss of electronic conductivity upon 

oxidation of graphite makes the reduction of GO into graphene a key interest in graphene 

research. Unfortunately, full reduction seems impossible. The electronic and material 

properties of RGO therefore do not match the unique properties reported for pristine 

graphene. However, electronic properties can be partially restored by reduction into RGO149.  

Despite less impressive properties, the low production cost of RGO makes it a good candidate 

for many of applications proposed for graphene150. Furthermore, the step through GO makes 

it possible to functionalize RGO much more easily than graphene (2.4 page 16). GO can thus 

be reduced by a long list of different methods150. 

The most common method of reduction is reduction by hydrazine monohydrate first reported 

by Ruoff and co-workers151. Being stable in water hydrazine has an advantage over most 

other strong reducing agents. Reduction by hydrazine effectively removes most of the 

oxygenated functional groups and largely restores the sp2 hybridization, although some 

structural defects and residual functional groups are still present in the RGO. The sheet 

conductivity is restored to 780 kΩ sq−1.152 Hydrazine reduced RGO has an oxygen content 

around C:O = 10:1.151 The main carbon species left as determined by either NMR 

spectroscopy or XPS is C=C, while some COO− groups are retained at the edges.  
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The primary disadvantage of hydrazine is unintentional introduction of nitrogen 

functionalities such as amines. These commonly seen nitrogen functionalities can amount to 

C:N = 16:1.151 

Sodium borohydride (NaBH4) can be used for more efficient reduction of GO, though NaBH4 

being unstable in aqueous solution. Due to the kinetically slow decomposition, it can still be 

used for aqueous reduction of GO. Reduction of GO by NaBH4 reduces the sheet resistance 

to 59 kΩ sq−1 significantly lower than hydrazine-reduced RGO sheets152.  

Other environmentally safe methods of reduction using mild reducing agents such as ascorbic 

acid have also been reported153,154. These methods are less effective than hydrazine and 

NaBH4 but can be useful in specific cases. In situ generated H2 from metals in acid has also 

been reported to reduce GO155,156. Interestingly, strong alkaline solution without reducing 

agent also results in certain reduction157. High-temperature thermal reduction (≈ 1000 °C)158 

is another highly used method of reducing GO, sometimes in combination with H2 

atmosphere. Under these conditions, oxygen is released from the graphene sheets in the form 

of CO or CO2 leaving behind structural defects159. In spite of existing defects, the bulk 

conductivity can be enhanced to 1000 – 2300 S m−1.160  

2.4 Functionalization of Graphene Materials 

In the field of sensors based on graphene materials, it is important to introduce chemical 

functionalization, to generate selective binding to the sheet surface. This can be done either 

through non-covalent attachment161 or by covalent functionalization of edges or basal plane 

sites. The latter is the focus of this work. Functionalization is, notably much feasible on GO 

(section 2.4.2 page 20) or RGO (section 2.4.3page 22) than on pristine graphene  

(Figure 14). 
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Figure 14. General schematic model illustrating possible active sites for functionalization in 

graphene, oxidized graphene and doped graphene. (Reproduced from ref162 with permission, 

Copyright 2014 Elsevier B.V.) 

2.4.1 Functionalization of Pristine Graphene 

Edge functionalization is feasible because carbons with unpaired electrons and edge defects 

increase the reactivity of the otherwise inert graphene163–165. This can be used to improve 

solubility and change assembly behavior166. Edge functionalization leaves the sp2 network 

intact and therefore, does not radically change electronic properties such as electron mobility. 

However, as functionalization is limited to edges functionalization and can only reach a 

limited extent.163 
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Basal plane functionalization on the other hand, is difficult due to high-energy bonds C–C 

that need to be broken, and the structural change from planar sp2 to tetrahedral sp3. Such 

reactions require highly reactive intermediates167. These kinds of functionalization also 

change the π-conjugation and therefore directly affect the electronic properties of graphene. 

Functionalization is thus a trade-off between new functionalities and the existing properties. 

Free-radical reactions are one of the effective ways to functionalize the basal plane. 

Diazonium salts are usually used to generate carbon radicals, which react with the chemically 

inert graphene168,169 (Figure 15A). Inspired by functionalization of related carbon materials 

such as C60 and nanotubes, cycloaddition reactions have developed into a widely used method 

for graphene modification. [1+2] cycloaddition reaction of a highly reactive carbene170,171 or 

nitrene172,173 to a graphene double-bond forming a 3-membered ring is an example (Figure 

15B&C). In a similar fashion, in situ generation of ylides can undergo [2+3] dipolar 

cycloaddition forming a more stable 5-membered ring perpendicular to the basal plane174–176 

(Figure 16A).  Finally, a Diels-Alder cycloaddition can be used to form a 6-membered ring 

where graphene can act as either the diene or the dienophile177,178 (Figure 16B). 

Despite the availability of multiple reaction pathways for functionalization of graphene, all 

of them require highly reactive intermediates, which can become problematic if the desired 

functional groups are also reactive. 
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Figure 15: Schematic mechanisms of the reactions described in the text: A) phenyl functionality 

added to pristine graphene through radical addition, initiated by Diazonium salt by production 

of free N2. B) Phenyl functionality added to pristine graphene by in situ formation of nitrene from 

azide, which reacts with graphene in a [1+2] cycloaddition. C) Base induced formation of carbine, 

to react in a [1+2] cycloaddition with graphene in order to attach a dichloromethylene 

functionality. 
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Figure 16: Schematic mechanisms of the reactions described in the text A) in situ formation of 

ylide by reaction of aldehyde and N-substituted glycine under elimination of H2O and CO2. The 

ylide can react in a [3+2] cycloaddition with graphene. B) Diels Alder reaction between graphene 

and either a diene or a dienophile.   

2.4.2 Functionalization of Graphene Oxide 

In contrast to pristine graphene, functionalization of GO is surprisingly approachable. The 

many available functional groups on the GO surface can serve as chemical handles to 

introduce new functionality. Reactions with both nucleophiles and electrophiles are possible 

to attach functionality. Nucleophiles are for functionalization onto basal plane by reaction 

with epoxides or onto the edges by reaction with carboxylic acids after appropriate activation, 

electrophiles for basal plane hydroxyls or for edge carboxylic acid. The challenge in 

functionalization of GO lies more in selectively controlling the functionalization, as there are 

several different types of functional groups in GO that can be used at GO functionalization 

sites.  

GO edges are covered with carboxylic acids. These can be used for edge functionalization 

with nucleophiles through activated coupling reactions with reagents such as SOCl2
179, 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)180, and N,N'-Dicyclohexyl-
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carbodiimide (DCC)181 (Figure 17). EDC coupling with amines is the most commonly used 

method.  

The main complication of edge functionalization is restricting it to the edges, as “unwanted” 

functionalization of basal plane sites through nucleophilic ring opening of epoxides (below) 

is also possible. 

 

Figure 17: Schematic illustration of edge functionalization of carboxylic acid by activation 

followed by coupling with amine. (Reproduced from ref182 with permission Copyright The Royal 

Society of Chemistry.) 

Nucleophilic ring opening of epoxides can be used to effectively functionalize the basal plane 

of GO. Here the nucleophile attacks the α-carbon of the epoxide, opening the epoxide group 

into a hydroxyl at the β-carbon (Figure 18A)183,184. Use of isocyanates is an electrophilic 

approach to basal plane as well as edge functionalization (Figure 18B), as strong electrophilic 

isocyanates can react with either edge carboxylic acids to create carbamate esters or basal 

plane hydroxyl forming amides185.  

 

Figure 18. Illustration of basal plane functionalization A) by nucleophilic ring opening of epoxides 

and B) using isocyanate functionalization. (Reproduced A) from ref.183 with permission 

Copyright The Royal Society of Chemistry 2009, and B) ref.185 with permission Copyright 

Elsevier Ltd. 2006) 
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2.4.3 Functionalization of Reduced Graphene Oxide 

The reduction of GO removes a large fraction of the reactive groups. However, as previously 

mentioned, complete reduction is not achieved. RGO can therefore be functionalized by 

much the same methods as GO, though much less effectively186. Chemical modification is 

therefore usually done before reduction of GO. 

Post-reduction modification can also be done using the methods described for graphene 

modification, as the π-system is largely restored (section 2.4.1 page 17). As expected, the 

reaction is more effective on RGO than on pristine graphene due to the higher concentration 

of defects. Examples of using free radical chemistry through diazonium salt187 or carbene 

chemistry188 to functionalize RGO post-reduction have been reported.  

2.5 Characterization of Graphene-Like Materials 

As noted (section 2.3.1 page 14), full structural characterization of GO and of RGO or CMG 

is highly challenging if not impossible. However, some important features can be 

characterized in considerable detail, and such characterization is of paramount importance in 

the evaluation of these materials. The characterization can be divided into topological and 

chemical structure characterization.  

2.5.1 Topological Characterization 

Properties of graphene-like materials depend strongly on their sheet thickness and their 

surface area, which are the key parameters for their applications. Topological investigation 

of graphene materials, including particularly the thickness of sheets to determine if they are 

mono-layered or multi-layered, can be done using a range of different structural techniques: 

Raman spectroscopy, Brunauer–Emmett–Teller (BET) surface area determination, AFM and 

TEM.  

Raman spectroscopy can be used to evaluate indirectly the thickness of graphene sheets by 

assessing the ratio between the D band (associated with disorder) and the G band (associated 

with the stacking). A high D/G ratio indicates low degree of stacking141. 

Microscopic imaging techniques are essential tools to provide information of shape, size and 

thickness in the characterization of all nano-materials, including graphene. Due to the very 

small thickness of graphene, only AFM189 and TEM190 provide appropriate high resolution. 

In this thesis, AFM has been the main method of choice.  

Atomic Force Microscopy  

AFM is a scanning probe technique where a tiny sharp probe (end radius of curvature 

< 10 nm) raster scan the surface in order to “feel” the surface and generate a topography map.  
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Figure 19: A) schematic of principal components of an SPM setup and how output signal is 

maintained through a calibrated feedback controller. B) Illustration of how the laser beam is 

reflected by the cantilever in AFM and photodetector. C) Illustration of convolution of a spherical 

object scanned by a tip. The dashed line represents the recorded data. (A and B Reproduced from 

Agilent SPM 5500 user manual and C from ref.191) 

AFM relies upon the precision of a piezo electric controller to control the XYZ-position of 

the probing tip at the end of a cantilever mounted on the piezo. 

In the contact mode, a laser beam is deflected off the bent cantilever. When a change in force 

is exerted on the probe, the cantilever bending changes because of change in topography and 

thereby the laser deflection. In the tapping mode, the cantilever is set to vibrate either through 

acoustic vibration or using a magnet. The amplitude of the vibration is reduced when the tip 

approaches the sample surface. A calibrated controller unit in a feedback loop controls the 

piezo Z-position as the XY position is scanned. Changes in output signal of either deflection 

in contact mode or amplitude in tapping mode vs set-point value, are translated into an 

electric signal to the piezo to change the Z-position in order to maintain contact deflection or 

amplitude (Figure 19A and B). AFM is an exceedingly sensitive technique with regard to 

Z-height able to detect sub nano-meter changes. However, the X and Y precision is distorted 

due to convolution of the surface and the tip (Figure 19C).  

A strong advantage of AFM is that it can be used to investigate any solid material surface 

such as conductive, semi-conductive, non-conductive, magnetic, hard or soft materials, in a 

variety of environments such as specific atmospheres or liquids. Another key advantage is 

the possibility of combining AFM with other techniques such as electrochemical control, 

conductivity studies, infrared spectroscopy (IR) and others. All AFM measurements for this 

thesis were recorded using an Agilent SPM 5500 system in the contact mode together with 

Bruker DNP-S10 contact mode tips.  



2.5 Characterization of Graphene-Like Materials 

24 

2.5.2 Chemical Structure Determination  

Due to the complex nature of GO, RGO and CMG, structural investigations require a 

combination of multiple techniques to verify chemical modifications. The best methods are 

XPS, NMR spectroscopy, elemental analysis, and infrared (IR) and Raman spectroscopies. 

To some extent information from thermogravimetric analysis (TGA), X-ray diffraction 

(XRD) and ultraviolet-visible (UV-vis) spectroscopy can also be used, but only for specific 

systems.192,193 

Probably the most powerful technique for structural determination in carbohydrate chemistry 

is liquid phase NMR spectroscopy. Unfortunately, due to slow rotation of the large graphene 

sheets, anisotropic coupling arises complicating the spectra. Instead, solid-state magic angle 
13C-NMR spectroscopy can be used. However, XPS is  more often used in this field, which 

also provides chemical shifts of binding energy based on local chemical environment, as well 

as elemental composition based on elemental survey.137,138,146,148,192 Further information on 

chemical functionality can be found through vibrational spectroscopy - either IR or Raman 

spectroscopy - based on their fundamental vibrations192,193. The primary techniques used in 

this thesis for structural determination is, first XPS acquired on DTU Danchip 

ThermoScientific K-alpha XPS instrument with K-Alpha X-ray source with photon energy 

of 1486.7 eV. This is secondly, complimented by IR spectroscopy in the form of Attenuated 

Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR) acquired on Bruker 

ALPHA FTIR Spectrometer using ATR sampling module.  

X-Ray Photoelectron Spectroscopy 

XPS is a surface technique, and due to the flatness of graphene, XPS provides valuable 

information. In XPS a solid sample under high vacuum (10−10 bar) is irradiated with soft 

mono-chromatic X-rays in order to kick out electrons. The number of electrons and their 

energy generates the spectrum. These energies can be correlated to orbital energies and even 

the local chemical environment.  

The carbon 1s (C1s) peak can be de-convoluted into the characteristic peaks at 284.4 eV  

(C–C sp2), 285.2 eV (C–C sp3), 286.4 eV (C–O), 287.7 eV (C=O) and 289.1 eV (COO−)192, 

respectively (Figure 20A&B). The deconvolution yields direct information on the reduction 

extent, in terms of not only reduced oxygen content, but also reformed sp2 hybridization. The 

nitrogen 1s (N1s) peak can be deconvoluted to offer additional information on the chemical 

state, which in many cases is important to evaluate functionalization (Figure 20C&D). 
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Figure 20. XPS characterization of carbon materials C1s XPS spectra of A) GO, (B) 

functionalized RGO. Deconvoluted N1s spectra for carbon nanofibers. C) before and D) after 

electrochemical treatment (A & B Reproduced from ref.194 and C and D from ref.195 with 

permission. Copyright Macmillan Publishers Limited. 2014 and 2013) 

2.6 Graphene Sensors based on Supramolecular 

Functionalization 

Electrochemical sensors based on RGO and CMG show great promise, due to good 

conductivity and high surface area, as well as electro-catalytic properties caused by residual 

functionalities or specifically attached functionalities. As with other electrochemical sensors, 

selectivity is achieved by the separation of voltammetric redox peaks. However, interference 

is a problem, but CMG with supramolecular functionalities can here provide an extra level 

of selectivity through host-guest recognition (section 1.3.1 page 6). 
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2.6.1 Ion-Selective Functionalized Graphene 

Supramolecular ion receptor molecules have been used for ion selective sensing for decades. 

Their multiple directional interaction and size specific sites facilitate highly selective binding 

of specific ions. These receptors include crown-ethers14 and Schiff base complexes15.  

Even though graphene-like materials have been used extensively to produce chemical and 

biological sensors, there are only few examples of utilizing the properties of both graphene 

and supramolecular moieties, and even fewer reports on covalent modification to introduce 

these moieties. Supramolecular ionophores are widely used in preparation of ion-selective 

membranes which are used in graphene based potentiometric sensors, but not directly on the 

graphene196–200. One example of direct use of a supramolecular receptor on graphene to 

produce a sensing material is the work of Y. Xu et al.201 who synthesized an optical sensing 

material for Cd2+ by non-covalently attaching a porphyrin derivative through electrostatic 

and π-π interaction to a RGO nanosheet. The sensing material is able to selectively detect 

Cd2+ at 10−6 M concentration (Figure 21).  

 

Figure 21: A) Illustration of optical sensing material with non-covalent modification of RGO with 

porphyrin derivative. B) substrate profile of absorption changes at 498 nm toward addition of 1.0 

µM of different metal ions. (Reproduced from ref.201 with permission. Copyright American 

Chemical Society 2009) 

2.6.2 Cavitand Functionalized Graphene for Neutral Analytes  

Supramolecular cavitands have been used for molecular recognition of neutral guests inside 

their binding pockets, often controlled primarily by hydrophobic forces, but also assisted by 

supramolecular interaction16–18. Cyclodextrins, calixarenes, pillararenes and cucurbiturils are 

most common. Cavitand modification of graphene for the purpose of making sensors has in 

fact been quite extensively reported. Most of these modified sensors utilize a non-covalent 

approach. Especially cyclodextrins are used, but calixarenes have also been reported. 

Selective sensors for biologically important analytes such as Pesticides19,20, medicinal 

compounds21–24 and carcinogens25 based on cavitand functionalization of graphene-like 

materials have been reported. 
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Cyclodextrin functionalized graphene electrodes can for example be used in combination 

with differential pulse voltammetry (DPV) thus providing a two-dimensional sensing as 

shown by Chen and co-worker202 (Figure 22). First, only molecules able to bind in the 

cyclodextrin hydrophobic site can approach the electrode. Second, the redox potential further 

separates the approaching molecules. This illustrates the essence of how cavitand 

functionalized graphene electrochemical sensors work. The sensor reported by Chen and 

co-worker202 shows high selectivity for multiple compounds due to the two-dimensionality 

of this system with a detection limit for rhodamine B of 6.5 nmol L−1 and for 1-animopyrene 

3.6 nmol L−1. 

 

Figure 22. A) Illustration of dual-signalling electrochemical sensor based on the competitive  

host–guest interaction between cyclodextrin and substrates. B) DPV responses of the RhB bound 

to functionalized electrode. (Reproduced from ref.202 with permission. Copyright Wiley-VCH 

Verlag GmbH & Co. KGaA, Weinheim 2013) 

As shown by Yang et al.203 cyclodextrin covalently attached to RGO can also be used to 

create such a dual selectivity system. Gold nanoparticles were further incorporated into their 

nanohybrid structure, where DPV was used to selectively detect p-nitrophenol and 

hydroquinone. The power of this method of combining selective binding and electrochemical 

selectivity was shown by Erhan Zor et al.204 when they used a cyclodextrin modified RGO 

to separate the redox peaks of enantiomers of cystine in DPV, due to their different interaction 

with the cyclodextrin (Figure 23). 



2.6 Graphene Sensors based on Supramolecular Functionalization 

28 

 

Figure 23. A-D) Computational model structures of β-CD in complexes with GO (A+B), 

RGO/β-CD complex (C) with D-cystine and (D) with L-cystine, showing the different binding in 

the cyclodextrin resulting in the difference in the DPV. E & F) Differential pulse voltammograms 

at increasing concentration of D-cystine (E) and L-cystine (F) in concentration range 1–10 μM. 

(Reproduced from ref.204 with permission. Copyright the Royal Society of Chemistry 2015) 

Mao et al.205 similarly achieved enantiomeric selectivity by using a non-covalently 

immobilized calix[4]arene recognition unit on graphene. This system allowed enantiomeric 

selective sensing of amino substituted propanol at nmol L−1 concentrations using 

electrochemical impedance spectroscopy (Figure 24). 

 

Figure 24. A) Schematic of the synthesis procedure for calix[4]arene derivative on graphene. B) 

molecular structure of the calix[4]arene recognition unit. C) Impedance response of four pairs of 

amino propanol analogues. D) sensing for the selective amino propanol analogue in serum with 

impedance spectra showing clear enantiomeric selectivity. (Reproduced from ref.205 with 

permission Copyright The Royal Society of Chemistry 2015) 
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2.6.3 Fluorescence Sensing by Guest Exchange 

Still another method of using supramolecular moieties in combination with graphene for 

sensing is to exploit the long-range (≈ 30 nm) fluorescence quenching properties of graphene, 

and of RGO and CMG206,207. Sensors can thus be made through competitive guest exchange 

of a fluorophore and analyte by having a fluorescence probe interacting weakly with the 

supramolecular host. When the system is exposed to a stronger binding analyte guest 

exchange, as a result of competitive binding, the fluorophore is released and the fluorescents 

signal is turned on. 

An example of such systems, used for in vivo observation of the biologically important 

metabolite L-carnitine, was reported by Li and co-workers208 (Figure 21). This system is 

based on immobilized p-sulfonated calix[6]arene on CMG, loaded with the fluorescent dye 

safranine T bound through electrostatic interaction with p-sulfonated calix[6]arene. The 

fluorescence dye in the calix[6]arene will be quenched by the proximity to the graphene 

sheet. Competitive binding of L-carnitine liberates the fluorescence dye, resulting in turn-on 

of the fluorescent signal with a detection limit of 1.54 µmol L−1. Furthermore, they showed 

selectively over structuslly similar molecules glutamate and O-acetyl-L-carnitine.  

 

Figure 25. A) Schematic demonstration of the fluorescence “off–on” mechanism for detecting 

L-carnitine. B) Fluorescence spectra of CMG–hybrid (C) Relative fluorescence intensity 

(Reproduced from ref.208 with permission. Copyright The Royal Society of Chemistry 2012) 
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2.7 Concluding Remarks and Outlook  

The combination of electronic properties and high surface area of graphene makes it ideal as 

a transducer for sensors. RGO and CMG further benefit from significantly lower production 

cost and the possibility of up scaling compared to pristine graphene. Furthermore, unique 

possibilities of increasing selectivity of these systems arise from the residual functional 

groups and especially from introduced functionalization. 

Especially the use of supramolecular moieties can introduce crucial selectivity to sensor 

systems, by selectively limiting access to the electrode surface or enforce binding of specific 

molecules, or even through competitive binding to release probe molecules on detection of 

target analytes. However, despite many impressive examples demonstrated in this area the 

full potential has not been explored. The use of more specific receptor systems and of 

covalent attachment could provide other exciting new sensors.  
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Chapter 3 Crown-Ether Functionalized 

Reduced Graphene Oxide 

This chapter describes the work conducted on RGO functionalized covalently with 

crown-ether. An introduction to ionic receptors, crown-ethers and their binding mode is first 

described. We then discuss how crown-ether functionalized RGO can be used for sensors and 

compare with previous work on graphene crown-ether composites, before going into design, 

synthesis and testing of RGO functionalized with 18-crown[6]ether. Part of this work has 

been published in ACS Applied Materials and Interfaces209. It is finally illustrated, how this 

work can be used with other crown-ethers particularly 12-crown[4]ether and 

15-crown[5]ether. 

 

3.1 Alkali Ion Sensing  

Ions are one of the most important targets for selective solute quantification in solution. Some 

essential ions play a crucial role in the function of biological systems, while others, mainly 

heavy metals cause damage to the same biological systems. Detection of ions in solutions is 

therefore crucial for environmental monitoring, food-quality control, and clinical 

diagnostics210,211. Some of the most critical ions in clinical diagnostics include protons, 

sodium, potassium and calcium ions4,5. Environmental monitoring, especially of mercury, 

lead, arsenic, antimony and cadmium are core target ions, due to their toxic effects on humans 

and on biological systems in general212,213. Clinical measurement for diagnostics of those ions 

are performed in high-end laboratory setting. However, the need for more cost-efficient 

detection methods used in response to e.g. natural disasters, as well as in remote and resource-

limited environments, are ever present6–8. 

High selectivity towards a single target ion is of paramount importance for sensors of 

physiological samples as practical samples, that contain many different types of ions. 

Furthermore, the more challenge comes that in many cases the target ion is the ion present in 
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the lowest concentration. For instance, the potassium to sodium ratio in blood is 

approximately 1:30214. 

One of the key uses of supramolecular host systems is for chemical sensing, where directional 

interaction combined with size of the binding site are used to give high selectivity. For cations 

the most used systems are crown-ethers14, calixarenes and Schiff base complexes15. These 

have been used extensively for sensors of different types to selectively bind and detect 

cations215–217.  

Crown-ethers are one of the oldest families of supramolecular hosts. The first crown-ethers 

were studied by Charles Pedersen in 1967218,219. Crown-ethers are highly selective for alkali 

ions, and the selectivity depending on the size of the crown-ether ring, different alkali ions 

are bound selectively. When binding alkali ions, the crown-ether oxygens form ion-dipole 

interaction with the positively charged ion resulting in large binding constants of the 

complexes (Table 3). 

Table 3: Illustration of different size crown-ethers binding different alkali metals. Cavity 

diameter (Ø), and selective ion diameter are given. The binding constants, log K were measured 

in methanol at 20 °C for each of the crown-ethers220. 

 

 

12-Crown[4]ether 
 

15-crown[5]ether 18-crown[6]ether 
21-crown[7]ether 

Cavity Ø220 1.2 – 1.5 Å 1.7 – 2.2 Å 2.6 – 3.2 Å 3.4 – 4.3 Å 

Ion Ø220 Li+ = 1.20 Å Na+ = 1.90 Å  K+ = 2.66 Å Cs+ = 3.34 Å 

Log K Li+ = 1.7 Na+ = 3.24 K+ = 6.08 Cs+ = 5.02 

Combining the conductive properties of graphene-like materials with enzymes has proven 

another highly successful way to generate selective biosensors221. Likewise, using 

supramolecular hosts such as crown-ethers should also provide possible highly selective 

sensing materials. Despite all the reports on graphene materials in the field of sensors over 

the last decade, there are, however, surprisingly few reports where supramolecular hosts have 

been used.  

The majority of these reports focus on cyclodextrins (section 2.6.2 page 26). Many 

possibilities are open within this field. However, ionophores are extensively used for 

graphene based potentiometric sensors but using these in ion-selective membranes not as part 

of the graphene materials196–200. 
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3.2 RGO-Crown[6] for Potassium Ion Sensing 

This system is to bind potassium ions selectively to the surface of RGO using a modified 

18-crown[6]ether covalently attached to the basal plane of RGO via a short linker, with the 

aim of developing potassium ion selective sensing material.  

3.2.1 Related RGO – Crown-Ether Systems 

Apparently the only example of using crown-ethers functionalized graphene to produce 

selective sensing material for potassium ion was reported by X. Qu and co-workers222. In this 

report 18-crown[6]ether and RGO mixing to form a hybrid structure held together by 

hydrophobic interaction between RGO and a methylenes in 18-crown[6]ether was described. 

An aminated fluorescent carbon dot (CD) probe was anchored to the crown-ether. The 

proximity of CDs to the graphene structure results in quenching of the fluorescence. Upon 

exposure to K+, CDs are released due to competitive replacement of crown-ether guest 

resulting in turn-on of CD fluorescence signal (Figure 26). This system has a detection range 

of 0.05 – 10.0 mM. Two other related examples where smaller crown-ethers have been 

covalently attached to graphene-like materials are also reported. R. Ballesteros-Garrido 

et.al.223 reported the use of covalently attached 9-aza-crown[3]ether to graphene effectively 

binding alkali-metal ions (Li+, Na+ and K+) in order to increase the lifetime of charge 

separated photo-induced excited electronic states of graphene by ionic stabilization.  

M Banerjee et al.224 later used 1-aza-15crown[5]ether to improve the binding of Li+ to 

graphene with application for solid electrolytes in lithium ion batteries.  

 

Figure 26: Schematic illustration of the Förster resonance energy transfer (FRET) model based 

on CDs–graphene and the mechanism of K+ determination. (Reproduced with permission from 

ref.222. Copyright 2012 the Royal Society of Chemstry) 

3.2.2 System Design  

A recent theoretical density functional theory (DFT) study by K. Cho and co-workers225 

showed that 12-crown[4]ether suitable to form crown-ether–Li+ complex can adsorb onto the 

basal plane of graphene surfaces through weak interaction (Figure 27B). In the system we 

present here, we follow the strategy of covalently attaching 18-crown[6]ether to achieve 
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similar adsorption, by inserting a short flexible linker between the crown-ether and the 

graphene sheet to minimize potential strain in the system (Figure 27A). 

 

Figure 27: A) Illustration of system design (Reproduced with rights from ref.209. Copyright 2015 

American Chemical Sociaty). B) Different configurations for crown-ether on single-layer 

graphene and of CE(O)/graphene, CE(H)/graphene, CE/Li(or Li+)/graphene, and  

Li(or Li+)/CE/graphene. (Reproduced with permission from ref.225. Copyright 2015 American 

Chemical Sociaty)  

Basal plane functionalization on GO and to some degree on RGO can be achieved, by either 

nucleophilic addition through nucleophilic ring opening of basal plane epoxide functional 

groups, or electrophilic addition though isocyanides (section 2.4.2 page 20). As isocyanides 

are unstable towards H2O and the graphite oxidation is done in H2O, we chose the 

nucleophilic approach. The linker must have a terminal amine group for reaction with 

epoxides in GO/RGO. 

In order to covalently attach 18-crown[6]ether, the crown-ether has to be modified with an 

anchoring group. This is normally done by replacing one oxygen atom with a nitrogen 

atom226. As oxygens are directly involved in binding of the potassium ion, this substitution 

weakens the binding, since nitrogen is a weaker Lewis base than oxygen, reducing the 

ion-dipole interaction226. Furthermore, amines are also Brønsted bases introducing a pH 

dependence. Instead of an amine link, we used an amide. This further reduces the sixth 

ion-dipole interaction, as the nitrogen lone pair is now partially involved in the amide bond. 

Thus, the problematic pH dependence in the binding mode is removed. Being a short flexible 

linker, with both terminal amine and terminal carboxylic acid for attachment to GO/RGO and 

crown-ether, respectively, glycine as the linker perfectly fits these requirements, (Scheme 1). 

 

Scheme 1: Schematic illustration of retrosynthetic deconstruction of graphene functionalized 

with 18-crown[6]ether. 
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3.2.3 Synthesis  

The modified crown-ether with attached linker was synthesized, starting from commercially 

available 1-aza-18-crown[6]ether and N-(tert-Butoxycarbonyl)glycine. These compounds 

were coupled together using a triphosgene activated protein coupling procedure modified 

from227 (experimental in 7.1.2 page 106). This was followed by deprotection of the boc-group 

using trifluoroacetic acid228 (experimental in 0 page 106). The crown-ether with the linker 

was then ready for functionalization of the GO/RGO (Scheme 2).  

 

Scheme 2: Schematic of the synthesis route to linker modified crown-ether. 

GO was synthesized by a modified Hummers’ method135,229 (experimental section 7.1.1 page 

104). GO was oxidized in two steps; first with K2S2O8 and P2O5 and then by KMnO4. The 

prepared GO was then treated with an acidic aqueous workup, and neutralized by extensive 

washing and centrifugation, before final size separation with centrifugation. The result is 

fully dispersed monolayer GO sheets with approximate XY dimensions of 1–8 µm. 

 

Scheme 3: Synthesis routes from GO to sensing material by reduction and functionalization, in 

either order. 

Due to the risk of amide substitution, hydrazine was not considered viable for reduction of 

functionalized GO. Instead, three different milder GO reduction methods were used: Zn/H3O+ 

(experimental in 7.1.6 page 109)155; ascorbic acid153 (experimental in section 7.1.7 page 109) 

and strong alkali solution157 (experimental in section 7.1.5 page 109).  It was attempted to 

functionalize and reduce GO in either order, for the reduction each of these three methods 

was used for separate batches (Scheme 3); to produce crown-ether functionalized RGO. In 

the case of Zn/H3O+ reduction, rapid aggregation occurred making functionalization after 
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reduction futile. Reduced RGO reference samples were taken from the reduced first approach 

before further functionalization. All the GO functionalization experiments were performed 

with a 1 mg/mL GO concentration. All the materials were subsequently purified by dialysis 

(28 × 1 L) over 7 days. 

Table 4: Synthesized materials and accompanying abbreviation; where FRGO means reduced 

then functionalized i.e. functionalized Reduced Graphene Oxide; RFGO means functionalized 

first then reduced e.i. Reduced Functionalized Graphene Oxide. The prefix letter specifies the 

reduction method used: A- for ascorbic acid, Zn- for Zn/H3O+ and B- for Alkaline reduction. 

 Ascorbic acid 

Reduction  

Zn/H3O+ 

Reduction 

Alkaline 

Reduction  

No  

Reduction  

Functionalization  

First 

    

Abbreviation A-RFGO Zn-RFGO 
B-RFGO 

RGO-crown[6] 
FGO 

Reduction First 

 

NA 

 

NA 

Abbreviation A-FRGO B-FRGO 

No Functionalization 

    
Abbreviation A-RGO Zn-RGO B-RGO GO 

 

After the synthesis of the functional material reduced by either Zn/H3O+ or ascorbic acid 

visual aggregation was noted to have occurred, whereas the materials prepared by the alkaline 

solution reduction remained stable in solution (over one and a half years) (Table 4). 
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3.2.4 Preliminary Potentiometric Functional Tests 

The equilibrium electrochemical potential of an electrochemical system originates from the 

potential determining equilibria in which components of the solution interact with the 

material of the electrode at the electrode/solution interfaces. 

If we consider the potential determining equilibria for the designed system, which is a 

concentration gradient between the bulk solution and the electrode created by the increased 

affinity of the crown-ether, the potential ϕ can then be described by the Nernst equation 

(Equation 1) in the form: 

Equation 1  𝝓 = 𝝓𝒓𝒆𝒇 +
𝑹𝑻

𝒛𝑭
𝐥𝐧⁡(

𝒂𝑲+
𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒅𝒆

𝒂𝑲+
𝒃𝒖𝒍𝒌

) 

Where ϕ is the potential, ϕref the potential in the absence of the probe ion, z number of 

electrons, F the Faraday constant, R the gas constant, and T the temperature.  

It is important to consider activity instead of apparent concentration, as ionic solutions are 

non-ideal. The Debye-Hückel limiting law (Equation 2) is used to determine the activity 

coefficient (γ) in this thesis. 

Equation 2  𝐥𝐨𝐠(𝜸) = −𝑨𝒛𝟐√𝑰 

Where A is a temperature and solvent dependent prefactor; for water at room temperature 

A ≈ 0.5. I is the ionic strength given by (Equation 3): 

Equation 3  𝑰 =
𝟏

𝟐
∑ 𝒄𝒊𝒛𝒊𝒊  

Where ci is the concentration of each different ion, and zi is their respective charge.  

The main problem in potentiometric sensing, is that contributions from the entire solution 

species could contribute to the signal, making it inherently non-selective. The most common 

way to solve this problem is by using an ion selective membrane (ISM), through which only 

a specific ion can travel, thus making it possible to consider only contribution of the specific 

ions to the potential. 

In our system, the electrode surface is regarded as selective for a specific ion, but that does 

not eliminate contributions from other ions. To ensure selectivity we will therefore use a high 

concentration of “background” electrolyte. As the contribution of all potential determining 

equilibria is additive the contribution from the electrolyte will dominate fixing the potential 

as long as electrolyte concentration is significantly higher than the other ion concentrations. 

Even though there is a large excess of Na+ in the bulk solution K+ will, however, be able to 

compete with Na+ at the electrode interface thus given a substantial contribution to the 

potential, because of the electrode surface having a high affinity for K+.  

The functional materials were first tested a screen-like way, to assess which of the materials 

performed best for further analysis. The materials (10 µL of 1 mg/mL) were drop cast onto 
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polished 7 mm2 glassy-carbon electrodes (GCE) and allowed to air dry overnight creating the 

functionalized electrodes. These were used for potentiometric titration of KNO3 in the range 

10−6 – 0.1 M in the presence of 0.1 M NaNO3, testing if the electrode could bind potassium 

in the presence of excess NaNO3 and produce a reproducible potentiometric response. 

 

Figure 28: Preliminary potentiometric test of the 10 synthesised materials, by titration of KNO3 

in NaNO3 100 mM electrolyte. 

As seen from the potentiometric titrations (Figure 28), the alkaline-reduced and then 

functionalized RGO and the functionalized GO show some response, whereas the material 

first functionalized and then alkaline-reduced RGO shows significantly higher response. All 

others show little to no response.  

Based on the results of these preliminary potentiometric tests only B-RFGO henceforth 

abbreviated RGO-crown[6] was chosen for further functional test and full characterization. 

It was decided, however, to record XPS on B-FRGO and FGO as well, in order to possibly 

determine the reason behind the difference in functioning. 

The ascorbic acid and Zn/H3O+ reduced materials were from now on omitted completely due 

to their highly aggregated state and no significant response to K+.  

3.2.5 Characterization  

AFM Imaging  

AFM imaging was used to determine whether RGO-crown[6] remained dispersed as 

monolayers or aggregation had occurred during functionalization or reduction of the material 

(Figure 29). 

The RGO-crown[6] nanosheets were found to have lateral XY dimensions of 1 – 4 µm which 

is a slight reduction in sizes compared to the GO used (1 – 8 µm). The height was measured 

from about 1.2 – 1.3 nm and up to about 2.0 nm which again is higher than the GO (0.8 nm). 

This increase is presumably due to basal plane functionalization, although aggregation into 

double-layer graphene cannot be ruled out completely.  
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Figure 29: AFM images of RGO-crown[6] drop cast on mica showing single-layer sheets of  

1 – 4 μm XY-size range. Topography of three separate images with height profiles A) 5×5 μm2 B) 

5×5 μm2 C) 5×5 μm2. 

The reference B-RGO was also characterized by AFM. The lateral X-Y dimensions of  

1 – 5 µm of these nanosheets (Figure 30) were similar to those of RGO-crown[6] leading to 

the assumption that fracturing of GO sheets occurred during the reduction in hot alkaline 

solution. The height of the B-RGO nanosheets are between 1.2 – 2.0 nm despite RGO 

normally being slightly thinner than GO. The increased height indicates re-stacking of the 

exfoliated GO into few-layer RGO.  

 

Figure 30: AFM images of B-RGO drop cast on mica showing single-layer sheet of XY-size range 

of 1 – 4 μm. Topography of three separate images with height profiles A) 5×5 μm2  

B) 5×5 μm2 C) 10×10 μm2. 

IR Spectroscopy  

Vibrational spectroscopy in the form of attenuated total reflection Fourier transform infrared 

spectroscopy (ATR-FTIR) was used to characterize RGO-crown[6] (Figure 31A) in 

comparison to B-RGO (Figure 31B). In attempts to verify that the crown-ether was attached 

to the RGO, the problem is that the characteristic fundamental vibration in the crown-ether 

overlaps with the fundamental vibration from residual functionalities in RGO in the  
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1500 – 750 cm−1 region. B-RGO and RGO-crown[6] both have a broad O–H stretching band 

at 3600 – 2600 cm−1 which can be assigned to either edge COOH or as residual H2O. Both 

exhibit peaks slightly lower than 3000 cm−1 consistent with sp3 C–H stretch. In the case of 

B-RGO this is surprising, and hampers verification of functionalization, as the appearance of 

bands here would be consistent with ether functionalities. Again both materials have C=O 

stretch bands ≈ 1715 cm−1 as well as a range of peaks in the  

1500 – 750 cm−1 region which can be assigned to –CH2– bending (≈ 1465 cm−1); C–O stretch 

(≈ 1300 & ≈ 1100 cm−1); sp2 C–H out of plane bending (1000 – 700 cm−1); and possibly 

oxirane rings (≈ 800 cm−1). When comparing the peak intensity of the  

1500 – 750 cm−1 region to the rest of the peaks, a definite increase is seen for RGO-crown[6] 

compared to reference BRGO. 

 

Figure 31: ATR-FTIR spectra of A) RGO-crown[6] and B) B-RGO. 

A difference spectrum between B-RGO and RGO-crown[6] in the 1500 – 750 cm−1 region 

could be recorded and compared to the spectrum of 1-aza-18-crown[6]ether (Figure 32). The 

major peak C–O–C stretch of the crown-ether at 1100 cm−1 clearly emerges, as well as to a 

lesser extent, several smaller peaks at 1500 cm−1, 1300 cm−1, 1250 cm−1, 900 cm−1, 800 cm−1. 

The latter can be assigned to a combination –CH2– bending, C–O stretch, sp2 C–H out of 

plane bending, and possibly oxirane rings.  
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Figure 32: ATR-FTIR spectrum of 1-aza-18-crown[6]ether in red and difference spectrum 

between RGO-crown[6] and B-RGO in black, zoomed in the 1500 – 750 cm−1 region. 

XPS Characterization 

XPS-survey (Figure 33) was used to determine how much crown[6]ether was attached to 

RGO through changes in atomic composition (Figure 33 & Table 5). Under the assumption 

that the change in nitrogen content between B-RGO and RGO-crown[6] (2.5 %) is a result 

of attachment of the crown-ether moiety (C14O7N2), the amount of crown-ether is equal to 

half this change (1.25 %). Similarly the crown-ether content of the B-FRGO is found to be 

significantly lower (0.6%), which explains the lower activity of B-FRGO determined by the 

preliminary potentiometric tests (section 3.2.4 page 37).  

Table 5: Elemental composition as determined by XPS, as well as calculated contribution from 

crown-ether moiety and RGO sheet.  

 Raw data Crown-ether 

(C14O7N2) 

Sheet Contribution 

Sample %C %O %

N 

%C %O %

N 

%C %O C:O 

GO 68.8 30.2 1.0 - - - 68.8 30.2 2.3 

B-RGO 75.8 23.8 0.9 - - - 75.8 23.8 3.1 

RGO-

crown[6] 

75.1 21.5 3.4 17.5 8.75 2.5 57.6 12.75 4.5 

B-FRGO 72.4 24.5 2.1  8.4 4.2 1.2 64.0 20.3 3.1 
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Figure 33: XPS – Survey of A) GO; B) B-RGO; C) RGO-crown[6] D) B-FRGO. C1s N1s and 

O1s peaks are indicated. In D) B-FRGO contains a NaCl impurity.  

The carbon and oxygen from the RGO-sheet can be determined when the crown-ether content 

in the material is known, by subtracting the contribution from crown-ether from the total. It 

was found that there are 46 carbon atoms per 1 crown-ether moiety in RGO-crown[6] after 

separating the contribution from nanosheet and crown-ether functionality. Under the 

assumption that crown-ether is lying as “doughnuts” on the RGO nanosheet as predicted in 

the theoretical study by K. Cho and co-workers225, the theoretical coverage can be estimated 

by comparing the surface area of graphene carbons and surface area of the crown-ether.  

The surface area of a single graphene carbon has been calculated by A. Peigney and 

associates101 to be 5.246 Å2. Using the average distance between diagonal hydrogens in the 

18-crown[6]ether crystal structure230 as the diameter (10.2 Å) and assuming perfect circular 

shape, the surface area of the crown-ether is then 81.7 Å2 making the surface coverage ≈ 34%. 

The less efficient B-FRGO contains one crown-ether per 107 carbon given a theoretical 

coverage of ≈ 15%. 

The C:O ratio relevant to the reduction can then be calculated. Only a very mild reduction by 

the alkaline solution is observed, increasing the C:O ratio from 2.3 in GO to just 3.1 in the 

reference RGO as well as in B-FRGO which was reduced before functionalization. 

Surprisingly the RGO-crown[6] material seems to be reduced more intensively, giving a C:O 

ratio of 4.5. Furthermore, looking at the C1s spectra (Figure 34), GO contains a majority of 

oxygen bound carbon (C–O), whereas all reduced materials show a decrease of the C–O peak, 
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and an increase of the C–C peak. The latter is also slightly shifted towards lower binding 

energy, consistent with a partial change from sp3 (284.8 eV) to sp2 (280 eV) carbon. 

 

Figure 34: XPS C1s spectra of the materials A) GO; B) B-RGO; C) RGO-crown[6]; D) 

B-FRGO. Raw data (black); deconvoluted into C–C (red), C–O (blue) and C=O (purple) peaks. 

Enveloped sum of deconvoluted peaks (green) shows the fit to data.  

3.2.6 Functionalized Glassy Carbon Electrodes  

The RGO-crown[6] material was used to functionalize GCE, by drop casting of 15 µL of 

1mg/mL aqueous dispersion onto polished 7 mm2 GCE surface. After drying overnight, these 

were used as electrodes for sensitivity and selectivity studies. In these studies 100 mM 

NaNO3 was used as a masking salt to stabilize the electromotive force and to remove 

contributions from salts with non-specific binding. 

The sensitivity studies were performed on RGO-crown[6] functionalized GCE, as well as 

three reference electrode systems: clean GCE, reference RGO functionalized GCE and GO 

functionalized GCE. Potentiometric titration was performed in the range 10−7 to 10−1 M 

KNO3. All three reference materials show little or no response below 25 mM where the 

concentration approaches the NaNO3 concentration (Figure 35A). The RGO-crown[6], 

however, starts showing a response at 10−5 M and shows a linear potential increase of −37 mV 
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per decade up to 10−1 M.  This negative potential change can be explained as the 

concentration at the electrode is high due to binding to the crown-ether even at low 

concentration, upon addition of additional K+, the ratio between electrode and bulk 

concentration of K+ is reduced, reducing the potential, the reason for non-Nernstian response 

is most likely from the masking NaNO3 salt. 

 

Figure 35: (A) Sensitivity tests: potentiometric KNO3 titration, of GCE doped with 

RGO-crown[6] and of the reference materials GO, RGO, and pure GCE. (B) Selectivity tests: 

Potentiometric titration, of GCE doped with RGO-crown[6] with different salts (KNO3, NaNO3, 

LiNO3, and Ca(NO3)2). All tested solutions contained 100 mM NaNO3. 

To determine the selectivity of the system, titration experiments of RGO-crown[6] 

functionalized GCE in electrolyte solution with masking salt NaNO3, with a range of different 

nitrate-salts: Li+, Na+, NH4
+ and Ca2+ were carried out (Figure 35B). None of these show any 

response within the linear range of the sensing signals. Response to all of the ions appears 

but only at concentrations approaching the NaNO3 concentration. 

3.2.7 Disposable Functionalized Screen-Printed Electrodes 

In order to test this sensing material as simple and cost effective sensors of K+, the sensing 

material RGO-crown[6] was used to modify DropSense 150 screen-printed electrodes by 

drop casting 15 µL of 1 mg/mL aqueous dispersion and drying overnight (Figure 36). The 

DropSense 150 electrodes consist of 4 mm diameter carbon working, Pt counter and Ag 

reference electrodes. 

 

Figure 36: photography of modified DropSense 150 screen-printed electrodes. 

When testing samples the potential of a zero-point reference in the form of 50 µL 0.1 M 

NaNO3 was first measured. To 1 mL of real sample was then added 8.5 mg NaNO3 masking 

salt equivalent to 100 mM. From this sample, 50 µL was then probed and correlated to the 
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calibration curve from GCE measurements. In total, 24 samples were prepared to evaluate 

these disposable sensors across the detection range; eight only containing KNO3, eight 

“polluted” with ≈ 5 mM Ca(NO3)2 and eight “polluted” with ≈ 10 mM NH4NO3. All these 24 

tested samples give responses fitting the GCE calibration very well. (Figure 37)  

 

Figure 37: Potentiometric responses of the samples with varying KNO3 concentrations in either 

pure solution or in the presence of NH4NO3 or Ca(NO3)2 all with added NaNO3 equivalent to 

100 mM, comparison to the GCE calibration curve also shown (solid line). Open circuit 

potential (OCP) was calibrated against 100 mM NaNO3 solution. 

3.2.8 Resistance based Sensing  

The use of the sensing material RGO-crown[6] for a resistance type sensing device was 

explored during my external research stay at CIAC in Changchun, China. The idea behind 

this is that the film resistance of the RGO-crown[6] film would be reduced when exposed to 

K+, because K+ would be attached to the film surface due to specific binding. There are two 

electric pathways between the two electrodes in this system (Figure 38), either through 

electrolyte or through the thin film. The electrolyte pathway makes it problematic to use high 

concentration of masking salt, as this would reduce the electrolyte resistance and lower the 

sensitivity of the system. An ion-selective membrane (ISM) should therefore, be used in the 

final device. However, for initial investigation an ISM would introduce an extra element of 

selectivity and make it difficult to evaluate the selectivity provided by the material itself. 
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Figure 38: Illustration of principal electrical pathways in the source-drain system, for probing 

the sensitivity of the RGO-crown[6] to K+. 

In order to test this principle, a simple source-drain like device was manufactured by 

sputtering gold onto a glass plate, with an intermediate layer of chromium acting as glue 

between glass and gold, creating two gold electrodes separated by 2 mm. These electrodes 

were then connected by a drop cast film of the sensing material RGO-crown[6] or reference 

material (experimental section 7.2.3 page 114; Figure 39A). A water reservoir with a 

Ag/AgCl reference electrode was placed on top of the RGO-crown[6] film and the two gold 

electrodes (Figure 39B&C) for electrochemical tests.  

 

Figure 39: A) Photography of manufactured source-drain like device with drop cast 

RGO-crown[6] film (black spot). B) Photography of electrochemical setup with water reservoir. 

C) Schematic illustration of electrochemical setup, two gold electrodes connected by drop cast 

RGO film. 

The sensitivity and selectivity of these simple source-drain sensors were evaluated by current 

vs. activity titration at a potential of 0.5 V vs the Ag/AgCl reference electrode, in 0.1 mM 

NaCl electrolyte solution. These measurements show that the B-RGO reference system 

exhibit no response at NaCl or KCl concentration lower than 10−4 M but high response from 

10−3 M and up presumably due to lowered electrolyte resistance. RGO-crown[6] gives a 

similar response to NaCl, but a different response for KCl with a detection limit of 10−6 giving 

a linear response of 11.8 mV per decade of KCl concentration in the range of 10−6 – 10−3 M 

(Figure 40). These results show that this form of detection provides an increase in sensitivity 
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but at the cost of selectivity as the interference starts at10−4 M concentrations. In conclusion, 

the RGO-crown[6] materials are able to detect K+ in the range 10−6 M – 10−4 M by reducing 

the sheet resistance of the RGO film, but when the electrolyte concentration increase above 

10−4 M the lowered electrolyte resistance opens an alternative ionic pathway through the 

aqueous solution that makes detection impossible.  

 

Figure 40: Current vs concentration titration with KCl and NaCl; for RGO-crown[6], and 

B-RGO, which is used as reference system. 

3.3 Expanding the Series  

RGO-crown[6] showed positive results in terms of selectively binding to K+ even in the 

presence of large excess of Na+, resulting in clear potentiometric responses. The series of 

materials was therefore expanded to include RGO modified with 12-crown[4]ether for Li+ 

detection and 15-crown[5]ether for Na+ detection, abbreviated RGO-crown[4] and 

RGO-crown[5] respectively. These two extra materials were synthesized based on the 

synthesis procedure used for RGO-crown[6] (section 3.2.3page 35 & Scheme 4) for 

experimental procedure (section 7.1.2 page 106 to section 7.1.5 page 109). 
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Scheme 4: Synthesis route to sensing material RGO-crown[4] and RGO-crown[5] where n = 1, 2 

respectively. 

3.3.1 Characterization  

AFM Imaging  

Nanosheet topography of RGO-crown[4] (Figure 41) and RGO-crown[5] (Figure 42) was 

characterized by AFM. Lateral XY dimensions are very similar to those of RGO-crown[6] 

yet slightly smaller 0.5-4 µm. The height of RGO-crown[4] was measured to be  

1.0 – 1.2 nm very similar to RGO-crown[6] and consistent with monolayer dimension with 

increased height due to functionalization.  

RGO-crown[5] height measurements show sheet heights between 0.9 – 1.7 nm. The images 

show higher tendency than RGO-crown[6] of clustered sheets indicative of minor 

aggregation to few-layered sheets as well as mono-layer sheets. 
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Figure 41: AFM images of RGO-crown[4] drop cast on mica showing a single-layer sheet of  

0.5 – 4 μm XY-size range. Topography of three separate images with height profiles  

A) 3.5×3.5 μm2. B) 5×5 μm2. C) 3×3 μm2. 

 

Figure 42: AFM images of RGO-crown[5] drop cast on mica showing single-layer sheet of  

0.5-4 μm XY-size range. Topography of three separate images with height profiles A) 3×3 μm2. 

B) 4×4 μm2. C) 3×3 μm2. 

IR Spectroscopy  

ATR-FTIR of RGO-crown[4] (Figure 43A) and RGO-crown[5] (Figure 43B) show the same 

fundamental vibrations as RGO-crown[6]; broad O–H stretch 3600 – 2600 cm−1, aliphatic 

C–H stretch (≈ 2900 cm−1), carbonyl stretch 1720 cm−1 and several peaks in the 750 – 1500 

cm−1 range, which can be assigned to –CH2– bending (≈ 1465 cm−1); C–O stretch (≈ 1300 & 

≈ 1100 cm−1); sp2 C–H out of plane bending (1000 – 700 cm−1), and possibly oxirane rings 

(≈ 800 cm−1). Compared to B-RGO the primary difference is an increase of the fundamental 

vibration at ≈ 1050 cm−1 assigned to C–O–C ether stretch from the attached crown-ether.  
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Figure 43: ATR-FTIR spectra of A) RGO-crown[4] and B) RGO-crown[4] C) difference 

spectrum between RGO-crown[6] and B-RGO, zoomed in on the 1500 – 750 cm−1 region. 

XPS Characterization 

Based on XPS-survey (Figure 44 and Table 6), the amount of crown-ether attached was 

evaluated, using the same method as described for RGO-crown[6] (section 3.2.5 page 42). In 

the material RGO-crown[4] one 12-crown[4]ether moiety (C10O5N2) is attached per ≈ 52 

graphene carbon were determined from XPS survey. From the X-ray structure231 of 

12-crown[4]ether an outer diameter of 7.68 Å can be found resulting in an area of 46.3 Å2. 

The theoretical surface coverage can be determined from this data as ≈ 17 %. In the material 

RGO-crown[5] one 13-crown[5]ether moiety (C12O6N2) attachment per ≈ 48 graphene 

carbon were determined from XPS survey. From X-ray structure232 of 15-crown[5]ether an 

outer diameter of 8.77 Å can be found resulting in an area of 60.4 Å2. The theoretical surface 

coverage can be determined from this data as ≈ 24 %. 
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Figure 44: XPS – Survey of A) RGO-crown[4] and B) RGO-crown[5]. 

Table 6: Elemental composition as determined by XPS, as well as calculated contribution from 

crown-ether moiety and RGO sheet. 

 Raw data Crown-ether Sheet Contribution 

Sample %C %O 
%

N 
%C 

%

O 
%N %C %O C:O 

GO 68.8 30.2 1.0 - - - 68.8 30.2 2.3 

B-RGO 75.8 23.8 0.9 - - - 75.8 23.8 3.1 

RGO-

crown[4] 
74.9 21.7 3.3 12 6 2.4 62.9 15.7 4.0 

RGO-

crown[5] 
75.1 21.5 3.4 15 7.5 2.5 60.1 14.0 4.3 

The alkaline reduction increases the sheet C:O ratio to 4.0 and 4.3 for RGO-crown[4] and 

RGO-crown[5], respectively consistent with the mild reduction observed for RGO-crown[6] 

and the B-RGO samples. C1s spectra (Figure 45) also indicate mild reduction in the form of 

reduced C–O peak intensity and shift of C–C peak maxima towards lower energy.  
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Figure 45: XPS C1s spectra of the A) RGO-crown[4] and B) RGO-crown[5]. Raw data (black); 

deconvoluted into C–C (red), C–O (blue) and C=O (purple) peaks; enveloped sum of 

deconvoluted peaks (green) showing fit to data. 

Both RGO-crown[4] and RGO-crown[5] are thus determined to be functionalized 

successfully with their individual crown-ether based on IR spectroscopy. Using the XPS data 

it is found that the coverage per graphene carbon is similar for all the crown-ether modified 

materials, which the respective surface coverage reduced as the size of crown-ether is 

reduced: 52 C / crown-ether for RGO-crown[4] surface coverage ≈ 17 %;  

48 C / crown-ether for RGO-crown[5] surface coverage ≈ 24 %; 46 C / crown-ether for 

RGO-crown[6] surface coverage ≈ 34 %.  

3.3.2 Functional Test on Glassy Carbon Electrode 

Functional electrodes were prepared using RGO-crown[4] and RGO-crown[5], by drop 

casting 15 µL of 1 mg/mL aqueous dispersion of these materials onto polished 7 mm2 GCE 

and drying these overnight. Sensitivity and selectivity were then evaluated by potentiometric 

titration with nitrate salts in the concentration range of 10−7 to 10−1 M in electrolyte solution 

with 0.1 M masking salt for Li+ sensing with RGO-crown[4], NaNO3 was used as masking 

salt, while NH4NO3 was used as masking salt in the case of Na+ sensing with RGO-crown[5].  
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Figure 46: Sensitivity and selectivity tests by potentiometric titration of functionalized GCE. A) 

RGO-crown[4] and B) RGO-crown[5] with different salts (KNO3, NaNO3, LiNO3, and Ca(NO3)2), 

in electrolyte of NaNO3 and NH4NO3 for RGO-crown[4] and RGO-crown[5] respectively. 

The RGO-crown[4] functionalized electrode shows response to Li+ at a detection limit of 

10−5 M with linear response up to 10−2 M with a potential increase of −22 mV per decade. 

The material show selectivity towards Li+ over Ca2+, Na+, NH4
+. However, interference from 

K+ with −9 mV per decade potentiometric response above 10−4 M is seen. The RGO-crown[5] 

functionalized electrode show opposite potential response to Na+ of 24 mV per decade in the 

concentration range 10−5 M – 10−2 M. The reason for the change in sign of potentiometric 

response in not known, but assumed to be a result of change of masking salt. RGO-crown[5] 

shows selectivity towards Na+ over Ca2+, Li+, NH4
+, but also interference response from K+ 

above 10−4 M with potential increase of −8 mV per decade.  

3.4 Conclusion & Perspective 

The functionalization of RGO nanosheets with simple crown-ethers gave long-term stable 

functional materials and a surprisingly similar functionalization ratio. The materials produced 

selectively can bind target cations: 18-crown[6]ether moiety selectively binds K+, with no 

interference from any of the tested ions. 15-crown[5]ether moiety binds Na+ and 

12-crown[4]ether binds Li+, but here both show some interference from K+.  

The functionalized materials can be used to make membrane-free ion-selective electrodes 

based on potentiometric sensing, using high electrolyte concentration to mask signals from 

non-specific surface interactions with the electrode. The detection limit of these electrodes 

are 10−5 M, and they provide good selectivity over a range of ions up to 25 mM concentration. 

Furthermore, it was shown that disposable sensors could be prepared from these materials by 

drop casting onto screen-printed electrodes, illustrated with RGO-crown[6]. The disposable 

sensors provide near identical sensitivity and selectivity to the GCE based systems. Finally, 

it is shown that the source-drain based devices could enhance the detection limit to 10−6 M at 
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the cost of lowered selectivity, but with interference signals at 10−4 M concentrations of any 

salt. The interference is a result of a change in conductive pathway. When resistance of the 

electrolyte is sufficiently low the aqueous solution has lower resistance than the RGO film 

and conductivity in the former prevails. It would be interesting to investigate if the combined 

used of ion-selective membrane and these functional materials, would increase the sensitivity 

and/or selectivity of the individual parts, with both a membrane barrier and surface specific 

interactions.  
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Chapter 4 Azido-RGO: A Possible 

Universal Functionalization Platform 

 

This chapter describes the design, synthesis and characterization of azide functionalized 

RGO (azido-RGO). Azido-RGO offers a general platform for further functionalization with 

complex molecular structures that would otherwise prove difficult due to harsh reduction 

condition used, during efficient GO reduction. As the first test, the Azido-RGO was 

functionalized with ferrocene that functions as a redox probe for electrochemical 

determination of coverage. 

4.1 Introduction 

Modification of GO by EDC coupling, or with a similar method, followed by its reduction to 

RGO is very often used as the synthesis strategy to functionalize graphene-like materials for 

many applications141. However, in the many cases where advanced chemical structures, such 

as receptors, are used as functionalities, this post modification reduction could be 

problematic, e.g. Schiff bases, which are a very used group of molecules for selective cation 

sensing233, are for example susceptible to reduction too.  

To tackle the problem of post-modification reduction, we have attempted to prepare a 

platform material that utilizes the efficiency of functionalization from GO, yet can be reduced 

before the desired final functionality is attached. Several different coupling reactions could 

be suitable for this purpose. Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), 

however, has several benefits234 such as: high yield, run at room temperature, compatible 

with water as solvent235, and being catalyzed by Cu(I) without the need of additional 

ligands235. Furthermore, both parts of the coupling, i.e. azide and terminal alkyne, can easily 

be introduced to complex functional molecules such as recognition units, by simple efficient 

synthetic chemistry. 
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4.1.1 Copper(I)-Catalyzed Azide-Alkyne Cycloaddition 

CuAAC is an adaption of 1,3-dipolar Huisgen cycloaddition236 catalyzed by Cu(I) 

simultaneously discovered by both K.B. Sharpless et al.237 and M. Meldel et al.238 in 2002. 

In CuAAC, an azide and a terminal alkyne react to form a triazole-ring (Scheme 5). The 

improvement of this reaction by using Cu(I) as a catalyst makes it possible to run the reaction 

at room temperature and to introduce regio-selectivity in the triazole only forming 

1,4-substituted triazole, rather than a mixture of 1,4 and 1,5 substitutions.  

 

Scheme 5: 1,3-cycloaddtion of azide and alkyne. Top) un-catalysed Huisgen cycloaddion236. 

Bottom) CuAAC 

The CuAAC reaction is connected to the concept of click chemistry possibly more than any 

other reactions, even called the “cream of the crop” of click reaction by Sharpless239. Click 

chemistry introduced by K.B. Sharpless et al.in 2001239, aims to employ a few stable reaction 

pathways to create a wide selection of compounds with different properties, as a biomimetic 

approach to peptides. In essence, a click reaction should be simple, effective, with high yield, 

using benign solvent and reagents, and requires only simple purification. CuACC has been 

utilized in modification of a multitude of compounds e.g. peptides, DNA, nucleotides, 

carbohydrates, bioactive inhibitors, natural products, pharmaceuticals, macrocycles, 

calixarenes, rotaxanes, catanes, dendrimers and polymers, displaying how useful it is for 

coupling complex molecular structures without causing unwanted side reactions234.  

4.1.2 Reaction Mechanism  

The mechanism of CuAAC has been proposed by Himo et al.235 and Rodionov et al.240 as a 

stepwise, rather than a concerted reaction (Scheme 6), which is believed to take place in the 

un-catalysted Huisgen reaction. Complexation of Cu(I) with the alkyne initiates the reaction, 

which increases the nucleophilicity and facilitates deprotonation of the terminal alkyne. The 

azide is then bonded to the complex via complexation of N-1 to the second Cu(I) organizing 

complex which imposes 1,4-regioselectivity. The complexation of the azide to Cu(I) activates 

the N-3 to make a nucleophilic attack on the C-4 carbon, forming a cyclic intermediate. The 

ring formation is completed by ring contraction and after protonation the Cu(I) catalyst can 

dissociate. 
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Scheme 6: Mechanism Proposed by Himo et al.235 and Rodionov et al.240 

4.1.3 Graphene-Like Materials for CuAAC 

Not surprisingly many examples of utilizing the CuAAC reaction for modification of 

graphene-like materials are available. In most of these cases, GO Nanosheets are directly 

modified with either azides205,241,242 or terminal alkynes243–245 followed by CuAAC.  

This type of functionalization has been used to introduce DNA242, supramolecular 

recognition units205, and polymers243–245 onto GO nanosheets. CuAAC has also been used in 

combination of non-covalent attachment through aromatic anchoring units in the form of 

pyrene246,247 or dopamine248. The method has even been used for functionalization of CVD249 

graphene by using diazonium salt to attach alkyne and further functionalization through 

CuAAC. 
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4.2 Synthesis 

4.2.1 Design Consideration  

 

Figure 47: Schematic illustration of the proposed RGO-platform for functionalization using 

CuAAC coupling reaction.  

Before synthesis of this RGO-platform (Figure 47), there are several important 

considerations to be evaluated for the design of the RGO-platform for CuAAC 

functionalization: 

1. Effectively reduced GO to regenerate favourable graphene-like properties by 

efficient reduction method. 

2. Introduced either azide or alkyne to provide an anchor for functionalization through 

CuAAC. 

3. Utilize high chemical reactivity of GO to provide high coverage by functionalization 

before reduction. 

NaBH4 reduction is reported to be one of the most efficient reduction methods to regenerate 

electronic conductivity. This is therefore the reduction method that will be utilized here152, 

when deciding whether to introduce terminal alkyne or azide functionality. First we consider 

if either survives the reduction. Azide is reduced to amine250 and alkyne251 can be reduced to 

alkane though slowly if not catalysed, making post reduction synthesis necessary, especially 

if another stronger reduction method should prove necessary.  

The RGO-platform is intended for complex molecular functionalization. The synthetically 

more flexible terminal alkyne is therefore reserved for this complex molecular 

functionalization. The alkyne is thought to be more flexible than the azide because of the 

potential use of silane-protection for alkyne. Both azide252,253 and terminal alkyne254 can be 

introduced through organic synthesis. Azide functionalization should therefore be introduced 

to the platform. The post reduction introduction of azide could be done through a nucleophilic 

substitution with a good leaving group253. However, despite the fact that NaBH4 generally 

exhibits poor reactivity towards halides, due to ineffective SN2 reactions255, it was decided 
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that this choice posed an unnecessary risk, and instead the azide was introduced through 

activation of primary alcohol through Mitsunobu reaction252.  

The need for anhydrous conditions in the Mitsunobu reaction opens for the possibility of 

using isocyanate functionalization of GO185. However, the success of functionalizing GO 

with nucleophilic ring opening of epoxide from a previous project warrants testing to further 

improve functionalization EDC coupling can be done simultaneously.  

Two possible routes to azido-RGO were therefore used (Scheme 7 & Scheme 8). 

“2-(2-aminoethoxy)ethan-1-ol” was chosen for the following reasons: It is terminated by the 

amine and alcohol groups needed, secondly it is a short flexible linker which can increase 

interaction with water, helping to disperse the RGO-sheets in water, and finally it is 

commercially available.  

After the work of A. Dimev et al.142 came to my attention I wanted to test if I could achieve 

even higher functionalization coverage by utilizing a non-aqueous work-up after GO 

synthesis as the reported high reactivity due to a presumed higher concentration of basal 

plane epoxides, for the work-up of this GO. Ethyl acetate (EtOAc) was used (experimental 

section 7.1.1 page 104). Hereafter, GO is referred to as either anhydrous GO if it is GO where 

EtOAc was used during synthetic work-up, or aqueous GO when H2O used in the workup. 

4.2.2 Synthesis Procedure  

The two synthesis pathways to azido-RGO discussed above either through nucleophilic 

approach, i.e. combined EDC coupling and nucleophilic ring opening of epoxides (Scheme 

7), or through electrophilic approach, i.e. isocyanate functionalization (Scheme 8).  

Before synthesis, GO obtained from both aqueous and anhydrous workup was extensively 

dried. This was done by first centrifugation to remove most solvent followed by vacuum 

drying, and secondly by five times repeated dispersion and centrifugation with anhydrous 

THF to further remove residual water. 
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Scheme 7: Overview of the nucleophilic approach to synthesis of azido-RGO. 

For the nucleophilic approach, the glycol linker was directly attached to GO through the 

amine by combining EDC coupling256 and nucleophilic ring opening of epoxides183 

(experimental section 7.1.9 page 110), and followed by reduction with NaBH4
152 

(experimental section 7.1.11 page 111), before the final Mitsunobu reaction257 (experimental 

section 7.1.13 page 112). The reactions were performed in anhydrous THF with 

centrifugation to remove excess reagents and single wash with anhydrous THF between each 

step. After synthesis, the final product was centrifuged, washed once with anhydrous THF 

and five times with H2O, and further purified by dialysis.  
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Scheme 8: Overview of the electrophilic approach to synthesis of azido-RGO. 

For the electrophilic approach, the alcohol of the glycol linker was first protected with a silyl 

protection group258 (experimental section 7.1.8 page 110). Then the amine was transformed 

to an isocyanate catalyzed by 4-dimethylaminopyridine (DMAP)259. The isocyanate was used 

directly for functionalization of the GO185 (experimental section 7.1.10 page 111). The 

functionalized GO was then reduced by NaBH4
152 (experimental section 7.1.11 page 111), 

and the silyl protection group removed using TBAF260 (experimental section 7.1.12 page 

112), before the final Mitsunobu reaction257 (experimental section 7.1.13 page 112). The 

reactions were performed in anhydrous THF with centrifugation to remove excess reagents 

and washed once with anhydrous THF between each step. After synthesis, the final product 

was centrifuged, washed once with anhydrous THF and five times with H2O, and further 

purified by dialysis. 
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4.3 Characterization 

4.3.1 IR Spectroscopy 

For the nucleophilic synthesis path before the Mitsunobu reaction, the ATR-FTIR shows an 

increase in the intensity of C–H stretch at 2950 cm−1 and C–O 900 cm−1 (Figure 48 & Figure 

49 blue). After azide introduction in the post reduction the Mitsunobu reaction, the 

characteristic fundamental vibration from azide stretch at ≈ 2100 cm−1 is found in the IR 

spectrum (Figure 48 & Figure 49 Green) indicating a successful transformation. When 

comparing the relative peak intensity of the azido vibration with other peaks, a clear 

distinction between anhydrous and aqueous GO materials is observed where the intensity in 

the material prepared from anhydrous GO shows significantly more intense azido peak.  

 

Figure 48: ATR-FTIR spectra of GO starting material (black) and the synthetically prepared, 

from anhydrous GO using nucleophilic strategy, material before the Mitsunobu reaction (blue) 

and after the Mitsunobu reaction (green). 
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Figure 49: ATR-FTIR spectra of GO starting material (black) and the synthetically prepared, 

from aqueous GO using nucleophilic strategy, material before the Mitsunobu reaction (blue) and 

after the Mitsunobu reaction (green). 

The longer electrophilic synthesis path starts by the introduction of silyl protected glycol. 

The introduction of this functionalization is clearly seen in the IR spectrum (Figure 50 & 

Figure 51 red) by a significant increase of intensity at 2850 – 2950 cm−1 corresponding to sp3 

C–H stretch from the many methyl-groups on the silyl protection. Only a small difference is 

observed between the two GO starting materials. When the silyl protection group is removed 

with TBAF and the GO reduced by NaBH4 (Figure 50 & Figure 51 Blue), the C–H stretching 

peak is reduced and the most prominent vibration is the C–O stretch at 1000 cm−1 from ether 

and alcohol. When the alcohol on the RGO is substituted with azide by the post-reduction 

Mitsunobu reaction the fundamental vibration for azide stretch at ≈2100 cm−1 is observed 

(Figure 50 & Figure 51 green). As for the nucleophilic synthesis path, an indication of better 

functionalization is achieved after the final step for the anhydrous GO compared to aqueous 

GO is shown by the peak intensity of the azide peak at 2100 cm−1. 
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Figure 50: ATR-FTIR spectra of GO starting material (black) and the synthetically prepared, 

from anhydrous GO using electrophilic strategy, material before the Mitsunobu reaction (blue) 

and after the Mitsunobu reaction (green). 

  

 

Figure 51: ATR-FTIR spectra of GO starting material (black) and the synthetically prepared, 

from aqueous GO using electrophilic strategy, material before the Mitsunobu reaction (blue) and 

after the Mitsunobu reaction (green). 
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4.3.2 XPS Characterization  

The four variants of the synthesized azido-RGO were further studied by XPS. The survey 

spectra of the elemental composition show that all the materials were functionalized with 

nitrogen containing functionalities (Figure 52 & Table 7).  

 

Figure 52: XPS-survey spectra of the four synthesized azido-RGO materials A) nucleophilic 

approach using anhydrous GO as starting material. B) Electrophilic approach using anhydrous 

GO as starting material; C) nucleophilic approach using aqueous GO as starting material;  

D) electrophilic approach using aqueous GO as starting material. All show C, O and N as well as 

some Na impurity. In D) the silicon from sample plate is also observed.  

Table 7: Elemental composition of the azido-RGO materials as derived from XPS-survey. 

 % C % O % N Other elements C : O 

GO - Anhydrous 66.85 32.02 0.13  2.1 

GO - Aqueous 66.54 32.30 0.16  2.1 

Nucleophilic – Anhydrous  81.24 15.57 3.19 Na 5.2 

Electrophilic – Anhydrous  80.94 16.53 2.53 Na 4.9 

Nucleophilic – Aqueous  78.22 19.16 2.62 Na 4.1 

Electrophilic – Aqueous  79.18 19.32 1.5 Na, Si 4.1 

 

From the nitrogen content alone the nucleophilic approach (3.1 9% and 2.62 %) seems 

preferable to isocyanate approach (2.53 % and 1.5 %). Furthermore, the anhydrous GO shows 



4.3 Characterization 

66 

higher N content (3.19 % and 2.53 %) than the aqueous GO (2.62 and 1.50 %). As we have 

chemically different nitrogen species in the forms of amine, amide and azide as confirmed 

by IR spectroscopy, we could obtain further information from the N1s spectrum (Figure 53).  

The binding energy of amine and amide are almost the same (≈ 400.5). The three nitrogens 

in the azide give rise to two different binding energies (≈ 399 and ≈ 402 with a 2:1 intensity 

ratio)261. By normalizing the area of the amine/amide peak of the deconvoluted spectrum we 

can estimate a conversion yield for the Mitsunobu reaction under the assumption that all 

amines and amides in the material are introduced as a part of the glycol linker. 

 

Figure 53: XPS-N1s spectra of the four synthesized azido-RGO materials. Raw data (black) 

deconvoluted amine/amide (blue); deconvoluted azide (red and purple); envelope of the 

deconvoluted spectrum (green). A) Nucleophilic approach from anhydrous GO starting material. 

B) Electrophilic approach from anhydrous GO starting material. C) Nucleophilic approach from 

aqueous GO starting material. D) Electrophilic approach from aqueous GO starting material. 
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Table 8: the ratio of Amine/Amide to azide estimated from deconvoluted XPS-N1s spectra, and 

calculated conversion yield.  

 

 
N=N=N 

≈399 eV 

Amine 

≈400.5 eV 

N=N=N 

≈402 eV 

Conversion 

yield 

Nucleophilic – Anhydrous 0.87 1 1.59 83 % 

Electrophilic – Anhydrous 0.67 1 1.43 70 % 

Nucleophilic – Aqueous 0.31 1 0.69 33 % 

Electrophilic – Aqueous 0.29 1 0.59 29 % 

 

The low nitrogen content in the sample and reduced the signal to noise ratio make 

deconvolution of the spectra difficult. By fixing an approximate 2:1 intensity ratio of the two 

azide peaks it is, however, possible to deconvolute the data (Figure 53). An interesting 

difference between the starting materials is revealed. The azido-RGO synthesized from 

anhydrous GO shows a high azide conversion yield of 83 % and 70% for nucleophilic and 

electrophilic approaches, respectively. However, the azide conversion yield for azido-RGO 

synthesized from aqueous GO is only 33 % and 29 % for nucleophilic and electrophilic 

approaches, respectively (Table 8).  

As all reaction conditions throughout the synthesis are kept the same, the significantly lower 

conversion yield must be a result of difference in the starting materials themselves, either in 

the chemical nature of the GO material as suggested by Dimiev et al.142 or another possible 

reason could be that some strongly bound water is not removed by even the extensive drying 

process. Water could reduce the effectiveness of the Mitsunobu reaction by reaction with the 

triphenylphosphine. Residual water could also help explain the lower nitrogen content 

through isocyanate attachment compared to the nucleophilic method.  

The reduction of the graphene sheet, can also be evaluated from the XPS survey spectra 

(Table 7). The C:O ratio of the graphene-like material has been increased, from 

approximately 2:1 in the GO starting material to 5:1 after reduction for the anhydrous GO 

and slightly lower 4:1 for aqueous GO. This is a significant reduction of the oxygen content, 

but still leaves considerable oxygen containing functional groups. Some of these residual 

oxygens can be accounted for by edge carboxylic acid groups possible functionalized into 

amides. Another small fraction is a result of introduction of oxygens from the glycol linker. 

However, with the limited functionalization apparent from the nitrogen introduction this only 

amounts to a small part. A significant amount of this oxygen must therefore originate from 

non-reduced basal plane oxygen functionalities. 
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From the XPS C1s spectra (Figure 54) of all four materials, the intensity of the C–C and  

C–O/C–N peaks are almost 1:1, which further supports that significant basal plane oxygen 

functionalities, must still be present in the material. 

 

 

Figure 54: XPS-N1s spectra of the four synthesized azido-RGO materials raw data (black) 

deconvoluted C–C (red), C–O (blue) C=O (purple) and envelope of the deconvoluted spectrum 

(green). A) Nucleophilic approach from anhydrous GO starting material. B) Nucleophilic 

approach from aqueous GO starting material. C) Electrophilic approach from anhydrous GO 

starting material. D) Electrophilic approach from aqueous GO starting material.  

 C–C ≈284.8 eV 
C–O ≈286 

eV 
C=O ≈288.5 eV 

Nucleophilic – Anhydrous 46.95 43.19 9.86 

Electrophilic – Anhydrous 47.17 45.75 7.08 

Nucleophilic – Aqueous 38.27 51.02 10.71 

Electrophilic – Aqueous 58.14 33.72 8.14 

Table 9: Data from the deconvoluted XPS-C1s spectra relative C–C, C–O, C=O content. 
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4.3.3 AFM Imaging 

AFM was used to verify that the graphene-like materials remain exfoliated in the dispersion 

after the synthesis and do not aggregate into multi-layered structures.  

 

Figure 55: AFM Topography images with height profiles of Azido-RGO drop cast on mica 

showing single-layer sheets of 0.25 – 4 μm XY-size range. A) Nucleophilic approach from 

anhydrous GO starting material. B) Electrophilic approach from anhydrous GO starting 

material. C) Nucleophilic approach from aqueous GO starting material. D) Electrophilic 

approach from aqueous GO starting material. 
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We can see from the AFM images that all four materials remain exfoliated and mono-layered 

graphene-like sheets are the primary substituent of the synthesized materials. After synthesis 

the lateral sheet size is significantly reduced from (1 – 8 µm) to (0.25 – 4 µm) most of them 

about one µm. The height of the sheets are approximately 1.5 nm. This is significantly higher 

than that normally observed for pure RGO but can be explained by the glycol functionalities 

on both sides of the graphene basal plane.  

4.4 Functionalization with Ferrocene 

To determine accurately to what extent this azido-RGO can be functionalized by CuAAC, it 

was further functionalized with a redox probe i.e. ferrocene (Figure 56). The effective loading 

can then be obtained from the charge needed for oxidation or reduction of the attached redox 

probe using cyclic voltammetry (CV).  

 

Figure 56: Schematic illustration of ferrocene functionalized RGO. 

4.4.1 Attachment of Ferrocene 

 

Scheme 9: reaction condition for the CuAAC coupling of ethynlferrocene and Azido-RGO. 

The CuAAC coupling reaction between ethynylferrocene (redox probe) and the four different 

azido-RGO materials were performed in a mixture of DMF (as Ethynylferrocene is poorly 

soluble in water) and water (1:1) over 2 hours. CuSO4 reduced in situ by ascorbic acid was 

used as Cu(I) source, with no stabilizing ligands used. The ferrocene functionalized 

graphene-like material was purified by repeated washing with DMF and then water before 

being dialyzed (Scheme 9) (experimental section 7.1.14 page 113). 
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Figure 57: XPS-survey spectra of the four synthesized ferrocene functionalized RGO materials. 

A) Nucleophilic approach from anhydrous GO starting material. B) Nucleophilic approach from 

aqueous GO starting material. C) Electrophilic approach from anhydrous GO starting material. 

D) Electrophilic approach from aqueous GO starting material. All show C, O, N and Fe. In B-D 

the silicon sample plate also gives a in small Si signal and in C a NaCl impurity is evident. 

Table 10: Elemental composition of the ferrocene functionalized RGO materials as derived from 

XPS-survey. 

 % C % O % N % Fe Other elements C : O 

Nucleophilic – Anhydrous  80.11 15.37 3.18 1.34  5.2 

Electrophilic – Anhydrous  80.22 16.04 2.51 1.23 Si, Na, Cl 5.0 

Nucleophilic – Aqueous  77.73 18.96 2.59 0.72 Si 4.1 

Electrophilic – Aqueous  78.96 19.26 1.32 0.46 Si 4.1 

 

XPS-survey spectra (Figure 57 & Table 10) as well as Fe2p spectra show introduction of 

Fe2p signal at ≈720 eV, split into two peaks at 726 eV and 712 eV due to spin-orbit coupling 

(Figure 58). This binding energy is consistent with Fe(II)262, otherwise the XPS data are in 

strong agreement with XPS on Azido-RGO, i.e. with no significant difference observed. 
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Figure 58: Fe2p spectra of ferrocene functionalized RGO. A) Nucleophilic approach from 

anhydrous GO starting material. B) Nucleophilic approach from aqueous GO starting material. 

C) Electrophilic approach from anhydrous GO starting material. D) Electrophilic approach from 

aqueous GO starting material, all showing two peaks at 726 eV and 712 eV consistent with Fe(II). 

We can see a slight increase in sheet height compared to azido-RGO (≈ 1.5 nm), from the 

AFM images, to about 1.7 nm no other change of the sheet topography is observed from 

AFM (Figure 59).  
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Figure 59: AFM Topography images with height profiles of ferrocene functionalizaed RGO drop 

cast on mica showing single-layer sheet of 0.25 – 4 μm XY-size range. A) Nucleophilic approach 

from anhydrous GO starting material. B) Nucleophilic approach from aqueous GO starting 

material. C) electrophilic approach from anhydrous GO starting material. D) Electrophilic 

approach from aqueous GO starting material. 
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4.4.2 Electrochemical Test 

Functionalized GCEs were prepared by drop casting 10 µL of aqueous dispersions of 

ferrocene functionalized RGO onto freshly polished 7 mm2 GCEs and dried in vacuo 1 hr. 

These functional electrodes were tested in a three-compartment electrochemical cell, with the 

functionalized GCE as working electrode, freshly flame annealed Pt-wire as counter 

electrode and saturated calomel electrode (SCE) as reference electrode in an electrolyte 

solution of 0.1 M H2SO4.  

Firstly, the ferrocene coverage of all four ferrocene-RGO materials and one of the azido-RGO 

materials as reference were evaluated based on electro-oxidation. Two different loading 

amounts 1 µg and 0.1 µg was tested by varying the concentration of the dispersion used for 

drop casting. The electrodes were cycled for 100 scans in the potential range  

0 – 0.8 V at 100 mV/s. All four ferrocene-RGO materials show the ferrocene redox peak at 

0.5 V, but the current is significantly different. The peak separation is large (≈ 200 mV), 

presumably due to slow charge transfer reaction or capacitive charging phenomena. The 

reference azido-RGO exhibits no redox peak in the potential window used (Figure 60).  

 

Figure 60: CV of ferrocene functionalizaed RGO drop cast on GCE at A) 1 µg and B) 0.1 µg; 

Nucleophilic approach from anhydrous GO (Black), electrophilic approach from anhydrous 

GO (Red), nucleophilic approach from aqueous GO (Blue), electrophilic approach from 

aqueous GO (Green), Reference Azido-RGO (Magenta). 

From the anodic charge of the ferrocene oxidation, as determined from CV (Figure 60), we 

can calculate the molar amount of redox centres attached to the material, as we know that the 

ferrocene oxidation is a single electron transfer.  
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Equation 4  𝒏 =
𝑸

𝒛∙𝑭
 

Where n is molar amount of redox units, Q is the charge, z is the number of electrons involved 

in CT, and F is Faraday constant. Knowing the molar amount of redox centres and the mass 

of the drop cast material on the electrode, the molecular weight per redox centre in the 

material can be determined. 

Equation 5  𝑴𝒘𝒓𝒆𝒅𝒐𝒙 =
𝒎

𝒏
 

Equation 6  𝑴𝒘𝑺𝒉𝒆𝒆𝒕 = 𝑴𝒘𝒓𝒆𝒅𝒐𝒙 − 𝟑𝟑𝟗. 𝟐𝒈/𝒎𝒐𝒍 

Where m is the mass of the drop cast material, Mwredox is the molecular mass per redox centre, 

Mwsheet is the molecular mass of the RGO sheets per redox centre. Determined by subtracting 

the molecular mass of the known chemical structure of the attached ferrocene and linker 

(C16H19FeN4O●, 339.2 g/mol) from the molecular mass per redox centre, to find the molecular 

mass of the graphene sheet per redox centre. Under the assumption that the graphene sheets 

only consist of carbons, the number of carbon atoms per ferrocene can be determined, and 

from the surface area per carbon (5.246 Å2), the average space between each pair of redox 

units in the material can be determined (Table 11). The same coverage of azide anchoring 

groups is available in azido-RGO assuming a 1:1 correlation between ferrocene and anchors.  

Table 11: CV charge data and calculations of redox centre coverage on RGO-sheet. Top 1 µg and 

bottom 0.1 µg drop cast material. 

Sample Charge [C] 𝑛𝑒−  

[pmol] 

Mwredox 

[g/mol] 

Carbon / 

redox 

Surface area 

/ redox 

Nucleophilic – Anhydrous  9.140 10−7 1895 527.8 16 0.9 nm2 

Electrophilic – Anhydrous  2.525 10−7 523 1910.4 130 7 nm2 

Nucleophilic – Aqueous  1.098 10−7 228 4393.5 337 19 nm2 

Electrophilic – Aqueous  3.786 10−8 79 12740.9 931 52 nm2 

Nucleophilic – Anhydrous  9.116 10−8 189 529.2 16 0.8 nm2 

Electrophilic – Anhydrous  2.654 10−8 55.0 1818.1 123 6 nm2 

Nucleophilic – Aqueous  1.167 10−8 24.2 4130.8 315 17 nm2 

Electrophilic – Aqueous  3.978 10−9 8.2 12125.3 980 51 nm2 

 

We clearly see the difference between the four synthesized materials, from the calculated 

coverage, based on electrochemical CV. The two materials synthesized from aqueous GO 

show low coverage, consistent with the indication of low conversion from alcohol to azide 

as previously determined by XPS. When the anhydrous GO is functionalized through the 
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electrophilic route a coverage of approximately one functionality per 7 nm2 is achieved. 

However, this is much less compared to the material synthesized through the nucleophilic 

route, which contains a functionality per less than 1 nm2 of the theoretical surface area.  

When running CV at different scan rates (Figure 61) to determine if the electrochemical 

reaction is surface confined or under diffusion control, as expected we see the system is 

proven to be surface confined. The peak current plotted versus the scan rate gives clear linear 

relation (Figure 61C),  whereas the peak current plotted versus square root scan rate (Figure 

61B) shows systematic parabolic deviation from linearity.  

 

Figure 61: A) CV of 1 µg ferrocene functionalized RGO on GCE (nucleophilic – anhydrous) at 

different scan rate. B) Peak current vs. scan rate½ with r2 = 0.961. C)  Peak current vs. scan rate 

with r2 = 0.998. 

The ferrocene functionalized RGO shows high redox stability. When a GCE electrode drop 

cast one µg ferrocene functionalized RGO was cycled in the potential window 0.0 – 0.8 V vs 

SCE a total of 2100 cycles, the current drop from the 30th cycle to 2100th cycle is less than 

3 %. Even when the electrode was rinsed in water and transferred to fresh electrolyte more 

that 96 % of the initial signal was retained (Figure 62).  
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Figure 62: A) CV and B) column diagram of signal for stability test of ferrocene signal from 1 

µg ferrocene functionalized RGO on GCE. The electrode was pre-cycled by 30 cycles at 100 

mV/s and a CV recorded at 5 mV/s. Then an additional 2070 cycles at 100 mV/s before another 

CV was recorded at 5 mV/s. Finally, the electrode was removed, rinsed, and inserted into fresh 

electrolyte. The signal drop from the 30th cycle to 2100th cycles is 2.9% and from the 30th to the 

final are in fresh electrolyte is 3.7%. 

For the better material where anhydrous GO was functionalized through the nucleophilic 

route, we further studied the effect of film thickness. The film thickness was varied by drop 

casting different quantities of the material on GCE (1 µg – 0.01 µg). This measurement shows 

near prefect proportionality between the redox charge and the film mass, showing that redox 

centres throughout the film, independent of thickness are involved in the electron transfer. 

This also validates the method of determining coverage as several experiments with different 

amounts of ferrocene functionalized RGO of the electrode gives a consistent number of redox 

centres per mass.  
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Figure 63: Test of influence of RGO film thickness. A) CV all recorded at 5 mV/s of ferrocene 

functionalized RGO at varying mass (1 µg – 0.01 µg) on GCE. B) Corresponding oxidation 

charge vs drop cast mass. 

4.5 Conclusion and Outlook 

A functional RGO platform for post reduction functionalization through CuAAC was 

establised and tested by CuAAC coupling of ethynylferrocene as a redox probe. The 

ferrocene-functionalized RGO was furthered used to evaluate surface coverage 

electrochemically. The RGO platform consists of RGO sheets decorated by short glycol 

linkers terminated by azides and attached through two different synthesis pathways;  

1) using a combination of nucleophilic ring opening of epoxides and EDC coupling to 

introduce the glycol linker; which proved significantly better than 2) where the glycol was 

introduced through use of isocyanate functionalization. In both cases, the azide was 

introduced using the Mitsonubu reaction. The difference between aqueous and non-aqueous 

work-up on the GO was tested proving that non-aqueous work-up was vastly superior, mainly 

due to a much higher conversion yield in the Mitsunobu reaction as determined by XPS.  

The reason for this difference is most likely due to very strongly bound water that is near 

impossible to be completely removed, This residual water can interfere with the phosphine 

used for the Mitsunobu reaction. The coverage, as determined by electrochemistry, is as high 

as one ferrocene per ≈ 16 RGO sheet carbon atoms or slightly more than one per square 

nanometer. One problem that was observed was slow electron transfer, which could be 

improved by using a conductive linker such as a phenyl or other conjugated linker. However, 

this could also result in high tendency to aggregate. 1,4-diaminobenzene could be used as the 

phenyl linker. This unit can be introduced just as the glycol. The conversion into azide could 
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be done through high-yield in situ diazotization followed by azidation in the presence of 

p-TsOH, which allows the direct transformation of aromatic amines263. 

 

Scheme 10: possible reaction pathway from aromatic amine to aromatic azide263. 

It was also observed from the XPS that considerable amounts of oxygen are not removed 

during reduction, which could warrant using an even stronger reducing agent. As the 

synthesis is done in dry THF, stronger reducing agents are available such as; LiAlH4 which 

has been proven more efficient for GO reduction than hydrazine and NaBH4
264. 
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Chapter 5 TTF-Calix[4]pyrrole 

Functionalized RGO for Cl- Sensing 

This chapter describes the functionalization of Azido-RGO with an example of a complex 

synthetic supramolecular receptor tetrakis(tetrathiafulvalene)-calix[4]pyrrole 

(TTF-Calix[4]pyrrole) derivative synthesis in Prof. Jan O Jeppesens lab at SDU. After 

functionalization the complex redox system was investigated electrochemically and attempts 

were made to use the materials for sensing of both Cl− and 1,3,5-trinitrobeneze (TNB) a 

model compound of TNT.  

5.1 Introduction  

 

Figure 64: Schematic representation of Azido-RGO platform after functionalization with 

TTF-calix[4]pyrrole sensor molecules. 

 The purpose of this work is to demonstrate the feasibility to attach advanced redox active 

supramolecular chemical sensor molecules (TTF-calix[4]pyrrole) to the Azido-RGO 

platform synthesized in the previous chapter, generating an active sensing material which can 

be drop cast onto an electrode (Figure 64). This will significantly reduce the required amount 
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of active compound needed, as the concentration at the solid/solvent interface can be high 

without the need for a high bulk concentration. Especially for electrochemically based 

sensing, this is an optimal solution, as electrochemistry is also confined to electrode/solvent 

interfaces. This can natably reduce the sensor price because of the high cost of synthetic 

challenging compounds such as sensor compounds. 

Another benefit is that solubility is no longer an issue. The solid interface can be transferred 

to any solvent without the need for the sensing material to be soluble in that solvent. In this 

specific case TTF-Calix[4]pyrrole is normally confined to measurements in organic solvents 

such as MeCN, but it would now be possible to use the compound in aqueous electrolyte.  

5.1.1 Tetrathiafulvalene 

Figure 65: Molecular structure of A) first synthesized TTF derivative B), unmodified TTF, and 

C) tetracyano-p-quinodimethane 

The first tetrathiafulvalene (TTF) derivative (Figure 65A) was synthesized by Hurltley and 

Smiles265 in 1926. However, the interest in TTF derivatives was only really sparked after 

Wudl et. al.266,267 investigated and discovered the unique electronic and π-donating properties 

of TTF in the 1970s. The key properties are strong π-electron donation and reversible 

oxidation in two steps. At low potentials the first single-electron transfer forms a stable 

radical cation, followed by another single electron transfer to form a dication (Figure 66).  

Later Ferraris et. al.274 found that the characteristic properties of TTF combined with the 

π-electron acceptor tetracyano-p-quinodimethane (Figure 65C) led to the first “organic 

metal”. The implementation of TTF into supramolecular chemistry through the last decades 

has proven that TTF is useful beyond the field of “organic metals”, and has found widespread 

use with cyclophanes, catenanes, dendrimers, polymers, rotaxanes, artificial photosynthesis 

systems, sensors etc.269–273 (Figure 66). 
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Figure 66: Schematic oxidation reaction of TTF. Potentials given vs. Ag/AgCl in MeCN268. In 

addition, some key areas where TTF is mostly used269–273. 

TTF is a quasi-planar molecule with 14 π-electrons, but lacks cyclic conjugation resulting in 

non-aromaticity. The easy oxidation is explained by formation of a 5-membered aromatic 

cyclic conjugated 6 e- π-system upon formation of the radical cation. The second single 

electron transfer at slightly higher potential also forms an aromatic cyclic conjugated  

6 e− π-system in the other ring. The higher potential for this oxidation is due to cationic 

repulsion destabilizing the system.  

5.1.2 Calix[4]pyrrole 

The class of Calix[4]pyrroles is a meso-octasubstituted porphyrin system first synthesized by 

Baeyer in 1886275 via condensation of pyrrole and acetone in the presence of acid to produce 

meso-octamethylcalix[4]pyrrole. Initially, calix[4]pyrrole was mainly studied for their weak 

metal ion binding complexes due to their resemblance to porphyrins276–278. Later 

calix[4]pyrroles gained interest within anion and ion pair binding279–282 and was re-invented 

under the name calix[4]pyrroles based on their close resemblance to calixarenes282. The 

resemblance to calixarenes is stronger than to porphyrins because of the partial rotation 

around the meso carbon between the planar pyrrole units, rendering the structure flexible 

rather than flat. Calix[4]pyrrole is often thought of as having four discrete conformations 

cone, partial cone, 1,2-alternate and 1,3-alternate (Figure 67), although an infinite subset of 

conformations exists between these discrete conformations through the flexibility. Several 

theoretical studies283–287 have been carried out and state that the most stable one of the 

conformations is the 1,3-alternating conformation in both gas phase and solution in a range 

of different solvents. This is confirmed by X-ray crystallography in solid phase288. When 
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binding anions the conformation is changed to a cone conformation both in solid phase and 

solution282. 

 

Figure 67: Illustration of the four discrete conformations of calix[4]pyrrole (adapted with 

permission from ref.287 Copyright J. Am. Chem. Soc.)  

5.1.3 TTF-Calix[4]pyrrole 

 

Figure 68: Schematic representation of TTF-calix[4]pyrrole; 1,3-alternative conformation (left); 

2D projection (middle); cone conformation (right). 

Based on the anion binding properties of calix[4]pyrrole and the electronic properties of TTF, 

K. Nielsen et. al.289–291 designed a anion sensor using calix[4]pyrrole as a receptor unit and 

TTF as a transducer, as anion complexation would stabilize the oxidized form of TTF and 

reduce the redox potential. The binding constant of the calix[4]pyrrole towards Cl− was 

increased several orders of magnitude by attaching the TTF units, and binding of Cl− indeed 

alters the redox potential (Figure 69). However, it should be noted that this is a highly 

complex redox system, as it contains four TTF units each theoretically capable of two single 

electron transfers. Even though these redox units are not conjugated when one is oxidised, 

they can affect each other due to destabilization of multiple spatially confined cations. 
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Figure 69: CVs of receptor TTF-calix[4]pyrrole (0.25 mM) titrated with TBACl (0 – 1.6 eq.) in 

TBAPF6/CH2ClCH2Cl (adapted with permission from ref.290 Copyright J. Am. Chem. Soc.).  

TTF-calix[4]pyrrole also functions as a host for electron deficient quasi-planar molecules 

e.g. nitro-aromatic explosives289 in the1,3-alternating conformation. Two identical binding 

sites are available with two possible hydrogen bond interactions with calix[4]pyrrole NH as 

donor and CT interaction between TTF and electron deficient π-systems. The binding 

properties for electron deficient quasi-planar molecules are only available in the absence of 

complexing anions, as anion binding induces the cone conformation and is significantly 

stronger. Furthermore, the binding of neutral quasi-planar molecules is cooperative both 

because binding of the first guest stabilizes the dynamic receptor in the 1,3-alternating 

conformation, and because of a synergistic effect between binding interactions. Hydrogen 

bonding draws electrons out of the guest improving the CT interaction in the opposite site, 

and the CT interaction pulls electrons away from the pyrrole ring making it a better hydrogen 

bond donor for the guest in the opposite site (Figure 70). 
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Figure 70: Illustration of binding of electron accepting quasi-planar neutral molecules in 

TTF-calix[4]pyrrole. Illustrating of how binding of TNB in the first binding pocket changes the 

partial charges in the second pocket thereby increases binding strength.  

5.2 Synthesis 

5.2.1 Synthesis of TTF-Calix[4]pyrrole Derivatives 

 

Figure 71: schematic representation of the three TTF-calix[4]pyrrole derivatives synthesized in 

Prof. Jan O. Jeppesen lab at SDU used in this project.  

Three TTF-calix[4]pyrrole derivatives (Figure 71) were synthesized in Prof. Jan O. Jeppesen 

lab at SDU and provided for attachment onto Azido-RGO. TTF-calix[4]pyrrole 1 was 

synthesised by M.Sc. Lars H. Pedersen in 2011 stored at −18 °C until use in 2016. The other 

two TTF-calix[4]pyrroles 2 and 3 were synthesized by B.Sc. Simon Pedersen in 2015-16 and 

stored at −18°C. 

The TTF-calix[4]pyrrole derivatives were synthesized in a templated asymmetric 

macrocyclization between 2 different monopyrrolotetrathiafulvalenes, in order to produce 

TTF-calix[4]pyrrole with a single terminal alkyne, which can be used for attachment to 

Azido-RGO. The template used is Cl− in the form of tetrabutylammonium chloride (TBACl). 

This helps to promote the formation of calix[4]pyrrole rather than bigger macrocycles or 

polymeric chains, pre-organizing reactants to form calix[4]pyrrole because of the strong 
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complexation between calix[4]pyrrole and Cl−. High dilution is employed for the same 

purpose. Apart from the terminal alkyne for CuAAC reaction, the TTF-calix[4]pyrrole 

contains seven other terminal groups. In TTF-calix[4]pyrrole 1 the one connected to the same 

TTF as the terminal alkyne is a short glycol chain. TTF-calix[4]pyrrole 2 and 3 were 

synthesised with a methyl group instead of this short glycol linker, in order to reduce the 

bulkiness near the terminal alkyne, and leaving more room for catalytic complexing during 

CuAAC coupling. The six other terminal groups’ primary function is to increase solubility. 

For TTF-calix[4]pyrrole 1 and 2 these are propyl groups helping solubility in the organic 

solvents usually used for synthesis and measurements of TTF-calix[4]pyrroles. 

TTF-calix[4]pyrrole 3 was synthesized with these short glycol chains instead of the six propyl 

groups to improve interaction with more polar solvents such as water. 

 

Figure 72: Reaction scheme of synthesis of TTF-calix[4]pyrroles 
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5.2.2 CuAAC Coupling of TTF-Calix[4]pyrrole on Azido-RGO 

 

Figure 73: Reaction scheme of CuAAC between Azido-RGO and TTF-calix[4]pyrrole 

TTF-calix[4]pyrrole (1 – 3) was attached to the azido-RGO platform through CuAAC 

reaction, using the azido-RGO which proved best in Chapter 4 (synthesized by nucleophilic 

approach from anhydrous GO). A mixture of DMF and H2O (3:2) was used as solvent and in 

situ generated Cu(I) as catalyst. The resulting TTF-calix[4]pyrrole functionalized graphene 

like materials, henceforth called RGO-calix 1 – 3, were purified by repeated washing with 

DMF and H2O before being dialyzed (full experimental section 7.1.15 page 113). 

5.3 Characterization 

5.3.1 XPS Characterization 

The three synthesized RGO-calix materials as well as TTF-calix[4]pyrrole 2 (as reference 

compound) were characterized by XPS. The high content of sulphur atoms in the TTF-calix 

system presents a unique opportunity for characterization by the XPS – S2p spectrum. The 

reference, pure calix system shows a clear 1:2 (8:16) ratio between peaks at 163.8 eV and 

165.1 eV. The 163.8 eV peak intensity 1 can be assigned to the 8 thiol sulphur atoms, and the 

165.1 eV peak intensity 2 to the 16 fulvalene sulphur atoms. The same 1:2 peak ratio is found 

in all three RGO-calix materials, giving evidence of the incorporation of 

TTF-calix[4]pyrroles. 
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Figure 74: XPS – S2p spectra of A) TTF-calix[4]pyrrole; B) RGO-calix 1; C) RGO-calix 2; 

D) RGO-calix 3. 

The introduction of sulphur can also be used to quantify the extent of functionalization using 

the atomic percentage of sulphur as determined by XPS-survey (Figure 75) to calculate the 

contribution from the functionality as in Chapter 3 for the crown-ether (section 3.2.5 page 

38). By subtracting this from the total, the contribution from the graphene-like nanosheets 

can be determined and by extension the number of carbons per introduced calix functionality 

Using the theoretical surface area per carbon (5.246 Å2), an estimate of the area of nanosheet 

available per calix molecule can also be determined.  
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Figure 75: XPS – Survey spectra of A) TTF-calix[4]pyrrole; B) RGO-calix 1; C) RGO-calix 2; 

D) RGO-calix 3. 

Table 12: Elemental composition as determined by XPS, as well as calculated contribution from 

functional moiety and RGO sheet; calculated C:O ratio and carbon per functional moiety. 

 % C % O % N %S Other elements C : O C : Func. 

TTF-calix[4]pyrrole 2 71.5 – 3.9 24.6 O – – 

Theoretical  70.8 – 4.2 25 – – – 

RGO-calix 1 72.1 10.3 5.8 11.8 Na – – 

C76H97N8O3S24
• 37.4 1.5 3.9 11.8 – – – 

Sheet 34.7 8.8 1.8 – – 3.9 71 

RGO-calix 2 72.5 8.7 5.7 13.1 Na – – 

C72H89N8OS24
• 39.3 0.5 4.4 13.1 – – – 

Sheet 33.2 8.2 1.3 – – 4.1 61 

RGO-calix 3 69.5 13.3 5.6 11.6 Na – – 

C84H113N8O13S24
• 40.6 6.3 3.9 11.6 – – – 

Sheet 28.9 7.0 1.7 – – 4.1 60 

 

  



    Chapter 5 

91 

The measured elemental compositions of TTF-calix[4]pyrrole 2 (C68H80N4S24) match fairly 

accurately the theoretical atomic composition (Table 12): experimental (C: 71.5 S: 24.6 

N: 3.9) theoretical (C: 70.8 S: 25.0 N: 4.2). The calculations based on sulphur content  

(Table 12) show that one TTF-calix[4]pyrrole is attached per ≈ 70 carbon atoms for 

RGO-calix 1 or what amounts to ≈ 3.7 nm2. This is a slightly lower coverage than RGO-calix 

2 and 3 with one TTF-calix[4]pyrrole attached per ≈ 60 carbon atoms or what amounts to  

≈ 3.1 nm2. In comparison, the core of the TTF-calix[4]pyrrole measures approximately 

1×1×2 nm not including sidechains. These calculations also indicate that not all nitrogen 

functionalities are part of the TTF-calix[4]pyrrole attachments (including linker), or that 

more azide groups are available with the excess of TTF-calix[4]pyrrole used during 

synthesis. It seems that the reason why the RGO is not more functionalized is sterically 

limitations. Unfortunately, the resolution of the N1s spectra is not sufficient to be 

deconvoluted, and it is therefore not possible to determine if more azide groups are present.  

 

Figure 76: XPS – N1S spectra of A) TTF-calix[4]pyrrole; B) RGO-calix 1; C) RGO-calix 2; 

D) RGO-calix 3. 

The C:O ratio in the RGO sheet seems to have gone down slightly from 5.2 to ≈ 4.1 compared 

to the starting material Azido-RGO. This is strange as additional reductant sodium ascorbate 

was used during synthesis. The C1s deconvoluted data are dominated by the sp2 C–C peak at 
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248.8 eV. However, this is slightly misleading as a large percentage of the carbon comes from 

the TTF-calix[4]pyrrole system. 

 

Figure 77: XPS – N1S spectra of A) TTF-calix[4]pyrrole; B) RGO-calix 1; C) RGO-calix 2; 

D) RGO-calix 3. 

Table 13: Data from the deconvoluted XPS-C1s spectra with relative C–C, C–O, C=O content. 

 C–C ≈ 284.8 eV C–O ≈ 286 eV C=O ≈ 288.5 eV 

TTF-calix[4]pyrrole 2 100 0 0 

RGO-calix 1 64.1 27.6 8.3 

RGO-calix 2 74.1 20.7 5.2 

RGO-calix 3 63.7 226.7 9.6 

5.3.2 IR Spectroscopy  

Due to the high coverage and size of the attached TTF-calix[4]pyrroles, the attachment 

dominates the IR spectra of the RGO-calix 1-3 materials, resulting in high resemblance 

between the RGO-calix and its respective TTF-calix[4]pyrrole, with several core 

fundamental vibration overlapping (Figure 78, 79 & 80). These overlapping fundamental 
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vibrations include: Pyrrole N–H stretch at ≈ 3400 cm−1; three different C–H stretch vibrations 

at ≈ 2960 cm−1, ≈ 2920 cm−1 & ≈ 1860 cm−1; further, aromatic C=C stretch at  

≈ 1650 cm−1 & ≈ 1560 cm−1; S–CH3/S–CH2 bend at ≈ 1450 cm−1 and ≈ 1240 cm−1; meso-CH3 

at ≈1360 cm−1. Additional C–O stretch are observed at ≈ 1090 cm−1 for RGO-calix 1 and 

especially RGO-calix 3. Together with the XPS data this is strong evidence for successful 

functionalization of Azido-RGO. Within the three TTF-calix[4]pyrroles a slightly higher 

coverage is achieved with TTF-calix[4]pyrrole 2 and 3 possibly due to the reduced bulkiness 

around the terminal alkyne.  

 

Figure 78: ATR-FTIR spectra of RGO-calix 1 (black) and TTF-calix[4]pyrrole 1 

 

Figure 79: ATR-FTIR spectra of RGO-calix 2 (black) and TTF-calix[4]pyrrole 2 
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Figure 80: ATR-FTIR spectra of RGO-calix 3 (black) and TTF-calix[4]pyrrole 3 

5.4 Electrochemical Measurements 

Functionalized GCEs were prepared by drop casting 10 µL of aqueous dispersions of 

TTF-calix[4]pyrrole functionalized RGOs onto freshly polished 7 mm2 GCEs and dried in 

vacuo for 1 hr. These functionalised electrodes were tested in a three-compartment 

electrochemical cell, with the functionalized GCE as working electrode, freshly burned 

coiled Pt-wire as counter electrode and SCE as reference electrode, under Ar atmosphere, in 

an aqueous electrolyte solution of 0.1 M KPF6. KPF6 was chosen as electrolyte because PF6
− 

is a big anion that does not complex to TTF-calix[4]pyrrole and therefore does not interfere 

with the sensing studies.  

5.4.1 Investigation of RGO- Calix Redox Activity  

CV of GCE functionalized with 1 µg RGO-calix 3 was recorded at 5 mV/s in the potential 

range from −0.75 to 1.75 V. Two oxidation peaks were observed, although only barely 

separated, at 0.875 V and 1.15 V. The two reductions peaks are located at 0.1V and 0.4 V. 

When limiting the potential window to only the oxidation region from 0 to 1.75 V), we see 

the oxidation peak in the first cycle, but no oxidation in subsequent scans. If we limit the 

potential window to the reduction region from 0 to −0.75 V, we see the reduction peak in the 

first scan, but not in subsequent scans. This confirms that the redox peaks, despite being far 

removed, belong to the same redox species. 
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Figure 81: CV of GCE functionalized with 1 µg RGO-calix 3 recorded at 5 mV/s starting at  

0.0 V vs. SCE. First full potential window (−0.75 – 1.75 V vs. SCE) (black) then only the oxidative 

region (0.0 – 1.75 V vs. SCE) first scan (red) subsequent scan (3rd shown blue) then only reductive 

region (−0.75 – 0.75 V vs. SCE) first scan (green) subsequent scans (3rd shown magenta) finally 

full window again (−0.75 – 1.75 V vs. SCE) (brown). 

The exact reason for the large peak separation for the TTF/TTF●+ redox process is unknown, 

but it can be speculated that the radical cation of the TTF-units could be stabilized by the 

RGO sheet or possibly react with RGO to form a more stable intermediate which is more 

difficult to reduce. 

In order to prove that the redox peak shown is related to the surface confined 

TTF-calix[4]pyrrole, CV was recorded at different scan rates. The potential of the oxidation 

peak is shifted to higher potentials even at low scan rate (75 mVs). Instead the reduction 

peak, specifically the one at −0.4 V vs. SCE, was used to plot peak current vs scan rate and 

vs square root of scan rate. As expected this shows that the system is not under diffusion 

control but surface confined as a good linearity is seen in the plot of current vs scan rate, but 

clear parabolic deviation is seen from plot vs square root of scan rate (Figure 82 and Figure 

83).  
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Figure 82: CV of GCE functionalized with 1 µg RGO-calix 3 recorded at different scan rate (25 – 

200 mV/s in the potential window (−0.75 – 1.75 V vs. SCE). 

 

Figure 83: Plot of peak current vs A) scan rate; r2 =0.998 B) square root of scan rate r2=0.977. 

These data can be explained with the system described by K. Nielsen et. al.290 where a similar 

TTF-calix[4pyrrole in a solution of TBAPF6/CH2ClCH2Cl was investigated (Figure 84). Here 

four redox peaks were observed, at ≈ −0.17, 0.11, 0.38 and 0.61 V. The separation between 

peak 1 and 3 as well as between peak 2 and 4 is ≈ 0.5V, consistent with the separation of the 

redox potentials of TTF/TTF•+ and TTF•+/TTF2+. It therefore seems that the first two redox 

peaks originate from the oxidation of the four TTF units to TTF•+, and the subsequent two 

peaks for the further oxidation to TTF2+. From the peak area of peak 1 and 2 an approximately 

1:3 ratio is observed, leading to the assumption that oxidation of the first of the four TTF 

units is more facile than oxidation the others. This can be explained by one of the four units 

binding to the electrode, while the others are geometrically prevented from direct binding.  

 

 

 

  



    Chapter 5 

97 

 

Figure 84: CVs (0.25 mM) recorded in n-Bu4NPF6/CH2ClCH2Cl of receptor 4, e. i. 

TTF-calix[4]pyrrole derivative. (Reproduced with permission from SI of ref290, Copyright 

American Chemical Society). 

Returning to our system we see a similar situation with a small peak preceding a larger peak 

separated by the same ≈ 0.275V consistent with one of the four TTF units first being oxidized 

to TTF•+ before the other three (Figure 81). We do not see the full oxidation TTF2+ because 

this happens at a too high potential. From this we can assume that the oxidation peak we see 

is caused by 4 e− oxidation, one for each of the four TTF units. Thus, we can calculated the 

coverage similar the way it was done in chapter 4. 

 

Figure 85: CV of functionalized GCE electrodes loaded with 1 µg of each of the  

RGO-calix (1 – 3) in the potential range −0.75 – 1.75 V vs. SCE at 25 mV/s. 

CV of functionalized GCE electrodes loaded with 1µg of each of the RGO-calix (1 – 3) was 

recorded in the potential range −0.75 – 1.75 V vs. SCE at 25 mV/s (Figure 85). The charge 

associated with the broad oxidation peak at 1.25 V vs. SCE was determined and used to 
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determine the coverage of the materials under the assumption that 4 electrons are involved in 

this oxidation process, as they was done in chapter 4 (section 4.4.2 page 75).  

 

Sample Charge [C] 𝑛𝑒−  

[pmol] 

𝑛𝑐𝑎𝑙𝑖𝑥 

[pmol] 

Mwredox 

[g/mol] 

Mwcalix 

[g/mol] 

Mwsheet 

[g/mol] 

C / 

calix 

RGO-calix 1  5.258  10−4 0.545 0.136 7340 1940.1 5400 450 

RGO-calix 2 1.532 10−4 1.588 0.397 2519 1852.0 667 56 

RGO-calix 3 1.351  10−4 1.399 0.350 2857 2212.3 645 54 

Table 14: Coverage of calix[4]pyrrole on RGO-sheet based on charge determined by CV. 

The coverage of TTF-calix4]pyrrole in RGO-calix 2 and 3 calculated from CV data is 

remarkable consistent with those calculated with XPS. The significantly lower charge 

produced in case of RGO-calix converts to a significantly different result than that 

determined by XPS. The reason for this is presently unknown.  

5.4.2 Sensing Properties of RGO-calix-3  

Sensing studies weere only carried out on RGO-calix 3, due to severe time limitation at this 

stage of the project. GCE functionalized by drop casting 1 µg of RGO-calix 3 was used in 

experiments with Cl− titration recording CV in potential range from −0.75 to +1.75 V vs. 

SCE at 25 mV/s (Figure 86). This resulted in an interesting change of the reduction peaks at 

≈ 0.1 & 0.4 V vs. SCE. 

 

 

Figure 86: CV based titration with KCl (2 × 10−8 – 5 × 10−3) of GCE functionalized by drop casting 

with 1 µg of RGO-calix 3 in 0.1 M KPF6 electrolyte with potential range −0.75 – 1.75 V vs. SCE 

at 25 mV/s. 
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Upon addition of minute amounts ([Cl−] ≈ 10−7) of Cl− the peak at 0.1 V disappears and is 

incorporated into the 0.4 V peak. This peak is also shifted toward lower reduction potential 

as Cl− is added (Figure 86). As explained above, the splitting of the two reduction peaks is 

assumed to be a result of asymmetric binding to the electrode surface. Upon addition of Cl− 

the receptor presumably assumes a cone conformation rather than 1,3-alternating 

conformation which could explain why the reduction peak is no longer split into two different 

peaks. As the TTF-calix[4]pyrrole binds Cl-, the redox potential is shifted to more negative 

values as seen for the system described by K. Nielsen et. al.290  

 

 

Figure 87: Plotted voltammetric peek current changes vs Cl− concentration. A) Peak current of 

peak initially at 0.1 V vs. pCl−. B) Peak potential of peak initially at ≈ 0.4 V vs. pCl−. 

A linear response is seen in the concentration range 10−8 – 10−5 M when plotting the peak 

current vs. pCl− (Figure 87A), with a sensitivity of 1.25 µA per decade of Cl− concentration. 

When plotting the reduction potential vs. pCl− (Figure 87B) we first see a moderate decrease 

in reduction potential of ≈ 32 mV per decade of Cl− concentration in the concentration range 

10−7 – 10−4 M. At further addition a major shift of 250 mV per decade Cl− concentration 

occurs in the concentration range 10−4 – 10−2 M. The initial potential shift seems to accord 

with what was reported by K. Nielsen et al.290 but the potential shift at mM concentration 

seems too large to be cause by redox potential reduction due to guest binding and some other 

unknown mechanism seems to be at play here. Unfortunately, there was not enough time to 

investigate this further.  
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5.5 Conclusion 

The functionalization of Azido-RGO with the sensing molecule TTF-calix[4]pyrrole was 

successfully achieved by CuAAC reaction, and verified by IR spectroscopy and XPS. The 

coverage was determined independently by XPS and electrochemistry for two of the three 

TTF-calix[4]pyrroles addressed. The electrochemical determination for the third was 

significantly lower than the XPS determination for reasons unknown. The coverage which 

could be determined was one functionality per ≈ 50 – 60 carbon atoms. Considering the size 

of this functionality this is a high coverage. Due to time limitation at the end of the project, 

only one of the sensing materials was tested in sensing studies, and only for Cl− the stronger 

binding of the possible guests for TTF-calix[4]pyrroles and not for TNB. The material 

RGO-calix 3 proved highly sensitive towards Cl− with linear response of the reduction of the 

peak current for the reduction peaks at −0.1 V by 1.25 µA per decade in the Cl− concentration 

range 10−8 – 10−5 M. 

Interestingly, Cl− also induced a shift of the reduction potential of the second peak at  

(≈−0.4 V) at low concentration with a moderate shift, but a very significant shift is seen for 

higher concentration. This shift is presumed to follow another mechanism, due to the 

magnitude of the shift. Unfortunately, time limitation has prevented further studies of this as 

well as from studying the selectivity. 

 

 



   

101 

Chapter 6 Summary and Conclusion 

In this thesis, reduced graphene oxide (RGO) functionalized with supramolecular moieties 

was synthesized in order to obtain active sensing materials. Combining the valuable 

properties of graphene-like materials, such as high surface area, high conductivity and low 

production cost with easy up-scaling, and the versatile and favourable receptor properties of 

supramolecular moieties, were the overarching objectives of the project.  

These chemically modified RGO materials were obtained through one of two core strategies. 

In the first strategy graphite is oxidized and exfoliated to graphene (GO), which can be 

functionalized straight forwardly, through nucleophilic ring opening of surface epoxide 

groups to achieve functionalized GO. The functionalized GO was then reduced to the desired 

chemically modified RGO. 

This approach was used to produce RGO nanosheets functionalized with crown-ether 

derivatives. A coverage of one crown-ether per 46 RGO-sheet carbon atoms was achieved 

for a 18-crown[6]ether derivative (RGO-crown[6]). This corresponds to an average coverage 

of 34 % of the theoretically available surface area. RGO-crown[6] was used for 

potentiometric sensing using both glassy carbon electrodes and disposable screen-printed 

electrodes. A detection limit of 10−5 M, selective to K+ over all tested alkali and earth alkaline 

ions up to concentrations of 2.5 × 10−2 M was achieved. In a similar fashion 15-crown[5]ether 

(RGO-crown[5]) and 12-crown[4]ether (RGO-crown[4]) derivatives were attached to RGO 

nanosheets. Similar levels of functionalization to that of RGO-crown[6] were achieved: one 

molecular unit per 48 carbon atoms for RGO-crown[5], amounting to a 24 % of theoretical 

surface coverage, and one unit per 52 carbon atoms for RGO-crown[4], amounting to 17 % 

of the theoretical surface coverage. When these two materials were used to form sensing 

devices they show selectivity towards Na+ for RGO-crown[5] and Li+ for RGO-crown[4] 

with similar detection limits to that of RGO-crown[6], however, some interference from K+ 

was evident.  

 

The first approach to synthesis of chemically modified RGO, however, is apply only to 

supramolecular moieties that are not subjected to chemical reduction. In order to widen the 

possibilities of functionalization to include less chemically stable moieties, as an alternative 
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strategy azido-RGO was developed. Azido-RGO a material that allow to high yield 

functionalization of already RGO. This was achieved by functionalizing GO with a short 

linker containing terminal alcohol. The functionalized GO was then reduced efficiently, and 

the alcohol substituted with an azido-functionality. The produced material could then be 

functionalized by post-reduction with any moiety containing a terminal alkyne. The 

incorporation of azide was confirmed by both XPS and IR spectroscopy.  

The coverage of azide in the as-synthesized azido-RGO was determined by functionalization 

with ferrocene as a redox probe, using the azido-functionalities in CuAAC reaction with 

ethynylferrocene. After functionalization the charge determined from electro-oxidation of the 

redox probe was determined by CV. From this charge it could be estimated that one ferrocene 

or azido-functionality was present per 16 carbon atoms of the RGO-sheet. This value 

translates into slightly more than one ferrocene or azide per nm2. 

The Azido-RGO was further used to attach the sensing molecule TTF-calix[4]pyrrole. 

Functionalization with this moiety was confirmed by both IR spectroscopy and XPS. The 

coverage was further determined independently by XPS and electrochemistry to one 

TTF-calix[4]pyrrole moiety per ≈ 50 – 60 carbons amounting to one moiety per ≈ 3 nm2. 

Given the size of this receptor moiety, the coverage is very high. This material proved to bind 

and detect Cl- in aqueous solution at concentrations as low as 10−8 M. Azido-RGO could well 

prove to become a key building block in joining supramolecular-based sensors and 

graphene-like materials, a key benefit being confining these high-cost receptors to the 

electrode surface strongly reducing the amount needed for highly sensitive and selective 

sensing. 
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Chapter 7 Experimental Procedures 

 

This chapter contains the detailed experimental procedures of the work described in this 

thesis. 

 

7.1 Synthesis Procedures  

All chemicals were purchased through Sigma-Aldrich as synthetic grade or higher and used 

as received, with the exception of CH2Cl2, which was distilled immediately prior to use; 

anhydrous THF, and DFM, which was dried on a PureSolv; H2O, which was purified with a 

Milli-Q ultra-pure system (18.2 MΩ cm). All synthesis experiments using anhydrous solvents 

were performed in Ar atmosphere with 15 – 30 min degassing of the solvent prior to 

experiment. Analytical thin-layer chromatography (TLC) was performed using alumina 

sheets pre-coated with silica gel 60F (Merck 5554), which were inspected by UV‐light 

(254 nm) prior to development with KMnO4 (aq ph≈12) and heated with a heat-gun. NMR 

spectra were recorded on a Bruker AVANCE III 400 MHz Spectrometer, where 1H‐NMR 

spectra were recorded at 400 MHz at 298 K, and 13C‐NMR at 100 MHz at 298 K. The NMR 

samples were dissolved in CDCl3 99.8 % D from Sigma-Aldrich, and the residual solvent 

used as sthe tandard, the NMR signals was assigned with help from calculation made in 

ChemBioDraw Professional v.15.0.0106. Solvent signals were assigned according to Fulmer 

et al.292. IR spectra were recorded using a Bruker ALPHA FT-IR spectrometer using an ATR 

module.  An Eppendorf Centrifuge 5810R V8.4 was used for all centrifugations. 
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7.1.1 Graphene Oxide Synthesis  

Graphene oxide (GO) was prepared by a modified Hummer’s method135 in a two-step 

oxidation procedure inspired by S Gan et al.229. Pre-oxidized graphite was prepared in the 

first step, and GO prepared from pre-oxidized graphite in the second step. 

 

 

Graphite Flakes (powder, < 20 μm, synthetic) (5.0 g) were added to H2SO4 (conc. 96%) (15 mL) 

solution containing K2S2O8 (2.5 g) and P2O5 (2.5 g) at 80 °C. After 3 hours, the reaction 

mixture was cooled to RT and the dark blue mixture diluted with 30 mL H2O. The diluted 

reaction mixture was filtered and washed with H2O until the waste solution reached neutral 

pH. The resulting crude pre-oxidized graphite powder was dried in vacuo. 

Crude pre-oxidized graphite (1.1 g) was added to H2SO4 (conc. 96%) (25 mL) in an ice bath  

(0 °C). KMnO4 (3.2 g) was then added slowly (20 min) under stirring, so that the temperature 

of the solution was maintained between 0 – 20 °C during the addition. After addition, the 

reaction mixture was stirred at 35 °C for 2 hours. After reaction the graphite oxide was 

purified either through aqueous workup producing GO also referred to as aqueous GO in 

Chapter 4, or by workup with anhydrous EtOAc referred to as anhydrous GO in Chapter 4. 

Aqueous Workup 

Workup based on modification of S. Gan et.al.229 and O. C. Compton et al.293 

The reaction was terminated by addition of H2O (140 mL) and H2O2 (30% aq) (0.5 mL). The 

solution was centrifuged (12000 RPM, 18192 g) to remove the aqueous phase and washed 

by repeated centrifugation (12000 RPM, 18192 g, 20 min with HCl (10%  aq) (5 × 180 mL) and 

H2O (5 ×  180 mL) retaining the solid GO and discarding the aqueous phase.  

After washing, the sedimented GO was redispersed in H2O and divided into approximate size 

distributions using centrifugation. The dispersion was first centrifuged at low speed (1000 

RPM, 126 g, 20 min). The sediment from this step was discarded as multilayered Graphite 

Oxide. The supernatant was then centrifuged at medium speed (4000 RPM, 2021 g, 20 min). 

This sediment was redispersed and centrifuged at low speed (1000 RPM, 126 g, 20 min). 

This supernatant was marked as large GO sheets (mostly 10 – 20 µm). The supernatant from 

medium speed centrifugation was centrifuged again at medium-high speed (8000 RPM, 8085 

g, 20 min) and the sediment redispersed and centrifuged at medium speed (4000 RPM, 2021 

g, 20 min). This supernatant was marked as medium GO sheets (mostly 5 – 15 µm). The 

supernatant from medium-high speed centrifugation was then centrifuged at high speed 

(12000 RPM, 18192 g, 20 min) and the sediment from this step redispersed and centrifuged 

at medium-high speed (8000 RPM, 8085 g, 20 min). This supernatant was marked as small 
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GO sheets (mostly 1 – 8 µm). The supernatant from the high-speed centrifugation was kept 

as very small and fragmented GO sheets  

(mostly < 1 µm) and also contains GO nanoparticles. The size of the GO sheets determined 

by AFM also showed sheets of other sizes in all four size-distributions but most of the sheets 

are within the size distribution given.  

After size separation the GO sheets were purified by dialysis in H2O (27 × 1 L) over a week 

using Spectra/Por membrane MWCO 12 000 – 14 000. Dialysis H2O was changed five times 

daily during the first five days but only once daily over the final two days. After dialysis the 

concentration (in mg/mL) was determined by drying 5 mL of the solution in vacuum and 

weighing the residual powder. 

The small GO sheets (mostly 1 – 8 µm) were used in all further experiments of GO or aqueous 

GO described in this thesis. Dispersions of larger size GO were used in related master projects 

by the master students in our group. 

Anhydrous Workup 

Workup based on modification of A. Dimiev et al.142 and O. C. Compton et al.293 

The reaction was terminated by the addition of anhydrous EtOAc (140 mL) and H2O2 (30% aq) 

(0.5 mL). The solution was centrifuged (12000 RPM, 18192 g, 20 min) to remove the solution 

phase and then washed by repeated centrifugation (12000 RPM, 18192 g, 20 min) and 

redispersion in anhydrous EtOAc (5 ×  180 mL) retaining the solid GO and discarding the 

solution phase.  

After washing, the sedimented GO was redispersed in anhydrous EtOAc. The dispersion was 

first centrifuged at medium speed (4000 RPM, 8085 g, 20 min). The sediment was discarded 

and the supernatant was then centrifuged at high speed (12000 RPM, 18192 g,  

20 min). The sediment was redispersed and centrifuged at medium speed (4000 RPM, 8085 

g, 20 min). The size of the GO sheets was determined by AFM images to about 1 – 10 µm. 

This sample was used as anhydrous GO without further purification.  
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7.1.2 Triphosgene Activated Coupling of Boc-Glycin and Crown-Ether  

Modification of T. Yechezkel et al.227 

  

Boc-glycin (189.8 mg; 1.08 mmol) and Triphosgene (98.6 mg; 0.37 mmol) were dissolved in 

anhydrous THF (12 mL) followed by dropwise addition (2 min) of 2,6-lutidine (0.7 mL) 

under vigorous reaction. After the addition this mixture was slowly added to a heated solution 

of 1-aza-crown-ether (0.23 mmol) dissolved in anhydrous THF (15 mL) at 50 °C. After 2 

hours the reaction was stopped by addition of H2O (20 mL) and HCl (1M, aq) (30 mL) and 

immediately extracted with CH2Cl2 (3 × 30 mL). The organic phase was washed with NaOH 

(1M, aq) (20 mL), H2O (20 mL), and dried over Na2SO4 (s). The solvent was removed in vacuo 

to a slightly yellow oil which was dried overnight in vacuo. 

N-tert-Butyloxycarbonyl-N-2-aminoacetate-1-aza-18-crown[6]ether 

Yield: 92.5 mg, 0.22 mmol, 95 % 

TLC (CH2Cl2 9:1 MeOH): Rf = 0.34 – 0.38 

1H-NMR (400 MHz, CDCl3, 298 K) δ: 5.48 (S, 2H, N(CO)CH2N(CO)), 4.01  

(d, J = 4.6 Hz, 4H, (CH2)2N(CO)R), 3.73 – 3.50 (m, 20H, CH2CH2O),  

1.41 (s, 9H, OC(CH3)3). 
13C-NMR (101 MHz, CDCl3) δ: 167.79 (R2N(CO)R), 154.76 (N(CO)O),  

78.35 (OC(CH3)3), 70.03, 69.77, 69.70, 69.67, 69.64, 69.56, 69.53, 69.33, 68.52, 68.31  

(10 × OCH2CH2), 47.11, 45.84 (2 × NCH2CH2), 41.31 (N(CO)CH2NCO),  

27.37 (OC(CH3)3). 

N-tert-Butyloxycarbonyl-N-2-aminoacetate-1-aza-15-crown[5]ether 

Yield: 71.5 mg, 0.19 mmol, 82 % 

TLC (CH2Cl2 9:1 MeOH): Rf = 0.35 – 0.39 

1H-NMR (400 MHz, CDCl3, 298 K) δ: 5.46 (S, 2H, N(CO)CH2N(CO)),  

3.91 (d, J = 4.6 Hz, 4H, (CH2)2N(CO)R), 3.75 – 3.49 (m, 16H, CH2CH2O),  

1.47 (s, 9H, OC(CH3)3). 
13C-NMR (101 MHz, CDCl3) δ: 167.81 (R2N(CO)R), 154.72 (N(CO)O),  

78.24 (OC(CH3)3), 70.13, 69.67, 69.65, 69.61, 69.56, 69.43, 68.63, 68.43 (8 × OCH2CH2), 

47.11, 45.84 (2 × NCH2CH2), 41.31 (N(CO)CH2NCO), 27.47 (OC(CH3)3). 
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N-tert-Butyloxycarbonyl-N-2-aminoacetate-1-aza-12-crown[4]ether 

Yield: 69.8 mg, 0.21 mmol, 91 % 

TLC (CH2Cl2 9:1 MeOH): Rf = 0.32 – 0.40 

1H-NMR (400 MHz, CDCl3, 298 K) δ: 5.51 (S, 2H, N(CO)CH2N(CO)),  

4.07 (d, J = 4.6 Hz, 4H, (CH2)2N(CO)R), 3.69 – 3.37 (m, 16H, CH2CH2O),  

1.45 (s, 9H, OC(CH3)3). 
13C-NMR (101 MHz, CDCl3) δ: 166.43 (R2N(CO)R), 155.82 (N(CO)O),  

78.41 (OC(CH3)3), 70.27, 69.81, 69.66, 69.47, 68.88, 68.57 (6 × OCH2CH2),  

47.31, 45.64 (2 × NCH2CH2), 41.27 (N(CO)CH2NCO), 27.34 (OC(CH3)3). 

7.1.3 Deprotection of Boc-Protected 2-Aminoacetate-1-Aza-

Crown-Ether 

Modification of S.E. Blondelle and R. A. Houghten228 

 

N-tert-Butyloxycarbonyl-N-2-aminoacetate-1-aza-crown-ether (as prepared) was dissolved 

in CH2Cl2 (20 mL), trifluoroacetic acid (10 mL) was added, and the mixture stirred at RT for 

1 hour. The reaction mixture was concentrated to oil in vacuo. The oil was redissolved in 

CH2Cl2 (20 mL), washed with NaOH (1M aq) (2 × 20 mL), H2O (20 mL), and dried over Na2SO4 

(s). Solvent was removed in vacuo give a slightly yellow oil which was dried overnight in 

vacuo. 

2-aminoacetate-1-aza-18-crown[6]ether 

Yield: 59.0 mg, 0.18 mmol, 84 % (of 0.22 mmol) 

TLC (CH2Cl2 9:1 MeOH): Rf = 0.06 – 0.09 

1H-NMR (400 MHz, CDCl3, 298 K) δ: 3.98 (bs, 4H, (CH2)2N(CO)R) 3.71 – 3.61 (m, 20H, 

CH2CH2O), 2.72 (s, 2H, N(CO)CH2NH2). (No NH2 signal was observed) 
 13C-NMR (101 MHz, CDCl3) δ: 159.80 (R2N(CO)R), 70.73, 70.69, 70.68, 69.84, 69.57, 

69.45, 69.19, 69.17, 69.14, 69.10 (10 × OCH2CH2), 29.48, 49.43 (2 × NCH2CH2),  

40.94 (NCOCH2NH2). 

2-aminoacetate-1-aza-15-crown[5]ether 

Yield: 44.2 mg, 0.16 mmol, 89 % (of 0.19 mmol) 

TLC (CH2Cl2 9:1 MeOH): Rf = 0.05 – 0.08 



7.1 Synthesis Procedures 

108 

1H-NMR (400 MHz, CDCl3, 298 K) δ: 3.99 (t, J = 7.4 Hz, 4H, (CH2)2N(CO)R) 3.73 – 3.58 

(m, 16H, CH2CH2O), 2.78 (s, 2H, N(CO)CH2NH2). (No NH2 signal was observed) 
 13C-NMR (101 MHz, CDCl3) δ: 159.72 (R2N(CO)R), 70.77, 70.68, 69.53, 69.47, 69.23, 

69.19, 69.11, 69.07 (8 × OCH2CH2), 29.37, 49.31 (2 × NCH2CH2), 40.84 (NCOCH2NH2). 

2-aminoacetate-1-aza-12-crown[4]ether 

Yield: 44.1 mg, 0.19 mmol, 90 % (of 0.21 mmol) 

TLC (CH2Cl2 9:1 MeOH): Rf = 0.05 – 0.11 

1H-NMR (400 MHz, CDCl3, 298 K) δ: 4.05 (t, J = 7.3 Hz, 4H, (CH2)2N(CO)R) 3.74 – 3.65 

(m, 12H, CH2CH2O), 2.73 (s, 2H, N(CO)CH2NH2). (No NH2 signal was observed) 

13C-NMR (101 MHz, CDCl3) δ: 159.69 (R2N(CO)R), 70.71, 70.63, 69.57, 69.51, 69.17, 

69.03 (6 × OCH2CH2), 29.42, 49.29 (2 × NCH2CH2), 40.79 (NCOCH2NH2). 

7.1.4 Crown-Ether Functionalization of GO or RGO 

Modification of C. Shan et al.184 

 

Aqueous dispersion (10 mL) of GO or RGO adjusted to 1 mg/mL was prepared. A solution 

of 2-amino-crown-ether (0.05 mmol) in H2O (0.5 mL) was then added to the dispersion under 

vigorous stirring for 30 min. KOH(aq 8 M) (0.25 mL) was added adjusting pH to ≈ 12, the pH 

adjusted dispersion was heated to 60 °C and stirred overnight. The dispersion was then cooled 

to room temperature, centrifuged at (12000 RPM, 18192 g, 20 min) and washed twice by 

centrifugation with H2O (2 × 10 mL). After the third centrifugation the sediment was 

redispersed in H2O (10 mL) and dialyzed in H2O (27 × 100 mL) over a week using 

Spectra/Por membranes MWCO 12 000 – 14 000. 

This procedure was also successfully scaled up to 100 mL dispersion.  
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7.1.5 Graphene Oxide Reduction: Alkaline  

Modification of X. Fan et al.157 

 

Aqueous dispersion (10 mL) of GO or functionalized GO adjusted to 1 mg/mL was prepared 

and heated to 80°C. KOH(aq 8 M) (1.5 mL) was added to the heated dispersion adjusting pH to 

≈ 14. The dispersion was stirred for 6 hours before cooling to room temperature, centrifuged 

at (12000 RPM, 18192 g, 20 min) and washed twice by centrifugation with H2O (2 × 10 mL). 

After the third centrifugation the sediment was redispersed in H2O (10 mL) and dialyzed in 

H2O (27 × 100 mL) over a week  using Spectra/Por membranes MWCO 12 000 – 14 000. 

This procedure was also successfully scaled up to 100 mL dispersion. 

7.1.6 Graphene Oxide Reduction: Ascorbic Acid 

Modification of J. Zhang et al.153 

 

Aqueous dispersion (10 mL) of GO or functionalized GO adjusted to 1 mg/mL was prepared. 

L-ascorbic acid (0.57 mmol ,100 mg) was added to the dispersion under vigorous stirring 

overnight. The dispersion was then centrifuged at (12000 RPM, 18192 g, 20 min) and washed 

twice by centrifugation with H2O (2 × 10 mL). After the third centrifugation the sediment 

was redispersed in H2O (10 mL) and dialyzed in H2O (27 × 100 mL) over a week using 

Spectra/Por membranes MWCO 12 000 – 14 000. 

7.1.7 Graphene Oxide Reduction: Zn/H3O+ 

Modification of X. Mei and J. Ouyand155 

 

Aqueous dispersion (10 mL) of GO or functionalized GO adjusted to 1 mg/mL was prepared. 

HCl(aq 37%) (dropwise) was used to adjust pH to ≈ 2. Zn powder (50 mg) was then added to 

the stirred dispersion. After 1 hour excess Zn powder was dissolved by added HCl(aq 37%)  

(1 mL). The dispersion was then cooled to room temperature, centrifuged at (12000 RPM, 

18192 g, 20 min) and washed twice by centrifugation  with H2O (2 × 10 mL). After the third 

centrifugation the sediment was redispersed in H2O (10 mL) and dialyzed in H2O  

(27 × 100 mL) over a week using Spectra/Por membranes MWCO 12 000 – 14 000. 
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7.1.8 Silyl Protection of Glycol Linker 

 

2-(2-aminoethoxy)ethan-1-ol (5 mL, 5.24 g, 50 mmol) and imidazole (8.51 g, 125 mmol) 

were dissolved in anhydrous THF (50 mL). t-Butylchlorodimethylsilane 50% in toluene  

(20 mL, 8.7 g, 57.7 mmol) was added slowly over 30 min and the reaction left to stir  for an 

additional 90 min. H2O (100 mL) was added and pH adjusted with NaOH (aq 1M) to pH ≈ 5. 

2-(2-((t-Butyldimethylsilyl)oxy)ethoxy)ethan-1-amine was extracted with CH2Cl2  

(5×20 mL) and the solvent removed in vacuo giving a colourless oil (8,89 g, 40.5 mmol,  

81 %) 

1H-NMR (400 MHz, CDCl3, 298 K) δ: 3.94 (bs, 2H), 3.66 (t, J = 5.1 Hz, 2H, Si–O–CH2), 

3.45 – 3.39 (m, 4H, 2×O–CH2), 2.78 (t, 5.1 Hz, 2H, N–CH2), 0.78 (s, 9H, 3×C–CH3),  

−0.04 (s, 6H, Si–CH3). 

 13C-NMR (101 MHz, CDCl3) δ: 72.88, 72.39 (2×O–CH2), 62.65 (Si–O–CH2),  

41.60 (N–CH2), 25.86 (3×C–CH3), 18.31 (C–CH3) −5.31 (Si–CH3). 

7.1.9 GO functionalization: Through Nucleophilic Approach 

Modification of R. Kumar et.al.256 

 

GO (0.5 g) (either aqueous or anhydrous) was centrifuged to remove most solvent followed 

by drying in vacuo for 10 days. It was then grinded in a mortar, (0.1 g) redispersed in 

anhydrous THF (100 mL), and ultra-sonicated for 30min, then centrifuged and redispersed 

in anhydrous THF (100 mL). This process was repeated five times, followed by drying the 

GO in vacuo. 

Dried GO (80 mg) was dispersed in anhydrous THF (75 mL) and sonicated for 30 min.  

N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.3 g, 1.56 mmol), 

hydroxybenzotriazole (0.59 g, 4.36 mmol), and N,N-diisopropylethylamine (1.4 mL, 1 g, 8 

mmol) were dissolved in anhydrous THF (5 mL) and added over 5 min. After 24 hours, the 

reaction mixture was centrifuged (12000 RPM, 18192 g, 20 min), redispersed in anhydrous 

THF (100 mL), centrifuged, and used as crude product in next synthesis step (section 7.1.11 

page 111). 
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7.1.10 GO functionalization: Isocyanate  

Modified combination of H.-J. Knölker and T. Braxmeier259 and S. Stankovich et al.185 

 

GO (0.5 g) (either aqueous or anhydrous) was centrifuged to remove most solvent followed 

by drying in vacuo for 10 days. It was then grinded in a mortar, (0.1 g) redispersed in 

anhydrous THF (100 mL), and ultra-sonicated for 30min, then centrifuged and redispersed 

in anhydrous THF (100 mL). This process was repeated five times, followed by drying the 

GO in vacuo. 

Glycol reaction mixture: 2-(2-((t-Butyldimethylsilyl)oxy)ethoxy)ethan-1-amine  

(3.4 g, 15.5 mmol) and 4-(dimethylamino)pyridine (1.9 g, 155.5 mmol) were dissolved in 

anhydrous THF (50 mL), di-t-butyl dicarbonate (3.65 mL, 3.55g, 16.26 mmol) was added 

over 10 min, the reaction mixture left stirring 8 hours.  

Dried GO (80 mg) was dispersed in anhydrous THF (55 mL) and sonicated for 30 min. The 

glycol reaction mixture (25 mL) was added to the dispersion and left stirring overnight. The 

dispersion was centrifuged (12000 RPM, 18192 g, 20 min), redispersed in anhydrous THF 

(100 mL), centrifuged and used as crude product in next synthesis step (section 7.1.11 page 

111). 

7.1.11 GO Reduction: NaBH4 

Modification of H.-J. Shin152 

 

Functionalized GO (≈ 80 mg) was dispersed in anhydrous THF (80 mL), NaBH4 (0.25 g, 

6 mmol) added, and the reaction mixture left stirring for two hours, before being centrifuged 

(12000 RPM, 18192 g, 20 min). The solid was then redispersed in anhydrous THF (100 mL), 

centrifuged and used as crude product in the next synthesis step (either section 7.1.12 page 

112 or section 7.1.13 page 112). 
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7.1.12 Silyl Deprotection  

Modification of E.J Corey and A. Venkateswarlu260 

 

Silyl protected functionalized RGO (≈ 80 mg) was dispersed in anhydrous THF (80 mL) and 

Tetra-n-butylammonium fluoride (1.02 g, 3.9 mmol) added. The reaction mixture was left 

stirring 1 hour, before being centrifuged (12000 RPM, 18192 g, 20 min). This was followed 

by redispersion in anhydrous THF (100 mL) and centrifugation and then used as crude 

product in next synthesis step (section 7.1.13 page 112). 

7.1.13 Mitsunobu Reaction 

Modification of C. Besset257 

 

Hydroxyl functionalized RGO (≈ 80 mg) was dispersed in anhydrous THF (60 mL) and 

cooled to 0 °C in an ice bath. NaN3 (1.3g, 20 mmol) was dissolved in anhydrous THF 10 mL. 

Anhydrous NaSO4 (≈ 4g) and then H2SO4(conc. 96%) (1 mL) was added and stirred for 30 min. 

This in situ HN3 solution was added through a filter syringe to the RGO dispersion. 

Diisopropyl azodicarboxylate (0.8 g, 4 mmol) and Triphenylphosphine (1.05g ,4 mmol) were 

dissolved in anhydrous THF and added to the RGO dispersion and stirred for 24 hours in 

which time the cooling bath was allowed to heat to room temperature. The dispersion was 

then centrifuged (12000 RPM, 18192 g, 20 min), redispersed in anhydrous THF (100 mL), 

centrifuged dispersed in H2O (5×100 mL) and centrifuged again. The whole process was 

repeated 5 times. Finally, the Azido-RGO was dispersed in (60 mL) 1 mL was removed to 

measure the concentration by drying over 7 days while the rest was dialyzed in H2O  

(27 × 600 mL) over a week using Spectra/Por membranes MWCO 12 000 – 14 000. After 

dialysis the concentration of the dispersion was diluted to 1 mg/mL. 
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7.1.14 CuAAC Coupling Reaction with Ferrocene  

 

Ethynylferrocene (5 mg, 24 µmol) was dissolved in DMF (2 mL). CuSO4 (4 mg, 24 µmol) 

and sodium ascorbate (23.7 mg, 120 µmol) were dissolved in H2O (1 ml) and azido-RGO 

dispersion (1 mL, 1mg/mL). The three solutions/dispersions were mixed and stirred for 24 

hours. Ferrocene functionalized RGO was then centrifuged (12000 RPM, 18192 g, 20 min) 

and washed by redispersion followed by centrifugation first in DMF (5×5 mL), then in H2O 

(5×5 mL), and finally it was redispersed in H2O (1 mL) and dialyzed in H2O (27 × 10 mL) 

over a week using Spectra/Por membranes MWCO 12 000 – 14 000.   

7.1.15 CuAAC Coupling Reaction with TTF-Calix[4]pyrrole 

 

TTF-calix[4]pyrrole X (10 mg, ≈ 5 µmol) was dissolved in DMF (3 mL). CuSO4 (4 mg, 24 

µmol) and Sodium ascorbate (23.7 mg, 120 µmol) were dissolved in H2O (1 ml) and azido-

RGO dispersion (1 mL, 1mg/mL). The three solutions/dispersions were mixed and stirred for 

24 hours. TTF-calix[4]pyrrole functionalized RGO was then centrifuged (12000 RPM, 

18192 g, 20 min) and washed by redispersion followed by centrifugation first in DMF  

(5×5 mL) and then in H2O (5×5 mL). It was finally redispersed in H2O (1 mL) and dialyzed 

in H2O (27 × 10 mL) over a week using Spectra/Por membranes MWCO 12 000 – 14 000. 
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7.2 Electrochemical Procedures  

Potentiometric studies were carried out using a CHI Model 700C general-purpose 

potentiostat. Other electrochemical measurements were carried out using a Autolab 

PGSTAT12 system. All electrochemical experiments were performed under Ar atmosphere 

with vigours degassing for 30 min prior to experiment. 

 

7.2.1 Functionalization of Glassy-Carbon Electrode 

A glassy carbon electrode with a surface area of 7 mm2 was polished with 1.0 µm, 0.3 µm 

and 0.05 µm alumina slurry and ultra-sonicated in H2O 2×5 min and blow-dried with N2. 10 

– 15 µL of a functional material in aqueous solution was drop cast onto the electrode surface 

and dried. For potentiometric studies drying was done overnight, for all other studies the 

electrode was dried 30 – 60min in vacuum immediately prior to use.  

7.2.2 Screen-Printed Electrode Measurements 

The DropSense 150 electrodes used consist of 4 mm diameter carbon working, Pt counter 

and Ag reference electrodes. 

Functionalization: The electrode was rinsed with ethanol and H2O, and then air-dried. 15 µL 

of 1 mg/mL aqueous dispersion was drop cast on the working electrode and dried overnight. 

Measurement: A DropSense connection box was used to connect working, counter and 

reference electrode. The OCP of 50 µL of 0.1 M NaNO3 solution was first measured and 

recorded, and the electrode then rinsed lightly with H2O. 8.5mg NaNO3 was added to 1 mL 

of the sample of interest, 50 µL drop cast on the electrode and OCP was measured recording 

the change from first measurement. 

7.2.3 Fabrication of a S-D Device 

Preparation of S-D device: 3.8×1.8 cm2 glass plates were cut and cleaned by ultra-sonication 

in ethanol and H2O. A metallic mask (Figure 88B) was then immobilized over the centre of 

the glass. A layer of Chromium acting as glue between gold and glass was sputtered onto the 

glass followed by three layers of gold. A 3mm O-ring was placed over the gap between the 

two gold electrodes and 100 µL 0.5 mg/mL RGO material drop cast in the O-ring and dried 

overnight.  
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Figure 88: A) schematic of electrochemical system; B) dimensions of mask used to cover part of 

the glass slide during sputtering. 

Measurements: The O-ring used for depositing RGO-film was exchanged for a 5 mm O-ring, 

a 1 mL glass reservoir was fixed over the O-ring, and an Ag/AgCl reference electrode was 

inserted into the electrolyte solution Figure 88A.  

7.3 Other Experimental Procedures 

7.3.1 XPS  

Sample preparation: HPS Si Wafer (Topsil: 334110000525013) was cut into 5×5 mm2 sample 

plates rinsed in acidic piranha (3 H2SO4 : 1 H2O2) Caution! The piranha solution is extremely 

dangerous and should be handled with caution; in some circumstances, most commonly when 

it has been mixed with a significant amount of oxidizable organic material, it has detonated 

unexpectedly. The XPS sample was then drop cast onto the sample plate and dried in vacuo. 

This drop casting process was repeated four times to ensure coverage of the silicon plate.  

Measurement: Before measurement the samples were degasses in pre-analysis chamber at 

10−5 bar for at least 30 min. XPS was then recorded on Thermo Scientific X-ray photoelectron 

spectrometer with an Al K-Alpha (1486 eV) X-ray source. The X-ray spot area is set to 400 

µm and a flood gun used for charge compensation.  

The following settings where used for recording of the different spectra: 

1) Survey (pass energy 2000 KeV, energy step 1 KeV, scans 4, dwell time 50 s) 

2) Si2p (pass energy 50 KeV, energy setp 0.1 KeV, scans 2, dwell time 50 s) 

3) S2p (pass energy 50 KeV, energy step 0.1 KeV, scans 2 or 10, dwell time 50 s) 

4) C1s (pass energy 50 KeV, energy step 0.075 KeV, scans 12, dwell time 50s) 

5) N1s (pass energy 50 KeV, energy step 0.075 KeV, scans 12, dwell time 50s) 

6) O1s (pass energy 50 KeV, energy step 0.1 KeV, scans 6, dwell time 50s) 

7) Fe2p (pass energy 50 KeV, energy step 0.1 KeV, scans 10, dwell time 50s) 
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Two scans were used for S2p in samples where S is not presumed to be present and ten scans 

in samples where S is presumed to be present; Fe2p was only measured for ferrocene 

functionalized RGO samples. 

Data processing: All data were processed in the program Thermo Avantage v4.88 where 

survey analysis of elemental composition, and the specific orbital spectra were deconvoluted.  

7.3.2 AFM  

Sample preparation: 1×1 cm2 mica sample plates were mounted on magnets for easy mounted 

on AFM setup, and then the top layer was peeled off using scotch tape, before 50 µL sample 

was drop cast onto the mica, usually 3 different concentration of each material was used for 

drop casting.  

Imaging: AFM Images were recorded in the contact mode using an Agilent SPS 5500 

instrument in open loop setup with an Agilent multipurpose scanner 90 µm × 90 µm 

equipped. The tip was a Bruker DNP-S tip with a force constant of ≈ 0.35 N/m and ≈ 10 nm 

tip radius according to the manufacturer. Picoview V.14.4 was used as imaging software. 

Data processing: Pico Image Basic V.6.2 was used to prepare images where several 

operations were used: 1st order leveling in the form of Plane leveling defined by three points; 

2nd order leveling in the form of 2nd order polynomial form removal (only needed for large 

area sample >10×10 µm); systematic scanning artifact reduction in the form of Line 

correction in scanning direction; and denoising by median Spatial filtering. 
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