Downloaded from orbit.dtu.dk on: Dec 18, 2017

Technical University of Denmark

=
—
—

i

Screening of heavy metal containing waste types for use as raw material in Arctic clay-
based bricks

Belmonte, Louise Josefine; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie; Jensen, Pernille Erland;
Vestbg, Andreas Peter

Published in:
Environmental Science and Pollution Research

Link to article, DOI:
10.1007/s11356-016-8040-z

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Belmonte, L. J., Ottosen, L. M., Kirkelund, G. M., Jensen, P. E., & Vestbg, A. P. (2016). Screening of heavy
metal containing waste types for use as raw material in Arctic clay-based bricks. Environmental Science and
Pollution Research. DOI: 10.1007/s11356-016-8040-z

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
¢ You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


http://dx.doi.org/10.1007/s11356-016-8040-z
http://orbit.dtu.dk/en/publications/screening-of-heavy-metal-containing-waste-types-for-use-as-raw-material-in-arctic-claybased-bricks(4447bffb-ad80-4684-a22f-ffd5c9ded14b).html

Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks

Belmonte, Louise Josefine® , Ottosen, Lisbeth M.?, Kirkelund, Gunvor Marie®*, Jensen, Pernille Erland®
and Vestbg, Andreas Peter”

? Arctic Technology Centre, DTU Civil Engineering, Technical University of Denmark, 2800 Kgs. Lyngby,
Denmark. ® Danish Technological Institute, 2630 Taastrup, Denmark * corresponding author. E-mail

address: gunki@byg.dtu.dk (G.M. Kirkelund).

Abstract

In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe
consequences and the reduction and safe handling of these waste types are therefore an important
issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid
waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e. residues from the mineral
resource industry) from Greenland were screened in order to determine their suitability as secondary
resources in clay-based brick production. Small clay discs, containing 20% or 40% of the different
particulate waste materials, were fired and material properties and heavy metal leaching tests were
conducted before and after firing. Remediation techniques (washing in distilled water and
electrodialytical treatment) applied to the fly ash reduced leaching before firing. The mine tailings and
bottom ash brick discs obtained satisfactory densities (1669-2007 kg/m’) and open porosities (27.9-39.9
%). In contrast, the fly ash brick discs had low densities (1313-1578 kg/m®) and high open porosities
(42.1-51.5 %). However, leaching tests on crushed brick discs revealed that heavy metals generally
became more available after firing for all the investigated materials and that further optimisation is

therefore necessary prior to incorporation in bricks.

Keywords: MSWI fly ash, MSWI bottom ash, mine tailings, clay-based ceramics, heavy metals, Arctic,

Greenland.



1. Introduction

Clay-based ceramics, such as bricks, are heterogeneous materials, which can incorporate raw materials
of wide ranging compositions, without impairing their technical properties (Dondi et al., 1997; Segadaes
et al., 2005; Torres et al., 2009; Zhang, 2013). Due to this ability, bricks have become a popular material
in waste management research worldwide and several studies have demonstrated that clay-based
bricks and tiles can successfully accommodate waste types, such as incineration ashes, mine tailings and
dredged harbour sediments (Chen et al., 2011; Kasuriya et al., 2008; Mezencevova et al., 2012; Roy et
al., 2007; Zhang et al., 2011). The benefits of waste addition in bricks, which are most often mentioned
in the literature, are: 1) conservation of natural resources, e.g. by replacing natural clay with waste; 2)
improved technical properties of the final product, e.g. improved mechanical strength of the produced
bricks; 3) lowering of energy consumption in production, i.e. by lowering the firing temperature; 4) cost
reductions on the final product, e.g. due to lower costs on raw materials and 5) solving disposal

problems and protecting the environment.

In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe
consequences (Lemly, 1994; Moiseenko, 1999; Poland et al., 2003; Ramirez-Llodra et al., 2015; Rylander
et al., 2011) and the reduction and safe handling of these waste types are therefore an important issue
in the Arctic nations. Although bricks are a well-suited building material for cold climates (Brick Industry
Association, 2006), the Arctic region does not have a strong tradition for masonry structures in
comparison to other parts of the world. In Greenland, for example, bricks are neither produced locally
nor frequently applied for construction purposes. In many parts of the Arctic, construction materials
have to be imported and often transported over long distances, which makes them costly. It is therefore
important to investigate the potential for local building material production in these areas (Doherty,
1996). Recent studies have established that deposits of marine glaciogene clay, which are found
throughout the former glaciated areas of the northern hemisphere, are suitable for brick
production(Belmonte, 2015; Bertelsen et al., 2015). On the basis of this it is interesting to test whether
bricks produced locally in the Arctic could also help to solve issues regarding waste handling and

disposal by incorporating these waste materials and thus turning them into a secondary resource.



In this paper, a screening of different MSWI ashes and mine tailings from Greenland was conducted in
order to determine their potential suitability for incorporation in the production of clay-based bricks.
Furthermore, MSWI fly ash which had been pre-treated by either an electrodialytic process or by a
washing process in order to remove salts and directly mobile fractions of heavy metals, was included

with the purpose of studying the effects of these treatments on the leaching behaviour.

The main residues produced by modern MSWI plants are bottom ash and flue gas cleaning residues such
as fly ash (Hjelmar et al., 2011). Bottom ashes are heterogeneous mixtures of ash, metals and other non-
combustible materials such as ceramics and glass and typically have grain sizes in the range from 0.06 -
60 mm (Hjelmar et al., 2011). Fly ashes consist of the fine particulate matter, which are entrained in the
flue gas and typically have grain sizes in the range of 0.002-2 mm (Hjelmar et al., 2011). The chemical
compositions of MSWI bottom and fly ashes vary and depend on the materials being incinerated and the
type of incinerator. The ashes can contain hazardous substances (e.g. defined according to (European
Parliament and the council of the European Union, 2008)) and their use as secondary raw materials
might therefore be excluded or restricted according to national legislation. Several researchers have,
however, investigated and successfully incorporated MSWI ashes in clay-based ceramics (Kasuriya et al.,
2008; Rambaldi et al., 2010; Zhang et al., 2011, 2007). In the mentioned studies, the ashes replaced
between 2-60 % (by weight) of clay or sand and properties such as reduced leaching of heavy metals
after firing (Rambaldi et al., 2010; Zhang et al., 2011, 2007) and enhanced densification (Kasuriya et al.,
2008) were reported for the produced ceramics.

Due to the scarce and geographically wide-spread population in the arctic areas, municipal solid wastes
are traditionally handled by dumping at open disposal sites and/or uncontrolled incineration (Poland et
al., 2003). This was also common practice in Greenland before the 1990’s (Eisted and Christensen, 2011;
Kirkelund et al., 2012), however, increased awareness of the environmental impact has since led to the
introduction of a waste strategy and several small municipal solid waste incineration (MSWI) plants. The
incineration plants have simple flue gas cleaning systems by which fly ashes are collected by cyclones

and/or electrostatic filters. The fly ashes are subsequently exported at high costs, while bottom ashes



are dumped at local unlined disposal sites. The present handling of both ash types calls for a more

sustainable solution, which might be valorisation as secondary raw material.

Mine tailings worldwide often present major economic and environmental challenges to both the
mining companies and the local community (Lorber and Antrekowitsch, 2011; Ramirez-Llodra et al.,
2015; Reid et al., 2009; Roy et al., 2007). They are traditionally disposed in large subaerial (or
underground) facilities or in subaqueous environments, e.g. lakes or marine water. Due to serious
environmental hazards, such as heavy metal pollution, the tailings disposals often need continuous
surveillance even after the mining operations have terminated (Elberling et al., 2002; Ramirez-Llodra et
al., 2015). Several authors have investigated the potential for using residues from the mineral resource
industry as secondary raw materials for the production of clay-based ceramics (Chen et al., 2011;
Menezes et al., 2005; Roy et al., 2007; Segaddes et al., 2005; Torres et al., 2009). Benefits such as
increased durability (Torres et al., 2009), reduced firing temperature (Segadaes et al., 2005) and lowered
total cost (Roy et al., 2007) were reported for the produced ceramics. The Arctic area contains several
mining operations and has already experienced severe environmental problems relating to tailings
(Askaer et al., 2008; Poland et al., 2003) Up until this date, only a few mines have been in operation in
Greenland, but serious environmental problems relating to the tailings from some of these mines have
also been experienced here (Johansen and Asmund, 2001). Use of the mine tailings in clay-based bricks

might offer an environmentally better alternative to disposal, which is addressed in this paper.

2. Materials and methods

2.1. Raw materials

2.1.1. Marine clay

Marine glaciogene clays are known from numerous localities throughout the Arctic and former glaciated
areas of the Northern hemisphere (Belmonte, 2015; Gillott, 1979; Locat and St-Gelais, 2014; Locat et al.,
1984; Ramesh and D’Anglejan, 1995; Roaldset, 1972; Rosenqvist, 1975). Approximately 150 kg of marine
clay from the town of llulissat, West Greenland, was sampled from a depth interval of 20-100 cm below

surface. The material was stored in closed containers at room temperature until use.



2.1.2. Incineration residues

Municipal solid waste incineration (MSWI) plants exist in the six largest towns in Greenland (Eisted and
Christensen, 2011; Kirkelund et al., 2013). The combustible fractions from residential waste, commercial
waste and construction waste are incinerated and the bottom ash is landfilled at disposal sites without
control of leachate and gas (Eisted and Christensen, 2011). The current annual production of bottom ash
and fly ash in Greenland is estimated to be 6000 tonnes and 200 tonnes, respectively (Eisted and
Christensen, 2011). The samples used in this study were collected from the MSWI plant in the town of
Sisimiut, West Greenland. Both the bottom ash and fly ash were collected as fresh samples from the

incineration plant and stored at room temperature until use.

2.1.3. Mine tailings

Mine tailings from two South Greenlandic sites, the Nalunag Gold Mine and the Tanbreez Mining
Greenland A/S project, were investigated.

The Nalunag Gold Mine is currently not in operation, but was at the time of sampling (summer 2012)
operated by Angel Mining Plc. The Nalunaq gold mineralisation is classified as a mesothermal vein-type
gold deposit hosted in metavolcanic rocks (Secher et al., 2008) and the surrounding region is
characterised as a gold province with several promising occurrences (Steenfelt, 2000; Stendal and
Secher, 2002). The ore, which consists of a gold-bearing quartz vein (known as the main vein) and
proximal hydrothermally altered dolerites and amphibolites (Schlatter and Olsen, 2011), was crushed,
milled and treated by cyanide leaching in an extraction plant on-site. The tailings slurry was subjected to
detoxification using the Inco method (Lewis, 1984) and subsequently pumped into a tailings dam located
in previously exploited levels of the mine. At the time of sampling, the estimated tailings production was
50,000-70,000 tonnes per year. In this study, tailings were obtained from the discharge of the
detoxification tank before going into the tailings dam. The sampled slurry contained 20-22% solids,

which were left to settle before the excess water was decanted.



The Tanbreez Mining Greenland A/S project currently holds an exploration licence in the Ilimaussaq
intrusion complex. The project mainly focuses on extracting rare earth elements from a laminated
karkortokite, which consists of separate layers of feldspar, eudialyte and mafic minerals such as
arfvedsonite and aegirine (Sorensen, 2001). The on-site ore processing will involve dry crushing followed
by magnetic separation. The magnetic separation will produce three concentrates, an eudialyte, a
feldspar and a mafic mineral concentrate. Furthermore, a fine-grained residue, representing bulk rock,
will also originate from the ore crushing. The mafic mineral concentrate and fine grained residue are
currently considered as tailings, which are planned to be disposed on-site. It is expected that the
production will result in 230,000 tonnes of tailings per year, whereof the mafic concentrate will
constitute approximately 180,000 tonnes and the fine grained residue will constitute 50,000 tonnes. In
this study, both the mafic concentrate (Tanbreez mafic) and the fine-grained bulk residue (Tanbreez

fines) were used.

2.2 Methods

2.2.1 Initial treatments of the raw materials

Large fragments (> 1 mm) in both the marine clay and the bottom ash were removed before further use,
by wet and dry sieving respectively. The fly ash was subjected to two different remediation treatments:
1) a portion was washed with distilled water in a 45 um filter using a liquid to solid (L/S) ratio of
approximately 10 in order to remove salts 2) a second portion was subjected to electrodialytical
remediation for removal of heavy metals and salts (Kirkelund et al, 2010). In the following the three fly
ash batches are named 1) fly ash (untreated), 2) fly ash (washed) and 3) fly ash (ED).

The Nalunagq tailings were washed in a 45 um filter with distilled water using a L/S ratio of 10 in order to

remove potential soluble cyanide. All materials were dried at 105°C for 48 hours.

2.2.2 Characterisation of samples
The particle size distributions were determined on a Malvern Mastersizer 2000 laser diffractometer. All
samples, except the marine clay, were analysed in dry state. Due to agglomeration of clay sized

particles, the marine clay sample was instead pre-dispersed in 20 mL 0,005 M Na,P,0; and analysed by



wet dispersion in deionized water. For all samples, the Mie theory was applied in the calculations of the
particle size distribution using a real refractive index of 1.5 and an imaginary refractive index of 0.1.
Major-element analyses were determined using energy dispersive X-ray fluorescence (ED-XRF) on
pressed powder tablets prepared from crushed samples. The loss on ignition (LOI) was based on weight
loss between 105°C and 1000°C and was measured after heating at 1000°C for 2 hours. The qualitative
mineralogy was analysed by X-ray powder diffraction (XRPD) on a X’'Pert PRO diffractometer, using Ni-
filtered Cu K, radiation generated at 45 kV and 40 mA.

Leaching tests were conducted on all samples, except the marine clay, according to the principles stated
in (DS/EN 12457-1, 2002). 40.0 g of material was placed in a bottle and 80.0 mL distilled water was
added in order to achieve a liquid to solid ratio of 2. The suspension was agitated for 24 hours.
Afterwards, the suspension settled for 15 minutes and was filtrated through a 45 um filter. The resulting
eluates were measured by inductively coupled plasma optical emission spectrometry (ICP-OES) for As,
Ba, Cd, Cr, Cu, Mn, Na, Ni, Pb, and Zn.

The total heavy metal concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) of ashes and tailings were measured
by ICP-OES after pre-treatment according to Danish standard (DS 259, 2003), where 1.0 g of dry sample
and 20.0 mL 7.3 M HNO; were heated at 200 kPa (120 °C) for 30 min. The liquid was separated from the
solid particles by vacuum through a 0.45 um filter and diluted to 100 mL.

Samples of the unwashed and washed Nalunaq tailings were analysed for total cyanide according to

(DS/ISO 17380, 2005).

2.2.3 Production and test of brick discs

Torres et al. (2009) demonstrated that initial tests conducted on small scale brick discs were a useful
screening tool for selecting the best compositions of mixtures of clay and waste. In this paper a similar
approach was adopted, using the same disc size, moisture content, dry-pressing load and maximum
firing temperature as described by Torres et al. (2009). Brick discs were prepared from different

mixtures of samples (see Table 1).



[Table 1 here]

Table 1. Overview of disc mixtures with amounts given in wt %.

The Atterberg limits (liquid and plastic limits) were determined, in order to investigate the plastic
properties of the mixtures. The liquid limits (w,) were measured using the Casagrande method (DIN
18122-1, 1997) and plastic limits (wp) were determined by the rolling method (ISO/TS 17892-12, 2004).
For the preparation of the discs, 2 g of the mixture was placed in a small vial and distilled water was
added in order to obtain a moisture content of approximately 15%. The vials were sealed and the
mixtures were left overnight to absorb the moisture. Discs were produced by uniaxial compression in a
purpose-built disc mould placed in a manually operated Stenhgj hydraulic press. A maximum load of
14.81 + 0.04 kN (equivalent to the pressure of 47 MPa used by (Torres et al., 2009)) was applied. The
initial weights, diameters and heights of the discs were measured by use of a laboratory scale and a
precision micrometer scale gauge. The discs were dried at 105°C for 24 hours before the weights,
diameters and heights were measured again. The discs were fired at 1000°C for 1 hour in a Vecstar
laboratory Furnace, using an average heating and cooling rate of 6.8°/min + 2.5°/min and 1.9°/min *
0.5°/min, respectively. After cooling to approximately 200°C, the discs were removed from the furnace
and placed in a desiccator in order to cool to room temperature before weights, diameters and heights
were measured again.

A total of seven discs were produced from each mixture. Three were used for measurements of open
porosity, dry density and vacuum water absorption, three were used for leaching tests and one disc was
used for mineralogy.

The open porosity, dry density and vacuum water absorption were determined following the principles
of procedure Ti-B-25 by the Danish Technological Institute (Danish Technological Institute, 1983): The
discs were dried at 105°C, cooled to room temperature in a desiccator and weighed (mg,). The dried
discs were then placed in a desiccator under vacuum for approximately 3 hours. After 3 hours, distilled
water at room temperature was led into the desiccator, so that the discs were completely submerged.
Vacuum was maintained for this condition for 1 hour. Hereafter, air was let into the desiccator and the

submerged discs were left at atmospheric pressure overnight. The water saturated discs were weighed



in water (my,) and in air after wiping excess water of the surface (my,). The different parameters were

calculated as described in the following:

Open porosity = W -100%
sa— Msw

Mgry Pw

Dry density = - 100%, where p,, is the density of water at room temperature.

Mgy —Mgw

. Msq—Mg
Vacuum water absorption = % -100%
dry

Leaching tests on crushed discs, which would represent waste bricks and worst-case scenario leaching,
were conducted according to the principles stated in DS/EN 12457-1 (2002). Three discs from each
mixture were crushed and homogenised in order to obtain enough material (approximately 5-6 g) for
one leaching test. The crushed discs were placed in a bottle and distilled water was added to achieve a
liquid to solid ratio of 2. The suspension was agitated for 24 hours. Afterwards, the suspension settled
for 15 minutes and was filtrated through a 45 um filter. The resulting eluates were measured by ICP-OES
for As, Ba, Cd, Cr, Cu, Mn, Na, Ni, Pb, and Zn.

The qualitative mineralogy of the crushed discs was investigated by XRPD using the same equipment

and operating conditions as described in section 2.2.2.

3. Results

The particle size distributions of all samples are presented in Figure 1. The fly ash (washed and ED) and
the Tanbreez fines had similar particle size distributions as the marine clay. In comparison, the fly ash
(untreated) contained a larger volume % of fine particles; whereas the bottom ash, Nalunaq tailings and

Tanbreez mafic were dominated by coarser particles.

[Figure 1 here]

Figure 1. The particle size distributions of the investigated raw samples.

[Table 2 here]
Table 2. The major element distribution and loss on ignition (LOI) given as wt % of the corresponding

oxides in the investigated raw samples.



The major element composition and LOI data are presented in Table 2. The marine clay, Nalunag and
Tanbreez tailings were dominated by SiO,. Also Al,0; was a major component, however for Nalunag and
Tanbreez mafic, CaO and Fe,Os;T (i.e. total Fe,03), respectively, were more dominant than Al,Os. The fly
ashes and bottom ash were dominated by CaO, although the bottom ash also contained a large fraction
of SiO,. The fly ashes had large LOI values, ranging from 30-43 weight %. The amounts of the fluxing
oxides, Na,O, K,0, which lower the melting temperature during firing (Worrall, 1975) ranged from 1.51-
23.11 wt % with the highest values found for the fly ash (untreated) and Tanbreez fines.

The total cyanide measured for the washed and unwashed Nalunaq samples were very similar with
values of 26 mg/kg and 18 mg/kg, respectively. In comparison, a level of 50 mg/| weak acid dissociable
(WAD) cyanide (which constitutes parts of the total cyanide concentration) has been used as regulatory
guideline for tailings slurries in open disposals in the United States and Australia. This level is acceptable
for animals, which come into contact with the tailings (Lottermoser, 2007). The initial washing did not
contribute to any reduction of cyanide, and could therefore have been emitted.

The resulting XRPD diffractograms of the raw materials and discs are shown in Figure 2 and 3,

respectively.

[Figure 2 here]
Figure 2. XRPD diffractograms of the raw materials. Only prominent peaks are listed. In case of peak

overlap, only the dominant phase is indicated.

[Figure 3 here]

Figure 3. XRPD diffractograms of the discs. Only prominent peaks are listed. In case of peak overlap, only

the dominant phase is indicated.

As expected the marine clay had the dominant influence on the mineralogical composition of the discs,

due to its larger weight fraction, and all discs contained quartz and feldspar (albite and anorthite).
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Chlorite and mica (biotite and illite) peaks were not observed in the disc diffractograms, indicating that
these phases were decomposed during the firing. For the fly ash discs, melilite, sodalite and pyroxene
(diopside) peaks were seen to appear after firing, whereas halite (NaCl), sylvite (KCI) and calcite (CaCOs)
peaks were not observed after firing. The Tanbreez mafic and fines contained several Na-rich mineral
phases, such as aegirine (Na-pyroxene), arfvedsonite (Na-amphibole), aenigmatite and sodalite. The
diffractograms of the 7B and 8B discs (40% fines and mafic) showed markedly reduced quartz peaks

compared with the other diffractograms, possibly indicating that quartz is dissolved in the glass phase.

The total metal concentrations and leaching results from the investigated samples are shown in Table 3.
There are currently no Greenlandic regulations or guidelines for incorporating waste in construction
materials or for using it for construction purposes. The Danish (or European) regulations, which are
often adapted in Greenland when local guidelines are lacking, only include regulations for reuse of
waste for construction purposes, i.e. in roads, dams, foundations etc. (Danish Ministry of the
Environment (Miljgministeriet), 2015) and does not apply to hazardous materials (classified according to
(Danish Ministry of the Environment (Miljgministeriet), 2012) and (European Parliament and the council
of the European Union, 2008)). Although, the investigated waste materials and crushed discs might
classify as hazardous, it is still informative to compare with the Danish regulation values as a first
approximation. The categories 1, 2 and 3 of the Danish regulation (Danish Ministry of the Environment
(Miljgministeriet), 2015) are controlled by the total and leached concentrations and the values shown in
Table 3 represent maximum allowed values in each category. A material as a whole is categorised

according to the highest category obtained for the individual elements, ions or compounds.

[Table 3 here]
Table 3. Total metal concentrations of the raw samples and leaching properties (L/S=2) of the
raw samples. Values are compared to Danish regulatory values (category 1-3) for construction

purposes (Danish Ministry of the Environment (Miljgministeriet), 2015).
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When comparing the leaching tests for the investigated waste samples in this study with the regulation,
it was apparent that all the fly ashes and the bottom ash classified outside category due to high leaching
values of e.g. As, Cd, Cr and Pb, and were not suitable for use according to the regulation. The Nalunaq
and Tanbreez mafic tailings both classified as category 3, due to high leaching values of As for Nalunaq
and Pb and Zn for Tanbreez mafic. Most of the values for Tanbreez fines comply with category 1,
however due to standard limitations it was not possible to determine the exact total concentration of Cd
and leaching values for As, Cd, Cr, Ni and Pb and it was therefore not possible to determine, which of
the three categories it belonged to. Non-hazardous waste bricks are also covered by the Danish

regulation for reuse of waste for construction purposes.

[Table 4 here]

Table 4. Leaching properties (L/S=2) of the disc samples and mobility of the metals in the dics
normalized to the mobility of the corresponding waste material (- at least of the leaching
values were below the detection limit)

However, according to the leaching tests all crushed discs (Table 4), which represent waste bricks,
classified outside category. Although the discs only contained 20% and 40% of the waste materials,
leaching values for some elements were observed to increase in comparison to the raw samples.
Particularly, As and Cr became more available to leaching after firing. This is seen by an evaluation of
the actual influence of the thermal treatment on the possible incorporation in the clay dics can be
evaluated by comparing the leaching of the dics and the leaching of the materials, as proposed by Karius
and Hamer (2001). The heavy metal mobility from the disc (calculated by the leaching (table 4) and total
concentrations (Table 3) were normalised by the heavy metal mobility of the materials itself (calculated

by the leaching and total concentrations (Table 3) and these values are shown in Table 4.

The Atterberg limits (plastic and liquid limits) and the plasticity index are given in Table 5.

[Table 5 here]
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Table 5. The plastic limit (wp), liquid limit (w,), and plasticity index (PI, calculated as w, - wp) of the disc

mixtures (before firing).

The plastic limit (w,) of a mixture represent the lower boundary of plastic behaviour, i.e. the water
content above which the mixture can be moulded and retain its shape. As the liquid limit (w,) is
exceeded the mixtures will no longer be coherent and lose their plasticity. The plasticity index (Pl) is
included to evaluate the span between the plastic and liquid limit. All mixtures had low plasticity indices,
which indicated that their ‘moulding range’ was very limited. The fly ash and bottom ash mixtures
generally had both plastic and liquid limits in the same range or above that of the pure clay (mixture 1),
whereas the tailings mixtures generally had lower limits compared to the pure clay.

The initial water content of the discs before firing and the shrinkage, appearance, water absorption,
open porosity and dry density after firing are shown in Table 6. Some discs had negative firing
shrinkages, i.e. they expanded slightly during firing without their overall shape and coherency being
affected. The open porosity increased with addition of fly ash and decreased with addition of bottom
ash and mine tailings in comparison to the natural clay. The same trend was also observed for the water

absorption.

[Table 6 here]

Table 6. The initial water content (before drying and firing), shrinkage, appearance, vacuum

water absorption, open porosity and dry density of the discs.

5. Discussion

5.1 Mixing and choice of forming process

Based on a spotted appearance of the fired fly ash discs it was clear that the mixtures of clay and fly
ashes had not been homogenised fully during mixing. For larger scale testing or production, the

application of mechanical grinding or milling in the mixing process could potentially solve this problem.
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The low plasticity index (< 10) found for all tested raw samples indicate that their plastic range is very
limited, which can present a problem in the forming process. In the case of the dry pressing method
(which was used in this study) the plasticity is not important, but plays an important role in other
forming methods, such as the extrusion or soft-mud methods (Brick Industry Association, 2006). The
high plastic limits of the fly ashes compared to the other raw samples indicate that more water would
be needed in order to obtain a mouldable mass. More water would, however, also increase the

shrinkage and thereby the risk of developing cracks during firing.

5.2 Physical properties and mineral chemistry of the discs

The small negative firing shrinkage (expansion) observed for discs 3A (20% fly ash (washed)), 3B (40% fly
ash (washed)), 4A (20% fly ash (ED)), 5A (20% bottom ash) and 5B (40% bottom ash) is most likely
explained by bloating (Riley, 1951), a process that is utilized for the production of lightweigth expanded
clay aggregates. At temperatures at or above the sintering temperature gas from decomposition of e.g.
sulphate (from anhydrite) and carbonate (from calcite) could be trapped in the material and thus

expand the discs.

The expansion is not observed for discs 4B (40% fly ash ED), however, the above mentioned
heterogeneities could account for this. The fly ash (untreated) likely contains less calcite compared to
the other fly ashes and the bottom ash, based on its lower content of CaO. This difference could also
explain why the fly ash (untreated) discs do not show evidence of expansion. The Nalunaq discs, 6B, had
negative firing shrinkages, whereas discs 6A, had positive firing shrinkages. Apparently, expansion
therefore occurs for compositions containing more than 20 % of the Nalunagq tailings. The presence of
sulphides, which are associated with the Nalunaq ore (Schlatter and Olsen, 2011), could give rise to
bloating effects as SO, is liberated during firing (Riley, 1951). Discs 8A and 8B (20% and 40% Tanbreez
mafic, respectively) have some of the lowest observed open porosities and highest densities of all
investigated disc types, indicating a high degree of sintering. The high degree of sintering is consistent
with the high content of Na compounds, which can act as fluxing materials and aid vitrification at

elevated temperatures (Bloodworth et al., 2007). Furthermore the observed reduction of the quartz
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peaks is also consistent with enhanced melt formation, i.e. vitrification. Interestingly the firing
shrinkages of discs 8A and 8B seem to be lower than that of the clay, although the drying shrinkages are
slightly higher. Dry densities of clay bricks, which are used in the building industry, have been reported
to be in the range of 1610-2120 kg/m” (Dondi et al., 2004, 2000) and open porosities in the range of
18.8-39 vol % (Dondi et al., 2004). In comparison to these values the fly ash discs generally have lower
densities and higher porosities, whereas the clay, bottom ash and tailings discs are within the range.
Because of the high open porosity and water absorption of the fly ash discs, it is likely that these will be
less durable compared to the other disc types, due to e.g. spalling effects created by saline water
mobility or freezing and thawing. The fly ash could possibly be utilised for lightweight bricks, which

should not be in direct contact with water or exposed to outdoor climate.

5.3 Leaching and total concentrations of heavy elements

The increased leaching of heavy metals from the crushed discs compared to the samples is problematic.
The change in mobility of each metal when the waste materials were incorporated in the disc in Table 4,
reveals that As and Cr were mobilised by the thermal treatment (ratio >1). This has also been seen in
another study when using contaminated harbour sediments in bricks (Karius and Hamer, 2001). The only
exception of increased mobility if As and Cr were in the discs with raw fly ash. Alonso-Santurde et al.
(2011) showed that Cr leaching is not dependent on the liquid to solid ratio when incorporating spent
foundry sand in bricks. Volatile metals can be released during the firing process (Dominigues et al.
2012), which can result in a reduced mobility of these metals in the clay disc, but requires flue gas
treatment after the firing, if to be used commercially. Rambaldi et al. (2010) found that a mixture
containing 5% untreated MSWI bottom ash, 40% kaolinitic and ilitic clay, 25% Na-feldspar sand, 25% K-
feldspar sand and 10% dolomite allowed for the formation of a silicatic matrix (at firing temperatures >
1100°C), which could embed heavy metals (including As and Cr) and thus effectively reduce leaching.
Zhang et al. (2011) and Zhang et al. (2007) used MSWI fly ash in ceramic bricks and found that an
optimal mixture of 20 % fly ash, 60 % red clay and 20 % granular additives (described as gang sand and
feldspar) fired at 950°C reduced leaching of Cd, Hg, Pb and Zn considerably. Although the XRF results for

the red clay investigated by Zhang et al. (2011) are comparable to the XRF on the marine clay in this
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study, the materials used by Rambaldi et al. (2010) and Zhang et al. (2011) generally appear to be richer
in Al compared to the materials used in this study. Furthermore, the feldspar additive used by Zhang et
al. (2011) had a very high content of K and Na (fluxes), which would have contributed positively to
lowering the sintering temperature. These very high K and Na values were not observed for any of the
materials in this study or the study by Rambaldi et al. (2010). The leaching results from this study implies
that an optimal silicatic matrix for containing the heavy metals has not been achieved for the given
compositions at 1000°C and further optimization tests are therefore needed. Furthermore, for the
crushed discs investigated in this study, it would appear that additional heavy metals have been
mobilised during firing. An explanation for this could, for example, be the decomposition of sulphides,
which (although not detected by XRD) could be present in small quantities and which often contain

heavy metals (e.g. arsenopyrite, FeAsS).

5.4 Remediation and upgrading

The remediation techniques applied to the fly ash, e.g. washing and electrodialytical treatment,
generally increased the total heavy metal concentrations of the solids, due to removal of soluble salts
(as evidenced by Na, Table 2). Heavy metal leaching was reduced for both the remediated ashes
compared to the fly ash (untreated). The washing technique led to the highest reduction in leaching
concentrations of all measured heavy metals, except Cr, which was reduced more using the
electrodialytical treatment. Neither of the fly ashes did, however, meet the requirements of the Danish
regulations for reuse of waste for construction purposes (Danish Ministry of the Environment
(Miljgministeriet), 2015). Depending on future regulatory values, the possibilities for remediating or
upgrading all the studied waste materials should therefore be further investigated. A study by (Kirkelund
et al., 2012) on the MSW!I bottom ash from Sisimiut for use as an aggregate replacement in road
construction, found that leaching of heavy metals, such as Cu and Cr were higher in the finest fractions.
They concluded that the removal of these fractions by sieving would give a material which was less
problematic and could be used for geotechnical purposes. A similar investigation should be attempted
for the tailings and the influence of gravity separation could also be tested in order to remove e.g.

sulphides. For all the investigated materials, the vitrification treatment (Colombo et al., 2003), where

16



materials are fused at high temperatures in order to fix heavy metals in a glass matrix, could also be

applied before incorporation.

5. Conclusions

The open porosities and densities of the tailings and bottom ash discs were acceptable for brick
production. The fly ash discs, regardless of pre-treatment, generally had problematic properties, such as
high open porosity, high water absorption and negative firing shrinkage compared to the other waste
materials. These properties indicate that bricks incorporating the fly ashes could be less durable.
Leaching values of all the tested discs generally revealed a higher mobility of As and Cr after firing, which
was likely caused by decomposition of As and Cr containing phases, e.g. sulphides, during firing. This
study concludes that producing fired clay bricks with the waste materials used as secondary resource at
the firing temperature of 1000 °C was not a solution for stabilisation and immobilisation of heavy metals
such as e.g. As, Cr and Pb. Although some discs obtained acceptable material properties, the problem of

leaching needs to be taken into account by optimising the mixtures and the firing scheme.
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Figure 1. The particle size distributions of the investigated raw samples.
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Figure 2. XRPD diffractograms of the raw materials. Only prominent peaks are listed. In case of peak

overlap, only the dominant phase is indicated.
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Mixture Marine Fly ash - Fly ash - Flyash- Bottom Nalunaq Tanbreez Tanbreez
name clay (%) untreated (%) washed (%) ED (%) ash (%) (%) fines (%) mafic (%)
1 100
2A 80 20
2B 60 40
3A 80 20
3B 60 40
4A 80 20
4B 60 40
5A 80 20
5B 60 40
6A 80 20
6B 60 40
7A 80 20
7B 60 40
8A 80 20
8B 60 40

Table 1. Overview of disc mixtures with amounts given in wt %.



Marine Fly ash - Fly ash - Fly ash - Bottom Nalunag Tanbreez Tanbreez

clay untreated washed ED ash fines mafic
Sio, 61.12 4.53 11.87 9.29 35.97 50.71 50.56 46.76
TiO, 0.59 0.85 1.57 1.38 1.47 0.90 0.48 2.19
Al20; 14.52 2.96 6.92 5.27 7.35 13.03 16.69 7.43
Fe,0sT 6.48 1.19 2.25 1.63 5.02 11.71 8.68 29.69
MnO 0.08 0.04 0.08 0.07 0.16 0.14 0.46 0.56
MgO 3.52 0.58 2.08 1.89 1.66 5.36 0.00 0.54
Cao 2.36 23.20 36.62 26.33 38.97 15.08 6.95 4.13
Na,0 3.31 14.90 4.94 6.41 2.03 0.73 11.31 7.37
K0 2.81 8.21 1.64 3.74 1.06 0.78 2.53 1.32
P,0s 0.12 0.55 1.92 1.90 1.73 0.00 0.00 0.00
LOI 5.09 43.01 30.10 42.11 4.58 1.58 2.33 0.01

Table 2. The major element distribution and loss on ignition (LOI) given as wt % of the corresponding oxides in the

investigated raw samples.



Waste materials

Fly ash untreated Fly ash washed Fly ash ED Bottom ash Nalunaq Tanbreez fines Tanbreez mafic Category 1 Category 2 Category 3
Total concentration (mg/kg)
As 21+1 228+ 4 942 + 73 102 156+ 10 <2 <2 0-20 >20 >20
cd 93+3 244 +3 827 +25 5+4 <2 <2 <2 0-0.5 >0.5 >0.5
Cr 70+2 196+2 195+5 64+2 361 <2 <2 0-500 > 500 > 500
Cu 450 + 10 2700 + 19 2160 + 15 792 £ 542 128+3 <2 <2 0-500 > 500 > 500
Ni 47+ 4 55+1 61+2 40+6 63+1 <2 <2 0-30 >30 >30
Pb 890 +34 10200 + 68 6750 £ 81 449 + 187 11+2 13+0 11+3 0-40 > 40 > 40
Zn 6870 + 416 53100 + 1021 59700 + 713 2410 + 470 52+5 33+0 36+1 0-500 > 500 > 500
Leaching (ug/l)

As 1240 + 122 <20 488 + 40 22+2 38+9 <20 <20 0-8 0-8 8-50
Ba 2670 + 33 257 +£19 596 + 16 13600 + 406 <20 <20 <20 0-300 0-300 300-4000
Cd 1460 + 106 <20 580+ 51 <20 <20 <20 <20 0-2 0-2 2-40
Cr 11500 + 688 3060 + 345 1240 + 46 265+9 <20 <20 <20 0-10 0-10 10-500
Cu 745 <20 807 75+18 <20 33+3 207 0-45 0-45 45-2000
Mn <20 <20 <20 <20 <20 <20 73+29 0-150 0-150 150-1000
Na (-105) 418+ 4 95+3 222 +4 9.3+0.2 0.03 £ 0.001 0.8+0.08 0.3+0.03 0-1 0-1 1-15
Ni <20 <20 <20 <20 <20 <20 <20 0-10 0-10 10-70
Pb 455 + 64 3015 421+75 2460 + 507 <20 <20 69 +40 0-10 0-10 10-100
Zn 1070 + 190 126+ 11 25776 1710+ 174 <20 47 +3 252 +102 0-100 0-100 100-1500

Table 3. Total metal concentrations of the raw samples and leaching properties (L/S=2) of the raw samples. Values are compared > Danish regulatory

values (category 1-3) for construction purposes (Danish Ministry of the Environment (Miljgministeriet), 2015).



Discs
2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B

Leaching (ug/1)

As 154 232 143 81 623 694 59 28 267 291 65 72 <20 33
Ba <20 264 142 175 52 317 27 171 <20 21 37 34 52 37
Cd <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20
Cr 2090 10900 2850 4450 2140 6700 1750 6870 146 179 602 485 490 402
Cu 20 23 <20 <20 27 <20 30 <20 <20 <20 20 57 37 38
Mn <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 55 77 55 63
Na (-10°) 3.0 23.0 1.4 3.1 2.3 16.0 0.9 1.0 0.5 0.4 0.8 0.8 0.7 0.6
Ni <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 20 <20 <20
Pb 315 <20 <20 48 <20 <20 <20 <20 <20 <20 61 23 44 <20
Zn 161 59 25 34 206 69 388 29 34 24 40 366 132 251
Mobility (leaching disc/leaching corresponding waste material)

As 0.12 0.19 - - 1.28 1.42 2.68 1.27 7.03 7.66 - - - -
Cr 0.18 0.95 0.93 1.45 1.73 5.40 6.60 25.92 - - - - - -
Cu 0.27 0.31 - - 0.34 - 0.40 - - - - - - -
Pb 0.69 - - 1.60 - - - - - - - - 0.64 -
Zn 0.15 0.06 0.20 0.27 0.80 0.27 0.23 0.02 - - 0.85 7.79 0.52 1.00

Table 4. Leaching properties (L/S=2) of the disc samples and mobility of the metals in the dics normalized to the mobility of the corresponding waste
material (- at least of the leaching values were below the detection limit)



Mixture name wp(%) w (%) PI

1 24.2 29.8 5.6
2A 24.2 30.0 5.8
2B 25.2 29.6 4.4
3A 311 36.3 5.2
3B 37.9 45.4 7.5
4A 34.0 43.6 9.6
4B 45.7 53.1 7.4
5A 25.3 29.1 3.8
5B 25.6 28.7 3.1
6A 20.2 24.2 4.0
6B 19.0 22.3 33
7A 23.6 29.6 6.0
7B 22.0 27.7 5.7
8A 19.7 25.6 5.9
8B 15.0 20.1 5.1

Table 5. The plastic limit (wp), liquid limit (w.), and plasticity index (PI, calculated as w, - wp) of the disc mixtures
(before firing).



Mixture name Initial water content Drying Shrinkage Firing Shrinkage Appearance of fired discs Vacuum water absorption (%) Open porosity (%) Dry density (kg/m3)

1 158+ 1.1 03+0.1 0.5+0.1 Red . 233402 39.5+03 16913

2A 149+15 0.0+0.0 01403 Red/yellow, spotted . 267+1.4 42.1+13 1578 + 34
appearance

2B 13.4+1.0 0.2+0.1 0.7+0.2 Yellow, few red spots . 32.2+15 47.2+1.4 1461 + 27

3A 152+ 1.1 0.3+0.1 03+0.1 Red/yellow, spotted ‘ 29.6 + 0.4 45.8+0.4 1544 + 8
appearance

38 17.242.2 0.4+0.1 04£0.1 Ye"°ws'psg’t:‘e A 34.4£0.7 49.9+0.4 1446 + 18

an 15.6 1.0 03+0.1 202401 Red/yellow, spotted . 329+1.1 47.9+0.9 1453 + 20
appearance

4B 165+ 1.6 02+0.1 01+0.1 Yellow/red, spotted . 392403 51.5+12 1313+ 22
appearance

5A 147412 03402 0.1+0.1 Light red . 23.9+0.8 399+1.0 1669 + 21

58 14.8+0.4 03+0.1 0.2+0.0 Yellow/light red . 225406 384409 1708+ 8

6A 15.040.4 03+0.1 0.1+0.0 Red . 19.6+0.4 355408 1808 +5

68 1314122 01402 0.6+0.1 Red . 18.0+0.6 338408 1868 + 20

7A 15.440.5 02402 09+0.1 Red . 215409 372415 1728 + 20

78 15.840.5 0.1+0.1 20402 Dark red {. 19.340.2 34.6+03 1789 + 21

8A 133407 0.6+0.1 00£0.1  Red with black crystals . 187+ 1.1 340+16 1819 + 26

8B 13.6+0.9 04402 0.5+0.4 Dark rce:/::;: black . 13.9+0.2 27.9+0.2 2007 + 10

Table 6. The initial water content (before drying and firing), shrinkage, appearance, vacuum water absorption, open porosity and dry density of the discs.
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