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Abstract

Increased complexity of cyber-physical systems within
the maritime industry demands closer cooperation be-
tween engineering disciplines. The functional mockup
interface (FMI) is an initiative aiding cross-discipline in-
teraction by providing, a widely accepted, standard for
model exchange and co-simulation. The standard is sup-
ported by a number of modelling tools. However, to im-
plement it on an existing platform requires adaptation.
This paper investigates how to adapt the software of an
embedded control system to comply with the FMI for
co-simulation standard. In particular, we suggest a way
of advancing the clock of a real time operating system
(RTOS), by overwriting the idle thread and waiting for
a signal to start execution until return to idle. This ap-
proach ensures a deterministic and temporal execution
of the simulation across multiple nodes. As proof of
concept, a co-simulation is conducted, showing that the
control system of an SCR (selective catalyst reduction)
emission reduction system can be packed in a functional
mockup unit (FMU) and co-simulated with a physical
model, built in Ptolemy II. Results show that FMI can be
used for co-simulation of an embedded SCR control soft-
ware and for control software development. Keywords:
Co-Simulation, RTOS, FMI, FMU, Embedded Systems

1 Introduction

Designing the next generation of embedded cyber-
physical systems (CPS) requires close collaboration be-
tween physical model developers and the engineers im-
plementing the computation, communication and con-
trol. The amount of sub-systems, deviation in the tool
chain and standards are often barriers between these dis-
ciplines. Teams are divided into different departments
within organisations or in cross-company collaborations,
further complicating the cooperation. One of the re-
cent initiatives to lower this barrier is the functional
mockup interface (FMI) (Blochwitz et al., 2009). It is
a tool-independent standard for model exchange and co-
simulation. FMI was initiated by the automotive industry

and released in a version 1.0 in 2010 followed by a 2.0
version in 2014. This paper does not explain the stan-
dard, but aims to show the process of adapting an embed-
ded system to comply with FMI. Implementing the FMI
standard on an existing modelling platform is straightfor-
ward, especially since many of the open-source and com-
mercial tools already support it. Forcing a specialised
embedded system to comply is, however, a demanding
task that requires adaptation.

At MAN Diesel & Turbo, legislation on pollution and
a demand for support of alternative fuel types are in-
creasing the amount of distributed sub-systems and the
complexity of the traditional two-stroke diesel engine.
The increased distributed complexity makes the coop-
eration between cyber and physical parts of the system
even more crucial. Currently, simplified physical models
are used for control algorithm development, and only es-
timations of the control system dynamics is considered
when modelling the physical behaviour. The objective
of this project is to enhance the modelling development
and distribution at MAN Diesel & Turbo by introducing
a more comprehensive system simulation. We wish to
simulate both physical behaviour and control dynamics,
combined with a model of the software. The software
model will enable us to investigate system behaviour
such as alarm handling, IO scaling and network com-
munication/protocols. The main challenge is to adapt
the embedded engine control system into a functional
mockup unit (FMU). The process of this adaptation is
what will be presented in this paper. As use case, a
simple model of the SCR (Selective Catalyst Reduction)
emission reduction system and its control software will
be co-simulated.

FMI 2.0 for co-simulation has been chosen due to its
strict type/execution structure combined with its freedom
of implementation. The standard is highly recognised
and applied within the automotive industry (Abel et al.,
2012; Stoermer and Tibba, 2014), which has many simi-
larities with the maritime. Recently, applications within
energy and grid systems (Vanfretti et al., 2014; Elsheikh
et al., 2013) and HVAC systems (Nouidui et al., 2014)
are emerging as well. FMI applications within the mar-
itime industry, like this, is limited (Pedersen et al., 2015).



This project uses the heterogeneous simulation software
framework Ptolemy II (Liu et al., 2001; Brooks et al.,
2010) to co-simulate a simple physical model with an im-
ported FMU. Ptolemy II has been used for various FMI
applications (Broman et al., 2013; Liu et al., 2001; Lee
et al., 2015) Much attention has been put on implement-
ing the standard, such as FMI++ (Widl et al., 2013) the
FMI Library from (Modelon) and the FMU SDK from
(QTronic). Examples of how to build an FMI master al-
gorithm has been provided as well (Bastian et al., 2011;
Broman et al., 2013). In (Bertsch et al., 2015) a pro-
totypical realisation of an FMU executing on a Bosch
electronic control unit was presented. However, the non-
trivial process of adapting the software of an embedded
system, with at real-time operating system (RTOS), into
a co-simulation FMU, has not yet been described, but
will be in this paper.

First the cyber-physical system at hand will be intro-
duced in Section 2. Section 3 shows how to move from
a target embedded application to an FMU running in a
regular Linux environment. A use-case implementation
is presented in Section 4 and conclusions are drawn in
Section 5

2 Cyber-Physical System

Cylinder Control Unit
Tacho Interface Unit

Engine Control Unit

Engine Interface Unit

SCR Control Unit

Scavenge Air Control Unit

Network

SCR Interface Unit

Figure 1. An MAN Diesel & Turbo two-stroke low-speed
diesel engine with the SCR and the engine control system il-
lustrated

MAN Diesel & Turbo designs large-bore diesel en-
gines and turbomachinery for marine propulsion systems
and stationary applications, such as power plants. With
the introduction of the electronically controlled line of
ME engines in 2002, MAN Diesel & Turbo moved into
the development of Cyber-Physical System. In recent

years, the demand for new emission reduction systems
and alternative fuel types have made the core engine
even more dependent on the surrounding control system.
This dependency demands a more advanced simulation
environment including co-simulation. The engine con-
trol system consists of numerous distributed controllers
with each their specific control objective connected by
a wired network. Figure 1 illustrates a 6-cylinder two-
stroke ME-engine with an SCR system and engine con-
trol system. The main controllers are the engine interface
units communicating with the operator, and the scavenge
air control unit ensuring that pressures are balanced be-
tween the turbocharger and scavenging. The engine con-
trol units ensure that the cylinder control units perform
the correct temporal injection ect. according to the infor-
mation about the crankshaft position from the tacho in-
terface units. Finally, if the engine is fitted with an auxil-
iary system e.g. an SCR system, it will be controlled and
monitored by its own SCR units.

3 From Embedded Target to FMU

Figure 2. A multi-purpose controller of the MAN Diesel &
Turbo engine control system

To achieve the objective of co-simulating the soft-
ware control system together with a physical model, in
a different environment(Ptolemy II), we need to make
our target application code run in a functional mockup
unit 0(FMU). It should be noted that the main objection
of this solution is to aid physical modelling and con-
trol algorithm development. The solution will therefore
demonstrate a deterministic simulation of both compu-
tational execution and network. Despite the previously
described system behaviour investigation benefits, of in-
cluding a software model in the FMU, the decision is
also based on future ambitions and the current control
system development at MAN Diesel & Turbo. Future



plans include a stochastic network model and HIL-nodes
combined with FMI nodes.

3.1 Configuration Abstractions
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Figure 3. It is possible to change the level of configuration
complexity exposed to the user. The top figure shows how each
control system node can be packed in an FMU for maximal
configuration flexibility. The bottom figure shows how multi-
ple nodes can be packed and configured in a single FMU for a
simpler user configuration setup.

One of the most important concerns when introduc-
ing FMI was the configuration complexity. The system
is to be used by different disciplines, and it is impor-
tant that the configuration level can be abstracted to fit
the user objective - meaning that if a hydraulic engineer
wishes to investigate the dynamic effects of the control
system on his model, he should not have to connect all
the wires of the control system to get started, but rather
have one FMU with only relevant variables and parame-
ters exposed. We found it beneficial to maintain the pos-
sibility of interconnecting multiple nodes of the control
system before wrapping them into the functional mockup
interface. As shown in Figure 3, this allows for different
levels of configuration complexity. If we are interested
in both the interaction between two nodes and a physi-
cal model, we can provide all variables, parameters and
IOs through multiple FMUs and connect them in our en-
vironment, see top Figure 3. However, if we are only

interested in the variables interacting with our external
model, it is possible to connect the nodes internally, and
only expose the relevant variables, bottom figure 3. The
latter option provides a much simpler configuration and
"ModelDescription.xml" for the user and lets the control
system experts ensure that nodes are connected correctly.

3.2 Target to PC simulation

The target controllers used are multi-purpose, meaning
e.g. that cylinders and SCR-control units are identi-
cal. The only deviation determining the specific con-
troller objective is the software executed on the embed-
ded system. A controller interfaces with sensors and
other computational units, using the information to in-
teract with the system through actuators. A controller
contains a CPU module with an FPGA-based embedded
system utilising a real-time operating system. The strat-
egy for simulating our embedded system is to model the
entire embedded system from the operating system and
up, wrapping this into an FMU. Conclusively, our model
is not simulating the behaviour of the embedded proces-
sor, but builds the target code for an x86 architecture in
a so called PC-simulation application (PCSIM).

3.3 FMI implementation of PC simulation

To implement FMI 2.0 for co-simulation, we need fur-
ther access to some main functionality embedded in the
PCSIM. Looking at the FMI co-simulation state machine
(Blochwitz et al., 2009), we need to access relevant data
for f mi2Set() and f mi2Get() and a way of stepping
the simulation according to the f mi2DoStep() function.
Furthermore, the network communication is to be recon-
nected and the FMI functions implemented.

3.3.1 Hook to OS clock

For the co-simulation to work correctly, we need to con-
trol the execution between the discrete communication
points on each node. The approach is to access the
clock of the operating system and let a simulation man-
ager control the temporal execution. This is made possi-
ble by building the target code as a shared library and
overwriting the idle thread method of the RTOS. The
RTOS used in this project supports an x86 architecture
and provides the board support package, which includes
a bsp_idle_thread to be manipulated. The solution pro-
posed will require customisation to work with different
RTOS versions, however, the concept is generic. Be-
sides the idle thread hook, we need to be able to start and
stop the application by calling the main function through
the library. The main function is executed in a separate
thread until we force it to stop, having the main func-
tion return. The new idle thread function has an idle
callback function that implements ticking of the RTOS
clock. Each tick lasts for a simulated 1 ms, implemented
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Figure 4. The implementation of FMI on the MAN engine
control system

by assuming unlimited CPU power - thus an execution
time of zero for every node, followed by a 1 ms delay. A
node will run until it returns to idle, meaning for every
tick, all task will finish and never be interrupted. This
guaranties a common perception of time across nodes.
The assumption of unlimited processing power will ob-
viously make the simulation results deviate slightly from
a real stochastic execution. However, it ensures a de-
terminism which is important during control algorithm
development and regression testing. All interrupts are
currently software simulated and scheduled as regular
tasks. Further work will aim to implement a more tem-
poral scheduling of especially high frequency interrupts.

Having a hook to the clock and a joint time perception
makes it possible for a manager to call the f mi2DoStep()
function and orchestra a correct temporal execution of
the co-simulation.

3.3.2 Connecting variables, parameters and IO
channels

On the target application all variable, parameters and
IO channels are organised in a component-oriented data
tree structure with unique IDs. Using a factory method
design, we make it possible to create proxies for both
variables, parameters and IO channels, providing a
Proxy.Get() and Proxy.Set() function that will effect the
source on the specific node. For IO channels, we com-
municate on micro-ampere level, so prober conversion is
needed.

The f mi2Set() and f mi2Get() functions will write
and return the value of the proxies. The instantiation
of proxies are done in the f mi2Instantiate() function
and is based on the ”ModelDescription.xml”. One of
the advantages of FMI is the strict data type definition.
However, the target application utilises more data types
than the ones allowed by FMI, such as fix-point and un-
signed short. As a result, a type conversion layer had to
be added.

3.3.3 Solving network communication

To simulate the network communication between nodes,
we replace the RTOS network driver with a determin-
istic input/output queue implementation. Each node is
given an address corresponding to the unique node_id
already provided by the controller. Through the factory
design from 3.3.2 input and output lists are made avail-
able across nodes. A network manager then redirects
packages from output to input queues according to net-
work address. The network manager support both uni-
cast, multicast and broadcast. Communication is done
at every discrete communication point, and the network
driver is activated every ms tick of the OS clock, if any
data is available in the input or output queue. Currently,
the network is only available with interconnected nodes
and not as an output through the FMU. However, this is
something we are working on.

3.3.4 FMI implementation

Target.cpp

PCSIM.SO

GCC–PC x86 

RTOS

Cross – Compiler 

GCC

Cross – Compiler 

GCC

FMI.SO

GCC–LINUX

FMI_model.cpp

fmi_model.fmu

MODEL SOLVER

Dynamic Load

Figure 5. The compiling routine from target to functional
mock-up unit.



According to the FMI standard the application should
be compiled into a shared library with the FMI functions
exported. As described, we are able to build each of
our control nodes into PC shared libraries (PCSIM.so)
including a, x86 RTOS. We now need to wrap these
into a Linux shared library (FMI.so) implementing the
FMI application interface. One or more PCSIM.so are
loaded into the FMI.so which is the main binary in the
co-simulation FMU, see figure 5. A MAN Diesel &
Turbo FMU will have the 2.0 FMI for Co-simulation
API. The f mi2Instantiate() will load the PCSIM.so’s
required for the specific scenario and create the rele-
vant parameters, inputs and outputs according to the
ModelDescription.xml and start each node executing.
The f mi2DoStep() is able to call the idle callback func-
tion on each node, signalling the idle thread to tick the
RTOS. If an FMU contains more than one node the net-
work will be updated at every communication point. The
remaining FMI functions have been implemented but not
illustrated in Figure 4.

4 Use Case: SCR Temperature Dy-
namics and Control

Figure 6. Diagram of the SCR system

As a simple use case, we look at the dynamics and
control of heating up the SCR reactor. When a vessel is
to comply with the Tier III emission limits (IMO, 2008)
for NOx reduction, a command is sent from the opera-
tor to activate the SCR control. The SCR control unit
will then redirect the exhaust gas through the reactor by
opening the reactor sealing valve (RSV) and the reac-
tor throttle valve(RTV). The controller has to balance the
RTV opening, to ensure that the flow to the turbine inlet
of the turbocharger is sufficient. As soon as the reac-
tor is properly heated, the reactor bypass valve (RBV)
can be closed; consequently, only cleaned air from the
reactor leaves the system as exhaust. A diagram of the
SCR control is illustrated in Figure 6. The SCR con-
troller uses the difference between the reactor input and

output temperature as a reference residual signal for con-
trolling the position of the RTV valve. By modelling the
time delay of heating the reactor and passing the result-
ing output temperature back to the SCR controller, we
will show that it is possible to investigate the dynamic
interaction between a physical model and the actual con-
trol software.

Many additional observations regarding the engine
physics are required for all aspects of the SCR controller
to perform correctly. An advantage of being able to con-
nect more nodes within a single FMU is that the so-called
engine simulation unit (ESU) used for hardware in the
loop test can be included. The ESU contains numer-
ous physical models executing within the embedded con-
troller environment. Model execution on the ESU must
comply with real-time requirements and should therefore
not be too complex. With FMI, it is possible to make a
hybrid simulation of the engine physics where ESU mod-
els can be combined with Ptolemy models. In this use
case, the reactor heating model provides physical insight
into the SCR controller together with the ESU.

4.1 SCR Heating Model
The reactor heating model chosen as proof of concept is
described below. The output temperature can be mod-
elled as the relationship between the RTV position, the
flow through the reactor and the input temperature, re-
sulting in two low-pass filters with a significant time con-
stant. The inputs to the model is provided by the SCR
controller and ESU.

The mass flow into the reactor Ṁ is estimated from the
engine load L.

Ṁn = Ṁn−1 +
L− Ṁn−1

1+ τScavenge ·T
(1)

where T is the sampling frequency.
The time constant of the reactor output temperature, is

estimated as the RTV valve opening with the mass flow
plus a time constant, converted into seconds.

τout = (Ṁn ·RTV + τreactor) ·3600 (2)

Finally, the output temperature is calculated as

Toutn = Toutn−1 +
Tin+Toutn−1

1+ τout ·T
(3)

This is naturally a simplified approach, however, it
goes to show, that it is possible to distribute the control
system and co-simulate with other thermodynamic mod-
els regardless of the abstraction level.

4.2 Ptolemy II as simulation framework
As simulation framework, the open-source Ptolemy II
was chosen due to its heterogeneous actor-oriented



Figure 7. FMU import in Ptolemy II and simple physical
model implementation

design and comprehensive support for different soft-
ware components and the FMI interface as described
in (Broman et al., 2013). The FMU is imported as
a co-simulation actor automatically configured by the
”ModelDescribtion.xml”. Using ”Vergil”, the graphical
user interface shipped with Ptolemy, the equations from
4.1 are created and connected to the FMU outputs. A
simulation scenario is likewise defined in Vergil and con-
nected to the input ports of the FMU, see Figure 7. The
scenario sets a reactor start temperature and an engine
speed set point. After 700 seconds, a simulated bridge
command is send to the SCR controller, activating the
SCR control strategy.

To execute the simulation, a synchronous dataflow
(SDF) director was chosen. The SDF director is appro-

priate because we have a predictable and regular exe-
cution (firing) of the FMU. At regular communication
points, inputs/outputs are updated in a predefined order.

4.3 Results

Figure 8. The use-case example of a functional mock-up unit
containing the MAN SCR control nodes

To run the simulation, an FMU was build as seen
in Figure 8. Here four PCSIM.so corresponding to
the code of four embedded controllers, are packet
into ”resources/lib”. The engine simulation unit
(esu_target.so) models the entire engine, except the SCR
heating model, using the target solver ect. An SCR Con-
trol Unit (scrcu_target.so) containing all the control al-
gorithms for the reactor control and two SCR interface
controllers (scri1_target.so,scri2_target.so) redirecting
all the sensor values connected as simulated cables from
the ESU to the SCRCU by network. Configuration of the
PCSIM applications are provided via the MAN parame-
ter files located at ”resources/par”

Figure 9. The in- and output temperature of the simulated SCR
heating



The simulation of the FMU and reactor heating model
is presented in Figure 9. Here we see that the SCR
reactor out temperature start to increase after 700 sec-
onds when the SCR start command is sent. The heating
has the expected low-pass behaviour and takes approxi-
mately 1.5 hours to heat up.

Figure 10. Valve feedback from the SCR simulation

In Figure 10, we clearly see that the SCR control
works as intended, even though we have replaced the
SCR heating model from the original ESU and replaced
it by a Ptolemy implementation. As soon as the SCR ac-
tivation occurs, the RTV and RSV valves start to open.
The RTV valve is clearly controlled to balance the flow
to the turbocharger. This actuation is filtered from the
temperature by the low-pass behaviour of the reactor, as
expected. As soon as the RTV valve is fully open the
RBV valve can be closed, and output temperature keeps
increasing until it eventually reaches the inlet tempera-
ture.

Each node in the simulation executes an application
task running on top of the RTOS, updating variables at a
specific sampling frequency. From Figure 11, we clearly
see how the SCR control unit runs at 5 Hz and the engine
control unit at 10 Hz. The SCR temperature is calcu-
lated in Ptolemy, resulting in the same frequency as the
simulation time step of 1 ms.

5 Conclusion

This paper showed the non-trivial process of implement-
ing FMI for co-simulation of an embedded system. We
proposed to compile a target platform RTOS into an x86
architecture, which most RTOS systems support. By re-
placing the idle thread of the RTOS, a hook for the sys-
tem clock can be provided and used to advance through
the application. To match the ”Get()/Set()” structure of
the standard, the same was implemented through sim-

Figure 11. Illustration of the different sub-system sampling
frequencies

ulation proxies identified by unique ID numbers of tar-
get variables. The FMI API is wrapped around the x86
RTOS by loading it as a shared library, with the FMI
step function ” f mi2DoStep()” activate the RTOS clock
through a callback function. The configuration of an en-
tire control system results in a vast amount of connec-
tions, not necessary relevant for all modelling purposes.
One of the advantages of the proposed method is that the
configuration abstraction can be varied. If relevant, each
node of the control system can be packed in individual
FMUs, or all nodes can be enclosed in a single FMU,
with all configuration and data/network exchange done
internally. We have provided a use case where part of the
engine control system is packed in an FMU and imported
into Ptolemy II. By connecting the FMU to a physical
model, we proved that the system could be co-simulated
with an external tool, resulting in correct control system
behaviour.
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