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Abstract 
Pearl-Chain Bridge technology is an innovative precast arch bridge solution which uses pervious 
concrete as fill material. To ensure longevity of the bridge superstructure it is necessary that the per-
vious concrete fill is designed to be freeze-thaw durable; however, no standards exist on how to eval-
uate the freeze-thaw resistance of fresh or hardened pervious concrete and correspondingly what 
constitutes acceptable freeze-thaw durability. A greater understanding of the correlation between the 
freeze-thaw performance and the air void structure of pervious concrete is needed. In the present 
study six pervious concrete mixes were exposed to freeze-thaw testing, and their air void structure 
was analyzed using an automated linear-traverse method. It was found that there is a miscorrelation 
between these two test methods in their assumption of whether or not the large interconnected voids 
effectively relieve the pressure when water freezes.  

1 Introduction 
Pearl-Chain Bridge technology is an innovative arch bridge solution allowing faster, more environ-
mentally friendly, and cheaper road and railway bridge constructions. The Pearl-Chain arch is con-
structed from plane super-light decks (SL-Decks) that are collected and post-tensioned next to the 
road and subsequently lifted into place by a crane (Halding, Hertz and Schmidt, 2015). With the 
Pearl-Chain arch in place, spandrel walls are installed and finally a fill material is placed. To ensure 
longevity of Pearl-Chain Bridges, Portland Cement Pervious Concrete (PCPC) is considered as fill 
material. PCPC is characterized by a large interconnected void structure providing excellent drainage 
properties; thus, penetrating rainwater is efficiently removed from the Pearl-Chain Bridge superstruc-
ture by the use of PCPC fill. Thereby the moisture exposure of the Pearl-Chain arch is reduced and 
the freeze-thaw damages of the fill material itself are minimized if not completely eliminated.  

Hard infrastructure, such as Pearl-Chain Bridges, is expected to be in use for a period of 120 
years. This places severe demands on the fill material in order to test and document its durability 
under various conditions. In mild climate countries like Denmark where the temperature during win-
ter times varies around the freezing point, the fill material is particular exposed to harsh freeze-thaw 
impact, because the bridge superstructure is cooled from several sides; hence, the application of 
PCPC as fill in Pearl-Chain Bridges requires PCPC to possess some amount of freeze-thaw durability. 
However, no standards exist on how to evaluate the freeze-thaw resistance of fresh or hardened PCPC 
or suggestions on what results produce adequate performance in the field. Currently the evaluation of 
the freeze-thaw durability of hardened PCPC is based on the same ASTM standard, ASTM C666A 
(ASTM C666, 2008), as conventional concrete even though it is well-known that this test method is 
too harsh because it does not include the draining nature of PCPC. Several examples have shown that 
air-entrained PCPC performs much better in the field than in the laboratory (NRMCA, 2004).  
The void structure of PCPC is more complex than that of conventional concrete because it is a com-
bination of small entrained air voids and large interconnected voids that are also sometimes referred 
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to as ‘effective voids’ because they contribute to the main water percolation. Previous studies such as 
those performed by Kevern, Wang, and Schaefer (2008; 2009) have successfully tried to link the 
freeze-thaw performance of PCPC to the air void system by analyzing the amount of entrained air in 
hardened PCPC in a RapidAir analysis using the linear-traverse method described in the ASTM C457 
standard (ASTM C457, 2006). However, the RapidAir analysis does not include voids larger than 4 
mm in diameter and more experiments are needed to fully understand the freeze-thaw mechanisms of 
PCPC. In this study, the freeze-thaw durability of six different PCPC mix designs is evaluated from 
their change in mass and relative dynamic modulus during freeze-thaw tests. The results are linked to 
the air void structure determined from the linear-traverse method using the RapidAir analysis includ-
ing air voids less than 1 mm, less than 4 mm, and all air voids.  

2 Methods 

2.1 Material Properties 
All mixes were prepared with ASTM C150 cement meeting both Type I and Type II classification 
and ASTM C618 Class F fly ash with a specific gravity of 3.15 and 2.28, respectively (ASTM C150, 
2012; ASTM C618, 2012). Two different types of coarse aggregate were used: granite A and B with a 
maximum aggregate size of 1/2 in. (12.7 mm) and 3/8 in. (9.5 mm), respectively. Both had a specific 
gravity of 2.70. Granite A had 0.6% absorption, a dry rodded unit weight of 1524 kg/m3 and a void 
ratio of 0.43, whereas granite B had 0.7% absorption, a dry rodded unit weight of 1405 kg/m3 and a 
void ratio of 0.48. As fine aggregate, concrete sand with 100% passing the No. 4 sieve (4.75 mm), a 
fineness modulus of 3.1, a specific gravity of 2.64 and 1.8% absorption was used. Moreover, vinsol 
resin-based air entraining agent (AEA) and polycarboxylate based high-range water reducer (HRWR) 
with a specific gravity of 1.02 and 1.10, respectively, were used.  

2.2 Mix Designs 
A total of six different mixes were placed for this study. Three used granite A (Mix A) and three used 
granite B (Mix B). Mix A and B had a water-to-cement ratio of 0.29 and 0.31, respectively, and 20% 
cement replaced with fly ash, by weight. The fine aggregate to coarse aggregate ratio was 0.09, also 
by weight. The mixtures were designed for 18% voids and the mixes containing AEA were designed 
to have additionally 3% entrained air. ‘Mix 1’ did not contain any AEA or HRWR, ‘Mix 2’ contained 
only AEA, and ‘Mix 3’ contained AEA and HRWR. The AEA dosage was slightly higher than the 
standard dosage used for conventional concrete, that is, 0.125% of the cementitious material mass. 
The HRWR dosage was 0.375%. The different mixture proportions are shown in Table 1.   
Table 1 Pervious concrete mix designs A and B.  

Mix Cement 
[kg/m3] 

Fly ash 
[kg/m3] 

Water 
[kg/m3] 

Granite 
[kg/m3] 

Sand 
[kg/m3] 

AEA 
[kg/m3] 

HRWR 
[kg/m3] 

1-A 315 64 100 1435 133 - - 
2-A 315 64 100 1385 128 0.47 - 
3-A 315 64 100 1382 128 0.47 1.42 
1-B 315 64 114 1401 130 - - 
2-B 315 64 114 1350 125 0.47 - 
3-B 315 64 114 1347 125 0.47 1.42 

2.3 Sample Mixing and Preparation 
The concrete was prepared by first mixing aggregates and 5% of the cement for one minute to ensure 
that all aggregates were coated with cement (Kevern, Wang, and Schaefer, 2008). The AEA was 
diluted in the water and added to the mix. When foam was observed, the rest of the cement and fly 
ash was added and mixed for three minutes. The mixture was allowed to rest for two minutes before it 
was mixed for additionally two minutes. In mixes with HRWR, one third of the water was held back, 
mixed with HRWR and added when the mix appeared uniform after addition of cement and fly ash. 

The samples for the freeze-thaw tests were prepared in beam molds measuring 75 × 100 × 400 
mm (3 × 4 × 16 in.), and the samples for the air void analysis were prepared in d100/h200 mm (4/8 
in.) cylinder molds. The mass of PCPC corresponding to the volume of the mold was determined 
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from the mix design and placed in the mold in three equal lifts. Each lift was rodded a maximum of 
25 times for the cylinder specimens and 75 times for the beam specimens depending on the workabil-
ity of the particular mix design. The layers were meshed together by vibrating each new layer for 
three seconds. After 24 hours the specimens were demolded and placed in a fog room with a relative 
humidity of 98% until 28 days. 

For the RapidAir analysis, samples measuring 100 × 100 × 15 mm were cut vertically from the 
cylinder specimens. One side of the sample was wet-sanded with successively finer grit paper finish-
ing with the 6 µm grit. Afterwards, the entire surface was colored black with a broad tip black marker 
and the sample was heated to 80⁰C in an oven for two hours. Subsequently, a white zinc paste mixed 
from petroleum jelly and zinc oxide was applied and massaged into the heated surface, thereby melt-
ing and flowing into the air voids. The sample was cooled in a refrigerator before all excess zinc paste 
was removed from the surface with an angled razor blade. 

2.4 Testing Procedures 
Determination of the void content and the unit weight of the hardened pervious concrete beam speci-
mens were carried out by weighing the specimens below and above water in accordance with the 
ASTM C1754 standard (ASTM C1754, 2012). Three beam specimens were tested for each mix de-
sign except from Mix 1-A which was not exposed to freezing and thawing. 

The freeze-thaw tests were carried out in accordance with the ASTM C666 standard Procedure A 
(ASTM C666, 2008), where the specimens are frozen and thawed in water and their core temperature 
varies between –18⁰C±2⁰C and 4⁰C±2⁰C. Prior to the beginning of the freeze-thaw exposure, the 
specimens were water saturated for 24 hours at 4⁰C. The mass loss and the durability factor (DF) 
calculated from relative dynamic modulus were used to evaluate the freeze-thaw durability of the 
specimens, and the tests were terminated when the specimens reached 15% mass loss, 300 frost cy-
cles or a reduction in the relative dynamic modulus to 60%. The mass loss and the transverse frequen-
cy were measured for every 30 frost cycles. DF [%] was calculated using the formula: 

 
DF = 

𝑃𝑃𝑃𝑃
𝑀𝑀  (1) 

where P [%] is the relative dynamic modulus (RDM) at N cycles, N is the number of cycles at which 
P reaches the specified minimum value for discontinuing the test—chosen as 60% of RDM—or the 
specified number of cycles at which the exposure is to be terminated, whichever is less, and M = 300 
cycles is the number of cycles at which the exposure is to be terminated. 

A RapidAir analysis based on the linear-traverse method described in the EN 480-11 standard 
(EN 480-11, 1998) was carried out using a RapidAir device. For all samples, five traverse lines per 
frame were chosen. The threshold value was set to 120 and 100 for Mix A and Mix B, respectively. 
The paste content was 22.8% and 24.2% for Mix A and Mix B, respectively. For each sample, the 
RapidAir test was performed four times by rotating the sample 90 degree between each test. The 
values presented herein are average values of these four measurements.    

3 Results and Discussion 
For conventional concrete, the freeze-thaw durability is typically evaluated from one of two methods: 
either by exposing concrete samples to freeze-thaw tests in a freezing chamber and consider the de-
crease in mass and transverse frequency by following, for example, the ASTM C666 standard (ASTM 
C666, 2008), or by determining characteristic air void properties such as the spacing factor and the 
specific surface area in a microscopical analysis. Such microscopical analysis is often performed 
using a RapidAir system (or a similar system) that automatically scans the prepared sample and 
measures the linear-traverses according to the procedure described in the EN 480-11 standard (EN 
480-11, 1998) or in the ASTM C457 standard (ASTM C457, 2006). The results achieved directly 
from the RapidAir analysis include only voids up to 4 mm. Voids larger than 4 mm are simply omit-
ted from the analysis because the EN 480-11 standard (EN 480-11, 1998) does not consider air bub-
bles with a diameter greater than 4 mm. This is because the formulas used to determine the air void 
characteristic in the linear-traverse method build on Powers’ formulas that distinguish between 
whether or not the paste-to-air content (p/A) is less than or greater than 4.342 (Powers, 1949) which 
relates to whether a paste has a low or a rich air content. For p/A-ratios greater than 4.342, the results 
become erroneous if air voids larger than 4 mm are included in the analysis, and for conventional 
concrete it is reasonable to leave such coarse air bubbles out of the analysis because they are rarely 
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present. In the ASTM C457 standard (ASTM C457, 2006) no upper size limit is specified; however, 
one should be aware of this possible error when using the method. Because PCPC and conventional 
concrete are similar in many perspectives it is natural to apply the same methods as used for conven-
tional concrete to determine the freeze-thaw durability of PCPC. However, the void structure of 
PCPC is considerably more complex than that of conventional concrete because it contains small 
entrained air in the cement paste (as conventional concrete) but also larger voids that often exceed 4 
mm between the aggregate particles. Hence, when considering the freeze-thaw durability of PCPC 
three questions naturally arise: 

1) What is the error by omitting the largest voids (> 4 mm) when applying the linear-traverse 
method described in the EN 480-11 standard (EN 480-11, 1998) on PCPC? 

2) Is it reasonable to determine the spacing factor for PCPC from the same expressions as used 
for conventional concrete when the void structure of PCPC is so distinctively different than 
the void structure assumed in the EN 480-11 standard (EN 480-11, 1998) relating to conven-
tional concrete? 

3) How do freeze-thaw tests of PCPC compare to the air void characteristics determined from 
the linear-traverse method described in the EN 480-11 standard (EN 480-11, 1998)? 

The following sections will address these questions by considering the tendencies and correlations 
discovered in the present study. 

3.1 Freeze-Thaw Tests 
Fig. 1(left) shows the remaining mass of the specimens as function of the number of freeze-thaw 
cycles. Because there was a certain variation in the freeze-thaw behavior within each mix design, the 
results are shown for all specimens. 
 

  
Fig. 1 Remaining mass (left) and RDM (right) for PCPC specimens as function of the number of 

freeze-thaw cycles. 
Fig. 1(left) shows that the mass loss of most PCPC specimens was insignificant until the point of 
failure at which an abrupt decrease in the mass took place as the paste deteriorated to the point of 
loose aggregate. Although specimens were first soaked in water before initial testing, the figure also 
shows that some specimens gained weight during the freeze-thaw tests. This is because the cement 
paste absorbed water when the specimens were immersed. At the point of failure the specimens were 
completely deteriorated and it was not possible to measure the mass; hence, the mass loss is set to 
100% in Fig. 1(left). A mass loss of 15% is typically defined as the acceptable maximum mass loss 
for PCPC. Table 2 summarizes the number of frost cycles at which the specimens had 15% mass loss. 
The table also shows the air void content of the beam specimens used in the freeze-thaw tests deter-
mined. No freeze-thaw tests were performed on Mix 1-A. 

Fig. 1(right) shows the decrease in RDM as function of the number of freeze-thaw cycles, and the 
60% cut-off limit. Compared to the decrease in mass loss, the decrease in RDM occurred faster and 
more gradually as it was also observed in Shu et al. (2011). Hence, most specimens failed per the 
selected criteria due to a reduction in RDM rather than due to the mass loss. Table 2 also shows the 
average DFs calculated from Eq. (1). The size of DF is very dependent on the choice of M and P 
which means that DFs can only be compared if they were calculated using the same assumptions. The 
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results in Kevern, Wang, and Schaefer (2010) and Shu et al. (2011) suggest that acceptable freeze-
thaw behavior occurs for DFs larger than 40%; hence, the DFs determined for the specimens in this 
study are low which indicate a poor freeze-thaw resistance. Based on DF, Mix 3-B had the worst 
freeze-thaw durability even though the beams used for the test had the lowest void content which is 
known to improve the freeze-thaw durability of PCPC. Mix A showed slightly improved freeze-thaw 
durability compared to Mix B. Moreover, the freeze-thaw results were much more variable than what 
is typically observed and allowable for conventional concrete. 

Table 2 Air void content and hardened unit weight (UW) of PCPC beam specimens used for freeze-
thaw tests measured according to the ASTM C1754 standard (ASTM C1754, 2012). Moreover, the 
initial transverse frequency, f0, and the durability factors, DF, for the different mix designs, are shown 
(average value (av.) and coefficient of variation (COV)), and the number of frost cycles, n, corre-
sponding to a mass loss of 15%.  

Mix 
Voids [%] UW [kg/m3] f0  [Hz] DF [%] n [-] 

Av. COV  Av. Av. Av. COV  1 2 3 
2-A 19.4 0.6 2008 1627 18.6 9.6 154 184 124 
3-A 18.5 1.0 1979 1673 20.0 22.0 124 124 184 
1-B 18.8 2.5 1977 1680 16.3 55.1 86 124 184 
2-B 19.0 1.3 1964 1685 12.0 91.0 183 95 34 
3-B 13.8 5.0 1976 1696 10.5 88.3 64 64 125 

3.2 Air Void Analysis using the Linear-Traverse Method 

3.2.1 Air Void Content 
The results achieved directly from the RapidAir analysis include only voids up to 4 mm; however, the 
raw data was processed to also include all void sizes. Fig. 2 visualizes the air void distribution of the 
mix designs by distinguishing the void content for air voids less than 1 mm, air voids less than 4 mm 
and all air voids. Both numerical and relative values are shown. 
 

  
Fig. 2 Void content of specimens divided between voids less than 1 mm, 4 mm and all voids 

determined from the RapidAir analysis on cylinder specimens (left), and void contents 
relative to the void content that includes all voids for the particular mix designs (right). 

Because Mix 1-A and 1-B did not contain AEA it was expected that those mixes would have less fine 
air than the remaining mixes. Fig. 2(right) shows that Mix 1-A had a slightly lower air content of 
voids less than 1 mm than Mix 2-A and 3-A; however, for Mix B the same tendency was not ob-
served, and even for Mix A the difference was small. It is well-known that addition of AEA increases 
PCPC workability by which PCPC compacts better and the void size decreases. For Mix A, the voids 
less than 4 mm constituted a larger part of the total void content for Mix 2-A and 3-A with AEA than 
for Mix 1-A without AEA; however, for Mix B this was not the case. For neither Mix A nor Mix B, 
did the addition of AEA have the desired effect. Fig. 3 shows scanned 10 × 10 cm2 images of speci-
mens 2-A, 1-B and 2-B together with 1 × 1 cm2 close-ups of the same sections.  
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For air entrained PCPC, a clear gray phase, that is a combination of the black solid phase and the 

white void phase, is typically present (Kevern, Wang, and Schaefer, 2008). Fig. 3 shows that such 
phase was neither present for Mix A nor Mix B. This indicates that the amount of AEA added to the 
mixtures was not sufficiently high enough to create a fine entrained air void system in the cement 
paste. The AEA dosage used has previously shown to be sufficient for PCPC (Kevern, Wang, and 
Schaefer, 2008; 2010). A possible explanation of the lacking entrained air content observed in this 
study is the high fly ash content compared to the studies in Kevern, Wang, and Schaefer (2008, 2010) 
that did not contain any fly ash. Fly ash is known to consume AEA and therefore a higher AEA dos-
age is typically used for concretes containing fly ash.  
 

   

   

Fig. 3 Scanned PCPC images: a,b,c) 10 × 10 cm2 section of mix 2-A, 1-B and 2-B, respectively, and 
d,e,f) 1 × 1 cm2 close-up of mix 2-A, 1-B and 2-B, respectively. No entrained air phase was 
observed for any of the mixes. 

3.2.2 Spacing factor of PCPC 
The paste content and the total air void content of the PCPC mixes in this study represent typical 
values for PCPC, and as seen from the mix design, the p/A-ratio is 1.2 which is significantly less than 
4.342 because of the large PCPC void content. Therefore, for PCPC the following expression is al-
ways used to determine the spacing factor, 𝐿𝐿� [mm], when applying the linear-traverse method: 

 
𝐿𝐿�  =

 𝑇𝑇𝑃𝑃
4𝑃𝑃 =

 𝑝𝑝
𝑆𝑆𝑆𝑆 (2) 

where TP is the traverse length through paste, N is the total number of air voids intersected, p is the 
paste content, S [mm-1] is the specific surface area of the voids (the surface area of air voids divided 
by their volume), and A [%] is the total void content (EN 480-11, 1998; Powers, 1949). For conven-
tional concrete, p/A is typically larger than 4.342 and a different and more complex expression is used 

to determine the spacing factor: 𝐿𝐿� = 3
𝑆𝑆

[1.4 �1 + 𝑝𝑝
𝐴𝐴
�
1/3

− 1]. However, for PCPC the expression used 
to determine the spacing factor based on Powers’ formula is fairly simple. Eq. (2) builds on the as-
sumption that for cement paste with high air content, the maximum distance to an air void can be 
determined by spreading the cement paste in a uniformly thick layer over each air void. The thickness 
of this paste layer equals the spacing factor, and Eq. (2) therefore expresses the ratio between the 
paste content and the total surface area (the second expression in Eq. (2)). For cement paste to be 

a) b) c) 

d) e) f) 
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freeze-thaw durable, it is a typical requirement that the spacing factor should be less than 0.2 mm 
(ASTM C457, 2006).  

Table 3 shows the spacing factor determined from the linear-traverse method. The spacing factors 
were determined by considering air voids less than 1 mm, less than 4 mm and all air voids. Table 3 
shows that the mix designs containing AEA did not have smaller spacing factors than the mix designs 
without AEA, which confirms the tendencies observed from Fig. 2 and Fig. 3.  

Table 3 Spacing factor (𝐿𝐿�) determined from the RapidAir analysis for voids less than 1 mm, less 
than 4 mm and for all air voids, and difference between spacing factor including voids 
less than 4 mm and all air voids.  

Mix 
𝐿𝐿�1𝑚𝑚𝑚𝑚 (< 1 mm) 𝐿𝐿�4𝑚𝑚𝑚𝑚 (< 4 mm) 𝐿𝐿�𝑡𝑡𝑡𝑡𝑡𝑡 (all voids) 

𝐿𝐿�4𝑚𝑚𝑚𝑚 − 𝐿𝐿�𝑡𝑡𝑡𝑡𝑡𝑡 Av. 
[mm] 

COV 
[%] 

Av. 
[mm] 

COV 
[%] 

Av. 
[mm] 

COV 
[%] 

1-A 0.28 10.4 0.33 13.4 0.27 11.8 0.06 
2-A 0.26 5.26 0.22 7.75 0.21 7.64 0.01 
3-A 0.35 12.6 0.33 12.1 0.29 9.56 0.04 
1-B 0.27 8.82 0.24 8.77 0.23 11.6 0.01 
2-B 0.22 6.32 0.18 6.30 0.17 5.94 0.01 
3-B 0.25 4.72 0.24 5.80 0.22 5.53 0.02 

The spacing factors based on voids less than 4 mm and all voids were calculated from Eq. (2) which 
states an inverse proportionality between the spacing factor and the number of air voids. Hence, when 
increasing the number of air voids included in the analysis, the spacing factor decreases. Table 3 
shows that the decrease was up to 0.06 mm. The large air voids have a larger total surface area (SA) 
than the small voids and Eq. (2) shows that the spacing factor decreases with increasing SA. Thus, the 
difference between spacing factors including all air voids and voids less than 4 mm depends on the 
content of voids larger than 4 mm. Fig. 2(right) shows that Mix 1-A had the largest content of voids 
larger than 4 mm; hence, this mix experienced the largest difference in the spacing factor as it is also 
clear from Table 3. However, for Mix 2-A, 1-B and 2-B, the content of voids larger than 4 mm was 
less and the difference in the spacing factor was small. Thus, if the content of air voids greater than 4 
mm is low, the error by using the RapidAir analysis that includes only air voids up to 4 mm is small. 
Table 3 also shows that the spacing factors decrease if all voids are included rather than air voids less 
than 1 mm. However, in this situation a similar rationale as the abovementioned cannot be applied 
because the expression used to determine the spacing factor for air voids less than 1 mm is different 
than Eq. (2) and builds on different assumptions. However, the spacing factor determined for voids 
less than 1 mm can be considered to only relate to the cement paste.   

3.3 Reflection and Evaluation of Freeze-Thaw Durability Test Methods for PCPC 
The results in Table 3 show that even without the expected entrained air content in the cement paste, 
the spacing factors calculated when including all air voids were fairly close to 0.2 mm for most mix-
es, and for Mix 2-B less than 0.2 mm, even though Fig. 3e and Table 2 clearly show that the cement 
paste was not air entrained and the freeze-thaw durability was not good. Fig. 3 shows that the large air 
voids of PCPC are not spherical but irregular and twisted. Because the linear-traverse method directly 
transforms a given chord length to the volume of a spherical void, the method possibly exaggerates 
the total air content. This is clear by comparing the total void content of Fig. 2(left) with that in Table 
1 determined from the ASTM C1754 standard (ASTM C1754, 2012).  

When performing the freeze-thaw tests according to the ASTM C666 standard (ASTM C666, 
2008), the large air voids are water-filled; however, in the microscopic analysis they are considered to 
be as effective as the small entrained air voids to relieve the pressure caused by water that freezes. 
This is contradictory. On one hand it is known that the large voids positively influence the freeze-
thaw durability of PCPC, but on the other hand, the tools available to characterize the freeze-thaw 
properties of PCPC are developed for conventional concrete that has a different void structure. A 
possible solution to overcome this misinterpretation between the microscopic test method and the 
freeze-thaw test method could be to include only entrained air voids less than, for example, 1 mm in 
the determination of the spacing factor because these voids are not water-filled during freeze-thaw 
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testing. By doing so, the misinterpretation between the two methods would be minimized; however, it 
would not link the test methods to the PCPC freeze-thaw performance experienced in real life, and 
future studies should clarify how to include the large voids in a more reasonable way in laboratory 
testing. 

4 Conclusions 
The main conclusions from this study were: 

1) The air entrainment (AEA) dosage of 0.125 weight-% of cement and fly ash was not suffi-
cient to create an entrained air content in the cement paste containing fly ash even though the 
dosage has previously been found to provide good results for cement paste without fly ash. 
This is possible due to the high content of fly ash used in this study. The entrained air con-
tents of specimens with and without AEA were similar.  

2) The decrease in the relative dynamic modulus (RDM) was faster and more gradual than the 
decrease in the mass during the freeze-thaw tests. Most specimens failed due to reduction in 
RDM rather than due to reduction in mass.  

3) The freeze-thaw durability results were much more variable than what is typically observed 
and allowable for conventional concrete. The freeze-thaw durability of all specimens tested 
was poor even though the spacing factor was less than 0.2 mm for one mix design and fairly 
close to 0.2 mm for others. When the spacing factor is determined from the linear-traverse 
method, the large voids are considered to effectively relieve the pressure caused by water 
that freezes; however, in freeze-thaw laboratory tests of PCPC they are water-filled and 
thereby not effective which causes a misinterpretation between the two test methods. 

4) If the content of air voids greater than 4 mm is low, the error by using the linear-traverse 
method that includes only air voids up to 4 mm is small. 
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