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Abstract

This article addresses two important issues in public procurement: ex ante

uncertainty about the participating agents’ qualities and costs and their strate-

gic behaviour. We present a novel multi-dimensional auction that incentivises

agents to make a partial inquiry into the procured task and to honestly report

quality-cost probabilistic estimates based on which the principal can choose the

agent that offers the best value for money. The mechanism extends second

score auction design to settings where the quality is uncertain and it provides

incentives to both collect information and deliver desired qualities.

Keywords: Auctions/bidding; Information asymmetry; Uncertainty

modelling; Quality and cost uncertainty; Strictly proper scoring rules;

1. Introduction

Auctions are as popular as ever. Nowadays, auctions impact our everyday

lives in direct, as well as in less obvious ways: from electronic trade, on-line

marketplaces and Internet based business services, to on-line advertising and
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web-search engines. Such new services require new developments in auction

theory.

Traditional auction theory has been focusing on single-dimensional price

auctions that allocate an item to the highest bidder, or procure a service from

the cheapest supplier. Although such auctions have been widely used to procure

pre-specified services from suppliers at the lowest cost (Vickrey, 1961; Groves,

1973; Clarke, 1971), they may not be adequate to capture the complexities of

the information based digital economy where the traded good is often not a

well defined item. For example, in the purchase of a web-based service (e.g

on-line storage, web hosting) parameters such as the available bandwidth, the

robustness of the service, and the responsiveness may be just as important as

the price of the service. Similarly, in government procurement, projects such

as the construction of public infrastructure cannot be allocated solely to the

cheapest contractor. Parameters such as the quality of the materials, the design

and impact of the project on local communities and the environment often differ

from one proposal to another and should be taken into consideration. Examples

of such practices can be found on both sides of the Atlantic: the European

Union implements a procurement directive calling for both lowest cost and best

economic value (Asker & Cantillon, 2008), while the US Department of Defence

requires that procurement competitions consider also performance and quality

dimensions (Che, 1993).

In his seminal paper Che (1993), Che designed a series of multi-dimensional

auctions (first score, second score and second preferred score) to address cases

where not only the cost, but also the the quality of a product is important.

In these auctions, suppliers report their production quality and the associ-

ated costs, and the mechanism maps the multi-dimensional bid into a single-

dimensional evaluation referred as a ‘score’. All three auctions are incentive

compatible, and based on the assumption that costs are independently dis-

tributed the first and second score auctions implement the socially optimal

(allocatively efficient) outcome. Branco Branco (2007) relaxed the assumption

of independent costs by introducing a two-stage multi-dimensional auction for
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settings with correlation among suppliers’ costs. A mechanism proposed by

Bogetoft & Nielsen (2008) further exploited the correlations among the costs

of different agents via Data Envelopment Analysis (Charnes et al., 1979, 1987)

based competition.

More applications of score auctions can be found in Computer Science litera-

ture and in particular in multi-agent systems and e-commerce (He et al., 2003).

Bichler Bichler (2000) paves the way for possible e-commerce applications of

multi-dimensional auctions by showing that they result in a significantly higher

utility when compared to single-dimensional auctions in a web-based experi-

mental setting. Furthermore, Beil and Wein in Beil & Wein (2003) propose

an iterative mechanism in which the principal sequentially estimates each bid-

der’s cost function through a series of score auctions. Parkes and Kalagnanam

Parkes & Kalagnanam (2005) also propose an iterative multi-attribute price-

based procurement auction in which agents in each round submit their bids

and a winner maximising the principal’s preference is selected. They show that

their mechanism terminates with a modified Vickrey-Clarke-Groves allocation.

Multi-dimensional auctions can also be applied in settings where multiple sup-

pliers are necessary to satisfy the principal’s demand (Bichler & Kalagnanam,

2003).

Now, although these approaches address important issues in procurement,

they rely on two significant assumptions. First, they assume that the principal

will enforce truthful reporting of agents’ qualities through external means. They

do not give agents control of their reported (and consequently contracted) quali-

ties, or they assume that in case the observed quality deviates from the reported

one, the auction may be cancelled or heavy fines may be issued to the winner of

the auction (Che, 1993). Second, existing literature assumes stochasticity solely

for the production costs. In the very few cases where misreporting quality is con-

sidered (Papakonstantinou & Bogetoft, 2013), qualities are deterministic. We

find this assumption particularly un-realistic, since often the agents qualities

may depend on stochastic factors (i.e. availability of certain materials, weather

conditions, faults). In such cases, the principal faces the significant challenge of
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eliciting accurate probabilistic estimates of the agents’ qualities and based on

them making a decision.

To address situations where it is costly to generate the aforementioned qual-

ity estimates, we introduce strictly proper scoring rule payment in a multi-

dimensional auction. Strictly proper scoring rules are designed to elicit accurate

predictions by rewarding forecasters based on how close the actual outcome is to

their prediction (Savage, 1977; Hendrickson & Buehler, 1971; Friedman, 1983).

Strictly proper scoring rules have been widely used in mechanism design to elicit

accurate information and in particular to design reputation systems that pro-

mote truthful reporting on a service experience (Jurca & Faltings, 2005, 2006,

2007). Furthermore, it has been shown how an appropriately scaled strictly

proper scoring rule can be used to incentivise agents to invest costly resources

when generating their forecasts Miller et al. (2005, 2007). Extensions are given

in Papakonstantinou et al. (2011) and Witkowski & Parkes (2012), with a brief

summary of the main insights provided in Section 3.

In this paper we combine elements from multi-dimensional auctions and

information elicitation mechanisms. Specifically, we consider a procurement

setting where agents commit resources to estimate their production qualities,

which they, in turn, report to the principal. These quality estimates are costly

for all agents irrespective of the auction’s final outcome. This relates our work

to all-pay auctions, where agents’ bids model the effort exerted in acquiring

a ‘prize’. For example, Anderson et al. (1998) introduces an all-pay auction

whereby the contract is allocated to the agent with the highest bid and the

agents face bidding costs directly proportional to the actual bid. McAdams in

McAdams (2006) considers a more general multi-unit multi-dimensional all-pay

auction where agents’ costs are quadratic functions of their bids. The fact that

in our proposed mechanism the principal allocates the task based solely on the

agents’ estimates of their quality, which are not drawn from the same underlying

distribution, differentiates our work from both aforementioned cases.

We propose a procurement auction where instead of having to complete the

allocated task ex ante in order to participate, heterogeneous agents provide
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estimates of the quality they intend to produce. The selected agent is allocated

the project and once it is completed the principal observes the outcome and

issues a payment that compensates for both data collection and production

costs. As opposed to existing implementations of all-pay auctions where agents

competing for a contract risk not getting paid even if they complete the task (cf.

Liu et al. (2014)), in the proposed mechanism, the principal can penalise the

selected agent depending on potential deviations between the agent’s reported

estimated quality and the actual produced one.

We provide a solid theoretical foundation for our procedure. We show incen-

tive compatibility and individual rationality. We also show that in expectation

and under the use of a consistent set of Bayesian estimators, our mechanism

achieves the outcome of the second score auction in which agents are able to

directly report their actual quality outcomes. Finally, we evaluate our mech-

anism numerically in a setting where agents’ investigations are represented by

samples of Gaussian distributions. The mechanism’s computational aspects are

discussed and its convergence to the outcome of the second score auction is

demonstrated through numerical simulations. The simulations complement our

theoretical findings.

The rest of the paper is organised as follows: In Section 2 we describe the

setting in more details, and in Section 3 we provide the relevant background in

strictly proper scoring rules. In Section 4 we define the mechanism, while in

Section 5 we outline and prove the economic properties. In Section 6 we evaluate

the mechanism though numerical simulations and in Section 7 we conclude and

provide some insights on future work.

2. The context

We consider a principal interested in procuring a task or a service from

one of N rational and risk neutral agents. The provided task or service may

be an independent task or part of a more complex one, without this affecting

our analysis. The task can be characterised by multiple parameters in an s-
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dimensional vector of qualities yi0 ∈ Rs with yi0 > 0 and i ∈ I = {1, . . . N}. To

simplify the analysis, however, we assume that for each agent the parameters of

its service can be aggregated in one variable, yi0 ∈ R, with each agent having a

single quality profile.

We depart from the existing literature by introducing uncertainty regard-

ing the agents’ qualities. We model uncertainty by assuming that each agent i

commits variable degree of resources when estimating his individual quality yi0,

which denotes the ground truth estimated by agent i but observed by the prin-

cipal after the task is complete and if agent i was actually the selected provider

. Let an agent’s estimate be a predictive distribution denoted by a parametric

distribution with mean yi and precision θi i.e., F(yi, θi). The estimates are

assumed to be unbiased such that yi is independently drawn from F(yi0, θ
i)

i.e., yi ∼ F(yi0, θ
i). We do not restrict our analysis to a specific distribu-

tion, although for the numerical evaluation of the mechanism we use Gaussian

distributions following the data fusion literature Gregory (2005); DeGroot &

Schervish (2002).

Under this information uncertainty framework, the estimate’s precision rep-

resents the resources invested in generating that estimate. Hence, the cost

associated with the collection of the information about the quality, increases as

precision θi increases. We will therefore model data collection cost ci as a con-

vex, increasing and double differentiable function such as ci(θi) = Ciθi
2
, where

Ci > 0 is a parameter which represents different base costs for each agent.

We assume that the cost parameter is common knowledge, while the agents’

precisions are private to each agent.

Now, regarding the production costs, we follow the existing literature (Che,

1993) by assuming that agents are capable of producing different levels of out-

puts, and that in order to produce the quality yi0 agent i needs inputs which

depend on each agent’s efficiencies. These inputs are the costs involved in pro-

duction and should not be confused with the costs involved in the estimation

of the quality. Here, costs are private information to each agent and cannot be

verified by any third party. The cost xi an agent faces in the production of his
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Figure 1: The time-line of the game.

quality is denoted as xi(yi0, l
i), where li represents the agent’s private informa-

tion about his production cost (in)efficiency. While agents are aware of their cost

parameters, the principal has only access to their distribution. We assume that

li is independently and identically distributed over [l, l] with 0 < l < l < +∞

according to a distribution with positive and continuously differentiable density

function. Finally, the cost function is increasing in both quality and the cost

(in)efficiency parameter and it is convex in the quality.

Based on the above, the time-line (Figure 1) of the game is as follows. Ini-

tially, each agent collects information about his likely production quality and

calculates the corresponding production costs. By sampling with precision θi,

and spending information collection costs ci(θi) he is able to predict his quality

yi and based on that predict the cost of the production as well. We assume that

the agent can send possibly manipulated signals about his production quality

level, his production costs, and the precision of his prediction to the principal

before the principal decides on the provider. Let the signalled production be

ŷi, the signalled data collection effort be θ̂i, and the signalled cost be x̂i. The

principal can use these signals to choose the provider and based on the realised

quality yi0 determine a reimbursement. If the principal picks agent i as the
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provider, his value of the realised quality yi0 will be given by V (yi0) where V (·)

is an increasing, concave and twice differentiable function of the quality.

To sum up, in this setting the principal has to deal with poor quality and

cost estimates generated by agents not committing significant resources to the

pre-bidding information collection, with misreporting of the estimates and with

incentivising the winning agent to actually produce the final outputs.

3. Strictly proper scoring rules

Before turning to the details of the mechanism, it is convenient to discuss the

simpler problem of inducing agents to collect information about their qualities

and to reveal their findings.

So-called strictly proper scoring rules are used as a tool for eliciting fore-

casters’ beliefs of future events in various domains ranging from meteorology

and weather forecasting to computer science and on-line trust and reputation

systems. Such scoring rules incentivise a risk neutral forecaster to truthfully re-

port his forecast by maximising his expected reward. Imagine that a forecaster’s

prediction y of an event y0 follows the distribution F with the report denoted

as F̂ . The forecaster’s corresponding score is then S(y0|F̂) and the expected

score is

S(F̂ ,F) =

∫ ∞
−∞
FS(y0|F̂)dy0 (1)

The scoring rule S defined as strictly proper if its expected value, S(F̂ ,F), is

maximised by truthful reporting i.e. S(F ,F) ≥ S(F̂ ,F). Due to this property, a

payment based on such a scoring rule can create incentives for truthful reporting.

Furthermore, strictly proper scoring rules can guarantee sufficient data col-

lection effort on behalf of the agents. This process is described by Miller et al.

(2005) who note that by using an affine function α + βS of a strictly proper

scoring rule S as a payment, it is possible to induce an agent to make and

truthfully report an estimate at a specific precision θ0.

In this case, the agent’s expected payment , P (θ), is

P (θ) = αS(θ) + β
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where α and β are the scaling parameters in the affine transformation, θ is

the agent’s true precision, and S(θ) is the twice differentiable expected score

function. Parameter α guarantees that the estimate will be generated at the

appropriate precision, while β compensates the agent for the cost of his estimate.

Consequently, the expected utility to an agent net of data collection costs is

U(θ) = αS(θ) + β − c(θ)

Now assume there is a principal interested in acquiring an estimate at a specific

precision denoted as θ0. She will choose a value for α so that the agent’s precision

is equal to θ0. That is, the principal selects an α which maximises the agent’s

expected utility at θ0 by solving
dU

dθ

∣∣∣
θ0

= 0 to give

α =
c′(θ0)

S
′
(θ0)

(2)

The β parameter serves only to safeguard participation in the mechanism

by ensuring that the agent’s expected utility is positive. Presuming that the

expected utility from the data collection and reporting alone shall be at least 0

we get

β = c(θ0)− c′(θ0)

S
′
(θ0)

S(θ0) (3)

Based on Equations 2 and 3 we calculate the specific values of α and β which

also depend on the strictly proper scoring rule used. This raises the important

issue of which one of the most common rules (i.e., quadratic, spherical, logarith-

mic and parametric) the principal should select given that they have additional

properties besides incentivising truthful reporting and eliciting sufficient effort.

Papakonstantinou (2010) provides a thorough comparison of the four rules used

as the basis of a second price single-dimensional auction including their analyt-

ical forms for Gaussian distributions and their bounds. It can be seen that the

logarithmic rule and the parametric one with the parameter converging to 1,

lead to the lowest expected payments, but they do not have lower bounds. This

may result to un-realistically high penalties to agents that generate extremely

inaccurate estimates with very low likelihood (i.e., F → 0). However, the para-

metric scoring rule offers a good compromise for values of the parameter within
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(1, 1.5) as it can keep the payment relatively low for the majority of the agents,

and the finite lower bound protects agents with extremely poor estimates.

4. The mechanism

The proposed mechanism implements a two-step payment to the agent that

is selected to complete the procured project. That agent, is the one with the

highest score based solely on his reported beliefs of his quality.In this context, the

first payment to the selected agent is equal to the second score auction’s payment

based on his reported quality and the corresponding cost. Once that agent

produces his quality and it is observed by the principal, he receives a secondary

payment. This payment penalises inaccurate reports, and compensates for the

data collection activities and the actual production.

The mechanism is formally defined as follows:

1. Principal invites N agents to participate in the procurement auction and

announces that she needs estimates of their quality levels at precision θ0.

2. Agents generate estimates with means yi and precisions θi, and report ŷi,

θ̂i and the corresponding production costs x̂i with i ∈ {1, ..., N}.

3. Each bid is assigned a score Zi = Z(x̂i, ŷi) = V (ŷi)− x̂i.

4. The principal allocates the project to the agent with the highest score.

5. The selected agent receives his first payment from the principal: PA =

PA(x̂(1), ŷ(1)) = V (ŷ(1))−Z(x̂(2), ŷ(2)) similar to the payment in a second

score auction1.

6. The selected agent produces quality y0.

7. The principal observes the agent’s realised quality and issues the second

payment:

PB = PB(y0|ŷ(1), θ0, x̂(1)) = d(y0|ŷ(1), θ0)PA+

1Superscripts (1) and (2) correspond to the agent with the highest and second highest

score respectively.
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+αS(y0|ŷ(1), θ̂(1)) + β + V (y0)− Z(x̂(2), ŷ(2))

where d(y0|ŷ(1)θ0) is a function that evaluates the selected agent’s reported

estimate based on the observed actual production, cf. below, parameters

α and β are the effort inducing parameters from the scaled strictly proper

scoring rule S(y0|ŷ(1), θ̂(1)).

Like parameters α and β, the function d(·) serves to guarantee truthful

reporting and that agents will generate estimates at the required precision in a

setting where the agents’ reports can deviate from their actual production due to

unforeseen circumstances (endemic uncertainty) and due to strategic behaviour.

In order to address both these effects, the deviation function d(·) is set equal to

d(y0|ŷ(1), θ̂(1)) = S(y0|ŷ(1), θ̂(1))− S(θ0)− 1 (4)

where θ0 is the precision required by the principal, S(y0|ŷ(1), θ0) is the scoring

rule and S(θ0) is the expected score as a function of the required precision.

The total payment a truthful agent expects to derive by this mechanism is

P (θ) = [S(θ)− S(θ0)][V (y)− Z(2)] + αS(θ)− β + V (y0)− Z(2) (5)

In order to demonstrate how the mechanism works in practice, we provide a

simple conceptual example while taking note that a more elaborate case study

is presented in Section 6.1. Let us consider a business owner (principal) con-

tracting the construction of a professional website. The firms participating in

the procurement have received some specifications, while much of the techni-

cal details e.g., bandwidth, storage space, are left on them to decide based

on their estimates of the website’s traffic, with the principal providing some

guidelines on how to estimate it. Let the specifications and corresponding un-

certainty be aggregated in one quantity (referred as ‘quality’) and the guide-

lines on how to estimate traffic expressed by the required precision θ0. For the

purpose of this example, we assume that the quality estimates are modelled

as Gaussian distributions. Having generated their estimates and calculated

the production costs, the firms report them with the principal receiving three
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bids: (9, 1, 72.9), (4, 1, 16), (16, 1, 224) in the form of (mean, precision, produc-

tion cost) whereby production costs are calculated based on x(y) = ci ∗ y2 with

ci = {0.9, 1, 0.875}.

Following the procedure of the mechanism, the principal calculates the scores

and procures the service to the firm with the highest score. If the firms’ value

function is given by V (y) = 50 ∗
√

(y) + 25, the corresponding scores will be

Zi = {102.1, 109, 1} (Steps 3 and 4). The firm with the highest score (firm 2)

receives the contract and the first payment, PA, equal to 125 − 102.1 = 22.9

(Step 5) and then proceeds to create the contracted website, that is to produce

quality equal to 4.2 (Step 6). Using the logarithmic scoring rule and Gaussian

distributions to model the estimates, parameters α and β are calculated based

on Papakonstantinou et al. (2011) as 2c and c(2 − ln 1
2π ) respectively. To this

end, assuming information collection cost for firm 2 roughly at the 1/100 of the

production cost so that C = 0.16, it receives the second payment, PB , equal to

14.73 (Step 7).

In the following section, we prove the mechanism’s economic properties. After

showing how the expression of the total payment in Equation 5 is derived, we

prove that true revelation of an agent’s estimates and costs is a Nash equilibrium

and that the selected agent receives positive utility in expectation.

5. Economic properties

Having described in detail the mechanism, we now develop its economic

properties. First, we show that the utility of a selected agent is maximised by

generating an estimate at the principal’s required precision (Lemma 1). Based

on this result, we show that truthful revelation of the production costs is an

optimal strategy, given the truthful report of the quality estimate generated by

a sequence of consistent estimators (Lemma 2). Generalising these two specific

results allows to show the mechanism’s immunity to combined misreporting and

that truth revelation is in-fact a Nash equilibrium. Specifically we show that:

1. Agents generate their estimates at the principal’s required precision.
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2. The mechanism is immune to the effects of combined misreporting of qual-

ity and cost with truth revelation being a Nash equilibrium.

3. The mechanism is individually rational for the selected agent.

Lemma 1. The expected utility of the selected agent is maximised only by gen-

erating an estimate at the principal’s required precision and truthfully revealing

it.

Proof. Given the mechanism described above, when an agent reports his esti-

mate, he must do so with a precision up to the one required by the principal.

The selected2 agent’s utility when he reports (ŷ, θ̂), given realised quality equal

to y0, is

U(y0 | ŷ, θ̂) = V (ŷ)− Z(2) + [S(y0|ŷ, θ̂)− S(θ0)− 1][V (ŷ)− Z(2)]+

+αS(y0|ŷ, θ̂) + β + V (y0)− Z(2) − x(y0)− c(θ)

where α and β are the strictly proper scoring rules scaling parameters defined

in Section 3.

By integrating over the set of possible qualities y0 we derive the expected

utility from reporting (ŷ, θ̂):

U(ŷ, θ̂) =

∫ ∞
−∞
F(y0|y, θ)[V (ŷ)− Z(2)]dy0

+

∫ ∞
−∞
F(y0|y, θ)[S(y0|ŷ, θ̂)− S(θ0)− 1][V (ŷ)− Z(2)]dy0

+

∫ ∞
−∞
F(y0|y, θ)[αS(y0|ŷ, θ̂) + β]dy0

+

∫ ∞
−∞
F(y0|y, θ)[V (y0)− Z(2) − x(y0)− c(θ)]dy0

Since the initial payment does not depend on the final outcome and
∫∞
−∞ F(y0|y, θ)dy0 =

1, a shorter expression is derived:

U(ŷ, θ̂) = [V (ŷ)− Z(2)]

∫ ∞
−∞
F(y0|y, θ)[S(y0|ŷ, θ̂)− S(θ0)]dy0

2In order to simplify our notation we omit the use of superscript (1) to denote the agent

with the highest score, while we maintain the use of (2) for the runner-up agent. We will also

be using the simplified version of the auction scores i.e.Zi = Z(x̂i, ŷi)
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+

∫ ∞
−∞

αF(y0|y, θ)S(y0|ŷ, θ̂)dy0+β−c(θ)+
∫ ∞
−∞
F(y0|y, θ)[V (y0)−x(y0)]dy0+Z(2)

The above expression can be further simplified by using the notation of the

expected score:

S(F̂ ,F) =

∫ ∞
−∞
F(y0|y, θ)S(y0|ŷ, θ̂)dy0

where F̂ represents the prediction corresponding to the reported parameters

(ŷ, θ̂) and F the actual distribution of the production quality.

To sum up, the selected agent’s expected utility from estimating and report-

ing his quality is:

U(ŷ, θ̂) = [V (ŷ)− Z(2)][S(F̂ ,F)− S(θ0)] + αS(F̂ ,F) + β

+

∫ ∞
−∞
F(y0|y, 1/θ)[V (y0)− x(y0)]dy0 + Z(2) − c(θ)

Having defined the selected agent’s expected utility function we proceed to

show that it is maximised when the agent’s reported estimate is equal to his true

one, generated at a precision equal to the principal’s required one. Initially, it

is easy to see that due to the use of a strictly proper scoring rule, the expected

scoring rule S(F̂ ,F) is maximised at F̂ = F , hence (y, θ) is a local maximum

for the expected score.

In order to show that (y, θ) is a maximum point for U , we first show that it

is a critical one,

∂U

∂ŷ
= V ′(ŷ)[S(F̂ ,F)− S(θ̂)] + [V (ŷ)− Z(2) + α]

∂S(F̂ ,F)

∂ŷ
= 0 (6)

∂U

∂θ̂
= [V (ŷ)− Z(2) + α]

∂S(F̂ ,F)

∂θ̂
= 0 (7)

From the definition of a strictly proper scoring rule, the partial derivatives

of S(F̂ ,F) w.r.t ŷ and θ̂ are equal to 0, for (ŷ, θ̂) = (y, θ), hence the first order

conditions for U are fulfilled by (y, θ).

Moreover, the determinant of the Hessian matrix of U is

Det(H(U))(y, θ) = [V (y)− Z(2) + α]2[
∂2S

∂ŷ2
∂2S

∂θ̂2
− ∂2S

∂ŷ∂θ̂

∂2S

∂θ̂∂ŷ
] =
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= [V (y)− Z(2) + α]2Det(H(S))(y, θ) (8)

which is positive given that [V (y) − Z(2) + α]2 > 0 and Det(H(S))(y, θ) > 0

since (y, θ) is a maximum for the expected score S.

Having shown that (y, θ) is a maximum for the selected agent’s expected

utility, it is trivial to prove based on the definition of the parameters α and β in

Section 3 that a selected agent can maximise his utility by making an estimate

at a certain precision, in this particular case equal to principal’s requirement of

θ0. In such case, the utility he expects to derive is equal to

U(y) =

∫ ∞
−∞
F(y0|y, 1/θ)[V (y0)− x(y0)]dy0 − Z(2) (9)

Lemma 2. The use of consistent estimators for the respective outcomes, yi0,

guarantees that agents’ expected utilities are maximised by truthfully revealing

their production cost given that they have truthfully revealed their quality esti-

mates.

Proof. As already mentioned in Section 2, we model uncertainty in agents’ qual-

ities by assuming individual estimates as parametric distributions with means yi

and precision θi such that yi ∼ F(yi0, θi). Now, the use of a consistent sequence

of estimators for the estimation of y0i e.g. a sequence of sample means (DeGroot

& Schervish, 2002) for the estimation of the mean of a Gaussian distribution

(i.e. F = N )3 suggest that for a sufficiently large sample of observations the

utility a truthful selected agent expects to derive is equal to:

U(y) =

∫ ∞
−∞
F(y0|y, 1/θ)[V (y0)−x(y0)]dy0−Z(2) = V (y)−x(y)−Z(2) = Z(1)−Z(2)

Based on the use of a consistent estimator, we proceed to prove this Lemma

by contradiction:

3In Section 6 we show that this assumption does not limit the implementation of the

mechanism based on an example with Gaussian distributions and a Bayesian estimator of its

mean. We evaluate the estimator’s convergence and its effect on the mechanism.
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Let x and y be an agent’s true cost and quality, Z the score that corresponds

to these true values, and let x̂, ŷ be the reports and Ẑ the score corresponding

to these reports. Furthermore, let x(2), y(2), Z(2) be the bids, and the score of

the runner up agent (i.e. Ẑ > Z(2)).

First, let an agent’s misreporting of his cost have an impact on the outcome

of the auction. We consider the following two cases:

1. Agent wins by misreporting while it would have lost if truthful.

2. Agent loses by misreporting while it would have won if truthful.

• In Case (1) agent reports his cost s.t Ẑ > Z(2) given that Z < Z(2). The

agent achieves this by reporting a lower cost than his actual one i.e. x̂ < x.

Under optimal reporting of quality, the utility of an agent misreporting

his cost in Case (1) will be negative i.e. U(y) = V (y) − x(y) − Z(2) =

Z(1) − Z(2) < 0.

• In Case (2) agent reports his cost such that Ẑ < Z(2) given that Z > Z(2).

The agent would have won the auction, and therefore would be selected,

but instead reports a cost greater than his actual one i.e. x̂ > x. As

a result, the agent loses the auction and consequently receives negative

utility (since he still faces the costs of determining his quality).

Second, we assume that the agent misreports his cost of production without

this affecting whether he wins the auction or not. If the agent had already

lost the auction, misreporting would have no additional effect given that the

utility would be negative due to the cost of determining his quality without any

dependence on the cost of production. Had the agent already won the auction,

misreporting would not result in additional benefits. Specifically, both payments

depend on the second lowest score, that is, the payment for the reported and

actually produced (for the second stage) quality and the compensation for his

estimate.

Theorem 1. The mechanism is immune to combined misreporting of quality

and cost.
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Proof. In the above proofs we showed that a selected agent maximises his ex-

pected utility by truthfully reporting his production quality if he reports truth-

fully his cost, and that the same holds for an agent’s costs, given that he gen-

erated an accurate estimate of his quality by investing the required amount of

resources in determining it. However, given the multi-dimensional nature of the

bids an agent could attempt to manipulate the principal by misreporting both

costs and the precision of his quality estimate.

In this proof we examine agents’ combined strategic behaviour. In order

to demonstrate how it is not optimal for an agent to deviate from truthful

behaviour we consider the four following general cases of misreporting:

1. Agent wins the auction by misreporting both his estimate of quality and

production cost

2. Agent wins the auction with the misreporting having no effect on the

auction’s outcome

3. Agent loses the auction due to his misreporting

4. Agent loses the auction despite his misreporting

• In Case (1) the agent reports his estimate of quality and cost such that Ẑ >

Z(2), while Z < Z(2), with the precision of the estimate θ not necessarily

equal to the principal’s θ0. We will show that the misreporting agent’s

expected utility U(ŷ, θ̂) will always be less or equal to the utility of a

truthful agent U(y, θ0) following the principal’s instructions:

U(ŷ, θ̂)−U(y, θ0) = [V (ŷ)−Z(2)][S(F̂ ,F)−S(θ0)] +αS(F̂ ,F) + β− c(θ)

(10)

Regarding V (ŷ)−Z(2) we have assumed that it is a positive quantity since

Ẑ > Z(2) ⇒ V (ŷ) − x̂(ŷ) > Z(2) ⇒ V (ŷ) > Z(2), while S(F̂ ,F) − S(θ0)

is negative since S(F̂ ,F) ≤ S(θ0) given that S is a strictly proper scoring

rule. Finally, from Section 3 it can be trivially shown that αS(F̂ ,F) +

β − c(θ) < 0 for θ < θ0; hence U(ŷ, θ̂) ≤ U(y, θ0).

• In Case (2) the agent would have won the auction anyway, and although

misreporting of cost and quality will have no impact on the outcome of the
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auction, it may have on the secondary payment. Still, such manipulation

is not attractive since we have from Case (1) that U(ŷ, θ̂) ≤ U(y, θ0). Even

if we assume that the estimate’s precision is equal to required one by the

principal, it is still the misreporting of the estimate and the production

cost which makes this strategy sub-optimal.

• Cases (3) and (4) are simpler. For both cases it is obvious that the utility

of an agent not winning the auction will solely consist of the cost of data

collection. Specifically, in Case (3) the agent deliberately misreports his

estimate and his production cost in order to lose. It would be in his best

interest to invest minimum resources in generating his estimate, so that

he can minimise his inevitable loss. However, that is not a straightforward

decision. Estimates of low precision may end up winning the auction and

inflicting additional losses, while estimates of high precision will increase

his losses. Effectively, an agent that wants to lose the auction has no

reason to participate in it, specially given the assumption of rational and

risk neutral participants.

Now, in Case (4) the agent misreports with the intention to win but ends

up losing the auction. Had the agent won, it would result in negative

utility as shown in Case (1) and given that the agent intends to win, he

will invest the required resources in generating his estimate, hence his loss

due to prediction costs will increase.

Having shown that combined misreporting of costs, estimates of qualities

and their precision leads to sub-optimal outcomes including negative utilities,

we proved that the mechanism is immune to this type of strategic behaviour.

In conjunction with Lemma 2, this leads to the following corollary:

Corollary 1. Truth revelation of an agent’s quality and cost is a Nash equilib-

rium.

Proof. A selected agent maximises his expected utility by reporting his true

production costs and qualities which are generated at the precision required
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by the principal. Nevertheless, Lemma 2 imposes an additional constraint by

proving that an agent will reveal his true production cost under the assumption

that he has truthfully revealed his quality estimate. For this to hold for an

individual agent it must extend to all others, thus weakening the equilibrium of

the proposed mechanism and moving it from dominant strategy to Nash.

Theorem 2. The use of consistent estimators for the respective outcomes, yi0,

guarantees that the utility of the selected agent is positive in expectation.

Proof. The utility an agent that has truthfully reported his estimates, his pre-

cisions and the productions costs, expects to derive is given by

U(y) = V (y)− x(y)− Z(2) = Z(1) − Z(2)

Given that V (y)− x(y) is the selected agent’s true score, the utility is positive

on expectation, hence the mechanism is interim individually rational for that

specific agent.

It should be noted that the above proof holds for any strictly proper scoring

rule. However, it is possible to move to a stronger individual rationality concept

(ex-post individual rationality) by restricting the analysis to the four most well

known strictly proper scoring rules (i.e. quadratic, spherical, logarithmic and

parametric). This leads to the following corollary:

Corollary 2. The use of consistent estimators for the respective outcomes, yi0,

guarantees that the utility of the selected agent is positive for each one of the

quadratic, spherical, logarithmic and parametric scoring rules.

Proof. The use of a consistent sequence of estimators implies that for relative

large samples of observations during the estimation process the selected agent’s

estimate will be very close to the actual outcome y0, effectively allowing to

replace y with y0. After this transformation, the selected agent’s utility function

takes the following form

U(y0) = [S(y0)− S(θ) + 1][V (y0)−Z(2)] + αS(y0) + β − x(y0)− c(θ)− x(y0) =
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[S(y0)− S(θ)][V (y0)− Z(2)] + [S(y0)− S(θ)]
c′(θ)

S
′
(θ)

+ Z(1) − Z(2)

We have already shown that V (y0) − Z(2) > 0 and Z(1) − Z(2) > 0; also given

that both c(.) and S(.) are increasing
c′(θ)

S
′
(θ)

> 0. Based on the above and on the

analytic calculations of S(y0) for the four strictly proper scoring rules listed in

Section 3 and of the expected values S
′
(θ) derived by Papakonstantinou et al.

(2011) it can be seen that the expression of the selected agent’s utility is indeed

positive.

6. Numerical evaluation

In this section we evaluate the robustness of the mechanism in a scenario

which does not involve the theoretical assumptions regarding a sufficiently large

sample of observations, since this may not be plausible in an applied setting.

In order to do so, first we explain the sampling and estimation process and

then proceed to demonstrate how this mechanism works through an illustrative

example. We then undertake a series of simulations to get a better understand-

ing of its performance. We compare our mechanism with two benchmark cases

and highlight the costs of uncertainty regarding the agents’ predictions of their

quality.

Specifically, as the first benchmark case, labelled as ‘Second Score: Out-

come’, we use the standard second score auction (SSA) under the assumption

that there is no uncertainty and agents can directly report their actual quali-

ties yi0. For the second case, labelled as ‘Second Score: Belief’, we introduce

uncertainty in the model and modify the second score auction so it uses the

agents’ beliefs of their qualities instead of the actual outcomes of the previous

case, under the assumption that the principal can elicit their truthful reporting

without external means such as fixed penalties and fines.

Against this background, let agent i attempt to estimate his individual qual-

ity yi0 by generating a sample of M independent observations yij , j ∈ {1, ...,M}.

As already mentioned, agents do not know their quality ex ante; instead they
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have an a-priori belief which they update by collecting additional information.

We assume that agent i’s a-priori belief about yi0 is given as yi0 ∼ N (yiµ, 1/θ
i
µ),

and that he is able to collect further information about yi0 by generating M in-

dependent and identically distributed random observations {yi1, yi2, ... , yiM} with

yij ∼ N (yi0, 1/θ
i
j). Using these observations, the agent can update hid a-priori

beliefs to a posterior belief

yi0 ∼ N (
yiµθ

i
µ + θiȳi

θiµ + θi
,

1

θiµ + θi
) (11)

where ȳi is the mean of the observations {yi1, yi2, ... , yiM} and θi is the resulting

precision of the sample average ȳi, i.e. θi = Mθij . By sampling with precision θi,

and spending information collection costs ci(θi) it is able to predict its quality

yi as (yiµθ
i
µ + ȳiθi)/(θiµ + θi) with precision θiµ + θi.

In the simulations, we consider a specific case in which the parameters yiµ of

the agents’ prior beliefs of their production qualities are drawn from the uniform

distribution U(2, 5), while we assume that the agents’ precisions in both priors

and individual observations during data collection are equal to 1. Consequently,

given the parameters of our model, the actual production quality level follows

the Gaussian distribution N (yiµ, 1). Furthermore, the agents’ production cost

functions are given by xi = Xiy2, where Xi ∼ U(0, 1), while the costs of data

collection are linear functions, given by ci = Ciθ, where Ci ∼ U(0.001, 0.002).

Note that the bounds in the distribution of the data collection cost parameter are

selected so that even for relative large samples the overall cost is relative small

compared to the actual production cost. A scenario whereby data collection

cost would be higher than the production cost is not considered to be neither

interesting nor realistic.

The principal’s value function is given by V (y) = B(1− e−y), with B = 20

guaranteeing that there will be some agents with positive scores V (y) − x(y)

in the range of qualities we use. This particular value function is both increas-

ing and concave and it provides some curvature, as opposed to a conventional

approach such as V (y) = B
√
y which is almost linear in the range of B that
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guarantees positive scores.

The mechanism is simulated 105 times, with 20 agents participating in the

auction, while the precision of each agent’s sample average, and consequently

his sample of observations, M , ranges from 1 to 100. Our theoretical analysis

suggests that the principal’s required precision θ0 also takes values from 1 to

100. For each iteration we record the selected agent’s utility, his payment, his

prediction and production costs and whether the agent selected by our mecha-

nism is the agent that would have been selected had there been no uncertainty

(we refer that agent as a ‘proper winner’). For the calculations that involve a

lack of uncertainty, the agents will report their actual outcome yi0 directly. In a

given iteration all agents face underlying cost functions of the same form, but

their priors, sample observations and cost parameters differ. Due to the number

of iterations the standard error in the mean values plotted is in the range of

10−4 to 10−5 and thus we omit the use of error bars for clarity.

6.1. An illustrative example

For a snapshot of the mechanism, we calculate several of the mechanism’s

elements i.e. selected agents, payments and costs as the sample’s precision

increases. Specifically, Table 1 lists the selected agent in our mechanism and

the winner of the second score auction with no uncertainty (i.e. Second Score:

Outcome), denoted as w and w′ respectively. We also calculate the parts of the

secondary payment i.e. the d function: S(y0|ŷ, θ̂) − S(θ0) − 1 and the penalty

for inaccuracies: d(y0|ŷ, θ̂)[V (ŷ) − Z(2)], while listing the first and secondary

payments of the mechanism (Steps 6 and 8 respectively), the total payment and

the winner’s utility. Finally, the last column is the ratio between the cost of

production x(y) and data collection c(θ0).

From Table 1 it can be seen that in this particular instance, and at a required

sample precision of 4, the selected agent from our mechanism is the winner of

the second score auction with no uncertainty, w = w′. This shows that our

mechanism identified the ‘proper’ winner, i.e. the agent who should have won

based solely on actual production, after he generated a sample of 4 observations.
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Table 1: A single iteration of the mechanism.

θ0 w w′ d(·) Penalty 1st Pay 2nd Pay Total P Utility Cost ratio

1 11 14 -1.5862 -1.7624 1.1111 -3.4723 -2.3612 -2.5621 110.09

4 14 14 -0.9166 -0.5276 0.5756 -0.1340 0.4417 0.0692 49.88

10 14 14 -0.9125 -0.9636 1.0560 -0.0171 1.0389 0.6554 19.95

16 14 14 -0.8846 -0.7820 0.8840 0.1577 1.0417 0.6472 12.47

22 14 14 -0.9417 -0.6751 0.7169 0.2874 1.0043 0.5989 9.07

28 14 14 -0.8786 -0.7433 0.8460 0.2266 1.0726 0.6562 7.13

34 14 14 -0.9168 -0.9277 1.0119 0.0906 1.1024 0.6751 5.87

40 14 14 -0.9382 -0.9601 1.0233 0.0581 1.0814 0.6430 4.99

46 14 14 -0.9213 -0.9190 0.9975 0.1251 1.1225 0.6732 4.34

52 14 14 -0.8727 -0.8030 0.9201 0.3023 1.2224 0.7621 3.84

58 14 14 -0.9004 -0.7504 0.8334 0.3573 1.1907 0.7194 3.44

64 14 14 -0.8758 -0.7663 0.8750 0.3885 1.2635 0.7812 3.12

70 14 14 -0.8820 -0.7550 0.8561 0.4070 1.2631 0.7698 2.85

76 14 14 -0.8658 -0.7755 0.8958 0.4239 1.3197 0.8154 2.63

82 14 14 -0.8671 -0.7665 0.8840 0.4551 1.3391 0.8239 2.43

88 14 14 -0.8638 -0.7765 0.8990 0.4678 1.3668 0.8406 2.27

94 14 14 -0.8645 -0.7864 0.9096 0.4791 1.3887 0.8515 2.12

100 14 14 -0.8687 -0.7578 0.8724 0.5239 1.3964 0.8482 2.00

However, the d(·) function is not equal to −1, as it is in expectation, which

leads to a heavier fine for the selected agent of our mechanism. Hence the 2nd

Pay, total payment and utility are negative for some values of θ0. Specifically

regarding the selected agent’s utility, it is interesting to observe the loss of an

imprecise agent, and the relation with our theoretical results in Section 5, where

we discussed how estimates of low precision may end up winning the auction but

inflicting additional losses instead of gains (Theorem 1, Case (3)). Still, despite

the good intuition that this analysis provides for our mechanism, it should be
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noted that these results are from a single iteration, hence exposed to heavy bias

from the random inputs (i.e. costs and qualities).

6.2. Numerical simulations
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Figure 2: Dependence of percentage of ‘proper’ winners and expected utility on

sample precision.

Having detailed the simulation’s input parameters and analysed a snapshot

of the mechanism, we now present our numerical findings after simulating the

mechanism 105 times. In Fig. 2 we summarise the convergence of our mech-

anism. It can be seen that for the specific scenario we consider, it takes a

relatively small required precision, for the outcome of our mechanism to be the

same as the outcome of the second score auction with no uncertainty, where

agents directly report their realised qualities (i.e. Second Score: Outcome).

In fact, for required precisions above the area of 50 the selected agent from

our mechanism and the winner of the second score auction are the same agents

in more than 95% of the iterations of the mechanism (Fig. 2(a)). In addition

to this, our analytic findings in Section 5 are validated in Fig. 2(b), where we

notice that selected agent’s expected utility increases as the required precision

increases. The utility the selected agent expects to derive is less than the second

score auction’s winner expected utility (Second Score: Belief), had he been able
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to generate and report his belief of his quality freely. As it is expected, as the

required precision increases both auctions approach the second score auction in

a setting with no uncertainty where the winner can report his actual production

from the beginning (Second Score: Outcome). The differences that appear are

attributed to those cases where the winners of the two auctions do not coincide,

hence the winner faces losses.
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Figure 3: The selected agent’s expected payment for both production and pre-

diction and ratio of production to prediction costs.

The payment the selected agent in our mechanism and in the conventional

benchmark expects to derive, as well as, his average costs for the required pre-

cision θ0 ∈ [1, 100] are shown in Fig. 3. The penalties for inaccuracies, and

the principal’s compensation for the data collection costs have a clear impact

on the expected payment as shown in Fig. 3(a). The expected payment in our

mechanism starts lower than the two benchmark auctions, but it increases as

the precision increases. The stability in the payments of the other auctions is to

be expected since there is no data collection before the auction hence no com-

pensation, while the higher payments for our mechanism will not be an issue in

realistic applications since the data collection costs tend to be significantly lower

than the production costs. Nevertheless, it should be noted that the payments’

differences are highlighted in the plot due to its scale, with this issue related to
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the particular selection of simulation parameters and not to the mechanism it-

self. In fact, even after setting the upper bound of the cost collection parameter

equal to 0.002 and using a linear cost function, for relatively high precisions,

information collection cost ends up very close to some agents’ production costs.

We demonstrate this data sensitivity in Fig. 3(b), where we plot the logarithmic

ratio of production to prediction costs.

7. Conclusions

In this article we introduced a novel mechanism for multi-dimensional pro-

curement auctions where the agents’ qualities are uncertain and the principal

can only verify them after the project is completed. The principal cannot en-

force truthful reporting of costs and qualities through external means nor she

can force agents to provide quality-cost estimates of extremely high precisions.

Initially the principal procures an item or a service from a group of agents

by implementing a standard second score auction, only now the agents’ ranking

is calculated based on their reported estimates of their qualities and costs. The

agent with the higher score is allocated the contract to provide the agreed item

or service and receives the second score payment. After he fulfils his part of the

contract he receives a secondary payment based on both the reported estimate

and the actual production observed by the principal. The secondary payment

uses a strictly proper scoring rule to evaluate the selected agent’s posterior

belief of his quality once the project is complete and the principal can witness

the outcome.

We showed that the mechanism is immune to the agents’ combined misre-

porting of quality and costs. In addition to that, we showed that participating

agents invest the amount of the resources required when generating the es-

timates, while they expect to have a positive utility if they are allocated the

project. Although, the rest of the agents incur losses due to the information col-

lections costs, the payment to the agent that receives and completes the project

at his reported quality exceeds the production and information costs, provided
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that the estimate is of relative high precision.

As the assumption about the required precision indicates, there are some

limitations regarding practical elements of the mechanism. Although we proved

analytically that our mechanism implements the standard second score auction’s

outcome in terms of the selected agent’s expected utility, numerical simulations

demonstrated how sensitive the mechanism is to the precision of the quality

predictions, and hence to the resources invested in preparing the bids. This

calls for extra attention by the principal; the required precision must be set at a

level whereby the theoretical properties of the mechanism are not compromised

while the agents are willing to participate and expect to cover more than their

data collection and production cost if they are allocated the project. Therefore,

an early ‘consultation’ stage may be required to set the required precision based

on prior history of industry practices.

A final practical issue of the proposed mechanism is its potential vulnerabil-

ity to collusion; a possibility, even if such behaviour is often considered illegal

by regulating authorities. Literature has identified several cases where single-

dimensional auctions, which in turn can be extended to their multi-dimensional

counterparts introduced by Che (1993), can be vulnerable to collusion. However,

even for single-dimensional auctions collusion is not a straightforward process.

In more detail, Mailath & Zemsky (1991) analyse the non-trivial process of iden-

tifying an auction winner and calculating payments to the losers within a cartel.

More recently, Che & Kim (2009) introduced third-party uninformed representa-

tives to coordinate the formation and actions of multiple cartels, without really

considering practicalities such as how the actual side-payments will be issued so

that that they do not raise suspicion to regulation authorities.

The fact that efficient collusion assumes some form of coordination within

the cartels suggests that our mechanism could be less vulnerable mainly due

the additional complexity brought by the uncertain qualities. Bargaining within

the cartel now is an even more complex process given that agents have to invest

costly resources in estimating their qualities and then be held accountable for

that uncertainty not only by the principal, but also by the other participants in
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their cartel. Naturally, bargaining under uncertain and asymmetric information

can be less efficient than bargaining under perfect information. Such complex

behaviour exceeds the scope of this paper and provides a very interesting and

particularly challenging line of future work.

References

Anderson, S. P., Goeree, J. K., & Holt, C. A. (1998). Rent seeking with bounded

rationality: An analysis of the allpay auction. Journal of Political Economy ,

106 , 828–853.

Asker, J., & Cantillon, E. (2008). Properties of scoring auctions. RAND Journal

of Economics, 39 , 69–85.

Beil, D. R., & Wein, L. (2003). An inverse-optimization-based auction mech-

anism to support a multiattribute rfq process. Management Science, 49 ,

1529–1545.

Bichler, M. (2000). An experimental analysis of multi-attribute auctions. Deci-

sion Support Systems, 29 , 249–268.

Bichler, M., & Kalagnanam, J. (2003). Configurable offers and winner determi-

nation in multi-attribute auctions. European Journal of Operational Research,

160 , 380–394.

Bogetoft, P., & Nielsen, K. (2008). Dea based auctions. European Journal of

Operational Research, 184 , 685–700.

Branco, F. (2007). The design of multidimensional auctions. RAND Journal of

Economics, 28 , 63–81.

Charnes, A., Cooper, W. W., & Rhodes, E. (1979). Short communication:

Measuring the efficiency of decision making units. European Journal of Op-

erational Research, 3 , 339.

28



Charnes, A., Cooper, W. W., & Rhodes, E. (1987). Measuring the efficiency of

decision making units. European Journal of Operational Research, 2 , 429–444.

Che, Y.-K. (1993). Design competition through multidimensional auctions.

RAND Journal of Economics, 24 , 668–680.

Che, Y.-K., & Kim, J. (2009). Optimal collusion-proof auctions. Journal of

Economic Theory , 144 , 565–603.

Clarke, E. (1971). Multipart pricing of public goods. Public Choice, 11 , 17–33.

DeGroot, M. H., & Schervish, M. J. (2002). Probability and Statistics. Addison

Wesley.

Friedman, D. (1983). Effective scoring rules for probabilistic forecasts. Man-

agement Science, 29 , 447–454.

Gregory, P. C. (2005). Bayesian Logical Data Analysis for the Physical Sciences:

A Comparative Approach with Mathematica Support . Cambridge University

Press.

Groves, T. (1973). Incentives in teams. Econometrica, 41 , 617–631.

He, M., Jennings, N. R., & Leung, H.-F. (2003). On agent-mediated electronic

commerce. IEEE Transactions on knowledge and data engineering , 15 , 985–

1002.

Hendrickson, A. D., & Buehler, R. J. (1971). Proper scores for probability

forecasters. The Annals of Mathematical Statistics, 42 , 1916–1921.

Jurca, R., & Faltings, B. (2005). Reputation-based service level agreements for

web services. In Service Oriented Computing (pp. 396–409). Springer Berlin

/ Heidelberg volume 3826 of Lecture Notes in Computer Science.

Jurca, R., & Faltings, B. (2006). Minimum payments that reward honest reputa-

tion feedback. In Proceedings of the ACM Conference on Electronic Commerce

(pp. 190–199). Ann Arbor, Michigan, USA.

29



Jurca, R., & Faltings, B. (2007). Collusion resistant, incentive compatible feed-

back payments. In Proceedings of the ACM Conference on Electronic Com-

merce (pp. 200–209). San Diego, California, USA.

Liu, T. X., Yang, J., Adamic, L. A., & Chen, Y. (2014). Crowdsourcing with

all-pay auctions: A field experiment on taskcn. Management Science, 60 .

doi:10.1287/mnsc.2013.1845.

Mailath, G. J., & Zemsky, P. (1991). Collusion in second price auctions with

heterogeneous bidders. Games and Economic Behavior , 3 , 467–486.

McAdams, D. (2006). Monotone equilibrium in multi-unit auctions. Review of

Economic Studies, 73 , 1039–1056.

Miller, N. H., Pratt, J. W., Zeckhauser, R. J., & Johnson, S. (2007). Mech-

anism design with multidimensional, continuous types and interdependent

valuations. Journal of Economic Theory , 136 , 476–496.

Miller, N. H., Resnick, P., & Zeckhauser, R. J. (2005). Eliciting honest feedback:

The peer prediction method. Management Science, 51 , 1359–1373.

Papakonstantinou, A. (2010). Mechanism Design for Eliciting Costly Observa-

tions in Next Generation Citizen Sensor Networks. Ph.D. thesis University

of Southmapton, School of Electronic and Computer Science.

Papakonstantinou, A., & Bogetoft, P. (2013). Incentives in multi-dimensional

auctions under information asymmetry for costs and qualities. In Agent-

Mediated Electronic Commerce. Designing Trading Strategies and Mecha-

nisms for Electronic Markets - AMEC / TADA 2012 (pp. 104–118). Springer

volume 136 of Lecture Notes in Business Information Processing .

Papakonstantinou, A., Rogers, A., Gerding, E. H., & Jennings, N. R. (2011).

Mechanism design for the truthful elicitation of costly probabilistic estimates

in distributed information systems. Artificial Intelligence, 175 , 648–672.

30

http://dx.doi.org/10.1287/mnsc.2013.1845


Parkes, D., & Kalagnanam, J. (2005). Models for iterative multiattribute pro-

curement auctions. Management Science, 51 , 435–451.

Savage, L. J. (1977). Elicitation of personal probabilities and expectations.

Journal of the American Statistical Association, 66 , 783–801.

Vickrey, W. (1961). Counterspeculation, auctions and competitive sealed ten-

ders. The Journal of Finance, 16 , 8–37.

Witkowski, J., & Parkes, D. C. (2012). Peer prediction without a common prior.

In Proceedings of the 13th ACM Conference on Electronic Commerce EC ’12

(pp. 964–981).

31


	Introduction
	The Context
	Strictly Proper Scoring Rules
	The Mechanism
	Economic Properties
	Numerical Evaluation
	An Illustrative Example
	Numerical Simulations

	Conclusions

