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1 Introduction

We present our progress on the development and preliminary benchmarking results of a new efficient
methodology for solving fully non-linear potential flow wave-structure interaction problems. The new
model utilises the efficiency of finite difference methods on structured grids. The structure geometry
is introduced using an Immersed Boundary Method (IBM) and the body boundary condition (BC) is
satisfied with a Weighted Least Squares (WLS) approximation [7]. This allows complex geometries to
be represented with high accuracy. The stability of the scheme is ensured by adopting the Weighted
Essentially Non-Oscillatory (WENO) scheme [8] together with a Lax-Friedrichs type flux applied to
the free surface conditions in Hamilton-Jacobi form. This work can be viewed as a novel extension
of the flexible order finite difference potential flow solver OceanWave3D [2] to include the presence
of a structure. The method obtains an optimum scaling of the solution effort [2] and has been
implemented on massively parallel GPU architectures using the CUDA API [3] making it suitable for
high resolution flow simulations. This combination of novel and robust numerical methods aims at
creating new efficient tools for non-linear wave-structure interaction problems. The scheme is validated
using the forced heaving motion of a two-dimensional (2D) horizontal circular cylinder with promising
results, although there are still challenges to be overcome in terms of properly capturing the behavior
of the intersection between the body and the free-surface.

2 Mathematical formulation

A Cartesian coordinate system (x, z) = (x, y, z) is adopted with the z-axis vertical and x-axis in the
direction of the body’s forward motion. The potential flow initial-boundary-value problem is presented
below:

∇2φ+ ∂zzφ = 0, in V (2.1a)

∂tζ +∇ζ
(
∇φ̃− w̃ ∇ζ −U

)
= w̃, on z = ζ (2.1b)

∂tφ̃+∇φ̃
(

1

2
∇φ̃−U

)
− 1

2
w̃2 (1 +∇ζ∇ζ) = −gζ, on z = ζ (2.1c)

∂zφ+∇h∇φ = 0, on z = −h (2.1d)

∂nφ = Vn on Sb (2.1e)

where ζ(x, t) is the free surface (FS) elevation, φ(x, z, t) is the velocity potential, h(x) is the sea bottom,
∇ = (∂x, ∂y) is the horizontal gradient operator and U = (U, 0) is the body forward velocity vector.
Sb(t) stands for the moving body surface, Vn(x, z, t) represents the normal component of velocity of a
point on the ship surface and ∂n is the derivative in the direction normal to Sb. The overbar denotes
quantities evaluated on the free surface. For a freely-floating body a coupling with Newton’s law is
required. However, in the current abstract only 2D forced motion problems are considered.
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3 Numerical solution

The boundary value problem (2.1) is solved numerically by mapping the solution with a sigma trans-
formation to a time-invariant computational domain as discussed in [2]. To keep this transformation
smooth and continuous, the free surface is extended into the interior of the body by creating an artifi-
cial interior free surface as shown in Figure 4.1. In that way, the wetted body surface is also mapped to
the computational domain. The computational domain is a unit-spaced Cartesian mesh. The classical
explicit fourth-order, four-stage Runge-Kutta scheme is used for time-stepping. In each Runge-Kutta
stage the following algorithm is executed:
• Compute the position and the velocity of the body.
• Construct the new interior free-surface.

– Calculate the elevation of the outermost interior FS points by extrapolating the exterior
FS values. If the point lies in the exterior of the body a new exterior FS point is added and
the search continues until the first interior FS point is found. A Courant number Cr < 1
ensures that maximum one FS point can be added per time-step.

– Find the body-free surface intersection. Tracking the intersection robustly is challenging
and the method is still under development. At the moment the Bisection Iteration method
between the first interior and exterior FS points is used.

– Connect the two intersection points with the interior FS. Two continuous x-derivatives over
the entire FS are required for the sigma transform. Fulfilling this requirement with a well
behaved curve is a challenge that is still in progress. Currently a 9-th order polynomial is
fitted between the intersection points. The six boundary conditions are the extrapolated ζ,
ζx, ζxx on each point. The extra degrees of freedom are used to keep the polynomial well
behaved by minimizing it’s square distance from the straight line between the two points.

• If a new exterior FS point is added, its ζ and φ̃ values are computed by extrapolation.
• Solve the Laplace problem by using the IBM-WLS methods for satisfying the body boundary

condition.
• Step forward in time the free-surface boundary conditions using WENO for the spatial discretiza-

tion (automatic upwinding).

4 Weighted Least Squares, Immersed Boundary Method body boundary condi-
tion

The coupling of the WLS, IBM body boundary condition approximation with the finite difference
approximation of the Laplace equation is described in detail in [7]. A sign function is used to distinguish
the interior and exterior to the body points. The interior points that belong to a fluid point stencil are
identified as ghost points. The Laplace equation is only solved on fluid points. A normal projection
from the ghost points to the body surface is used to identify the body points where the body BC is
satisfied. The ghost points adjacent to the body-FS intersection are used to satisfy the body BC on
these locations. A WLS stencil is formed for each body point, using fluid points in a centred stencil
around it plus the associated ghost point. The WLS method is then used to approximate the normal
derivative of the body BC.
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Figure 4.1: Non-linearly oscillating cylinder with a large amplitude motion A/R = 0.2

5 Hamilton-Jacobi WENO formulation of the Free Surface Boundary Conditions

To apply WENO on the free surface boundary conditions, they have to be expressed in Hamilton-
Jacobi form: φt + H(∇φ) = 0. For the spatial discretization the Lax-Friedrichs scheme is used
[8]:

Ĥ = H

(
φ−x + φ+x

2
,
φ−y + φ+y

2

)
− ax

(
φ+x − φ−x

2

)
− ay

(
φ+y − φ−y

2

)
(5.1)

where φ−x , φ+x are the left- and right-biased WENO derivative approximations. The ax and ay are
dissipation coefficients for controlling the amount of numerical viscosity. They are defined as ax =
max |H1(φx, φy)|, and ay = max |H2(φx, φy)|. H1 and H2 are the partial derivatives of H with respect
to φx and φy, respectively. The 2D FS boundary conditions can be expressed in the WENO formulation
as:

∂tζ +Hζ = ∂zφ̃; Hζ = ∂xζ
(
∂xφ̃− ∂zφ̃ ∂xζ − U

)
(5.2)

∂tφ̃+Hφ = −gζ; Hφ = ∂xφ̃

(
1

2
∂xφ̃− U

)
− 1

2
(∂zφ̃)2 (1 + ∂xζ ∂xζ) (5.3)

The right hand side terms are considered as source terms. More details and testing of the formulation
can be found in [6].

6 Test cases
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(a) Linearized case.
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(b) Non-linear large amplitude case.

Figure 6.1: Comparison of the computed hydrodynamic coefficients with the literature.

The linearized radiation problem of a heaving half-submerged cylinder is considered first. The body
displacement follows a Gaussian profile as in [11] and introduces a Gaussian range of frequencies. The



comparison with the analytical results of [1] is good as shown in Figure 6.1a. In anticipation of solving
free-motion problems, we avoid using the Bernoulli equation directly, and compute the force on the
cylinder using a form derived for example in [9]:

F = −ρ d
dt

∫∫
Sb

φn dS + ρ

∫∫
Sb

(∂φ/∂n∇φ− 1

2
∇φ · ∇φn) dS (6.1)

where in the linear case the second term is omitted. As a second test, the fully non-linear forced
heaving motion of a cylinder with radius R is studied. The prescribed motion of its center of mass is
zg3(t) = zg3(0)+A sin(ωt). The angular frequency is selected such that ω2R/g = 1. The sea bottom is
at h = λ. For comparison with the results of [5] the cylinder radius is set to R = 1 m, the gravitational
acceleration to g = 1 m/s2 and the density to ρ = 1 kg/m3. As a first step a small amplitude motion is
considered where A = 0.01R. The added-mass and damping results for two discretizations Nf = λ/dx
are compared with reference values from the literature in the following table:

µ33 ν33
Nf = 40 0.601 0.390

Nf = 60 0.603 0.396

Porter (1960) 0.58 0.41

Frank (1967) 0.62 0.40

Kent (2005) 0.582 0.410

The same calculations were done for a large amplitude motion A = 0.2R and the results are presented
in Figure 6.1b. The comparison is relatively good, but we note that the force signal contained periodic
jump discontinuities which were filtered out to obtain these results. We speculate that these jumps
in the solution are connected with an inconsistency in either the IBM method or the treatment of the
free-surface/body intersection point, or both. Solving this issue is our current challenge.
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