
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Cuttable Ruled Surface Strips for Milling

Steenstrup, Kasper Hornbak; Nørbjerg, Toke Bjerge; Søndergaard, Asbjørn ; Bærentzen, Jakob Andreas;
Gravesen, Jens
Published in:
Advances in Architectural Geometry 2016

Link to article, DOI:
10.3218/3778-4_22

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Steenstrup, K. H., Nørbjerg, T. B., Søndergaard, A., Bærentzen, J. A., & Gravesen, J. (2016). Cuttable Ruled
Surface Strips for Milling. In S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, & M. Pauly (Eds.), Advances
in Architectural Geometry 2016 (pp. 328-342). vdf Hochschulverlag AG an der ETH Zürich. DOI: 10.3218/3778-
4_22

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84001537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.3218/3778-4_22
http://orbit.dtu.dk/en/publications/cuttable-ruled-surface-strips-for-milling(83693224-11c2-4b45-84e9-526712c514b9).html


328

Cuttable Ruled 
Surface Strips  
for Milling
Kasper H. Steenstrup, Toke B. Nørbjerg, Asbjørn Søndergaard,  
Andreas Bærentzen, and Jens Gravesen 

K. H. Steenstrup, T. B. Nørbjerg, A. Bærentzen, J. Gravesen 
Technical University of Denmark, Denmark

khor@dtu.dk 
tono@dtu.dk 
janba@dtu.dk 
jgra@dtu.dk

A. Søndergaard 
Odico Formwork Robotics, Denmark

asbjorn.sondergaard@aarch.dk

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_22, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



329

Abstract
This paper proposes a novel pre-processing method for industrial robotic 
CNC-milling. The method targets a hybrid machining process, in which the 
main bulk of material is removed through robotic hot or abrasive wire cutting, 
after which regular CNC-machining is employed for removal of the remaining 
material volume. Hereby, the roughing process is significantly sped up, reduc-
ing overall machining time. We compare our method to the convex hull and re-
move between 5% and 75% more material; on most models we obtain a 50% 
improvement. Our method ensures that no overcutting happens and that the 
result is cuttable by wire cutting. 
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piecewise-ruled surfaces, CAD, milling, free form architecture
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1.	 Introduction
Recent years have seen a dramatic increase in the exploration of industrial robots 
for the purpose of architectural production (Kohler et al. 2014). While predominantly 
still a topic of research, some of these developments have recently matured into 
commercialisation, targeting the deployment of industrial robots for large-scale 
production (Søndergaard 2014). Within subtractive processes, the Denmark start-up 
Odico has been successfully bringing robotic hot-wire cutting to market.

CNC milling is a well-established process in industrial production of, par-
ticularly, foam-casting moulds, but also digitally produced stonework and be-
spoke timber manufacturing. While the process enables a very high degree 
of surface control and design freedom, it is also inherently limited by vast 
machining times for larger-scale applications that require the removal of large 
quantities of material, such as the machining of foam for ship hulls, wind tur-
bine blades, or architectural structures. This adversity becomes significantly 
amplified when applied to hard materials, such as CNC milling of stone (Stein-

hagen et al. 2016). Wire cutting on the other hand, enables a dramatic reduction 
in production times, as volumetric artefacts can be produced in one or few 
swipes (McGee et al. 2013). However, here the precondition is that production ge-
ometries be described via ruled surfaces, which thus constrains the design 
freedom for the benefit of production efficiency. The wire-cutting method-
ology and its implications are extendable to abrasive wire sawing of, for in-
stance, stoneworks, exemplified at the works of the Sagrada Familia cathedral  
(Burry 2016) as well as robotic abrasive wire sawing, as explored by Feringa and 
Søndergaard (2015).

The development of robotic hot-blade cutting (Søndergaard et al. 2016) provides a 
cost-effective and time-efficient manufacturing process for general curved foam 
geometries. However, this process is also constrained by the detail level achiev-
able, and is inadequate for small surface details, while well suited for large-scale 
variations often deployed at industrial and architectural scale. In addition, so far, 
blade cutting is not applicable to non-foam materials.

The three processes milling, wire cutting, and blade cutting (see Figure 1) can 
be viewed as complementary, each covering a particular spectrum within sub-
tractive machining. As such, an extension of the processes is to consider new 
ways for hybridisation.

One such possibility is the combination of milling and wire cutting, in which 
the latter is applied for removal of the initial volume which would otherwise be 
machined in CNC roughing processes. While CNC roughing is generally fast 
compared to CNC finishing, when assuming high target surface smoothness, 
the roughing process can represent substantial machining times when applied 
to voluminous subtractions. Additionally, certain architectural applications may 
enable the omission of surface finishing machining in favour of leaving roughed 
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Figure 1. Different cutting techniques: CNC-milling, hot wire cutting, and hot-blade cutting. 

Figure 3. To the left a ruled surface defined by two curves. To the right a piecewise ruled surface defined by several curves.

Figure 2. Creating an artificial concrete landscape in the urban harbour front of Copenhagen. 
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surfaces for practical or aesthetic purposes. Two projects exemplifying this within 
the BladeRunner production portfolio, can be found in Feringa (2014). There, 212 
m³ of expanded polystyrene foam were milled to achieve a three-dimensional 
guideline shape to be coated in-situ with 70–100 mm of polished spent, giving 
the final shape, see Figure 2. Only roughing processes were applied as for ensur-
ing enhanced binding between the foam core and concrete shell, roughing rep-
resenting approximately 92 direct machining hours.

Given the amount of machining hours spent on roughing, a hybrid approach 
would, for this case, have caused a reduction in processing time of between 
69 – 72%. In light of this finding, work was initiated to find a rationalisation al-
gorithm that would cover any arbitrary three-dimensional shape with a set of 
non-convex ruled surfaces, such as to allow for a maximum of initial volume to 
be removed through wire cutting, while within the same robot cell shifting sub-
sequently to aCNC tooling setup.

For this, we propose a method that combines fast wire cutting and precise 
CNC milling removing as much material as possible using a wire before the precise 
shape is milled. As we allow multiple cuts, the wire-cut surface is a piecewise 
ruled surface, and it can be considered as an approximation or rationalisation of 
the required surface. We can formulate the problem as follows: Given a surface, 
rationalise it with a piecewise ruled surface such that the rationalisation never 
intersects the original surface (no overcutting), and such that it can be manu-
factured by wire cutting. The latter implies that not only the rulings, but also the 
extension of the rulings never intersect the surface.

Usually a mould is composed by several blocks, and we do not consider 
the whole surface, but only a segment contained in a single block. As the final 
shape is milled, we do not need to consider any continuity conditions between 
the piecewise ruled rationalisations of the different segments.

A ruled surface is given by moving a line segment through space while it 
changes length and orientation. As a line segment is determined by its endpoints, 
the two curves described by the end points determine the surface uniquely, see 
Figure 3. A particular class of piecewise ruled surfaces is obtained by letting a poly-
gon move through space while it changes shape, see Figure 3.

If the polygon at all times is on the outside of the original surface and fur-
thermore is planar and convex, then we are certain that the extensions of the 
rulings never intersect the original surface, see Figure 4.

Piecewise ruled surfaces are well known in architecture: Flöry et al. (2012) de-
scribes a method to rationalise free form architecture, focussing on the smooth-
nessbetween rulings, and Flöry and Pottmann (2010) find areas where a good 
rationalisation can be done. Both papers use the asymptotic directions as guides 
for the rulings. In Wang and Elber (2014) large GPU-powered dynamic program-
ming is used to minimise the distance between the original surface and the 
rationalisation.
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The paper by Elber and Fish (1997) constructs a piecewise ruled approximation 
of a free-form surface using Bézier surfaces and a subdivision scheme to get the 
approximation within tolerated error, but global accessibility is not guaranteed. 
In Elber (1995), a free-form surface is approximated by piecewise developable 
surfaces, by using a simple developable primitive and a subdivision technique.

Milling with a cylindrical tool produces piecewise ruled surfaces, so they 
have also been studied in this context. To improve the tool path Chiou (2004) shows 
that the error in the rough milling can be lowered by separating the ruled surface 
into multiple strips. The paper Chu and Chen (2006) constructs a piecewise ruled/
developable rationalisation where a subdivision scheme is used if a tolerance is 
not met. Tool interference is taken care of, but only to the extent of a fixed axis 
flank milling tool. In Cao and Dong (2015) the one-sided Hausdorff distance is used 
to minimise the overcutting.

The paper by Julius et al. (2005) uses an iterative algorithm to automatically 
obtainrationalisation consisting of developable patches. In Jiang et al. (2014) user 
input is used to create a Lobel mesh which has the utility to create developable 
patches.

Our method distinguishes itself by accepting a general free-form surface as 
input and guaranteeing the wire does not cut into the model (overcutting), and 
that the rationalisation is cuttable by a wire.

Figure 4. Planar intersection of the surface and the piecewise ruled rationalisation. If the rulings turn less than 180 ◦ 
then the convexity of the rulings guarantees that the extended rulings never intersect the surface. 
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2.	Method
Given a surface f, we want to minimise the distance between it and a piecewise 
ruled spline surface s of the form:

rationalization consisting of developable patches. In [Jiang et al. 2014] user input is
used to create a Lobel mesh which has the utility to create developable patches.

Our method distinguishes itself by accepting a general free form surface as input
and guaranteeing the wire does not cut into the model (overcutting) and that the
rationalization is cuttable by a wire.

2 Method

Given a surface f, we want to minimize the distance between it and a piecewise ruled
spline surface s of the form:

s(u,v) =
k

∑
i=1

h

∑
j=1

βp
i (u)β1

j(v)ci, j , (1)

where c i, j} is the set of control points and βp
i is a B-spline of degree p. Observe

that is a piecewise ruled surface since the basis function β1
j has degree 1.

We now discretize the piecewise ruled surface s by choosing a uniform grid
= 1, . . . ,N, j = 1, . . . ,M, in the parameter plane and we discretize the

original surface f by sampling points fi, j, i = 1, . . . ,N, j = 1, . . . ,M, on the surface.
How the sampling is done is explained in Section 2.3 below. We furthermore make
sure that the v-knots are among the parameter values v j, i.e., we have indices 1 =

· · ·< jh = M such that the knot vector in the v direction is v j1 , . . . ,v jh .
We measure the distance between f and s by the discrete square distance

N

∑
i=1

M

∑
j=1

‖fi, j − s(ui,v j)‖2, (2)

2.1 Constraints

We need several constraints in the optimization, which we now describe one by one.

One sided approximation To avoid overcutting the rulings should all be on the
outside of the model. So if Ni, j is the outward normal of f at the point fi, j then we
require that

(s(ui,vi)− fi, j) ·Ni, j ≥ ε1 , for all i, j. (3)

If 0 overcutting is only prevented at the sample points fi, j, but with ε1 > 0 and
sufficiently dense sampling overcutting is prevented. Alternatively, if f is a spline
surface the local (or strong) convex hull property [Piegl and Tiller 2012, P3.22,
P4.25] can be used to guarantee that no overcutting happens.

Planarity and convexity of rulings The piecewise ruled surface s given by (1)
can be considered as swept by a moving polygon and we require that the polygon

, . . . ,s(u i,v jh) is planar for all i. We now let ri,� = s(ui,v j�+1)− s(ui,v j�),
i.e., it is one of the rulings. The difference in the other direction is denoted

(1)

where c = {ci , j } is the set of control points and βi
p is a B-spline of degree p. Ob-

serve that s is a piecewise ruled surface since the basis function βi
1 has degree 1.

We now discretise the piecewise ruled surface s by choosing a uniform grid (ui , v j ), 
i = 1, . . . , N, j = 1, . . . , M, in the parameter plane and we discretise the original 
surface f by sampling points fi, j , i = 1, . . . , N, j = 1, . . . , M, on the surface. How 
the sampling is done is explained in Section 2.3 below. We furthermore make 
sure that the v-knots are among the parameter values vj , i.e. we have indices 
1 = j1 < j2 < · · · < jh = M such that the knot vector in the v direction is vj1 , . . . , vjh .
We measure the distance between f and s by the discrete square distance

rationalization consisting of developable patches. In [Jiang et al. 2014] user input is
used to create a Lobel mesh which has the utility to create developable patches.

Our method distinguishes itself by accepting a general free form surface as input
and guaranteeing the wire does not cut into the model (overcutting) and that the
rationalization is cuttable by a wire.

f, we want to minimize the distance between it and a piecewise ruled
spline surface s of the form:

s(u,v) =
k

∑
i=1

h

∑
j=1

βp
i (u)β1

j(v)ci, j , (1)

where } is the set of control points and βp
i is a B-spline of degree p. Observe

that is a piecewise ruled surface since the basis function β1
j has degree 1.

We now discretize the piecewise ruled surface s by choosing a uniform grid
, . . . ,N , j = 1, . . . ,M, in the parameter plane and we discretize the

original surface f by sampling points fi, j, i = 1, . . . ,N, j = 1, . . . ,M, on the surface.
How the sampling is done is explained in Section 2.3 below. We furthermore make
sure that the -knots are among the parameter values v j, i.e., we have indices 1 =

jh = M such that the knot vector in the v direction is v j1 , . . . ,v jh .
We measure the distance between f and s by the discrete square distance

N

∑
i=1

M

∑
j=1

‖fi, j − s(ui,v j)‖2, (2)

2.1 Constraints

We need several constraints in the optimization, which we now describe one by one.

One sided approximation To avoid overcutting the rulings should all be on the
outside of the model. So if Ni, j is the outward normal of f at the point fi, j then we
require that

(s(ui,vi)− fi, j) ·Ni, j ≥ ε1 , for all i, j. (3)

If 0 overcutting is only prevented at the sample points fi, j, but with ε1 > 0 and
sufficiently dense sampling overcutting is prevented. Alternatively, if f is a spline
surface the local (or strong) convex hull property [Piegl and Tiller 2012, P3.22,
P4.25] can be used to guarantee that no overcutting happens.

Planarity and convexity of rulings The piecewise ruled surface s given by (1)
can be considered as swept by a moving polygon and we require that the polygon

(u i,v jh) is planar for all i. We now let ri,� = s(ui,v j�+1)− s(ui,v j�),
i.e., it is one of the rulings. The difference in the other direction is denoted

(2)

2.1	 Constraints
We need several constraints in the optimisation, which we now describe one 
by one.

One-sided approximation
To avoid overcutting, the rulings should all be on the outside of the model. So if 
Ni, j is the outward normal of f at the point fi, j then we require that

rationalization consisting of developable patches. In [Jiang et al. 2014] user input is
used to create a Lobel mesh which has the utility to create developable patches.

Our method distinguishes itself by accepting a general free form surface as input
and guaranteeing the wire does not cut into the model (overcutting) and that the
rationalization is cuttable by a wire.

2 Method

Given a surface f, we want to minimize the distance between it and a piecewise ruled
spline surface s of the form:

s(u,v) =
k

∑
i=1

h

∑
j=1

βp
i (u)β1

j(v)ci, j , (1)

where = {ci, j} is the set of control points and βp
i is a B-spline of degree p. Observe

that is a piecewise ruled surface since the basis function β1
j has degree 1.

We now discretize the piecewise ruled surface s by choosing a uniform grid
i = 1, . . . ,N, j = 1, . . . ,M, in the parameter plane and we discretize the

original surface f by sampling points fi, j, i = 1, . . . ,N, j = 1, . . . ,M, on the surface.
How the sampling is done is explained in Section 2.3 below. We furthermore make
sure that the v-knots are among the parameter values v j, i.e., we have indices 1 =

< · · ·< jh = M such that the knot vector in the v direction is v j1 , . . . ,v jh .
We measure the distance between f and s by the discrete square distance

N

∑
i=1

M

∑
j=1

‖fi, j − s(ui,v j)‖2, (2)

2.1 Constraints

We need several constraints in the optimization, which we now describe one by one.

One sided approximation To avoid overcutting the rulings should all be on the
outside of the model. So if Ni, j is the outward normal of f at the point fi, j then we
require that

(s(ui,vi)− fi, j) ·Ni, j ≥ ε1 , for all i, j. (3)

If 0 overcutting is only prevented at the sample points fi, j, but with ε1 > 0 and
sufficiently dense sampling overcutting is prevented. Alternatively, if f is a spline
surface the local (or strong) convex hull property [Piegl and Tiller 2012, P3.22,
P4.25] can be used to guarantee that no overcutting happens.

Planarity and convexity of rulings The piecewise ruled surface s given by (1)
can be considered as swept by a moving polygon and we require that the polygon

(3)
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If ε1 = 0, overcutting is only prevented at the sample points fi, j , but with ε1 > 0 and 
sufficiently dense sampling overcutting is prevented. Alternatively, if f is a spline 
surface the local (or strong) convex hull property (Piegl and Tiller 2012, P3.22, P4.25) can 
be used to guarantee that no overcutting happens.

Planarity and convexity of rulings
The piecewise ruled surface s given by (1) can be considered as swept by a mov-
ing polygon, and we require that the polygon s(ui , vj 1 ), . . . , s(ui , vjh ) is planar 
for all i. We now let ri,ℓ = s(ui  , v jℓ+1 ) − s(ui , v jℓ ), i.e., it is one of the rulings. The 
difference in the other direction is denoted wi,ℓ = s(ui+1 , v jℓ ) − s(ui , v jℓ ). The cross 
product ni,ℓ = ri,ℓ × ri,ℓ+1 is a normal to the plane spanned by ri,ℓ and ri,ℓ+1 , see  
Figure 5. If all the normals ni,ℓ , ℓ = 1, . . . , h − 1 are parallel then the polygon is pla-
nar, and if they all point in the same direction then the polygon is convex or con-
cave. We can formulate this condition as

plane spanned by ri,� and ri,�+1, see Figure 5 . If all the normals ni,�, �= 1, . . . ,h−1
are parallel then the polygon is planar and if they all point in the same direction then
the polygon is convex or concave. We can formulate this condition as

ni,�1 ·ni,�2 = ‖ni,�1‖‖ni,�2‖ , �1, �2 = 1, . . . ,h−1 . (4)

or to simplify it a bit

ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 . (5)

To rule out the possibility of a concave polygon we require that the normal ni,�
points in roughly the same direction as wi,�. This can be formulated as

wi,� ·n�,1 ≥
1
2
‖wi,�‖‖ni,�‖ . �= 1, . . . ,h−1 . (6)

or as (5) secures that ni,� points in the same direction as ni,1 we can simplify it to

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ . (7)

s(ui,v j�)
s(ui,v j�+1)

s(ui+1,v j�)

ri,�

wi,�

(4)

or to simplify it a bit

plane spanned by ri,� and ri,�+1, see Figure 5 . If all the normals ni,�, �= 1, . . . ,h−1
are parallel then the polygon is planar and if they all point in the same direction then
the polygon is convex or concave. We can formulate this condition as

ni,�1 ·ni,�2 = ‖ni,�1‖‖ni,�2‖ , �1, �2 = 1, . . . ,h−1 . (4)

or to simplify it a bit

ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 . (5)

To rule out the possibility of a concave polygon we require that the normal ni,�
points in roughly the same direction as wi,�. This can be formulated as

wi,� ·n�,1 ≥
1
2
‖wi,�‖‖ni,�‖ . �= 1, . . . ,h−1 . (6)

or as (5) secures that ni,� points in the same direction as ni,1 we can simplify it to

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ . (7)

s( ) s(ui,v j�1 )

s(ui+1,v j�)

ri,�

wi,�

(5)

To rule out the possibility of a concave polygon, we require that the normal ni,ℓ
points in roughly the same direction as wi,ℓ . This can be formulated as

plane spanned by ri,� and ri,�+1, see Figure 5 . If all the normals ni,�, �= 1, . . . ,h−1
are parallel then the polygon is planar and if they all point in the same direction then
the polygon is convex or concave. We can formulate this condition as

ni,�1 ·ni,�2 = ‖ni,�1‖‖ni,�2‖ , �1, �2 = 1, . . . ,h−1 . (4)

or to simplify it a bit

ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 . (5)

To rule out the possibility of a concave polygon we require that the normal ni,�
points in roughly the same direction as wi,�. This can be formulated as

wi,� ·n�,1 ≥
1
2
‖wi,�‖‖ni,�‖ . �= 1, . . . ,h−1 . (6)

or as (5) secures that ni,� points in the same direction as ni,1 we can simplify it to

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ . (7)

s(ui+1,v j�)

ri,�

wi,�

(6)

or as (5) secures that ni,ℓ points in the same direction as ni,1 we can simplify it to

i,� and ri,�+1, see Figure 5 . If all the normals ni,�, �= 1, . . . ,h−1
are parallel then the polygon is planar and if they all point in the same direction then
the polygon is convex or concave. We can formulate this condition as

,� 1 ·ni,�2 = ‖ni,�1‖‖ni,�2‖ , �1, �2 = 1, . . . ,h−1 . (4)

or to simplify it a bit

ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 . (5)

To rule out the possibility of a concave polygon we require that the normal ni,�
points in roughly the same direction as wi,�. This can be formulated as

wi,� ·n�,1 ≥
1
2
‖wi,�‖‖ni,�‖ . �= 1, . . . ,h−1 . (6)

or as (5) secures that ni,� points in the same direction as ni,1 we can simplify it to

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ . (7)

s(ui+1,v j�)

wi,�

(7)
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Boundary
Ultimately the rationalised surface s is supposed to be cut from a block, which 
we assume has the form of a box with axis parallel sides, given by a1 ≤ x ≤ a2 , 
b1 ≤ y ≤ b2 , and d1 ≤ z ≤ d2 . So no part of the boundary is allowed to be strictly in-
side the block. We furthermore assume that we will be cutting roughly in the x 
direction. So we require that

direction. So we require that

cx
1, j ≤ a1 , cx

k, j ≥ a2 , j = 1, . . . ,h , (8)

cy
i,1 ≤ b1 , cy

i,h ≥ b2 , i = 1, . . . ,k . (9)

where the superscript denotes the different components of the control points. In our
implementation we start and end with the polygon on the block boundary, so in (8)
the inequlities are replaced with equalities.

Limit the directions of the rulings The rulings are not allowed to turn more than
180◦, and this can be secured if the y-coordinate is a strictly increasing function.
This is the case if it holds for the control polygon, and we formulate this as

cy
i+1, j − cy

i, j ≥ ε2 , (10)

where ε2 is some small positive number. Strictly speaking we only need the differ-
ence to be non negative, but using an ε2 > 0 also prevents any ruling from collapsing
into a single point.

2.2 The optimization problem

(8) (9)

where the superscript denotes the different components of the control points. 
In our implementation we start and end with the polygon on the block boundary, 
so in (8) the inequalities are replaced with equalities.

Limit the directions of the rulings
The rulings are not allowed to turn more than 180◦ , and this can be secured if 
the y-coordinate is a strictly increasing function. This is the case if it holds for the 
control polygon, and we formulate this as

direction. So we require that

a1 , cx
k, j ≥ a2 , j = 1, . . . ,h , (8)

b1 , cy
i,h ≥ b2 , i = 1, . . . ,k . (9)

where the superscript denotes the different components of the control points. In our
implementation we start and end with the polygon on the block boundary, so in (8)
the inequlities are replaced with equalities.

Limit the directions of the rulings The rulings are not allowed to turn more than
180 , and this can be secured if the y-coordinate is a strictly increasing function.
This is the case if it holds for the control polygon, and we formulate this as

cy
i+1, j − cy

i, j ≥ ε2 , (10)

where is some small positive number. Strictly speaking we only need the differ-
ence to be non negative, but using an ε2 > 0 also prevents any ruling from collapsing
into a single point.

2.2 The optimization problem

(10)

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ . (7)

s(ui,v j�)
s(ui,v j�+1)

s(ui+1,v j�)

ri,�

wi,�

Figure 5: The discretized piecewise ruled surface from figure 3. The points
, . . . ,s(u i,v jh) form an instance of the moving polygon. The vector ri,� is a leg in

the polygon, i.e., a ruling. The vectors wi,1, . . . ,wi,h goes from one polygon of rulings to the
next.

Boundary Ultimately the rationalized surface s is supposed to be cut from a block,
which we assume has the form of a box with axis parallel sides, given by a1 ≤ x≤ a2,

≤ b2, and d1 ≤ z ≤ d2. So no part of the boundary is allowed to be strictly
inside the block. We furthermore assume that we will be cutting roughly in the x

Figure 5. The discretised piecewise ruled surface from Figure 3. The points s(ui , v j1), . . . , s(ui , vjh) form an instance of 
the moving polygon. The vector ri,ℓ is a leg in the polygon, i.e. a ruling. The vectors wi,1 , . . . , wi,h goes from one polygon 
of rulings to the next.
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where ε2 is some small positive number. Strictly speaking we only need the dif-
ference to be non-negative, but using an ε2 > 0 also prevents any ruling from col-
lapsing into a single point.

2.2	 The Optimisation Problem
We are now able to formulate the optimisation problem

, and this can be secured if the y-coordinate is a strictly increasing function.
This is the case if it holds for the control polygon, and we formulate this as

cy
i+1, j − cy

i, j ≥ ε2 , (10)

where ε2 is some small positive number. Strictly speaking we only need the differ-
ence to be non negative, but using an ε2 > 0 also prevents any ruling from collapsing
into a single point.

2.2 The optimization problem

We are now able to formulate the optimization problem

minimize
c

N

∑
i=1

M

∑
j=1

‖fi, j − s(ui,v j)‖2 ,

such that
cx

1, j = a1 , cx
k, j = a2 , j = 1, . . . ,h ,

cy
i,1 ≤ b1 , cy

i,h ≥ b2 , i = 1, . . . ,k ,

(s(ui,v j)− fi, j) ·Ni, j ≥ ε1 , i = 1, . . . ,k , j = 1, . . . ,h ,
ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 ,

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ ,

cy
i+1, j − cy

i, j ≥ ε2 ,

(11)

where

ni,� = ri,�× ri,�+1 , �= 1, . . . ,h−2 , (12)
ri,� = s(ui,v j�+1)− s(ui,v j�) , �= 1, . . . ,h−1 , (13)

wi,� = s(ui+1,v j�)− s(ui,v j�) , i = 1, . . . ,k−1 . (14)

We solve this optimization problem using the interior point method, [Wächter and
Biegler 2005].

(11)

where

Limit the directions of the rulings The rulings are not allowed to turn more than
180◦, and this can be secured if the y-coordinate is a strictly increasing function.
This is the case if it holds for the control polygon, and we formulate this as

cy
i+1, j − cy

i, j ≥ ε2 , (10)

where ε2 is some small positive number. Strictly speaking we only need the differ-
ence to be non negative, but using an ε2 > 0 also prevents any ruling from collapsing
into a single point.

2.2 The optimization problem

We are now able to formulate the optimization problem

minimize
c

N

∑
i=1

M

∑
j=1

‖fi, j − s(ui,v j)‖2 ,

such that
cx

1, j = a1 , cx
k, j = a2 , j = 1, . . . ,h ,

cy
i,1 ≤ b1 , cy

i,h ≥ b2 , i = 1, . . . ,k ,

(s(ui,v j)− fi, j) ·Ni, j ≥ ε1 , i = 1, . . . ,k , j = 1, . . . ,h ,
ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 ,

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ ,

cy
i+1, j − cy

i, j ≥ ε2 ,

(11)

where

ni,� = ri,�× ri,�+1 , �= 1, . . . ,h−2 , (12)
ri,� = s(ui,v j�+1)− s(ui,v j�) , �= 1, . . . ,h−1 , (13)

wi,� = s(ui+1,v j�)− s(ui,v j�) , i = 1, . . . ,k−1 . (14)

We solve this optimization problem using the interior point method, [Wächter and
Biegler 2005].

(12) (13) (14)

We solve this optimisation problem using the interior point method as in Wächter 
and Biegler (2005).
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Figure 6. Illustration of the 3 steps that initialise the model into 900 points. Firstly: 10 of the 30 planes are shown, 
Secondly: 12 of the 30 intersection curves. Finally: 300 of the 900 discretisation points are shown.

——————————————————
Model 4 Model 5

Model 1 Model 2 Model 3

Figure 7: Five models rationalized by piece-wise ruled surfaces. Model one has been cut
four times in one directions and four times in roughly the orthogonal direction. The four
other models have been cut four times in one direction.

that object in each case. The results are summarised in Table 1. We normalize all
volumes with respect to the volume of the bounding box, i.e., we use Vol/Vol(BB).
We show the volume of the model, but in the three other cases we show the volume
that needs to be milled away, i.e., (Vol−Vol(Model))/Vol(BB).

So for Model 1 we can see that the volume of the model is 49% of the bounding

Figure 7. Five models rationalised by piece-wise ruled surfaces. Model one has been cut four times in one directions and 
four times in roughly the orthogonal direction. The four other models have been cut four times in one direction.
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2.3	 Initialisation

All that is left is to explain how we choose the sampling points fi, j and initialise 
the optimisation.

First the coordinate system is chosen such that outward normal of the sur-
face is roughly in the z-direction, i.e., upward. Then a cutting direction is chosen, 
and we create N parallel planes orthogonal to the cutting direction and uniformly 
spaced. For each plane the intersection curve with the original surface f is found. 
Finally, each intersection curve is discretised into M points. This is illustrated in 
Figure 6, where N and M both are 30.

3.	Results
We have run our algorithm on the five models shown in Figure 7. Model 1 was cut 
in two different directions, four times in each directions, while Models 2–5 was 
cut four times in one direction. For comparison we have also calculated the con-
vex hull, and the bounding box.

We have only considered cutting directions parallel to the sides of the blocks, 
but if we consider Model 2, diagonal cuts would be favourable. The depression in 
Model 4 poses a problem for wire cutting: No matter what direction a line at the 
depression has, it will cut into one of the ‘mountains’ at the edge. On the other 
hand, we see that even though we sweep the surface using a polygon with four 
legs the optimisation has put two of the legs on the same line. So we have in 
effect a polygon with only three legs and consequently only need three cuts to 
produce the rationalisation.

If we imagine the surface sitting inside the block and remove the outer part 
we are left with a solid object, see Figure 8. We have calculated the volume of that 
object in each case. The results are summarised in Table 1. We normalise all vol-
umes with respect to the volume of the bounding box, i.e. we use Vol / Vol(BB). 
We show the volume of the model, but in the three other cases we show the 
volume that needs to be milled away, i.e., (Vol − Vol(Model))/ Vol(BB).

So for Model 1 we can see that the volume of the model is 49% of the bound-
ing box volume, that our method has left 4% of the bounding box volume for 
milling, that the convex hull leaves 15% of the bounding box volume for milling, 
and that the bounding box (doing nothing) leaves 51% of the volume for milling. 
We also show how much more volume our method removes compared to the 
convex hull and the bounding box, respectively. That is we show (Vol − Vol(our))/
(Vol − Vol(Model)). For Model 1 this is 76% and 93%, respectively.
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Figure 8: Model 1 with volume shown, the volume is created by intersection the bounding
box with the surface

No. Model Ruled Convex Hull Bounding Box
1 0.4924 0.0374 0.1541 76% 0.5076 93%
2 0.2435 0.1520 0.3380 55% 0.7565 80%
3 0.5914 0.0201 0.0520 61% 0.4086 95%
4 0.3058 0.1379 0.1453 5% 0.6942 80%
5 0.4533 0.0798 0.2294 65% 0.5467 85%

Table 1: In the second column the volume of the model is shown. In column 3,4, and 6
we show how much volume there is left for milling using our method, the convex hull, and
the bounding box respectively. All volumes are normalized with respect to the volume of the
bounding box. In column 5 and 7 we show how much more volume our method removes
compared to the convex hull and the bounding box, respectively.

box volume, that our method has left 4% of the bounding box volume for milling,
that the convex hull leaves 15% of the bounding box volume for milling, and that the
bounding box (doing nothing) leave 51% of the volume for milling. We also show
how much more volume our method removes compared to the convex hull and the
bounding box, respectively. That is we show (Vol−Vol(our))/(Vol−Vol(Model)).
For Model 1 this is 76% and 93% respectively.

4 Conclusion and future work

We have described a novel method that finds a one sided approximation of a free
form surface by a piecewise ruled surface. The method guarantees that no extension
of the rulings cut through the original surface. This allows us to use the method and
wire cutting as a preprocessing step for milling.

Compared to using the convex hull as a preprocessing step we obtain an im-
provent from 5 to 75% and typically around 50%.

For simplicity we have limited ourself to cuts parallel to the coordinate planes,
but relaxing this conditions and allowing any cutting direction will improve the

Figure 8. Model 1 with volume shown, the volume is created by intersection the bounding box with the surface.

Table 1. In the second column the volume of the model is shown. In columns 3,4, and 6 we show how much volume there 
is left for milling using our method, the convex hull, and the bounding box, respectively. All volumes are normalised with 
respect to the volume of the bounding box. In columns 5 and 7 we show how much more volume our method removes 
compared to the convex hull and the bounding box, respectively.
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4.	Conclusion and Future Work
We have described a novel method that finds a one-sided approximation of a 
free-form surface by a piecewise ruled surface. The method guarantees that no 
extension of the rulings cut through the original surface. This allows us to use 
the method and wire cutting as a pre-processing step for milling.

Compared to using the convex hull as a pre-processing step, we obtain an 
improvement from 5 to 75% and typically around 50%.

For simplicity we have limited ourselves to cuts parallel to the coordinate 
planes, but relaxing this conditions and allowing any cutting direction will im-
prove the result.

We represent the piecewise ruled surface as a tensor product spline surface 
of degree one in one direction and the planarity condition of the rulings restrict 
the flexibility of the piecewise ruled surface. To overcome this, we can choose 
another representation where we explicitly move a planar polygon through space.

In this work we have assumed that the full architectural model has been seg-
mented into block-sized portions, and we have only considered the piece inside 
a single block. An interesting possibility is to use our method to aid in the seg-
mentation. If we allow for non-convex polygons in the optimisation, we will obtain 
a better fit and we could use the concave vertices to guide the segmentation.

Our system can be incorporated into a design workflow in one of several 
ways. The most obvious use is to simply run the method in order to reduce the 
amount of milling that is required to produce a given piece. However, the design-
er might also wish to create surfaces whose final design will change little when 
our method runs. In this case, we simply ensure that a design which is close 
to cuttable will, in fact, be so. Finally, our method seems to provides a distinct 
design expression with a plurality of intersection curves if cuts are made from 
several directions. We surmise that this could be used explicitly in some cases.
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