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ABSTRACT 

The application of stainless steels in hostile environments, such as concentrated acid or hot sea 

water, requires additional surface treatments, considering that the native surface oxide does not 

guarantee sufficient corrosion protection under these conditions. In the present work, silica-like 

thin-film barrier coatings were deposited on AISI 316 L grade austenitic stainless steel with 2B 

surface finish from Hydrogen Silsesquioxane (HSQ) spin-on-glass precursor and thermally 

cured to tailor the film properties. Results showed that curing at 500 ˚C resulted in a film-

structure with a polymerized siloxane backbone and a reduced amount of Si-H moieties. The 

coatings showed good substrate coverage and the average thickness was between 200 and 400 

nm on the rough substrate surface, however, film thicknesses of more than 1400 nm were 

observed at substrate defects. Deposition of these films significantly improved the barrier 

properties by showing a 1000 times higher modulus while an ionic transport over the coating 

was also observed.  

 

Keywords: Barrier Coating; Corrosion; Electrochemical Impedance Spectroscopy; Hydrogen 

Silsesquioxane; Thin Film 
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1 Introduction 

Stainless steels owe their resistivity against galvanic corrosion to a high Cr content, which 

triggers the formation of a thin, Cr-rich surface-oxide with a low ionic conductivity and 

solubility, that protects the underlying material from chemical attack in neutral and alkaline 

environments[1]. However, the native oxide becomes unstable at low pH (pH below approx. 

4)[2] and consequently corrosion of stainless steels can be initiated under acidic conditions. 

Apart from uniform breakdown of the native oxide film, stainless steels are susceptible to 

localized corrosion in form of pitting and crevice corrosion in chloride containing electrolytes 

such as sea water[3,4], and therefore the application of stainless steels in acidic or chloride 

containing environments may require further protection of the material.  

Vitreous enamel coatings find wide industrial application as barrier coatings to increase the 

corrosion resistance of materials[5–7]. Traditionally, porcelain or glass coatings are applied from 

powdered precursors and fired at elevated temperatures, thereby fusing the solid particles and 

forming an envelope-type coating which acts as a corrosion barrier between substrate and 

corrosive medium. However, this technology is limited to rather thick, brittle coatings, which 

alter the optical appearance and geometry of the substrate and are prone to brittle fracture. In this 

regard, thin coating systems can potentially overcome the drawbacks of traditional enamels, 

while retaining their protective properties. It has been reported in literature[8–14], that SiO2 thin 

film coatings can substantially increase the aqueous as well as high temperature corrosion 

resistance of stainless steel substrates and high quality SiO2 thin films have been successfully 

deposited on stainless steel substrates by Physical Vapor Deposition (PVD)[15], Chemical Vapor 

Deposition (CVD)[8,9,14,16–18] and Liquid Phase Deposition (LPD)[19]. However, the cost of 
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processing equipment for vapor phase processes is high, while LPD processes rely on highly 

hazardous precursors such as H2SiF6[19].  

As an economically feasible and non-hazardous alternative, SiO2 deposition on stainless steel 

from liquid precursors by the sol-gel method has been demonstrated[10,11,13,20]. Within 

common sol-gel processing, a tetrafunctional alkoxide precursor with the alkyl group R, such as 

tetraethyl orthosilicate (TEOS), is hydrolyzed according to reaction (1) and subsequently 

condensed to form siloxane bonds via alcohol or water condensation according to reactions 

(2),(3)[21]. 

                          (hydrolysis) (1) 

                            (alcohol condensation) (2) 

                     (water condensation) (3) 

The main advantage of these processes is the ease of their application, i.e. deposition by high 

throughput processes such as spray or dip coating and curing in simple heating equipment. 

However, sol-gel SiO2 from aqueous solution is porous in nature and high temperature sintering 

is required to densify and convert porous films to continuous SiO2 films[22]. In this perspective, 

the aqueous corrosion properties of sol-gel coated stainless steels cured at medium temperature 

are under discussion: Vasconcelos et al.[10] tested sol-gel SiO2 coated stainless steel samples 

and observed a decrease in corrosion rate in sulfuric acid as well as an increase in pitting 

potential combined with a decrease in passive current in aqueous NaCl solution. Moreover, de 

Sanctis et al.[11] found an improvement in resistance to corrosion in hot nitric acid for sol-gel 

SiO2 coated stainless steel and Nikrooz et al.[13] demonstrated an improvement of the high 

temperature oxidation resistance as well as wet corrosion resistance ferritic stainless steel after 
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dip coating with sol-gel silica. On the contrary, Damborenea et al.[20] reported results, which did 

not indicate an improvement in corrosion resistance in acid or aqueous NaCl solution. Recent 

studies by Takemori[23,24] reported a sol-gel process from non-aqueous solution to deposit non-

porous SiO2 films on stainless steel substrate. However, the coatings produced by their method 

showed cracking and defoliation and consequently cannot be evaluated as suitable candidates for 

corrosion barrier coatings.  

As an alternative approach to deposit SiO2 from wet precursor, thin SiO2-like films based on 

Hydrogen Silsesquioxane (HSQ) technology have been reported in literature[25–27]. HSQ is an 

oligomeric molecule with the formula (HSiO3/2)n, which, under the appropriate heat treatment, is 

capable of cross linking via a multi-step bond redistribution under reaction (4)[28] or 

dissociation of Si-H bonds under reaction (5)[25]  to form SiO2-like films[25,29].  

                       (4) 

                       (5) 

Thereby, heat treatment at higher temperatures leads to more advanced degrees of curing and 

may result in the formation of films with similar properties to SiO2 deposited via CVD 

processes[26]. Moreover, HSQ-based thin films have gained particular interest as interlayer 

dielectric in microelectronics, since the thin film properties can be precisely tailored to achieve 

low dielectric constants[25,26,29], which can enhance the performance of integrated circuits[30]. 

In recent years, HSQ has come into focus as material applied on metallic substrates, due to its 

ability to level rough substrates[31–34], induce nano-patterns in injection molding[35] or act as 

corrosion barrier coating[36,37]. The material can be spin[25,38], spray[32,34] or dip[37] 

coated, i.e. is, similar to sol-gel coatings, capable for high-throughput processing. In the present 

study, HSQ spin-on-glass was investigated as a novel precursor to form thin film SiO2 coatings 
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for the corrosion protection of stainless steel. Further, the microstructure, chemical composition 

and corrosion properties of these films were characterized in detail by using Field Emission Gun 

(FEG) and Focused Ion Beam (FIB) scanning electron microscopy (SEM), Fourier Transformed 

Infrared Spectroscopy (FT-IR), Spectroscopic Ellipsometry and Electrochemical Impedance 

Spectroscopy (EIS).    

2 Materials and methods 

2.1 Coating deposition  

AISI 316L test coupons (sheet material, area of 50 x 100 mm
2
, thickness 1 mm, 2B surface 

finish) and Si wafers (thickness 675 µm, front side polished, backside etched) were partially dip 

coated with 1 mm/s withdrawal speed in a solution of HSQ in silanol-based solvent (Dow 

Corning FoX25) in a single dip-cycle. Afterwards the test coupons were subjected to a heat 

treatment in order to form silica-like thin film coatings within 24 h after the precursor deposition. 

The applied heat treatment consisted of a soft-bake at 160 ºC for 30 min to evaporate the solvent 

and a subsequent calcination at 500 ºC for 2 h in oxygen depleted atmosphere under flow of 0.45 

l/min Ar with addition of 0.05 l/min H2 gas to avoid oxidation of the films/substrate. Further, to 

determine the relation between the film thicknesses vs. dipping speed, Si-wafers were coated 

with varying dipping speed and subjected to the soft-bake without additional calcination. 

2.2 Characterization  

2.2.1 Microstructural analysis  

The coated substrates have been investigated with a Helios Nanolab 600 dual beam Scanning 

Electron Microscope (SEM) with Ga
+
 Focused Ion Beam (FIB) source and Pt deposition system. 
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Before FIB cross sectioning, a double layer of CVD Pt was deposited to avoid beam-induced 

artifacts on the surface. Images on FIB cross sections have been taken under 52 º sample-tilt and 

no digital tilt correction was applied. To avoid artifacts from surface charging, SEM specimens 

have been sputter-coated with a conductive Au film of a few nm thickness prior to investigation. 

2.2.2 Adhesion testing 

The coating adhesion test was conducted according to ISO 2409:2007(E) “Paints and varnishes – 

Cross-cut test”[39]. The test was carried out with 6 parallel scribes of 1 mm spacing, resulting in 

the formation of a “hatch pattern”. The area with the “hatch pattern” was analyzed by optical 

microscopy as well as SEM, followed by cross-sectional investigation via (FIB)-SEM. As per 

standard requirement, the test was repeated three times at different locations. 

2.2.3 Chemical compositional analysis  

Fourier Transform Infrared Spectroscopy (FT-IR) was carried out on films deposited on silicon 

wafer. The HSQ film on the backside of the wafer was removed before curing to avoid artefacts. 

FT-IR spectra were recorded on a Thermo Scientific Nicolet iN 10 MX in transmittance mode, 

whereby the background was collected on a reference silicon wafer of similar type.  

2.2.4 Thickness measurements 

The film thickness was measured optically by Spectroscopic Ellipsometry on a VASE 

ellipsometer. Only films deposited on Si-wafers in soft-baked condition were investigated. 

2.2.5 Corrosion performance  

Electrochemical Impedance Spectroscopy (EIS) was implemented to assess the barrier-properties 

of the coating by using a Gamry Ref 600 potentiostat in 0.5 M Na-acetate buffer solution at pH 
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6. EIS measurements were carried out after an open circuit measurement of 3600 s in a solution 

volume of 15 ml and on an area of 2.1 cm
2
. Potentials were determined with a Standard Calomel 

Electrode and the system was perturbed with a Pt wire auxiliary electrode. The experiment was 

repeated on three samples for consistency. 

3 Results and Discussion 

3.1 Film thickness 

Figure 1 shows the film thickness on a polished Si-wafer substrate at different dipping speeds. 

The reported film thickness corresponds to the film thickness after solvent evaporation, i.e. the 

remaining solids of the HSQ solution before curing. Although not shown here, similar film 

thicknesses were achieved at higher dipping speeds when the HSQ solution was diluted to lower 

solid content. Furthermore, it was evident that the log of the film thickness linearly depends on 

log of the dipping speed, suggesting a relation similar to the power-law relation between film 

thickness and dipping rate as described by Brinker et al.[40] for dip coating of SiO2 sol-gel films. 

Since HSQ films undergo shrinkage during curing, the direct determination of the final film 

thickness from Figure 1 is not possible. Under the given curing conditions, HSQ films are 

expected to shrink by 10-15 % of the initial thickness[29] and the values reported in Figure 1 

have to be corrected for shrinkage when concluding on the final film thickness.  

3.2 Optical appearance  

The optical appearance of the test coupon after curing of the material is shown in Figure 2. The 

coating deposition led to the formation of a transparent surface film, which, depending on the 

film thickness, showed slight blue/violet discoloration from thin film interference. In general, the 
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film was homogeneous and no island formation was observed. Although not presented here, 

there was no significant optical appearance difference in the coated area before and after curing.  

3.3 Surface morphology and cross-sectional analysis   

The detailed microstructure of the film was analyzed by SEM and FIB-SEM, as presented in 

Figure 3. Comparison between top view micrographs of a reference coupon (Figure 3a) and 

coated sample (Figure 3b) shows that the coating covers the surface and smoothens out the 

substrate grain boundary cavities from the 2B finish. Furthermore, there was no visible evidence 

of cracking or spallation of the coating at the top surface. The cross sectional analysis by FIB-

SEM (Figure 3c) confirmed that the coating was well adherent to the substrate and neither 

showed cavities under the coating nor exfoliation. Moreover, film formation in substrate voids, 

in particular in the 2B grain-boundary trenches was observed, which resulted in the leveling of 

present undulations and roughness of the substrate. These results are in agreement with previous 

studies, where the leveling effect of HSQ surface treatments on metallic polymer molding 

tools[31–34] was investigated and reduction of peak to valley roughness up to a factor of 20 for 

mechanically ground aluminum surfaces was reported[34]. As visible from the micrograph, the 

simple thickness/dipping speed relation described in section 3.1 does not apply for coatings on 

rough substrates, where the thickness is determined by the inhomogeneous influence of substrate 

undulations, rather than the dipping speed. In this perspective, a precise value of film thickness 

could not be determined from Figure 3c. However, the minimum thickness of the film at the 

substrate surface was approximately 200 nm and on voids and undulations areas showed a 

maximum thickness of approximately 1000 - 1400 nm. 
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3.4 Adhesion testing 

Figure 4 shows the results of the adhesion test. In general, no evidence of delamination (Figure 

4a) was observed from the optical analysis and the coating was assessed as “0” according to 

standard test classification[39]. However, coating delamination in the close vicinity of the scribe 

was visible from SEM analysis, as shown in Figure 4b. To further investigate the nature of the 

delamination, the vicinity of the scribe was investigated by FIB-SEM cross-sectioning, as 

presented in Figure 4c. It was evident that the delaminated segment of the coating was 

completely removed from the surface during the test. Further, the coating delamination showed a 

mixed behavior by both adhesive and, to a minor extend, cohesive failure, as visible from the 

detail in Figure 4c. 

3.5 Chemical compositional analysis  

The chemical composition of soft-baked (uncured) and cured films were analyzed by FT-IR, 

which is a well-established characterization technique to gain semi-quantitative information 

about the cage to network transformation and Si-H loss in HSQ films[38,41]. The FT-IR 

absorption spectra of the HSQ films on Si-wafer before and after curing are shown in Figure 5.  

Non-polymerized HSQ is a cage-like oligomer with a siloxane backbone and Si-H corner 

moieties[41], as indicated by A and B in Figure 6, respectively, and shows distinct FT-IR 

absorption bands from the Si-O asymmetric stretching of siloxane cages at 1140 cm
-1

 and Si-H 

stretching from corner moieties at 2260 cm
-1

, as shown in Figure 5. During the heat treatment the 

cage oligomers polymerize via a multi-step redistribution reaction[25], forming networked 

siloxane bonds between cages, as indicated by notation “C” in Figure 6. In general, Si-O 

asymmetric stretching of networked siloxane shows an absorption peak shift in FT-IR, leading to 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

11 

 

the Si-O asymmetric stretching edge at 1075 cm
-1

 as presented in Figure 5. Apart from Si-H 

stretching at 2260 cm
-1

, another lower intensity absorption from Si-H stretching caused by 

H2SiO2/2[42] was observed at 2200 cm
-1

, which is indicated by notation “D” in Figure 6. The 

presence of H2SiO2/2 bands indicate the formation of an intermediate reaction product in the 

multi-step cage to network redistribution reaction, as described by Siew et al.[25], and are 

therefore indicative for an incomplete polymerization of the HSQ film. Overall, these results 

showed that the applied heat treatment cycle led to a partial transformation from HSQ to SiOx, 

i.e. to the formation of a networked structure with a siloxane backbone and some remaining Si-

H.  

These findings are in well agreement with earlier studies[26,29], where curing at 500 ºC led to an 

incomplete cage to network transformation, while temperatures of 650-800 ºC fully transformed 

HSQ into a ceramic with virtually no remaining Si-H and a stoichiometry close to SiO2. High 

remaining Si-H ratios have shown to positively influence the film properties and the films 

reported in this study are expected to show low film stress as well as a high stability to moisture 

adsorption[38]. 

3.6 Electrochemical Impedance Spectroscopy 

A widely used method to assess the barrier properties of inert thin film ceramic coatings is 

Electrochemical Impedance Spectroscopy (EIS)[8,9,13,43–45]. A Bode plot of the measured 

impedance spectra of an uncoated AISI 316 L reference coupon and a coated test coupon is 

shown in Figure 7. The reference sample shows one capacitive maximum, indicating a simple 

charge transfer reaction over a double layer, while the spectrum acquired for the coated sample 
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can be separated into two distinct capacitive maxima, indicating a charge transfer mechanism 

over the film that involves two capacitances of different origin as well as ohmic transport. 

The quantitative interpretation of EIS data requires fitting with a correct equivalent circuit 

model. Thus, the interpretation of a charge transfer over a double layer, as it was observed for a 

bare electrode immersed into an electrolyte, can be described by a Randle’s equivalent circuit as 

shown in Figure 8a[46]. In contrast, various equivalent circuits have been proposed for steel 

substrates covered with SiO2 thin films[8,9,44,45]. Pech et al.[9] discussed pore and pinhole free 

SiO2 coatings as blocking electrodes, which can be modelled as a solution resistance in series 

with a capacitive element. However, their model is only applicable for systems showing a single 

capacitive plateau and therefore is not applicable to systems, which indicate ohmic charge 

transport over the coating. Others[8,44,45] observed impedance responses with two capacitive 

maxima and applied different equivalent circuits to analyze their data. Walke et al.[44,45] 

analyzed sol-gel SiO2 on stainless steel substrate with a R-(QR)-(QR) -type model, whereas, 

Pech et al.[8]  applied a R-(Q(R-(QR))) -type model to conclude on the impedance response of 

PACVD SiO2 coatings on M2 high speed steel. 

In the present study, the reordered impedance data of the coated specimen was fitted with both 

equivalent circuits, as presented in Figure 7. Residuals plots for the fits are shown in Figure 9. 

These fitted data plots showed that R-(QR)-(QR) gave inadequate fit results, showing large, 

systematic deviations from the measured data, whereby  R-(Q(R-(QR))) showed good results in 

the high frequency region (f > 10 Hz), however, deviated from the experimental data in the low 

frequency region (f < 10 Hz). In this case, the addition of a semi-infinite diffusional impedance 

(semi-infinite Warburg impedance) could improve the fitting, yielding a R-(Q(R-(Q(WR)))) -

type circuit, as presented in Figure 7 and Figure 9, which was in agreement with reported 
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literature[43]. A graphic representation of the equivalent circuit for the coated system is shown 

in Figure 8b.  

The proper circuit fit of the data from Figure 7 with the equivalent circuits shown in Figure 8, 

using the relation described by Hsu et al.[47] for the conversion between constant phase element 

and equivalent capacitance, yielded the results displayed in Table 1. Overall, the coated 

specimen showed high barrier efficiency by exhibiting a pore resistance Rp of 907 kΩcm
2 

as well 

as an increase in total modulus IZI of the test coupons from 983 kΩcm
2
 for the reference to 214 

MΩcm
2
. Moreover, the coated test coupon showed a decrease in equivalent double layer 

capacitance Ceq,dl by three orders of magnitude, which indicates a significant decrease in 

electrolyte-exposed surface[8], i.e. a high degree of coating coverage.  

Overall, the coating showed characteristics similar to silica coatings obtained by other methods 

such as CVD[8] or sol-gel[13], namely a highly a high resistance to ionic transport through 

coating defects combined with a high degree of coating coverage. However, since the previous 

studies were based on an assessment of the coating performance in NaCl solution, a quantitative 

assessment of the performance of the HSQ-based coating in respect to other coating systems is 

not possible solely based on this study. Further investigations have to be conducted to conclude 

on the barrier efficiency of the coating in technically relevant media such as chloride solutions, 

which are well known to induce localized failure in stainless steels[1].  

4 Conclusions 

1. HSQ-based thin film coatings can be applied to stainless steels by dip coating to form 

crack free thin film enamels. Further, the deposited coatings showed good leveling 

abilities, adhesion and did not show any interfacial cracking or spallation. 
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2. The thickness of the deposited film on a rough substrate was approx. 200-400 nm, which 

could not be estimated by interpolation of data collected on smooth substrates. 

3. Film curing at 500 ºC led to a significant polymerization of the HSQ precursor, yielding 

cross-linked films with a siloxane backbone and some remaining Si-H.  

4. The electrochemical impedance response of the coating system could be modelled by an 

R-(Q(R-(Q(WR)))) -type model, which accounts for ionic transport over the coating and 

compensates for diffusion in the test setup. 

5. The coating indicated high barrier properties and a high substrate coverage, by exhibiting 

a pore resistance of 907 kΩcm
2
 and a decrease in double layer capacitance by 3 orders of 

magnitude. 
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List of Figure Captions  

Figure 1: Film thickness vs. dipping speed after solvent evaporation (on polished Si-wafer). 

Figure 2: Digital photograph of test coupon after curing. 

Figure 3: SEM images of (a) uncoated reference (top view); (b) coated specimen (top view); (c) 

FIB-SEM cross section of coated sample. Au and Pt depositions are artifacts from the specimen 

preparation. 

Figure 4: Cross-cut test of coating: (a) Optical micrograph of coating surface after the test; (b) 

SEM micrograph of scribe junction. The marker in the micrograph indicates the location of the 

FIB-SEM cut shown in Figure 4c; (c) FIB-SEM cross section across delaminated coating, where 

Au and Pt depositions are artifacts from the specimen preparation.  

Figure 5: FT-IR absorption spectra of films deposited on Si-wafer.  

Figure 6: Redistribution reaction of HSQ cage oligomers to a more networked structure (based 

on the redistribution reaction by Siew et al.[25]). 1 and 2 indicate atoms which are exchanged 

between the two neighboring cage oligomers. 

Figure 7: Bode plots of coated and uncoated AISI 316 L in Na-acetate buffer solution. 

Figure 8: Equivalent circuit models for: (a) reference; (b) coated sample. With solution resistance 

Rs, charge transfer resistance Rct, pore resistance Rp, CPE of double layer Qdl, CPE of coating 

Qcoat, reference electrode RE and working electrode WE. 

Figure 9: Residuals of impedance fits shown in Figure 7. 
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Table 1 – Fitting results from EIS measurements. 

Sample Rp 

(Ω*cm
2
) 

Q0,coat 

(Ss
α
/cm

2
) 

αcoat Ceq,coat 

(F/cm
2
) 

Rct 

(Ω*cm
2
) 

Q0,dl 

(Ss
α
/cm

2
) 

αdl Ceq,dl 

(F/cm
2
) 

reference - - - - 9.83 E+05 2.45E-05 0.941 3.00E-05 

coated 9.07E+05 1.28E-08 0.98 1.17E-08 2.13E+08 2.11E-08 0.856 2.72E-08 
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Highlights 

- The deposition of thin film SiO2 coatings from HSQ precursor on stainless steel is 

demonstrated 

- The coating good coverage and smoothens out substrate roughness and defects 

- An impedance model is proposed to assess the barrier properties in aqueous solutions 

- The coating shows good barrier properties 

- Electrolyte contact with the substrate is established via microscopic coating defects 




