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Abstract—In an electricity market with high share of wind
power, it is expected that wind power producers may exercise
market power. However, wind producers have to cope with wind’s
uncertain nature in order to optimally offer their generation,
whereas in a market with more than one wind producers, uncer-
tainty of rival wind power generation should also be considered.
Under this context, this paper addresses the impact of rival
wind producers on the offering strategy and profits of a price-
maker wind producer. A stochastic day-ahead market setup is
considered, which optimizes the day-ahead schedules considering
a number of foreseen real-time scenarios. The results indicate that
strategic wind producer is more likely to exercise market power
having a mid-mean or low-mean forecast distribution, rather than
having a high-mean one. Furthermore, it is observed that its
offering strategy varies considerably depending on the rival’s
wind generation, given that its own expected generation is not
high. Finally, as anticipated, expected system cost is higher when
both wind power producers are expected to have low wind power
generation.

Index Terms—Wind power, strategic offering, trading, two-
stage market, day-ahead, MPEC.

NOMENCLATUREIndices:

ω Index for scenarios generated based on strategic
wind producer’s forecast (referred to as SW).

s Index for scenarios generated based on rival wind
producer’s forecast (referred to as RW).

i Index for conventional units.
d Index for demands.

Sets:

Ω Set of strategic wind producer’s scenarios.
S Set of rival wind producer’s scenarios.
I Set of conventional units.
D Set of demands.

Parameters:

P
D

d Quantity bid of demand d [MW].
P

G

i Quantity offer of unit i [MW].
PF,SW
ω Wind power forecast of strategic wind producer

under scenario ω [MW].
PF,RW
s Wind power forecast of rival wind producer under

scenario s [MW].

λG
i Offer price of unit i [$/MWh].
λU
i Offer price for upward reserve of unit i [$/MWh].
λD
i Offer price for downward reserve of unit i

[$/MWh].
γω Probability of scenario ω.
πs Probability of scenario s.
RU
i Upward reserve capacity of unit i [MW].

RD
i Downward reserve capacity of unit i [MW].

V shed
d Value of lost load for demand d [$/MWh].

Day-ahead Variables:

λDA
s Day-ahead market-clearing price under scenario s

[$/MWh].
pG
i,s Day-ahead dispatch of unit i under scenario s

[MW].
pDA,SW
s Day-ahead dispatch of strategic wind producer

under scenario s [MW].
pDA,RW
s Day-ahead dispatch of rival wind producer under

scenario s [MW].
pOf,SW Quantity offer of strategic wind producer [MW].

Real-time Variables:

λRT
ω,s Probability-weighted real-time market-clearing

price under scenario ω and scenario s [$/MWh].
pspill,SW
ω Wind power spillage under scenario ω for strategic

wind producer [MW].
pspill,RW
ω,s Wind power spillage under scenario ω and sce-

nario s for rival wind producer [MW].
rU
i,ω,s Upward reserve deployed by unit i under scenario

ω and scenario s [MW].
rD
i,ω,s Downward reserve deployed by unit i under sce-

nario ω and scenario s [MW].
lshed
d,ω,s Involuntarily load shed of demand d under sce-

nario ω and scenario s [MW].



I. INTRODUCTION

In recent years, a lot of attention is drawn on wind power
and its impact on electricity markets. Political decisions as
well as technological advances mitigating climate change,
have led to an increased penetration of wind power in energy
systems, transforming wind power producers into dominant
market players. For example, the mix of energy generation is
rapidly changing in many countries, such as Denmark, Spain
and Germany, where wind power generation is holding an
increasing share of the total power generation. Under this
context, benefits and premiums for wind power generation
are not anymore the case in many countries and wind power
producers are forced to compete under the same rules with
conventional ones [1], being able, in some cases, to exercise
market power in order to increase profits. However, uncertainty
and variability in wind power production pose operational
challenges in electricity markets, for both power producers and
market operators. The cost for backup reserves is considerably
high in order to guarantee reliability, while energy storage
is still not mature enough [2]. Therefore, intensive research
in wind power forecasting, as for example presented in [3],
has led to mature forecasting tools, which are used widely in
the related decision-making processes. Furthermore, advanced
stochastic optimization as well as game theory are deployed by
researchers in the technical literature, in an effort to address the
problem of wind power trading under uncertainty in liberalized
energy markets.

Initial studies adopted models where wind power producers
are non-strategic players, i.e., price-takers, and/or receiving
additional support when participating in a forward electricity
market [4]–[7]. However, as the cost of wind power production
is low and the competitiveness of wind power increases, wind
power producers are forced to participate in the electricity
markets under full competition and following the same rules
as conventional producers [8]. Under this context, in [9], it
is considered that wind power producers strategically offer
their power in the balancing market. It is anticipated that
due to large volumes of traded energy in day-ahead market,
wind producer acts as a price-taker there. The authors also
investigate how the shape of the forecast distribution impacts
the offering strategy of producer. The problem of a price-
maker wind power producer in the day-ahead market, being a
deviator in the balancing market, was later addressed in [10].
More specifically, the problem was formulated as a stochastic
optimization tool for market participation, where uncertainty
pertaining to wind power production is represented through
scenarios. The impact of a price-maker wind power producer
on electricity prices as well as on the resulted imbalances
is studied in [11], for a market without regulated tariffs.
Furthermore, study [12] additionally considered, through sce-
narios, the uncertainties in demand, wind power generation and
bidding strategies of strategic conventional generators focusing
on the problem of strategic wind power trading. Recent study
[13], proposes a multi-stage risk-constrained stochastic com-
plementarity model to derive the optimal offering strategy of

a wind-power producer that participates in both the day-ahead
and the balancing markets. Uncertainties concerning wind-
power production, market prices, demands’ bids and rivals’
offers are modeled in this study using a set of scenarios.

Aforementioned studies focus on a single strategic wind
power producer and its strategic offering problem since, as
highlighted in [13], there are countries where even a single
wind power producer owns large enough wind capacity that
enables him to behave strategically. However, it can natu-
rally be argued that this setup, including only one strategic
stochastic producer, is rather unrealistic. The consideration
of more than one strategic stochastic producers would lead
to a game-theoretic approach, which is a problem generally
hard to cope with. Moreover, given that each producer owns
its private wind power forecast, the problem would lead to
a game under incomplete information, yielding a bayesian
approach. Motivated by the above challenges, in [14] authors
approach the problem of an electricity market with multiple
stochastic producers based on a minority game, studying the
competition among them using a set of learning tools to
identify their actions. Under the same context, the contribution
of this paper is to address the impact of additional wind
power producers on the wind power offering strategy of a
price-maker wind power producer. In this approach, avoiding
a more complex setup, i.e., an equilibrium program with
equilibrium constraints (EPEC), rival wind power production
is represented by a number of foreseen scenarios followed by
the corresponding probabilities. In parallel, various levels of
wind power generation for both wind power producers are
considered, investigating their impact on producer’s offering
strategy and profits, as well as on market outcomes. The
problem is formulated as a bilevel stochastic optimization
model, following a complementarity approach [15].

The rest of the paper is organized as follows: Section II
presents the mathematical formulation of the problem. Section
III presents the results for a case-study and, lastly, Section IV
concludes the paper.

II. MATHEMATICAL FORMULATION

A. Model Assumptions and Uncertainty Characterization

A pool-based electricity market is assumed, where produc-
ers submit power and price offers for the day-ahead (DA)
and real-time (RT) markets. The assumed DA market-clearing
mechanism is a two-stage stochastic optimization program, as
presented in [16], which co-optimizes DA and RT markets and
enables better operational results in markets with considerable
sources of uncertainty. In the investigated framework, two
main sources of uncertainty are considered, namely:
• wind power generation of investigated strategic wind

producer,
• wind power generation of rival wind producer,

both of which are introduced as independent wind power
scenarios. Note that in contrast to [10], real-time price sce-
narios are driven by the optimization model. Furthermore, the
approach of this paper differs from [9], [10], [12], [17] in



the sense that it considers the uncertainty of rival wind power
producer.

An imperfectly competitive electricity market is considered,
in which the wind producers and conventional units may offer
strategically [18], [19]. In line with [9]–[12], we assume that
the wind producer perfectly knows the offering strategy of its
conventional rivals. Consideration of multiple strategic wind
producers with different private forecasts, would lead to a
non-cooperative game with incomplete information, which is
our future extension. Similarly to [9], [11], [19], and for the
sake of simplicity, transmission constraints are not enforced.
In addition, the inter-temporal constraints, e.g., ramping limits
of conventional units, are not enforced and thus a single-hour
auction is considered. The operational cost of wind power
producers is negligible since they are not incurred by the fuel
costs. In some realistic electricity markets, this cost is even
negative due to renewable incentives [20]. As it is customary
in the technical literature, e.g., [21]–[25], we assume that the
wind production cost is zero. Finally, demand is assumed to
be deterministic and inelastic to price.

B. Bilevel Model

The offering strategy of the strategic wind power producer is
modeled through a stochastic complementarity approach [10],
[15]. We use a bilevel model, i.e., (1)-(2), whose upper-level
(UL) problem (1) maximizes wind producer’s expected profit,
and lower-level (LL) problem (2) clears the stochastic two-
stage market through minimizing the expected system cost.
The UL objective function is constrained by both UL con-
straint (1b) and LL problem (2). Dual variables are indicated
in each LL constraint after a colon. Note that in model (1)-(2),
the strategic wind producer’s scenarios for its own generation
are indicated by ω ∈ Ω and for its rival’s by s ∈ S.

Maximize
pOf,SW, ΞLL,P∪ΞLL,D∑
s∈S

πs

[
λDA
s pDA,SW

s +
∑
ω∈Ω

λRT
ω,s(P

F,SW
ω − pDA,SW

s

− pspill,SW
ω )

]
(1a)

subject to

pOf,SW ≥ 0 (1b)

where λDA
s , pDA,SW

s , λRT
ω,s and pspill,SW

ω ∀ω,∀s, ∈

arg Minimize
ΞLL,P

{
∑
i∈I

λG
i p

G
i,s +

∑
ω∈Ω

γω

[∑
i∈I

(λU
i rU

i,ω,s − λD
i rD

i,ω,s)

+
∑
d∈D

V shed
d lshed

d,ω,s

]
(2a)

subject to∑
d∈D

P
D

d −
∑
i∈I

pG
i,s − pDA,SW

s − pDA,RW
s = 0 : λDA

s (2b)

0 ≤ pG
i,s ≤ P

G

i : φ
i,s
, φi,s ∀i (2c)

0 ≤ pDA,SW
s ≤ pOf,SW : σSW

s , σSW
s (2d)

0 ≤ pDA,RW
s ≤ PF,RW

s : σRW
s , σRW

s (2e)∑
i∈I

(rD
i,ω,s − rU

i,ω,s)−
∑
d∈D

lshed
d,ω,s − (PF,SW

ω

− pDA,SW
s − pspill,SW

ω )− (PF,RW
s − pDA,RW

s

− pspill,RW
s,ω ) = 0 : λRT

ω,s ∀ω (2f)

0 ≤ pspill,SW
ω ≤ PF,SW

ω : τSW
ω , τSW

ω ∀ω (2g)

0 ≤ pspill,RW
ω,s ≤ PF,RW

s : τRW
ω,s , τ

RW
ω,s ∀ω (2h)

0 ≤ lshed
d,ω,s ≤ P

D

d : ψ
d,ω,s

, ψd,ω,s ∀d,∀ω (2i)

0 ≤ rD
i,ω,s ≤ RD

i , : µD
i,ω,s

, µD
i,ω,s ∀i,∀ω (2j)

0 ≤ rU
i,ω,s ≤ RU

i , : µU
i,ω,s

, µU
i,ω,s ∀i,∀ω (2k)

rU
i,ω,s ≤ (P

G

i − pG
i,s), : µPR

i,ω,s ∀i,∀ω (2l)

rD
i,ω,s ≤ pG

i,s, : µPR
i,ω,s

∀i,∀ω (2m)}
∀s,

where ΞLL,P = {pDA,SW
s , pspill,SW

ω , pG
i,s, rU

i,ω,s, rD
i,ω,s,

lshed
d,ω,s, pspill,RW

ω,s } is the set of primal variables of the LL
problem. Furthermore, ΞLL,D = {λDA

s , φ
i,s
, φi,s, σSW

s ,

σSW
s , σRW

s , σRW
s , λRT

ω,s, τ
SW
ω , τSW

ω , τRW
ω,s , τ

RW
ω,s , ψd,ω,s,

ψd,ω,s, µ
D
i,ω,s

, µD
i,ω,s, µ

U
i,ω,s

, µU
i,ω,s, µ

PR
i,ω,s

, µPR
i,ω,s
} is the

set of dual variables of the LL problem. Finally, the primal
variables of the UL problem (1a)-(1b) are pOf,SW as well as
all members of variable sets ΞLL,P and ΞLL,D.

The UL objective function (1a) maximizes strategic wind
producer’s expected profit, considering wind power generation
scenarios for rival wind producer (s ∈ S), and consists of:
• Wind producer’s profit in DA market, being the product

of DA market-clearing price, i.e., λDA
s , and scheduled

quantity, i.e., pDA,SW
s .

• Wind producer’s expected profit/cost in RT market, be-
ing the product of the probability-weighted RT market-
clearing price, i.e., λRT

ω,s, and wind power excess/deficit
in RT, i.e., PF,SW

ω − pDA,SW
s − pspill,SW

ω .
The UL constraint (1b) imposes the strategic quantity offer

of wind producer, i.e., pOf,SW, to be non-negative. The LL
objective function (2a) minimizes the expected system cost
including generation-side costs in DA and RT as well as load
shedding costs in RT. The LL constraint (2b) represents the
power balance in DA, whose dual variable, i.e., λDA

s , provides
the DA market-clearing price. Constraints (2c)-(2e) bind the
DA schedule of conventional units and wind producers, based
on their quantity offers (or expected generation for rival
wind producer). Constraint (2f) refers to power balance in
RT that adjusts the energy imbalance by operational reserve



TABLE I
TECHNICAL CHARACTERISTICS OF CONVENTIONAL UNITS

Unit PG
i λG

i RU
i λU

i RD
i λD

i

(i) [MW] [$/MW] [MW] [$/MWh] [MW] [$/MWh]

G1 451 35.88 250 40 0 -

G2 500 30.12 200 35 0 -

G3 80 45.00 40 50 0 -

G4 300 5.00 300 7 300 2

G5 474 18.72 290 25 125 10

G6 800 20.56 300 27 200 12

G7 800 7.53 400 15 100 5

deployment, wind power spillage and load shedding. Note
that its corresponding dual variable provides the probability-
weighted RT market-clearing price, i.e., λRT

ω,s. Constraints (2g)-
(2h) imply that wind power spillage should be equal to or
lower than the wind power realization. Constraint (2i) restricts
the load shedding quantity. Operational reserves in RT are
bounded by reserve quantity offers and DA dispatch through
(2j)-(2m).

Given that LL problem (2) is continuous, linear and
therefore convex, bilevel model (1)-(2) can be recast as
a single-level mathematical program with equilibrium con-
straints (MPEC), by replacing the LL problem by its Karush-
Kuhn-Tucker (KKT) optimality conditions [15]. The latter
MPEC includes a number of non-linearities, thus we ac-
commodate the strong duality theorem along with Big-M
approach [26], [27] to linearize it, at the cost of introducing a
set of auxiliary binary variables. Following this linearization
approach, MPEC is transformed into a mixed-integer linear
programming (MILP) problem, which can be solved with
available solvers.

III. CASE-STUDY

A. Data

A case-study based on the IEEE one-area reliability test
system [28] is considered, in which conventional units are
grouped by type and price, similarly to [29]. Each conventional
unit offers at a quantity identical to its installed capacity and
at a price given in Table I. In addition to the conventional
units, two wind power producers, i.e., the investigated strategic
producer (indicated by SW) and its rival wind producer
(indicated by RW), are considered with the same installed
capacity of 800 MW each. The system load is 2850 MW,
and its value of lost load is set to $200/MWh.

In this paper, we investigate the market from the strategic
wind power producer’s viewpoint. In order for the strategic
producer to optimally offer its wind power generation to the
market, it needs an uncertainty forecast, e.g., in the form
of wind power scenarios. There are numerous techniques in
the technical literature to generate scenarios of wind power
generation, such as [30]–[34]. In this study, strategic wind
power producer needs to forecast wind generation of both its
own wind units as well as its rival’s. We assume that both

TABLE II
SHAPE PARAMETERS OF BETA DISTRIBUTIONS

Shape Set 1 Set 2 Set 3

Parameters a > b a ' b a < b

(a, b) (3.78,1.62) (5.37,5.37) (1.89,4.48)

wind power forecasts follow a Beta distribution with shape
parameters (a, b). Strategic wind producer generates 2000
scenarios for its own wind power generation and the same
number of scenarios for its rival’s based on the corresponding
forecast distribution. Then scenarios are reduced to three in
order to reduce computational cost, using a scenario reduction
approach such as the K-means method [35]. Note that these
samples are in per-unit, i.e., wind production divided by
installed wind capacity. This procedure provides strategic wind
producer’s scenarios denoted by ω1, ω2 and ω3 and, similarly,
rival wind producer’s scenarios s1, s2 and s3 with their
corresponding probabilities.

To evaluate the impact of rival’s generation uncertainty on
strategic producer’s offering decisions, we investigate different
levels of wind power generation for both producers. Therefore,
three different sets for the parameters of Beta distribution
are examined in this case-study, as given in Table II, which
yield different distribution shapes for both producers. These
sets are selected to represent the three cases with the most
characteristic differences in distribution shapes, i.e., cases with
high-mean, mid-mean and low-mean distributions, for each of
the producers. The three sets correspond to shape parameters
a > b, a ' b and a < b respectively. Thus, we investigate the
impact of forecast distributions on the market outcomes as well
as on strategic wind producer’s profits, for all combinations of
distribution shapes.

B. Results and Discussion

In this section, we present the results for the case-study as-
suming that each of the wind power producers can have high-
mean, mid-mean or low-mean forecast distribution. Therefore,
nine scenarios are investigated in total, with respect to their
effect on strategic wind producer’s profits and on market
results.

In Fig. 1, one can see the expected profit of the strate-
gic wind power producer for all the investigated cases. As
expected, strategic wind power producer gains more profit
when its expected production is high (blue curve). It is also
observed that given a high-mean forecast distribution for its
own production, its profit is independent of whether its rival
has a high-mean or a mid-mean distribution. However, if the
rival is expected to have low wind power generation, then
strategic wind producer sees a considerable increase in its
profits. On the other hand, if strategic wind producer has mid-
or low-mean forecast distributions for its own production, then
its profit increases as rival’s production decreases.

The aforementioned results can be explained by observing
Fig. 2 and 3, which present the wind power offers of strategic
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Fig. 1. Profit of strategic wind power producer
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Fig. 2. The strategic wind producer’s quantity offer to DA market

wind producer and the expected DA prices, respectively. It is
interesting to note in Fig. 2 that the optimal offering strategy,
depends highly on rival’s forecast distribution and, thus, it
is different for each distribution shape of the rival producer.
More particularly, under high-mean forecast distribution (blue
curve), strategic wind producer offers the same quantity of
power to the market, independently of rival’s forecast distri-
bution. However, given a low-mean distribution for the rival
producer, expected DA price is considerably higher, which
explains the increased profits for that case as seen in Fig.
1. On the other hand, given a mid-mean forecast distribution
(red curve) for strategic producer, its offers decrease as the
rival’s expected generation decreases. In that case, even if
the forecast for its own generation is the same, the offering
strategy is changing depending on rival’s expectation and
strategic producer exercises market power by withholding an
amount of wind power as the rival’s forecast decreases. For
low-mean forecast distribution (black curve) the results are
mixed, as strategic wind producer exercises market power only
for mid-mean forecast distribution of the rival.

Finally, in Fig. 4 the total system cost, i.e., expected DA
and RT system cost, is presented for the same cases as before.
As anticipated, it is observed that the expected total system
cost increases when the system is expected to have low total
wind power generation. Therefore, when both producers have
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low-mean forecast distribution the system cost is high and the
opposite.

IV. CONCLUSION AND FUTURE PROSPECTS

As wind power producers become dominant market players
in a number of electricity markets, it is expected that they
offer their generation strategically. This paper addresses the
impact of the uncertainty introduced by a rival wind producer,
on the offering strategy of a price-maker wind producer. The
price-maker wind power producer forecasts the generation of
its rival and makes optimal power offers to a stochastic DA
market. The results indicate that strategic producer exercises
more market power for mid- or low-mean forecast distributions
of its own generated wind power. It is observed that its offering
strategy depends highly on the rival’s expected generation,
given that its own expected wind generation is not high.
Additionally, in these cases strategic producer withholds a part
of its generation in order to increase DA market prices on
its own benefit. Finally, it is observed that the expected total
system cost is, as anticipated, higher when both producers are
expected to produce low wind power.

This study can be extended by assuming more than two
strategic wind power producers in the market, where the wind
power uncertainty can be represented by an aggregate forecast
distribution. Furthermore, the consideration of all participating



wind power producers being price-makers, would yield a more
complex study which could be formulated as a game of
incomplete information, since individual wind power forecasts
are not common knowledge. In the latter case bayesian Nash
equlibrium is to be investigated.
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