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Abstract

We describe how to solve simultaneous Padé approximations over a
power series ring K[[x]] for a field K using O∼(nω−1d) operations in K,
where d is the sought precision and n is the number of power series to
approximate. We develop two algorithms using different approaches.
Both algorithms return a reduced sub-bases that generates the complete
set of solutions to the input approximations problem that satisfy the
given degree constraints. Our results are made possible by recent
breakthroughs in fast computations of minimal approximant bases and
Hermite Padé approximations.

1 Introduction

The Simultaneous Padé approximation problem concerns approximating
several power series S1, . . . , Sn ∈ K[[x]] with rational functions σ1

λ , . . . ,
σn
λ ,

all sharing the same denominator λ. In other words, for some d ∈ Z≥0, we
seek λ ∈ K[x] of low degree such that each of

rem(λS1, x
d), rem(λS2, x

d), . . . , rem(λSn, x
d)

has low degree. The study of Simultaneous Padé approximations traces
back to Hermite’s proof of the transcendence of e [18]. Solving Simultaneous
Padé approximations has numerous applications, such as in coding theory,
e.g. [13,28]; or in distributed, reliable computation [11]. Many algorithms have
been developed for this problem, see e.g. [3,26,27,29] as well as the references
therein. Usually one cares about the regime where d� n. Obtaining O(nd2)
is classical through successive cancellation, see [4] or [13] for a Berlekamp–
Massey-type variant. Using fast arithmetic, the previous best was O∼(nωd),
where ω is the exponent for matrix multiplication, see Section 1.1. That can
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be done by computing a minimal approximant basis with e.g. [15,16]; this
approach traces back to [2, 3]. Another possibility which achieves the same
complexity is fast algorithms for solving structured linear systems, e.g. [8];
see [10] for a discussion of this approach.

A common description is to require deg λ < N0 for some degree bound
N0, and similarly deg rem(λS1, x

d) < Ni for i = 1, . . . , n. The degree bounds
could arise naturally from the application, or could be set such that a solution
must exist. A natural generalisation is also to replace the xd moduli with
arbitrary g1, . . . , gn ∈ K[x]. Formally, for any field K:

Problem 1 Given a tuple (S, g,N) where

• S = (S1, . . . , Sn) ∈ K[x]n is a sequence of polynomials,

• g = (g1, . . . , gn) ∈ K[x]n is a sequence of moduli polynomials with
degSi < deg gi for i = 1, . . . , n,

• and N = (N0, . . . , Nn) ∈ Zn+1
≥0 are degree bounds satisfying 1 ≤ N0 ≤

maxi deg gi and Ni ≤ deg gi for i = 1, . . . , n,

find, if it exists, a non-zero vector (λ, φ1, . . . , φn) such that

1. λSi ≡ φi mod gi for i = 1, . . . , n, and

2. deg λ < N0 and deg φi < Ni for i = 1, . . . , n.

We will call any vector (λ, φ1, . . . , φn) as above a solution to a given Simul-
taneous Padé approximation problem. Note that if the Ni are set too low,
then it might be the case that no solution exists.

Example 2 Consider over F2[x] that g1 = g2 = g3 = x5, and S =
(S1, S2, S3) =

(
x4 + x2 + 1, x4 + 1, x4 + x3 + 1

)
, with degree bounds N =

(5, 3, 4, 5). Then λ1 = x4 + 1 is a solution, since deg λ1 < 5 and

λ1S ≡
(
x2 + 1, 1, x3 + 1

)
mod x5 .

λ2 = x3 + x is another solution, since

λ2S ≡
(
x, x3 + x, x4 + x3 + x

)
mod x5 .

These two solutions are linearly independent over F2[x] and span all solutions.

Several previous algorithms for solving Problem 1 are more ambitious and
produce an entire basis of solutions that satisfy the first output condition
λSi ≡ φi mod gi for i = 1, . . . , n, including solutions that do not satisfy the
degree bounds stipulated by the second output condition. Our algorithms are
slightly more restricted in that we only return the sub-basis that generates
the set of solutions that satisfy both output requirements of Problem 1.
Formally:
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Problem 3 Given an instance of Problem 1, find a matrix A ∈ K[x]∗×(n+1)

such that:

• Each row of A is a solution to the instance.

• All solutions are in the K[x]-row space of A.

• A is (−N)-row reduced1.

The last condition ensures that A is minimal, in a sense, according to
the degree bounds N , and that we can easily parametrise which linear
combinations of the rows of A are solutions. We recall the relevant definitions
and lemmas in Section 2.

We will call such a matrix A a solution basis. In the complexities we
report here, we cannot afford to compute A explicitly. For example, if all
gi = xd, the number of field elements required to explicitly write down all of
the entries of A could be Ω(n2d). Instead, we remark that A is completely
given by the problem instance as well as the first column of A, containing the
λ polynomials.2 Our algorithms will therefore represent A row-wise using
the following compact representation.

Definition 4 For a given instance of Problem 3, a solution specification is
a tuple (λ, δ) ∈ K[x]k×1 × Zk<0 such that the completion of λ is a solution
basis, and where δ are the (−N)-degrees of the rows of A.

The completion of λ = (λ1, . . . , λk)
> is the matrixλ1 rem(λ1S1, g1) . . . rem(λ1Sn, gn)

...
. . .

...
λk rem(λkS1, g1) . . . rem(λkSn, gn)

 .

Note that δ will consist of only negative numbers, since any solution v by
definition has deg−N v < 0.

Example 5 A solution specification for the problem in Example 2 is

(λ, δ) =
(
[x4 + 1, x3 + x]>, (−1,−1)

)
.

The completion of this is

A =

[
x4 + 1 x2 + 1 1 x3 + 1
x3 + x x x3 + x x4 + x3 + x

]
One can verify that A is (−N)-row reduced.

1The notions (−N)-degree, deg−N and (−N)-row reduced are recalled in Section 2.
2The restriction Ni ≤ deg gi in Problem 1 ensures that for a given λ, the only possibilities

for the φi in a solution are rem(λSi, gi). In particular, if we allowed Ni > deg gi then
(0, . . . , 0, gi, 0, . . . , 0) would be a solution which can not be directly reconstructed from its
first element.

3



We present two algorithms for solving Problem 3, both with complexity
O
(
nω−1 M(d) (log d) (log d/n)2

)
, where d = maxi deg gi and M(d) is the cost

of multiplying two polynomials of degree d, see Section 1.1. They both depend
crucially on recent developments that allow computing minimal approximant
bases of non-square matrices faster than for the square case [19, 34]. We
remark that from the solution basis, one can also compute the expanded
form of one or a few of the solutions in the same complexity, for instance if
a single, expanded solution to the simultaneous Padé problem is needed.

Our first algorithm in Section 4 assumes gi = xd for all i and some d ∈ Z≥0.
It utilises a well-known duality between Simultaneous Padé approximations
and Hermite Padé approximations, see e.g. [3]. The Hermite Padé problem
is immediately solvable by fast minimal approximant basis computation. A
remaining step is to efficiently compute a single row of the adjoint of a matrix
in Popov form, and this is done by combining partial linearisation [16] and
high-order lifting [31].

Our second algorithm in Section 5 supports arbitrary gi. The algorithm
first solves n single-sequence Padé approximations, each of S1, . . . , Sn. The
solution bases for two problem instances can be combined by computing the
intersection of their row spaces; this is handled by a minimal approximant
basis computation. A solution basis of the full Simultaneous Padé problem
is then obtained by structuring intersections along a binary tree.

Before we describe our algorithms, we give some preliminary notation
and definitions in Section 2, and in Section 3 we describe some of the
computational tools that we employ.

Both our algorithms have been implemented in Sage v. 7.0 [30] (though
asymptotically slower alternatives to the computational tools are used). The
source code can be downloaded from http://jsrn.dk/code-for-articles.

1.1 Cost model

We count basic arithmetic operations in K on an algebraic RAM. We will
state complexity results in terms of an exponent ω for matrix multiplication,
and a function M(·) that is a multiplication time for K[x] [33, Definition 8.26].
Then two n× n matrices over K can be multiplied in O(nω) operations in K,
and two polynomials in K[x] of degree strictly less than d can be multiplied
in M(d) operations in K. The best known algorithms allow ω < 2.38 [12,14],
and we can always take M(d) ∈ O(n(log n)(loglog n)) [9].

In this paper we assume that ω > 2, and that M(d) is super-linear
while M(d) ∈ O(dω−1). The assumption M(d) ∈ O(dω−1) simply stipulates
that if fast matrix multiplication techiques are used then fast polynomial
multiplication should be used also: for example, nM(nd) ∈ O(nωM(d)).
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2 Preliminaries

Here we gather together some definitions and results regarding row reduced
bases, minimal approximant basis, and their shifted variants. For a matrix
A we denote by Ai,j the entry in row i and column j. For a matrix A over
K[x] we denote by Row(A) the K[x]-linear row space of A.

2.1 Degrees and shifted degrees

The degree of a nonzero vector v ∈ K[x]1×m or matrix A ∈ K[x]n×m is
denoted by deg v or degA, and is the maximal degree of entries of v or A. If
A has no zero rows the row degrees of A, denoted by rowdegA, is the tuple
(d1, . . . , dn) with di = deg row(A, i).

The (row-wise) leading matrix of A, denoted by LM(A) ∈ Kn×m, has
LM(A)i,j equal to the coefficient of xdi of Ai,j .

Next we recall [2, 19, 34] the shifted variants of the notion of degree, row
degrees, and leading matrix. For a shift s = (s1, . . . , sn) ∈ Zn, define the
n× n diagonal matrix xs by

xs :=

 xs1

. . .

xsn

 .
Then the s-degree of v, the s-row degrees of A, and the s-leading matrix
of A, are defined by degs v := deg vxs, rowdegsA := rowdegAxs, and
LMs(A) := LM(Axs). Note that we pass over the ring of Laurent polynomials
only for convenience; our algorithms will only compute with polynomials. As
pointed out in [19], up to negation the definition of s-degree is equivalent to
that used in [7] and to the notion of defect in [4].

For an instance (S, g,N) of Problem 1, in the context of defining matrices,
we will be using S and g as vectors, and by Γg denote the diagonal matrix
with the entries of g on its diagonal.

2.2 Row reduced

Although row reducedness can be defined for matrices of arbitrary shape
and rank, it suffices here to consider the case of matrices of full row rank. A
matrix R ∈ K[x]n×m is row reduced if LM(R) has full row rank, and s-row
reduced if LMs(R) has full row rank. Every A ∈ K[x]n×m of full row rank is
left equivalent to a matrix R ∈ K[x]n×m that is s-row reduced. The rows of
R give a basis for Row(A) that is minimal in the following sense: the list
of s-degrees of the rows of R, when sorted in non-decreasing order, will be
lexicographically minimal. An important feature of row reduced matrices
is the so-called “predictable degree”-property [21, Theorem 6.3-13]: for any
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v ∈ K[x]1×n, we have

degs(vR) = max
i=1,...,n

(degs row(R, i) + deg vi) .

A canonical s-reduced basis is provided by the s-Popov form. Although
an s-Popov form can be defined for a matrix of arbitrary shape and rank,
it suffices here to consider the case of a non-singular matrix. The following
definition is equivalent to [19, Definition 1.2].

Definition 6 A non-singular matrix R ∈ K[x]n×n is in s-Popov form if
LMs(R) is unit lower triangular and the degrees of off-diagonal entries of R
are strictly less than the degree of the diagonal entry in the same column.

2.3 Adjoints of row reduced matrices

For a non-singular matrix A recall that the adjoint of A, denoted by adj(A),
is equal to (detA)A−1, and that entry adj(A)>i,j is equal to (−1)i+j times
the determinant of the (n− 1)× (n− 1) sub-matrix that is obtained from A
by deleting row i and column j.

Lemma 7 Let A ∈ K[x]n×n be s-row reduced. Then adj(A)> is (−s)-row
reduced with

rowdeg(−s)adj(A)> = (η − s− η1, . . . , η − s− ηn) ,

where η = rowdegsA, η =
∑

i ηi and s =
∑

i si.

Proof Since A is s-row reduced then Axs is row reduced. Note that
adj(Axs)>(Axs)> = (detAxs)Im with deg detAxs = η. It follows that
row i of adj(Axs)> must have degree at least η − ηi since ηi is the de-
gree of column i of (Axs)>. However, entries in row i of adj(Axs)> are
minors of the matrix obtained from Axs by removing row i, hence have
degree at most η − ηi. It follows that the (row-wise) leading coefficient
matrix of adj(Axs)> is non-singular, hence adj(Axs)> is row reduced. Since
adj(Axs)> = (detxs)adj(A)>x−s we conclude that adj(A)> is (−s)-row
reduced with rowdeg(−s)adj(A) = (η − η1 − s, . . . , η − ηn − s). �

2.4 Minimal approximant bases

We recall the standard notion of minimal approximant basis, sometimes
known as order basis or σ-basis [4]. For a matrix A ∈ K[x]n×m and order
d ∈ Z≥0, an order d approximant is a vector p ∈ K[x]1×n such that pA ≡ 0
mod xd.

An approximant basis of order d is then a matrix F ∈ K[x]n×n which is a
basis of all order d approximants. Such a basis always exists and has full

6



rank n. For a shift s ∈ Zn, F is then an s-minimal approximant basis if it is
s-row reduced.

Let MinBasis(d,A, s) be a function that returns (F, δ), where F is an
s-minimal approximant basis of A of order d, and δ = rowdegsF . The next
lemma recalls a well known method of constructing minimal approximant
bases recursively. Although the output of MinBasis may not be unique,
the lemma holds for any s-minimal approximant basis that MinBasis might
return.

Lemma 8 Let A =
[
A1 A2

]
over K[x]. If (F1, δ1) = MinBasis(d,A1, s)

and (F2, δ2) = MinBasis(d, F1A2, δ1), then F2F1 is an s-minimal approximant
basis of A of order d with δ2 = rowdegsF2F1.

Sometimes only the negative part of an s-minimal approximant bases is
required, the submatrix of the approximant bases consisting of rows with
negative s-degree. Let function NegMinBasis(d,A, s) have the same output
as MinBasis, but with F restricted to the negative part.

Corollary 9 Lemma 8 still holds if MinBasis is replaced by NegMinBasis,
and “an s-minimal” is replaced with “the negative part of an s-minimal.”

Using for example the algorithm M-Basis of [15], it is easy to show that
any order d approximant basis G for an A of column dimension m has
detG = xD for some D ∈ Z≥0 with D ≤ md.

Many problems of K[x] matrices or approximations reduce to the compu-
tation of (shifted) minimal approximant bases, see e.g. [4,15], often resulting
in the best known asymptotic complexities for these problems.

2.5 Direct solving of Simultaneous Padé approximations

Let (S, g,N) be an instance of Problem 3 of size n. We recall some known
approaches for computing a solution specification using row reduction and
minimal approximant basis computation.

2.5.1 Via reduced basis

Using the predictable degree property it is easy to show that if R ∈
K[x](n+1)×(n+1) is an (−N)-reduced basis of

A =

[
1 S

Γg

]
∈ K[x](n+1)×(n+1),

then the sub-matrix of R comprised of the rows with negative (−N)-degree
form a solution basis. A solution specification (λ, δ) is then a subvector λ of
the first column of R, with δ the corresponding subtuple δ of rowdeg(−N)R.

7



Mulders and Storjohann [24] gave an iterative algorithm for performing
row reduction by successive cancellation; it is similar to but faster than
earlier algorithms [21, 22]. Generically on input F ∈ K[x]m×m it has com-
plexity O(n3(degF )2). Alekhnovich [1] gave what is essentially a Divide &
Conquer variant of Mulders and Storjohann’s algorithm, with complexity
O∼(nω+1 degF ). Nielsen remarked [26] that these algorithms perform fewer
iterations when applied to the matrix A above, due to its low orthogonal-
ity defect : OD(F ) =

∑
rowdegF − deg detF , resulting in O(n2(degA)2)

respectively O∼(nω degA). Nielsen also used the special shape of A to
give a variant of the Mulders–Storjohann algorithm that computes coeffi-
cients in the working matrix in a lazy manner with a resulting complexity
O(nP(degA)), where P(degA) = (degA)2 when the gi are all powers of x,
and P(degA) = M(degA) degA otherwise.

Giorgi, et al. [15] gave a reduction for performing row reduction by
computing a minimal approximant basis. For the special matrix A, this
essentially boils down to the approach described in the following section.

When n = 1, the extended Euclidean algorithm on input S1 and g1 can
solve the approximation problem by essentially computing the reduced basis
of the 2×2 matrix A: each iteration corresponds to a reduced basis for a range
of possible shifts [17,20,32]. The complexity of this is O(M(deg g1) log deg g1).

2.5.2 Via minimal approximant basis

First consider the special case when all gi = xd for the same d. An approxi-
mant v = (λ, φ1, . . . , φn) of order d of

A =

[
−S
I

]
∈ K[x](n+1)×n

clearly satisfies λSi ≡ φi mod xd for i = 1, . . . , n; conversely, any such vector
v satisfying these congruences must be an approximant of A of order d. So
the negative part of a (−N)-minimal approximant basis of A of order d is a
solution basis.

In the general case we can reduce to a minimal approximant bases
computation as shown by Algorithm 1. Correctness of the algorithm follows
from the following result.

Theorem 10 Corresponding to an instance (S, g,N) of Problem 3 of size
n, define a shift h and order d:

• h := −(N | N0 − 1, . . . , N0 − 1) ∈ Z2n+1

• d := N0 + maxi deg gi − 1

If G is the negative part of an h-minimal approximant basis of

H =

 −SI
Γg

 ∈ K[x](2n+1)×n
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Algorithm 1 DirectSimPade

Input: (S, g,N), an instance of Problem 3 of size n.
Output: (λ, δ), a solution specification.

1 h← −(N | N0 − 1, . . . , N0 − 1) ∈ Z2n+1

2 d← N0 + maxi deg gi − 1

3 H =

 −SI
Γg


4 (
[
λ ∗

]
, δ)← NegMinBasis(d,H,h)

5 return (λ, δ)

of order d, then the submatrix of G comprised of the first n+ 1 columns is a
solution basis to the problem instance.

Proof An approximant v = (λ, φ1, . . . , φn, q1, . . . , qn) of order d of H clearly
satisfies

λSi = φi + qigi mod xd (1)

for i = 1, . . . , n; conversely, any such vector v satisfying these congruences
must be an approximant of H of order d.

Now suppose v is an order d approximant of H with negative h-degree,
so deg λ ≤ N0 − 1, deg φi ≤ Ni − 1, and deg qi ≤ N0 − 2. Since Problem 1
specifies that degSi < deg gi and Ni ≤ deg gi, both λSi and qigi will have
degree bounded by N0 + deg gi − 2. Since Problem 1 specifies that N0 ≥ 1,
it follows that both the left and right hand sides of (1) have degree bounded
by N0 + deg gi − 2, which is strictly less than d. We conclude that

λSi = φi + qigi (2)

for i = 1, . . . , n. It follows that vH = 0 so v is in the left kernel of H. More-
over, restricting v to its first n+1 entries gives v̄ := (λ, φ1, . . . , φn), a solution
to the simultaneous Padé problem with deg−N v̄ = degh v. Conversely, if
v̄ = (λ, φ1, . . . , φn) is a solution to the simultaneous Padé problem, then the
extension v = (λ, φ1, . . . , φn, q1, . . . , qn) with qi = (λSi − φi)/gi ∈ K[x] for
i = 1, . . . , n is an approximant of H of order d with degh v = deg−N v̄.

Finally, consider that a left kernel basis for H is given by

K =
[
K1 K2

]
=

[
1 S

Γg −I

]
.

We must have G = MK for some polynomial matrix M of full row rank.
But then MK1 also has full row rank with rowdeg−NMK1 = rowdeghG.�
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DirectSimPade can be performed in timeO∼(nω degH) = O∼(nω maxi deg gi)
using the minimal approximant basis algorithm by Jeannerod, et al. [19], see
Section 3.

A closely related alternative to DirectSimPade is the recent algorithm by
Neiger [25] for computing solutions to modular equations with general moduli
gi. This would give the complexity O∼(nω−1

∑
i deg gi) ⊂ O∼(nω maxi deg gi).

All of the above solutions ignore the sparse, simple structure of the input
matrices, which is why they do not obtain the improved complexity that we
do here.

3 Computational tools

The main computational tool we will use is the following very recent result
from Jeannerod, Neiger, Schost and Villard [19] on minimal approximant
basis computation.

Theorem 11 ( [19, Special case of Theorem 1.4]) There exists an al-
gorithm PopovBasis(d,A, s) where the input is an order d ∈ Z+, a polynomial
matrix A ∈ K[x]n×m of degree at most d, and shift s ∈ Zn, and which
returns (F, δ), where F is an s-minimal approximant basis of A of order
d, F is in s-Popov form, and δ = rowdegsF . PopovBasis has complexity
O(nω−1 M(σ) (log σ) (log σ/n)2) operations in K, where σ = md.

Our next result says that we can quickly compute the first row of adj(F )
if F is a minimal approximant basis in Popov form. In particular, since F
is an approximant basis detF = xD for some D ≤ σ, where σ = md from
Theorem 11.

Theorem 12 Let F ∈ K[x]n×n be in Popov form and with detF = xD

for some D ∈ Z≥0. Then the first row of adj(F ) can be computed in
O(nω−1 M(D) (logD) (logD/n)) operations in K.

Proof Because F is in s-Popov form, D is the sum of the column degrees
of F . We consider two cases: D ≥ n and D < n.

First suppose D ≥ n. Partial linearisation [16, Corollary 2] can produce
from F , with no operations in K, a new matrix G ∈ K[x]n̄×n̄ with dimension
n̄ < 2n, degG ≤ dD/ne, detG = detF , and such that F−1 is equal to the
principal n× n sub-matrix of G−1. Let v ∈ K[x]1×n̄ be the first row of xDIn̄.
Then the first row of adj(F ) will be the first n entries of the first row of
vG−1. High-order X-adic lifting [31, Algorithm 5] using the modulus X =
(x− 1)dD/ne will compute vG−1 in O

(
nωM(dD/ne) (logdD/ne)

)
operations

in K [31, Corollary 16]. Since D ≥ n this cost estimate remains valid if we
replace dD/ne with D/n. Finally, from the super-linearity assumption on
M(·) we have M(D/n) ≤ (1/n)M(D), thus matching our target cost.
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Now suppose D < n. In this case we can not directly appeal to the partial
linearisation technique since the resultingO(nωdD/ne) may be asymptotically
larger than our target cost. But D < n means that F has — possibly many

— columns of degree 0; since F is in Popov form, such columns have a 1 on
the matrix’s diagonal and are 0 on the remaining entries. The following
describes how to essentially ignore those columns. D is then greater than or
equal to the number of remaining columns, thus effectuating the gain from
the partial linearisation.

If n− k is the number of such columns in F that means we can find a
permutation matrix P such that

F̂ := PFP> =

[
F1

F2 In−k

]
,

with each column of F1 having degree strictly greater than zero. Let i be the
row index of the single 1 in the first column of P>. Since F−1 = P>F̂−1P ,
we have

row(adj(F ), 1)P−1 = xD row(F̂−1, i). (3)

Considering that

F̂−1 =

[
F−1

1

−F2F
−1
1 In−k

]
,

it will suffice to compute the first k entries of the vector on the right hand
side of (3). If i ≤ k then let v ∈ K[x]1×k be row i of xDIk. Otherwise, if
i > k then let v be row i− k of −xDF2. Then in both cases, vF−1

1 will be
equal to the first k entries of the vector on the right hand side of (3). Like
before, high-order lifting combined with partial linearisation will compute
this vector in O

(
kωM(dD/ke) (logdD/ke)

)
operations in K. Since D ≥ k the

cost estimate remains valid if dD/ke is replaced with D/k. �

4 Reduction to Hermite Padé

In this section we present an algorithm for solving Problem 3 when g1 = . . . =
gn = xd for some d ∈ Z≥0. The algorithm is based on the well-known duality
between the Simultaneous Padé problem and the Hermite Padé problem, see
for example [3]. This duality, first observed in a special case [23], and then
later in the general case [5], was exploited in [6] to develop algorithms for the
fraction free computation of Simultaneous Padé approximation. We begin
with a technical lemma that is at the heart of this duality.

Lemma 13 Let Â, B̂ ∈ K[x](n+1)×(n+1) be as follows.

Â =

[
xd −S

I

]
B̂ =

[
1

S> xdI

]

11



Then B̂ is the adjoint of Â>. Furthermore, Â> is an approximant basis for
B̂ of order d, and B̂> is an approximant basis of Â of order d.

Proof Direct computation shows that Â>B̂ = xdIm = det Â>Im, so B̂ is
the adjoint of Â>.

Let now G be an approximant basis of B̂. By the above computation
the row space of Â> must be a subset of the row space of G. But since
GB̂ = (xdIm)R for some R ∈ K[x](n+1)×(n+1), then detG = xd detR. Thus
xd | detG. But det Â> = xd, so the row space of Â> can not be smaller
than the row space of G. That is, Â> is an approximant basis for B of
order d. Taking the transpose through the argument shows that B̂> is an
approximant basis of B̂ of order d. �

Theorem 14 Let A and B be as follows.

A =

[
−S
I

]
∈ K[x](n+1)×(n+1) B =

[
1
S

]
∈ K[x](n+1)×1

If G is an N -minimal approximant basis of B of order d with shift N ∈
Zn+1
≥0 , then adj(G>) is a (−N)-minimal approximant basis of A of order d.

Moreover, if η = rowdegNG, then rowdeg−Nadj(G) = (η −N − η1, . . . , η −
N − ηn+1), where η =

∑
i ηi and N =

∑
iNi.

Proof Introduce Â and B̂ as in Lemma 13. Clearly G is also an N -minimal
approximant basis of B̂ of order d. Likewise, Â and A have the same minimal
approximant bases for given order and shift.

Assume, without loss of generality, that we have scaled G such that
detG is monic. Since Â> is also an approximant basis for B̂ of order d,
then detG = det Â> = xd. By definition GB̂ = xdR for some matrix
R ∈ K[x](n+1)×(n+1). That means

x2d((GB̂)>))−1 = x2d((xdR)>)−1 , so

(xd(G>)−1)(xd(B̂>)−1) = xd(R>)−1 , that is

adj(G>)Â = xd(R>)−1 .

Now detR = 1 since (xd)n+1 detR = det(GB̂) = xd+nd, so (R>)−1 =
adj(R>) ∈ K[x](n+1)×(n+1). Therefore adj(G>) is an approximant basis of
Â of order d. The theorem now follows from Lemma 7 by noting that G is
N -row reduced. �

Example 15 We apply Theorem 14 to the problem of Example 2 with shifts

12



Algorithm 2 DualitySimPade

Input: (S, (xd, . . . , xd),N), an instance of Problem 3 of size n.
Output: (λ, δ), solution specification.

1 B ← [1, S1, . . . , Sn]T ∈ K[x](n+1)×1

2 G← PopovBasis(d,B,N)
3 η ← rowdegNG
4 λ̂← first column of adj(G>)
5 δ̂ ← (η −N − η1, . . . , η −N − ηn+1), where η =

∑
i ηi and N =

∑
iNi

6 I ← {i | δ̂i < 0}, and k ← |I|
7 (λ, δ)←

(
λ̂i∈I , (δ̂i)i∈I

)
∈ K[x]k×1 × Zk

8 return (λ, δ)

N = (5, 3, 4, 5). We have

A =


x4 + x2 + 1 x4 + 1 x4 + x3 + 1

1
1

1



B =


1

x4 + x2 + 1
x4 + 1

x4 + x3 + 1


An N -minimal approximant basis to order d = 5 of B is

G =


x 0 x 0
1 x2 + 1 0 0
0 1 x2 + 1 0
0 x x+ 1 1

 , and

adj(G)> =


x4 + 1 x2 + 1 1 x3 + 1

x x3 + x x x4 + x
x3 + x x x3 + x x4 + x3 + x

0 0 0 x5

 .

adj(G)> can be confirmed to be an (−N)-minimal approximant basis of A,
since adj(G)>A ≡ 0 mod xd, and since the (−N)-leading coefficient matrix
of adj(G)> has full rank.

Algorithm 2 uses Theorem 14 to solve a Simultaneous Padé approximation
by computing a minimal approximant basis of B in Popov form.

Theorem 16 Algorithm 2 is correct. The cost of the algorithm is O(nω−1 M(d)(log d)(log d/n)2)
operations in K.

13



Proof Correctness follows from Theorem 14. The complexity estimate is
achieved if the algorithms supporting Theorem 11 and Theorem 12 are used
for the computation in lines 2 and 4, respectively. �

5 A Divide & Conquer algorithm

Our second algorithm can handle the full generality of Problem 3. It works by
first solving n single Padé approximations, one for each of the Si individually,
and then intersecting these solutions to form approximations of multiple Si
simultaneously. The intersection is structured in a Divide & Conquer tree,
and performed by computing minimal approximant bases. Let (S, g,N) be
an instance of Problem 3 of size n.

The idea of the intersection algorithm is the following: consider that we
have solution specifications for two different Simultaneous Padé problems,
(λ1, δ1) and (λ2, δ2). We then compute an approximant basis G of the
following matrix:

R =

 1 1

−λ1

−λ2

 (4)

G then encodes the intersection of the K[x]-linear combinations of the λ1

with the K[x]-linear combinations of the λ2: any λ ∈ K[x] residing in both
sets of polynomials will appear as the first entry of a vector in the row space of
G. We compute G as an r-minimal approximant basis to high enough order,
where r is selected carefully such that the r-degree of any (λ | . . .) ∈ Row(G)
will equal the (−N)-degree of the completion of λ according to the combined
Simultaneous Padé problem, whenever this degree is negative. From those
rows of G with negative r-degree we then get a solution specification for the
combined problem.

Example 17 Consider again Example 2. We divide the problem into two
sub-problems S1 = (S1, S2), N1 = (5, 3, 4), and S2 = (S3) and N2 = (5, 5).
Note that N1,0 = N2,0 = 5, since this is the degree bound on the sought λ
for the combined problem. The sub-problems have the following solution
specifications and their completions:

(λ1, δ1) =
(
[x4 + 1, x3 + x]>, (−1,−1)

)
A1 =

(
x4 + 1 x2 + 1 1
x3 + x x x3 + x

)
(λ2, δ2) =

(
[x2, x3 + x+ 1]>, (−3,−2)

)
A2 =

(
x2 x2

x3 + x+ 1 x+ 1

)
We construct R as in (4), and compute G, a minimal approximant basis of R
of order 7 and with shifts r = (−5 | −1,−1 | −3,−2) (the G below is actually

14



Algorithm 3 RecursiveSimPade

Input: (S, g,N), an instance of Problem 3 of size n.
Output: (λ, δ), a solution specification.

1 if n = 1 then
2 return DirectSimPade(S, g,N)
3 else
4 S1, g1 ← the first dn/2e elements of S, g
5 S2, g2 ← the last bn/2c elements of S, g
6 N1 ← (N0, N1, . . . , Ndn/2e)
7 N2 ← (N0, Ndn/2e+1, . . . , Nn)
8 (λ1, δ1)← RecursiveSimPade

(
S1, g1,N1)

9 (λ2, δ2)← RecursiveSimPade
(
S2, g2,N2)

10 r ← (−N0 | δ1 | δ2)
11 d← N0 + maxi deg gi − 1

12 R←

 1 1

−λ1

−λ2


13 (

[
λ ∗

]
, δ)← NegMinBasis(d,R, r)

14 return (λ, δ)
15 end if

in r-Popov form):

G =


x8 0 0 0 0

x3 + x+ 1 x4 + 1 1 0 1
x3 + x2 + x+ 1 1 x+ 1 1 1
x4 + x3 + x+ 1 1 1 x2 1

x4 + 1 1 0 x+ 1 x+ 1


G has r-row degree (3, 3, 0,−1,−1). Only rows 4 and 5 have negative r-degree,
and their first entries are the linearly independent solutions x4 + x3 + x+ 1
and x4 + 1. Both solutions complete into vectors with (−N)-degree -1.

To prove the correctness of the above intuition, we will use Algorithm 1
(DirectSimPade). The following lemma says that to solve two simultaneous
Padé approximations, one can compute a minimal approximant basis of one
big matrix A constructed essentially from two of the matrices employed in
DirectSimPade. Afterwards, Lemma 19 uses this to show that a minimal
approximant basis of R in (4) provides the crucial information in a minimal
approximant basis of A.

Lemma 18 Let (S1, g1,N1) and (S2, g2,N2) be two instances of Problem 3
of lengths n1, n2 respectively, and where N1 = (N0 | Ǹ1) and N2 = (N0 | Ǹ2).
Let S = (S1 | S2), g = (g1 | g2) and N = (N0 | Ǹ1 | Ǹ2) be the combined
problem having length n = n1 + n2.

15



Let hi = (−Ni | N0 − 1 . . . N0 − 1) ∈ Z2ni+1 for i = 1, 2. Let (F, δ) =
NegMinBasis(d,A,a), where A of dimension (2n+ 3)× (n+ 2) is given as:

A =
[
A1 A2

]
=



1 1
−S1 −1
I

Γg1

−S2 −1
I

Γg2


,

with a = (−N0 | h1 | h2) and d = N0 + maxi deg gi − 1. Then (λ, δ) is a
solution specification to (S, g,N), where λ is the first column of F .

Proof Note that the matrix A is right equivalent to the following matrix B:

B := A


I

I
1 S1

1 S2

 =



1 1 −S1 −S2

−1
I

Γg1

−1
I

Γg2


.

Since F is an a-minimal approximant of A of order d, then it will also be
one for B. Let P be the permutation matrix that produces the following
matrix C := PB:

C = PB =



1 1 −S1 −S2

I
I

Γg1

Γg2

−1
−1


=


1 1 −S

I
Γg

−1
−1

 .

Define c := aP−1, and note that c = (h | −N0,−N0). Since F =
NegMinBasis(d,A,a), then (FP−1, δ) is a valid output of NegMinBasis(d,C, c).
Furthermore, since the first column of P is (1, 0, . . . , 0), the first column of
F will be equal to the first column of FP−1.

We are therefore finished if we can show that if (F ′, δ′) is any valid output
of NegMinBasis(d,C, c), then the first column of F ′ together with δ′ form a
solution specification to (S, g,N).

Consider therefore such an (F ′, δ′). By the first two columns of C,
we must have F ′∗,1 ≡ F ′∗,2n+2 ≡ F ′∗,2n+3 mod xd, where F ′∗,i denotes the
i’th column of F ′. Since each row of F ′ have negative c-degree, and since
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N0 < d, then the congruences must lift to equalities. We can therefore write
F = [G | F ′∗,1 | F ′∗,1] for some G ∈ K[x]k×(2n+1) for some k, and we have
rowdeghG = rowdegcF

′ = δ′.
By the last n columns of C, we have GH ≡ 0 mod xd, where

H =

 −SI
Γg

 .

In fact, (G, δ′) is a valid output for NegMinBasis(d,H,h): for G has full row
rank since F ′ does; G is h-row reduced since F ′ is c-row reduced; and any
negative h-order d approximant of H must clearly be in the span of G since
F ′ is a negative c-minimal approximant basis of C.

By the choice of d, then Theorem 10 therefore implies that the first
column of G together with δ′ form a solution specification to the problem
(S, g,N). Since the first column of G is also the first column of F ′, this
finishes the proof. �

Lemma 19 In the context of Lemma 18, let (λ1, δ1) and (λ2, δ2) be solution
specifications to the two sub-problems, and let r = (−N0 | δ1 | δ2). If
([λ | ∗], δ) = NegMinBasis(d,R, r), where λ is a column vector and

R =

 1 1

−λ1

−λ2

 ,

then (λ, δ) is a solution specification for the combined problem.

Proof We will prove the lemma by using Lemma 9 to relate valid out-
puts of NegMinBasis(d,R, r) with valid outputs of NegMinBasis(d,A,a) from
Lemma 18.

For i = 1, 2, since (λi, δi) is a solution specification to the i’th problem,
then by Theorem 10 there is some Gi ∈ K[x]ki×2ni+1 whose first column is
λi and such that Gi is a valid output of NegMinBasis(d,Hi,hi), where

Hi =

 −SiI
Γgi

 ∈ K[x](2ni+1)×ni ,

and hi is as in Lemma 18. Note now that if

F1 :=

 1
G1

G2

 ∈ K[x](k1+k2+1)×(2n1+2n2+3),

then (F1, r) is a valid output of NegMinBasis(d,A1,a): for rowdegaF1 is
clearly r; F1 has full row rank and is r-row reduced; and the rows of F1 must
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span all a-order d approximants of A1, since the three column “parts” of F1

correspond to the three row parts of A1. .
Note now that F1A2 = R. Thus by Lemma 9, if (F2, δ) = NegMinBasis(d,R, r),

then (F2F1, δ) is a valid output of NegMinBasis(d,A,a). Note that by the
shape of F1 then the first column λ of F2F1 is the first column of F2. Thus
λ, δ are exactly as stated in the lemma, and by Lemma 18 they must be a
solution specification to the combined problem. �

Theorem 20 Algorithm 3 is correct. The cost of the algorithm is O(nω−1 M(d)(log d)(log d/n)2),
d = maxi deg gi.

Proof Correctness follows from Lemma 19. For complexity, note that the
choice of order in Line 11 is bounded by 2 maxi deg gi, i.e. twice the value of
d of this theorem. So if T (n) is the cost Algorithm 3 for given n and where
the order will be bounded by O(d), then we have the following recursion:

T (n) =

{
2T (n/2) + P (n) if n > 1
O(M(d) log d) if n = 1 (see Section 2.5.1)

,

where P (n) is the cost of line 13. Using algorithm PopovBasis for the
computation of the negative part of the minimal approximant bases we can
set P (n) to the target cost. The recursion then implies T (n) ∈ O(P (n)). �
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