brought to you by I CORE

Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world

Mikkelsen, Teis Nørgaard; Bruhn, Dan; Ambus, Per

Publication date: 2016

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Mikkelsen, T. N., Bruhn, D., & Ambus, P. (2016). Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world. Abstract from AGU FAll meeting 2016, San Francisco, United States.

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Solar UV irradiation-induced production of N₂O from plant surfaces - low emissions rates but all over the world.

Teis Nørgaard Mikkelsen¹⁾, Dan Bruhn²⁾ and Per Ambus³⁾

¹⁾Department of Environmental Engineering, Technical University of Denmark, Building 115, DK - 2800 Kgs. Lyngby, Denmark. e-mail: temi@env.dtu.dk

²⁾Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK- 9220 Aalborg East, Denmark. e-mail: db@bio.aau.dk

³⁾Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. e-mail: peam@ign.ku.dk

Nitrous oxide (N_2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N_2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N_2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N_2O emission from plants. Plants released N_2O in response to natural sunlight at rates of c. 20-50 nmol m^{-2} h^{-1} , mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N_2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N_2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N_2O , may be up to c. 30% higher than hitherto assumed.

Literature:

Mikkelsen TN, Bruhn D & Ambus P. (2016). Solar UV Irradiation-Induced Production of Greenhouse Gases from Plant Surfaces: From Leaf to Earth. Progress in Botany, DOI 10.1007/124_2016_10.

Bruhn D, Albert KR, Mikkelsen TN & Ambus P. (2014). UV-induced N2O emission from plants. Atmospheric Environment 99, 206-214.