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Abstract.

It has been theoretically suggested and experimentally demonstrated that fast

and low-cost sequencing of DNA, RNA, and peptide molecules might be achieved

by passing such molecules between electrodes embedded in a nanochannel. The

experimental realization of this scheme faces major challenges, however. In realistic

liquid environments, typical currents in tunnelling devices are of the order of picoamps.

This corresponds to only six electrons per microsecond, and this number affects the

integration time required to do current measurements in real experiments. This limits

the speed of sequencing, though current fluctuations due to Brownian motion of the

molecule average out during the required integration time. Moreover, data acquisition

equipment introduces noise, and electronic filters create correlations in time-series data.

We discuss how these effects must be included in the analysis of, e.g., the assignment of

specific nucleobases to current signals. As the signals from different molecules overlap,

unambiguous classification is impossible with a single measurement. We argue that

the assignment of molecules to a signal is a standard pattern classification problem

and calculation of the error rates is straightforward. The ideas presented here can be

extended to other sequencing approaches of current interest.

Keywords: DNA, sequencing, electron tunneling, pattern classification, molecular

signature, biosensing.
Submitted to: Nanotechnology

1. Introduction

Identification and sequencing of single DNA, RNA, and peptide molecules is a key step in

many diagnostic protocols. Electronic sequencing of nucleobases and nucleic acids with

nanopores or nanogaps has received growing interest as an alternative to optical methods
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Figure 1. (a) Schematic of DNA passing through a nanopore with embedded

electrodes forming a nanogap. (b) Electrons tunnel between the electrodes via the

nucleotide in the gap and produce a nucleotide-specific current I versus time t. (c)

Here p(I|X) is the probability density for measuring the current value I, given that

the nucleotide is X, where X is one of the four bases A, T,G, and C. Current signals

from different nucleotides overlap, which prevents unambiguous classification [with a

single current measurement].

in the last two decades [1–4]. Nanopore sequencing, as originally conceived, records the

ionic current through a nanopore that is partially blocked by a nucleotide and attempts

to identify that nucleotide from its degree of blocking. However, due to the thickness

of the nanochannels employed and the longitudinal direction of the ionic current probe,

single-base resolution is difficult to achieve with this approach [1, 2]. For this reason, a

complementary concept (“quantum sequencing” [5]) has been suggested, based on the

specific molecular fingerprints in the transverse tunneling current that passes through

the nucleotide when the latter passes between two electrodes in a nanochannel [5–7], see

figure 1(a).

With a break-junction as the electrode pair, single nucleotides have been identified

experimentally by their respective transverse tunnelling currents [8, 9]. In addition,

quantum sequencing has been used for identification of methylated DNA bases [10],

for detection of post-translational modifications in single peptides [11], and for single-

molecule spectroscopy of individual amino acids and peptides [12].

Current signals from single nucleotides have also been measured with a scanning-

tunneling microscope (STM) [13]. With a functionalized STM tip, the individual

nucleotides in a DNA oligomer have been read [14]. Nucleotides have also been identified

with a fixed-gap device [15], and DNA molecules have been detected with nanowire-

nanopore field-effect transistor sensors [16]. In all cases, the current signal was noisy and

with step-like features, and a statistical analysis was required to get the actual sequence

information, to determine the type of nucleotide, or just to detect a translocation

event [17,18].

In addition to these experimental efforts, simulations were found useful for

testing alternative realizations of electronic nucleotide identification and nanopore

sequencing [6, 7, 19–28]. One such alternative, e.g., measures changes in the current in

a graphene nanoribbon while a DNA string passes through a hole in the ribbon [22,27].

The experimental relevance of these simulations depends on the magnitude of



Classification of DNA nucleotides with transverse tunneling currents 3

the currents that can be measured experimentally—specifically, it depends on the

integration time (bandwidth) required to obtain a signal that stands out well enough over

noise and filtering effects to distinguish between different nucleotides. This is a critical

issue for any type of sequencing protocol that employs either transverse tunnelling or

longitudinal ionic currents.

The present article discusses the subtleties related to the connection between

theoretical ideas and simulations with actual experiments. In section 2, we describe

how the transverse current through individual nucleotides is simulated. Then we

discuss the magnitude of the average current, the amplitude of current fluctuations,

and the correlation time of current fluctuations. The correlation time is, interestingly,

even shorter than the average waiting time between electrons tunneling through the

nucleotide.

Tunneling currents are typically very small so that long integration times are needed

to measure them in actual experiments. The reason is charge quantization: A current

of 1 pA amounts to six electrons per microsecond, on average. Consequently, narrowly

defined current values can be measured only with integration times much longer than

microseconds. This limits the time resolution of current measurements, which can be

ameliorated by multiplexing with several pairs of electrodes [29].

As a result, the integration time of data acquisition in a realistic experiment is

long enough that current fluctuations due to thermal motion of nucleotides average

out in a realistic recorded signal (section 3). Electronic noise, however, broadens the

distribution of currents recorded for a given nucleotide, so current distributions for

different nucleotides overlap (see figure 1(b,c) and section 4).

Electronic filters in the data acquisition system also affect the distribution of

recorded currents and autocorrelate the time series of recorded currents (section 5).

We show in section 6 how to assign a nucleotide to a current signal and that the

autocorrelations play an important role in the assignment. Finally, in section 7 we

compare the error rates of nucleotide assignment for simulated data with and without

autocorrelations.

Throughout this article we consider only simulations of the transverse tunneling

current through the four nucleotides A, T , G, and C. The analysis presented here is

nevertheless also valid for other types of sensors that produce weak, overlapping current

signals.

2. Magnitude and correlations of simulated current values

Nanopore experiments take place in a liquid environment at ambient temperature [5].

These conditions make simulations of the current through a single nucleotide both time

consuming and computationally expensive [7] as they do not only involve the nucleotide

of interest, but also the degrees of freedom of the surrounding molecules of the liquid.

In previous work by one of us (MDV), the following protocol was used for simulating the

transverse current through a single nucleotide as it passes through a nanopore [7,20]: The
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molecule is driven by a driving field into the nanopore where the electrodes are placed.

Then the driving field is reduced and the transverse field is turned on. The molecule

moves due to the electric fields and the thermal motion caused by interactions with the

surrounding water molecules. This motion is described by molecular dynamics (MD)

simulations with a time resolution of 1 fs. The femtosecond timescale is also the timescale

for a typical electron transport time through the trapped molecule. Each picosecond the

motion is frozen and a tight-binding Hamiltonian is set up which describes the coupling

between the electrodes, the liquid and the DNA molecule. The steady-state current is

calculated using a single-particle scattering approach with an applied bias of less than

1 V. Then the molecule is released for another time interval of one picosecond and the

procedure is repeated many times (on the order of 4000 to 5000 times).

Figure 2 shows an example of a current trace for the nucleotide A, and histograms

of the current values for all four nucleotides are shown in figure 3 as obtained in

reference [29]. We here plot the log-current probability distributions p(Ĩ|X) with

Ĩ = log10(I/Amp), and where X ∈ {A, T,G,C} denotes the four types of nucleotides.

That is, the probability distributions for the current I is p(I|X) = (dĨ/dI)p(Ĩ|X) =

p(Ĩ|X)/(I ln 10).

Notice that the current distributions span six orders of magnitude; from 10−15 Amp

to 10−9 Amp (see figure 3). Table 1 shows the corresponding expected values µX and

standard deviations σX for the current probability density distributions of figure 3. In

experiments with mechanically controlled break-junctions, the transverse current signal

from individual nucleotides was in the range ∼1–100 pA [8] and thus comparable to the

expected values of the simulated currents, such as those shown in figure 2‡.
In the simulations, the contacts to the nucloetides are modelled as gold elec-

trodes [7,20]. Due to the presence of water, the tunneling barrier is considerably reduced:

to about 1 eV from the gold work function of about 4.5 eV. Other electrodes, such as Pt,

can be (and are currently) used in experiments without much qualitative change in the

distributions. For a detailed discussion of the current calculations, see references [6,7,20].

We next take advantage of the simulation times up to 1500 ps in the simulations

of individual nucleotides in the nanopore. Although it is not possible to reach the

experimentally relevant sampling times, which are of the order of micro- or miliseconds

(see below), we can extract the relevant time scales without approximate solutions for

times longer than picoseconds [30].

Current values calculated at different time points are not independent, and

the correlations in the signal are quantified with the autocovariance Rcurr
X (k, `) ≡〈

(IXk − µX)(IX` − µX)
〉
, where Ik is the simulated current at the time point tk = k∆tcurr

with ∆tcurr = 1 ps §. Figure 4 shows the autocovariance for the nucleotide A. The

‡ In typical measurements of the ionic current through a nanopore, the current is in the range of

hundreds of nA.
§ See SI for how to calculate the autocovariance from data.
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Figure 2. Current value as function of time for the nucleotide A. Note the large

range of values. The current through the nucleotide is calculated each picosecond, but

some data points are missing due to lack of convergence in the calculation (see SI for

details).
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Figure 3. Histograms of the probability distributions p(Ĩ|X) for the log-current values

Ĩ = log10(I/Amp) for the four different nucleotides (same as figure 2 in reference [29]).

Dashed vertical lines mark points on the current axis where one distribution replaces

another at being the one with the highest probability density. The colored arrows

show the ranges, DX (X ∈ {A, T,G,C}), of current values in which nucleotide X is

indicated by a single measured current value (m = 1, where m is the number of current

measurements).
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Figure 4. Autocovariance of the current values shown in figure 2. The black curve

shows the exponential decrease for time lags τ larger than 1 ps. Its characteristic

time is τA = 44 ps. Notice that the black curve is not a fit to the data shown,

because these data values are autocorrelated. Instead, the parameter τA of the

exponential autocorrelation function was determined by fitting the Fourier transform

of the autocorrelation function to the power spectrum of the data shown here (Wiener-

Khinchin theorem; see SI for details).

autocovariance is consistent with a process with two time-scales‖,
Rcurr
X (k, `) = σ2

X(w0,Xδk,`

+
[
1− w0,X

]
e−|k−`|∆tcurr/τX ), (1)

where σ2
X is the total noise-variance. The first term in equation (1) describes the

total contribution from all processes with correlation times much shorter than the time

between recordings, ∆tcurr = 1 ps, i.e., correlation times too short to be resolved. The

second term is exponentially decreasing with a characteristic time-scale τX . Fitted

values for the parameters of RX(k, `) are given in table 1 for all four nucleotides. The

parameter w0,X is the weight factor for processes with correlation times too short to

be resolved. It falls in the range from 0.70 to 0.94. Thus most correlations are too

brief to be resolved, probably due to reorientation of the water molecules in the solvent,

which happens on a time scale of tens of femtoseconds. The longer-lasting correlations

decrease exponentially in time with a characteristic time scale τX in the range 14–80 ps.

Correlations in the current on the longer time-scale are most likely caused by the motion

of the nucleotide between the electrodes.

Figure 5 shows a schematic of the time scales in the simulation. These are: the

time step in the MD-simulations, ∆tMD = 1 fs, the time interval between consecutive

‖ The black curve in figure 4 is not obtained from a fit with the expression in equation (1), but from

a fit to the corresponding power spectrum (see the SI for details).
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Figure 5. Schematic of the various time scales in the simulations of transverse

tunneling currents through nucleotides. The time scales are the time step in MD-

simulations ∆tMD, the time interval between consecutive recordings of the current

∆tcurr, the correlation times in current traces τ , the average waiting time between

electron tunneling ∆twait, and the sampling time in an experiment ∆ts.

Table 1. Expected values µX and standard deviations σX of the current for the

four nucleotides X ∈ {A, T,G,C} for the current distributions shown in figure 3. The

correlation time and weight factors are from fits of the experimental periodigrams to the

theoretical power spectrum corresponding to the autocovariance stated in equation (1).

Error bars on w0,X are less than 5% of the fitted values and thus not stated.

X µX [pA] σX [pA] τX [ps] w0,X

A 48 41 44± 5 0.70

T 0.30 0.73 80± 40 0.92

G 4.0 3.2 60± 20 0.85

C 1.3 2.0 14± 7 0.94

recordings of the current ∆tcurr = 1 ps, and the correlation times in current traces

τX ∼ 40–70 ps. Furthermore, for a current of 1 pA, the average waiting time, ∆twait,

between electrons is ∼ 0.1µs; more than a 1000 times longer than the correlation time.

Consequently, the measured currents are not affected by the thermal motion of the

molecule, and the correlations in the calculated current signal cannot be measured ex-

perimentally. We elaborate on this finding in the next section.

3. Connecting simulated current values with experimental recordings

A current measured experimentally cannot be detected instantaneously but requires

that the number of electrons passing through a surface is recorded over a finite time

interval. That is, the current IXmes,i measured at discrete time points ti = i∆ts is the

number of electrons N passing through the nucleotide X from time ti−∆ts to ti divided

by the length of the interval (IXmes,i = N/∆ts). Here, we argue that the uncertainty in

the measured current is caused by two effects. The shot noise due to the discreteness of

electrons, and the correlation time between current values. For the simulations consid-

ered here, we demonstrate that the uncertainty in the measured current is dominated

by shot noise.
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First, the low current values (fA to nA) set a lower limit on the experimental

sampling time ∆ts. With the assumptions of an ideal detector and no correlations

between events of electron tunneling, the latter events satisfy Poisson statistics, so a

recording with an expected value of 〈N〉 electrons in the time interval ∆ts will have a

relative uncertainty on the number of measured electrons of 1/
√
〈N〉. This uncertainty

is due to shot noise.

Suppose we aim for an uncertainty of 3 %, which requires 〈N〉 = 1000. A current

signal of the order of picoamperes corresponds to an expected value of approximately

107 electrons passing through the nucleotide per second. Thus, a measurement time

of approximately 10−4 s = 0.1 ms is needed to detect 1000 electrons on average. A

sampling time ∆ts = 0.1 ms gives a sampling frequency fs = 1/∆ts = 10 kHz¶.

Similarly, detection of currents in the nanoamp-regime requires sampling frequencies

of at most MHz. Higher sampling frequencies require larger currents. Thus, it seems of

questionable relevance to analyze simulated current spikes with durations down to a few

picoseconds and a current signal in the nanoamp-regime. Increased sampling frequency

also leads to increased thermal noise, as we discuss in section 4.

Next, we consider the uncertainty in the measured current due to its auto-correlated

variation caused by the thermal motion of the nucleotide. Mathematically, the current

value IXmes,i recorded for nucleotide X and associated with the point in time ti = i∆ts is

IXmes,i =
1

∆ts

∫ ti

ti−∆ts

dt IX(t), (2)

where IX(t) is the steady-state current for the configuration of the system at time t (see

above). As IX(t) is fluctuating, the measured current IXmes,i is a stochastic variable. It

can be characterized by its expected value and its standard deviation. The expected

value of the measured current is
〈
IXmes,i

〉
=
〈
IX(t)

〉
= µX . The standard deviation of

the measured current depends on the correlations in the current due to the dynamics

of the molecule itself and the motion of the surrounding water molecules. With the

autocovariance defined in equation (1), the variance of the measured current is (for

details, see SI)

σ2
mes,X ≡

〈(
IXmes,i − µX

)2
〉

' σ2
X

[
∆tcurr

∆ts
w0,X + (1− w0,X)

2τX
∆ts

]

' (1− w0,X)
2τX
∆ts

σ2
X , (3)

where we used in the last two lines that the sampling time is much longer than the

correlation time ∆ts � τX � ∆tcurr. For a sampling frequency of 10 kHz and a

correlation time of, say, 50 ps, the prefactor is 2τX/∆ts ∼ 10−6. So the standard

deviation of the measured current is σmes,X ∼ 10−3σX , which for the present data is of

¶ A sampling frequency of 10 kHz is ten times the sampling frequency in the break-junction experiments

in reference [8].
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the order of, or less than, femtoamps. That is, the relative uncertainty of the measured

current due to the thermal motion of the nucleotide is σmes,X/µX ∼ 10−3, which is much

lower than the relative uncertainty due to shot noise. Thermal motion of the nucleotide

thus does not affect experimental measurements.

According to table 1, the minimum distance between the expected current val-

ues |µX − µX′ | for X 6= X ′ is approximately 1 pA; much larger than σmes,X , or, e.g.,

the 3 % relative uncertainty caused by shot noise for 〈N〉 = 1000. Consequently, an

ideal measurement could easily distinguish between the four types of nucleotides as the

distributions of the measured currents are nonoverlapping. That is, neither the configu-

rational changes of the nucleotide and the surrounding water molecule nor the shot noise

can explain the overlapping distributions seen in experiments. Furthermore, an ideal

experiment would only be able to estimate the expected values, µX , of the simulated

current probability distributions in figure 3, not the actual shapes of the distributions.

Finally, we notice that even though the molecule in the simulation goes through

many different configurations during a given measurement, we do not know how much of

its phase space is sampled. The molecule could be trapped in a local minimum and only

sample a fraction of all possible minima. Therefore simulations should be performed for

different initial configurations, and the dependence on the initial conditions should be

investigated.

In section 4 we discuss the role of the thermal noise and in section 5 how filters

change the current distributions for the case where the width of the distributions are

not made negligible by the time-averaging in equation (2).

4. Experimental noise

Noise is unavoidable in real measurements. It causes current distributions to overlap

and must be accounted for in order to avoid ambiguous classifications of the signal.

Previous work has characterized the noise in the ionic current through a solid-state

nanopore in a SiN membrane [31] and through graphene nanopores [32]. Both cases

show a 1/f -distribution at low frequencies. Reference [33] characterized the noise in

the voltage across a gold-wire break-junction in vacuum at room temperature. Both in

the presence and absence of a molecule in the junction, at high frequencies the power

spectrum of the voltage is identical to the spectrum of thermal (Johnson-Nyquist) noise.

Thermal noise is inevitable in electronic circuits and is due to the thermal voltage

fluctuations in a resistor [34]. It causes a Gaussian distributed white noise with standard

deviation

σth =

√
4kBT∆f

R
. (4)

Here, ∆f is the frequency bandwidth within which the current is measured, and R is

the resistance of a load resistance put in series with the molecular junction. Notice
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Figure 6. Illustration of the distributions of the measured currents for the four

different nucleotides. The expected values are taken from table 1 and the widths

are due to an added experimental noise with vanishing expected value and standard

deviation σnoise = 5 pA. As σnoise is larger than the expected value of the current for

the nucleotides T , G, and C, negative current values occur for these nucleotides.

in particular how a decreased sampling time increases the thermal noise if the total

measurement time tmsr is kept unchanged (∆f = fNyq − 1/tmsr ' fNyq = 1/(2∆ts)).

Equation 4 describes a system in equilibrium, while the noise increases if a DC voltage

is applied. For measurements with nanogaps in a liquid environment, the standard

deviation of the measured background signal was 10 pA for a load resistance of 10 kΩ

and a bandwidth ∆f ' 1/(2∆ts) = 0.5 kHz [8]. Thus the estimate for the standard

deviation of the thermal noise before filtering is ∼ 30 pA. Electronic lowpass filters

reduce this noise amplitude, however (see section 5).

Figure 6 illustrates this situation with normal distributions with expected values

given by µX in table 1 and with standard deviations σnoise = 5 pA. That is, we assume

that the noise is normal distributed and added to the signal from the molecule. The dis-

tributions show clear overlaps for X = T,G, and C, as σnoise is larger than the distance

between the expected values. Current signals from the base A are well separated from

the other values, making this nucleotide easily distinguishable. We use the distributions

in figure 6 when we discuss nucleotide assignment and the corresponding error rates in

sections 6 and 7, respectively.

5. Influence of electronic filters

Electronic lowpass filters are indispensable for measurements of small currents. They

reduce the noise in measurements, but they also modify the shape of spikes in the signal.

This effect is well-studied for the higher-order Bessel filters often used in patch-clamp

techniques [35] and in measurements of the ionic blockade in nanopores [36] (see, e.g.,

references [35] and [37] for an introduction to random data and filters). Filters also
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change the distribution of the measured current values, which must be considered when

comparing measured and simulated currents (figure 7). Finally, filters introduce au-

tocorrelations in the signal. An autocorrelated time series of current measurements

contains less information than an uncorrelated series with the same variance, and thus

gives higher error rates for the nucleotide assignment. The latter point is addressed in

section 7.

Linear filters change an incoming signal by outputting a weighted sum over input

values. Described in continuous time,

Iout(t) =

∫ ∞

−∞
dt′h(t− t′)Iin(t′), (5)

where Iin/out is the current before and after the filter, respectively, and the weight factor

h(t) is the filter’s transfer function. For a causal system h(t) = 0 for t < 0. The Fourier

transform of the transfer function is the frequency response function H(f). Since a

factor 2 is very nearly 3 dB, the frequency at which |H(f)|2 = 1/2 is denoted by f3dB.

It is also called the critical frequency and denoted by fc. In experiments, fc-frequency

is typically chosen as a fraction of the Nyquist frequency fNyq = 1/(2∆ts).

A discrete linear filter relates discrete inputs to outputs as

Iout,i =
∞∑

j=−∞

hi−jIin,j . (6)

As an example, we here consider a simple first-order filter (0 ≤ α ≤ 1),

Iout,i = αIin,i + (1− α)Iout,i−1 . (7)

Here the output at a given point in time is the weighted sum of the simultaneous input,

Iin,i, and the output at the previous point in time, Iout,i−1. Iteration of equation (7)

gives the weight factors of the filter: hj = α(1− α)j = αej ln(1−α) = αe−j∆ts/τc for j ≥ 0

and zero otherwise, i.e., the output is an exponentially weighted superposition of the

current and all past inputs. The characteristic time scale is τc = −∆ts/ ln(1− α), and

the characteristic frequency is fc = 1/(2πτc).

Now consider an uncorrelated input signal with µ the average current and σ2
in the

variance of the input signal, i.e., 〈(Iin,i − µ) (Iin,j − µ)〉 = σ2
inδi,j. With equation (6) and

the definition of the exponential filter, the autocovariance of the output current follows,

Rout(i, j) ≡ 〈(Iout,i − µ) (Iout,j − µ)〉
= σ2

oute
−|i−j|∆ts/τc . (8)

Here we have introduced σ2
out = σ2

in
α

2−α . The first-order filter thus gives an exponentially

decreasing correlation function and lowers the value of the total variance. We use this

expression for the correlation function in section 7, where we calculate the error rates

for nucleotide assignment for correlated data.

The distribution of the recorded output relative to the input is also changed by

filters. Assume it were possible to measure the current values in figure 3 with a sampling
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Figure 7. Effect of filtering. The continuous lines (reproduced from figure 3 for

convenience) show probability distributions of simulated currents. The dashed lines

show probability distributions of filtered simulated currents (first-order filter with

fc = fNyq/4).

time as brief as the time between recordings, i.e., with ∆ts = ∆tcurr. Assume also

absence of intrinsic correlations (w0,X = 1) and a simple first-order filter with critical

frequency fc = fNyq/4, i.e., with characteristic time scale τc ' 1.27∆ts
+. Then the

distribution of the sampled current values would follow the distributions shown with

dashed lines in figure 7. The filtered distributions are smoother than the original

ones, and the standard deviations are reduced [see text below equation (8)]. In the

limit of very long characteristic times, τc � ∆ts, the distributions approach normal

distributions by force of the central limit theorem. These effects are important to keep

in mind when comparing simulation results with experimental data, as the comparison

must take into account the distortion of experimental distributions by filters. This could

be relevant, e.g., for simulations of the current through a nanoribbon with nucleotides

passing through a hole in it. Simulations show an overlap for different nucleotides [22],

but electronic filters will decrease these overlaps.

Finally, the autocovariance of experimental data is often affected both by the phys-

ical processes in the measured device and by filters in the data acquisition electron-

ics [31, 32]. If the autocovariance can be determined experimentally, it can serve as

input for the covariance matrix used when estimating the error rates.

6. Nucleotide assignment using maximum likelihood and error rates

Classification of output from biosensors (and sequencers) is often ambiguous because

output values contain a stochastic element. When probability distributions for out-

put values overlap, one cannot tell from a single measurement which input caused the

+ For a discussion of filter design and of how to choose the critical frequency, see, e.g., [35].
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output. For experimentally measured current signals the assignment is often further

complicated due to, e.g., a varying background signal. The classification problem can

then, e.g., be addressed by machine learning techniques, like Support Vector Machine

(SVM) [30,38]. For simulated data with a stable background and with the current distri-

butions for the different molecules available, we suggest to use the maximum likelihood

decision rule for nucleotide assignment as it is a straightforward and standard proce-

dure [39]. In addition, it is easy to simulate the corresponding error rates without any

adjustable parameters. In the assignment procedure, the influence of time averaging,

experimental noise, and correlations in the signal are included. We give here a basic

vocabulary for the problem of how to assign a nucleotide to a given current signal; for

a detailed introduction to pattern classification, see, e.g., reference [39].

As an example, we use the four different types of nucleotides X ∈ {A, T,G,C} and

their four associated distributions of values for the transverse tunnelling current. Let

IXm = (IX1 , I
X
2 , . . . , I

X
m ) (9)

denote the time series of m current measurements. All current values IXn stem from the

same nucleotide, so we drop the superscript X from now on. Notice that it is assumed

that the probability distribution of current values is known for each nucleotide. So given

a current signal Im = I consisting of m measurements, the task is to give an algorithm

for how to assign a specific type of nucleotide to the current signal and to determine

the error rate, i.e., the relative frequency with which the assignment is incorrect.

The current signal I is our observation. It stems from one of the four types of

nucleotides X ∈ {A, T, C,G}. The variable X denotes the ‘state of nature’. Let P (X)

denote the a priori probability for the nucleotide being X. How probable it is to observe

the signal I, will depend on the ‘state of nature,’ the value of X. So we introduce the

class-conditional probability distributions p(I|X). For our problem, these functions are

the probability distributions for values of currents (see figure 3), and they are known a

priori from the simulations. If we assume that the priors P (X) are also known, Bayes’

formula states that the relation between the prior and the posterior probabilities, i.e.,

the probability that the ‘state of nature’ is X given the observation I is

P (X|I) =
p(I|X)P (X)∑
X′ p(I|X ′)P (X ′)

. (10)

Notice the normalization condition
∑

X P (X|I) = 1. Here, we also follow the convention

in reference [39] and let the probability functions over discrete and continuous sets be

denoted by upper-case P and lower-case p, respectively.

We need a decision rule to decide which ‘state of nature’ the system was in when it

produced the current signal I. It can be shown that the decision rule which minimises

the error is Bayes’ Decision Rule [39], which amounts to choosing the ‘state-of-nature’

X with the highest a posteriori probability P (X|I). If we have no prior information

about the molecules, it is reasonable to assume that they all have the same a priori
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probability P (X) for all X. This gives the maximum likelihood decision rule, which is

to choose the X which maximizes the likelihood p(I|X), i.e.,

decide X if p(I|X) > p(I|X ′) for all X ′ 6= X. (11)

This is the decision rule we will use below. Notice how the decision rule divides the

m-dimensional space for the observable I into different domains DX , where DX is the

domain where we choose X, i.e., DX = {I | p(I|X) > p(I|X ′) for all X ′ 6= X}. This

can also be expressed as an indicator function 1DX
(I) with the properties 1DX

(I) = 1 if

p(I|X) > p(I|X ′) for all X ′ 6= X and 0 otherwise.

The different domains DX are simple to illustrate for the probability distributions

in figure 3 for the m = 1 case of a single measurement, see the horizontal arrows in

figure 3. The vertical dashed lines mark the intersections between the distributions. For

general probability density distributions, the partition of the space of possible current

values may be more complicated.

So far we have not specified how to calculate the class-conditional probability den-

sity function p(Im|X), but we return to this issue in section 7.

The easiest way to find the error rate is to calculate the probability PX
correct,m of a

correct assignment for the nucleotide X, and then find the error rate as eXm = 1−PX
correct.

The probability of being correct can be expressed as the probability that the ‘state of

nature’ is X and I is in DX , i.e., [39]

PX
correct =

∑

X

P (I ∈ DX |X)P (X) (12)

=
∑

X

∫

DX

p(I|X)P (X) dI

=
∑

X

∫
1DX

(I)p(I|X)P (X) dI

Here, 1DX
is an indicator function that is specified above for the maximum likelihood

decision rule, although other possibilities exist [39].

Given a set of probability distributions p(I|X) and a partition DX dividing the

range of outcomes for I, error rates can be calculated by direct evaluation of the m-

dimensional integral in equation (12), e.g., by Monte Carlo integration [40]. Often it is

much easier to Monte Carlo simulate the error rates, which is done separately for each

type of nucleotide Xchosen. In case of m measurements, the procedure is:

(i) From the current probability distribution p(Im|Xchosen) draw m independent

current values Im, (ii) calculate for all four nucleotides the conditional probability

density p(Im|X), (iii) assign to the current sequence Im the nucleotide Xassigned with

the highest conditional probability density p(Im|X), and finally (iv) record whether the

chosen nucleotide Xchosen is identical to the assigned nucleotide Xassigned. Steps (i)-(iv)

are repeated many times.

The error rate eXm is simply the relative frequency with which a different nucleotide

is assigned to a current sequence produced by the nucleotide Xchosen. The weighted
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average of the error rates is

em = 1− Pcorrect,m =
∑

X

eXmP (X), (13)

where P (X) is the prior for the nucleotide of type X.

In section 7 we demonstrate how to calculate the error rates of the nucleotide as-

signment for the distributions in figure 6 when the current measurements are correlated

by first-order filtering.

7. Error rates for correlated data

Assignment of nucleotides and the corresponding error rates depend on the class-

conditional probability density function p(Im|X), i.e., the probability to measure the

set of current values Im for given nucleotide X. We argued above that both physical

processes and electronic filters introduce correlations in the measured signal. We here

demonstrate how the correlations influence the error rates for the nucleotide assignment.

For the sake of simplicity, we assume that the measurement noise is normally

distributed as it is, e.g., for thermal noise. Then the probability density function p(Im|X)

is given by the multivariate normal distribution

p(Im|X) =
1√

det (2πΣX)

× exp

(
−1

2
[Im − µX ]T Σ−1

X [Im − µX ]

)
. (14)

Here µX is an m-dimensional vector with identical elements µX , and ΣX is the

(positive definite) m × m-covariance matrix ΣX,ij = R(i, j), i, j = 1, 2, . . . ,m, where

R(i, j) is the autocovariance. Notice that if the current values are independent and

identically distributed, the covariance matrix is a diagonal matrix with the variance of

the distribution on the diagonal, ΣX,ij = σ2
Xδij. Then the expression in equation (14)

reduces to the product form p(Im|X) =
∏m

n=1 p(In|X) =
∏m

n=1
1√
2πσ2

x

exp[−(In −
µX)2/(2σ2

X)].

As an example, we consider the case where the autocovariance is identical for all

four nucleotides, and the autocoavariance matrix is ΣX,ij = Σij = σ2
noisee

−|i−j|∆ts/τc .

This corresponds to the output from a first-order filter with a characteristic time scale

τc, given a white-noise input. The characteristic time scale is again chosen such that

it corresponds to a first-order filter with a critical frequency fc = 1
2πτc

= fNyq/4, i.e.,

τc ' 1.27∆ts. For the current distributions shown in figure 6, we then simulate the

assignment of nucleotides as described above with the use of equation (14). Finally, we

calculate the error rates for the individual nucleotides, eXm, and the average error rate,

em, from equation (13)∗. The error rates versus the number of measurement are shown

as dashed lines in figure 8. Full lines are the results for independent measurements, all

∗ Multivariate normal distributions are built-in functions in, e.g., matlab.
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Figure 8. Error rates eXm = 1 − PX
correct versus the number of measurements m for

the distributions T , G, and C in figure 6 (error rates for the nucleotide A are less than

0.01% for all m and thus not shown). Full lines show the error rates for uncorrelated

data, while the dashed lines show error rates for data filtered through a first-order

filter with a critical frequency fc = fNyq/4. Notice that the total noise variance is

Σii = σ2
noise for both the correlated and uncorrelated data. The weighted average, em,

of the error rate over all four nucleotides [equation (13) with P (X) = 0.25 for all X]

is shown with magenta lines.

with the same total noise variance, i.e., Σij = σ2
noiseδij. Error rates are higher and decay

slower for correlated than for independent measurements, since correlated data contain

less independent information. Error rates for a Gaussian filter with the same critical

frequency and using the same noise variance are found in SI. The results are very similar

as those for a first-order filter with the same characteristic time-scale.

These findings stress the importance of including correlations in the algorithms

for nucleotide assignment or step detection in experimental signals. The version of

the step-finder algorithm CUSUM used for detection of multi-level events in nanopore

translocation experiments [17] assumes a signal consisting of independent data points,

although this condition is not fulfilled by the experimental data. The assumption might

influence the results of the nucleotide assignment and the corresponding error rates;

especially for high noise levels and small level separations of the expected current values

for the different nucleotides.

The duration of the time a nucleotide spends between the electrodes determines

the number of measurements done on it. Typically this cannot be easily controlled

experimentally as the detachment of the nucleotides from the electrodes is a stochastic

process, and the distribution of durations often is rather broad. For GMP molecules in a

break-junction, the duration in the gap was in the interval from 1 to 100 ms and showed

a dependence on the applied bias [8]. For a sampling frequency of 1 kHz, it corresponds

to up to 100 measurements at the electrodes. The duration the target molecule spends

at the electrodes can be increased by functionalizing the junction, which gives durations

up to a second [13,14,38,41]. Thus the relevance of theoretical proposals for sequencing
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or biosensing depends both on the decrease of error rates with the number of measure-

ments and on the four distributions of time spent by Molecule X between the electrodes.

8. Discussion

The present study emphasizes that the very weak transverse tunneling currents require

experimental current measurements with long integration times, and it describes the

consequences of a long integration time for the measured currents. These considerations

are relevant not only for sequencing with fixed electrodes but also for simulations of

nanopore sequencing of single-stranded DNA with graphene nanoribbons [27] and for

recognition tunneling [30].

One consequence of the long integration time is that only the expected value of

the current is probed experimentally, because the required integration time is very

much longer than the autocorrelation time of current fluctuations caused by the

nucleotide’s thermal motion. Thus, a current measurement averages over so many

different orientations of the nucleotide in the gap junction that the resulting current

value is a thermal average with no dependence on nucleotide orientation. Consequently,

different measurements with such long integration times should give very similar current

values, i.e., values with a very narrow distribution on the current axis. Nevertheless, the

full distributions of the simulated transverse tunneling currents are needed in order to

determine their expected values. This is because the simulated current values for each

nucleotide span almost three orders of magnitude due to the thermal fluctuations of the

molecule in the nanogap. So it is not sufficient to calculate the tunneling current for

only a few fixed configurations of a nucleotide. This can lead to incorrect values for the

current’s expected value.

Secondly, in the original simulations of transverse tunneling through nucleotides,

the electron transport was described as coherent tunneling [6, 7]. A later simulation

included dephasing of the tunneling electrons due to the fluctuations of the molecule

and its environment. These effects changed the distribution of the simulated current

values [20]. For experimentally relevant values of this dephasing, it caused a slight down-

ward shift in the expected value of the current. It also slightly changed the shape of

the current distribution. The shift might be detectable in experiments, but the change

of shape is washed out by the long integration time required in real experiments.

We also addressed how to assign a nucleotide to a measured current signal with the

maximum likelihood decision rule. The general challenge for the assignment is that the

four different nucleotides have overlapping current distributions, broadened by electronic

noise in the data acquisition system. Electronic sequencing would be easy without these

overlaps: A single measurement of the transverse tunneling current would identify a

nucleotide.

With some overlap, we can still distinguish between different nucleotides albeit with
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non-zero error rate. We just need to repeat measurements on the individual nucleotide

several times to obtain a reliable result. We must, however, consider that electronic

filters in the data acquisition system produce autocorrelations in the filtered signal. So

although electronic filters are indispensable for measurements of small currents, their

effect on the recorded current signal must be included in the data analysis, since filtering

reduce the information content in the signal relatively to a signal with the same number

of measurements but with independent data points.

The maximum likelihood framework for nucleotide assignment is easily generalized

to more complicated setups than just a single pair of electrodes (see, e.g., the setup

in [29]), or extended to include other types of information than just the measured current

values. Other aspects that could help the identification could be, e.g., the duration of

current spikes, the time interval between spikes, and the fluctuations of currents within

spikes [30]. This extra information can be exploited in the assignment of a molecule to

a recorded signal, if correlations between the measured quantities—e.g., the duration of

a spike and its height—are correctly accounted for in the analysis.

Recently, it was investigated theoretically by simulations whether the use of multi-

ple electrode pairs coupled in series could improve identification of nucleotides [29, 42].

The advantage of multiple electrodes is an increased number of measurements for each

nucleotide and, consequently, a lower error rate. If the distribution of current values

measured with each electrode pair is known, then the assignment procedure described

above can be applied directly.

9. Conclusion

We have demonstrated the importance of realistic experimental integration times, of

autocorrelation times in simulated current values, and of electronic noise and filters.

Simulations must relate to real experimental measurements, obviously, in order to access

the feasibility of theoretical proposals for real experiments. When the probability

distributions of current values are known, which is the case for simulated data, we

recommend using the maximum likelihood decision rule for nucleotide assignment, but

also account for the correlations in the measured signal in order not to underestimate

the error rates for the assignment.
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