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Polypharmacy is common in cardiovascular medicine, and 
drug–drug interactions may cause many unwarranted 

adverse effects. Today, most interactions are identified from 
premarket studies, based on knowledge of mechanisms of 
action, or from reports of potential adverse drug reactions.1 
Presumably, many interactions are unknown because only a 
small fraction of adverse drug effects is reported.2 Important 
drug–drug interactions may, therefore, be unknown for a long 
period, and some may never be revealed. A way of discovering 
interactions without a prior hypothesis is therefore warranted 
to increase safety and efficacy of drug treatment.

Data mining is a data-driven approach that operates with-
out a hypothesis. The idea is to build a prediction model and 
subsequently identify important variables. To verify that the 
machine-learning model captures important and true trends, 

the ability to predict new and unseen data is tested. Often, data 
are divided into 2 parts, where one is used to construct the 
model (training set) and one is used to test the performance 
(test set).3,4 Random forest has been shown to be useful in 
agnostic gene association analyses, which shares many of the 
same methodological issues as studies aiming to search for 
drug–drug interactions.5–8 Because of the wealth of variables 
relative to the number of samples available in such analyses, a 
standard statistic approach like logistic regression would not 
be ideal, and multiple testing would require a high degree of 
correction (eg, Bonferroni). Random forest is more flexible 
(ie, handles interactions without interactions terms), is able to 
handle many variables compared with the size of the data set, 
have a built-in test set, and may be better at capturing weak 
signals compared with logistic regression.9 We hypothesized 
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that it was possible to determine drug–drug interactions with-
out a prior hypothesis using a combination of random forest 
and logistic regression. Random forest reduced the number of 
drug groups (from 220 to 10), and logistic regression speci-
fied the direction of the association between the independent 
variable and the dependent variables in addition to the level 
of significance in the lower dimensional space. We used 
warfarin–drug interactions in patients with nonvalvular atrial 
fibrillation as the prototype because of its many recognized 
interactions that could serve as positive controls.10 Warfarin 
affects the prothrombin time and can be monitored using the 
international normalized ratio (INR). Other drugs may affect 
the metabolism of warfarin, causing an unwarranted increase 
or decrease of INR. We assumed that sudden (within days to 
weeks) change in INR after a novel prescription in patients 
with a stable prior INR served as a proxy for possible war-
farin–drug interactions. Although it is theoretically possible 
that initiation of other drugs could cause changes in INR 
independently of warfarin, we are not familiar with any drugs 
that have major effects on INR in the absence of warfarin 
(and, thus, be misclassified as interacting with warfarin).

Therefore, we built a method to detect sudden changes to 
INR after a novel prescription as a proxy for interactions.

Methods
This study was based on data from the Danish administrative health-
care registries. A permanent identification number was used for 
cross-linking 4 registries containing medical and social information. 
Information on sex, dates of birth, and deaths was collected from the 
National Population Registry. The Danish National Patient Registry 
contains diagnoses from hospitalizations based on the International 
Classification of Diseases, currently the 10th version (ICD-10). 
This information is reliable because hospital departments are re-
imbursed based on correct diagnostic and procedural registration.11 
Prothrombin time was collected from 3 areas in Denmark containing 
samples from both general practitioners and hospitals. The diagnosis 
of atrial fibrillation (ICD-8 codes 427.93 and 427.94; ICD-10 code 

I48) has been validated with a positive predictive value of 99% in the 
Danish National Patient Registry.12

Blood Samples
Prothrombin time (measured as INR) was collected from 4 reg-
istries administrated by the authorities: (1) a regional registry 
including all blood samples in the Northern region of Denmark 
from 1995 to 2012 (4645 patients included in this study); (2) a 
regional registry including all blood samples drawn on in and out 
hospital patients from the Copenhagen area from 2001 to 2011 
(2190 patients included in this study); (3) all blood samples from 
several general practitioners in Copenhagen from 2000 to 2012 
(7365 patients included in this study); and (4) all samples drawn at 
Roskilde Hospital between 2000 and 2011 (843 patients included 
in this study).

Study Population
We identified patients with nonvalvular atrial fibrillation with avail-
able INR values between 1995 and 2012. The INR value had to 
proximate the therapeutic level (1.8<INR<3.2) at least 60 days be-
fore a novel prescription. INR values that were considerably out of 
therapeutic range (INR≤1.5 or INR≥4.0) ≤45 days after a novel pre-
scription were defined as events. INR values in the therapeutic range 
(2.0<INR<3.0) after a novel prescription were defined as nonevents. 
In-between INR values (1.5>INR>2.0 or 3.0>INR>4.0) after a novel 
prescription were defined as residual INR values (residual category). 
A drug that had not been prescribed in a 2-year period was defined 
as a novel prescription. Each drug group had to have at least 15 ob-
servations (sum of events and nonevents) to be included. Warfarin 
usage (Anatomic Therapeutic Chemical [ATC] Classification system 
codes B01AA03) was assessed by estimating the daily dose from ≤5 
consecutive prescriptions adjusted for hospital stays when INR was 
below 2. Patients were allowed to appear in all groups but not in rela-
tion to the same prescription. In this study, we refer drug–drug inter-
actions to the biological net effects of coadministration, that is, when 
one drug affects the activity of another drug (not to be confused with 
statistical interactions).

Comorbidities
Except for diabetes mellitus and hypertension, which were based 
on claimed prescriptions, all comorbidities were identified using the 
Danish National Patient Registry. Diagnostic codes are provided in 
the Data Supplement. Diabetes mellitus was identified by a claimed 
prescription of glucose-lowering medications (ATC A10) within 
120 days using the Danish Registry of Medicinal Product Statistics. 
Hypertension was identified using a validated algorithm combining at 
least 2 classes of antihypertensive medications.13

Clinical Variables
The following variables were included in the analyses: age, sex, cal-
endar year, household income, the level of education, hospitalization 
in the period, the total number of novel prescriptions claimed in the 
period, and variables included in the HAS-BLED and CHA

2
DS

2
VASc 

scores (the compliance of warfarin therapy has previously been as-
sociated with comorbidity, household income, and education14,15).13,16 
The first 5 characters of the ATC code were used to define drug 
groups. In the random forest analyses, values were normalized be-
tween zero and one. To reduce the number of variables in the logis-
tic regression analyses, calendar year was not included in the main 
analysis but in a sensitivity analysis.

Data Mining
We applied random forest to identify important variables. Random 
forest consists of decision trees built using a unique bootstrapped 
sample.5,17 A bootstrap is a random sample selected as if taking one 
observation out of a bag, registering it and putting it back in be-
fore drawing the next. The bootstrapped sample will have repeated 

WHAT IS KNOWN

•	 Warfarin is well known for its drug interactions; 
coadministration of many drugs can cause sudden 
changes in international normalized ratio levels.

•	 Data-driven (in contrast with hypothesis-driven) anal-
yses may help identify novel drug–drug interactions.

WHAT THE STUDY ADDS

•	 We investigated whether drug–drug interactions 
could be discovered without a prior hypothesis using 
a combination of random forest approach and logis-
tic regression in international normalized ratio–sta-
ble warfarin-treated patients with nonvalvular atrial 
fibrillation.

•	 We identified several known drug groups causing 
changes in international normalized ratio levels soon 
after initiation and at least one plausible interaction 
involving a drug group that has not been described 
previously.
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observations, and not all observations will be used in each tree (the 
unused observations are named out-of-the-bag). In the final forest, 
the prediction accuracy is evaluated tree by tree using the observa-
tions from the out-of-the-bag. The majority votes of all trees de-
termine the overall outcome. Random forest provides a measure of 
the contribution of each variable to the prediction accuracy (named 
variable importance). This measure does not specify if an associa-
tion is positive or negative but is used for ranking the independent 
variables.

The effect of multiple testing is often reduced by changing the cut 
off P value (eg, Bonferroni).3 Another way of reducing the effect of 
multiple testing is by retesting new findings using an unused data set.3 
In our study, this was done by both cross-validation (explained later 
in this section) and by the nature of random forest where the vari-
able importance was measured using out-of-bag data. In a sensitivity 
analysis, we applied registries 2, 3, and 4 as a training set and registry 
1 as a test set. This way the training and test sets were collected in 
different parts for the country, making them more disjoint and the 
result more reliable.

The general idea of this study was to locate the most impor-
tant drug groups by random forest using a training set. Logistic 
regression then tested these drug groups in the lower dimensional 
space using another part of the data set (test set; Figure 1). In 
detail, the most important drug groups were identified using the 
permutation variable importance in an optimized random forest 
model with 3 targets—increasing INR (INR>4.0), decreasing 
INR (INR≤1.5+warfarin), and nonevents (2.0≤INR≤3.0).6 The 
drug groups were ranked relative to the variable importance. The 
10 most important drug groups were then tested using 2 logis-
tic regression models. The first model tested the selected drug 
groups+clinical variables (specified under the clinical variables 
section) in relation to increasing INR (INR>4.0) versus nonin-
creasing INR (INR<3.0). The second model tested the selected 
drug groups+all clinical variables in relation to decreasing INR 
(INR≤1.5) versus nondecreasing INR (INR>2.0). To be consid-
ered as having a true impact on INR, the drug group had to have a 
significant positive association (positive β-estimate) in the logistic 
regression model.

Cross-validation divides the entire data set into k folds. On shift, 
each of the kth folds serves as a test set (=kth fold) and the rest of the 
folds (≠kth fold) serves as a training set. Fourfold cross-validation 
was applied. Because the data set was divided into 4 folds, the proce-
dure was repeated 4 times. If the same result was found in all 4 folds, 
the result was more reliable than if it was only found in one.

Random forest has 3 parameters that need to be tuned to op-
timize the prediction accuracy (hyperparameters: the number of 
trees in the model, the number of divisions in each tree [depth of 
the trees], and the number of independent variables [predictors] 
tested at each branching in the decisions trees [mtry]). For each 
branching, a random sample of possible independent variables 
(predictors) is chosen and the one that is best separating the depen-
dent variable is selected. Because of the unbalanced data set (more 
nonevents than events), the trees were grown until each observation 
had its own branch (full depth).5 The effect of the number of trees 
was tested. Because data were unbalanced, we applied the best 
cutoff relative to the area under the curve (AUC) for each target 
(increasing INR; decreasing INR; nonevent) to balance misclassifi-
cation. To exclude nonimportant drug groups, we applied backward 
selection using the following algorithm: (1) optimizing mtry rela-
tive to AUC; (2) creating a random forest model using the 50 best 
drug variables for predicting increasing INR and the 50 best drug 
variables for predicting decreasing INR; (3) optimizing mtry rela-
tive to AUC; (4) creating a random forest model using the 20 best 
drugs for predicting increasing INR and the 20 best for predicting 
decreasing INR; and (5) optimizing mtry relative to AUC and (6) 
the 10 best drugs for each end point (decreasing INR; increasing 
INR) were together with the clinical variables statistically tested 
using logistic regression. The hyperparameters in the random for-
est algorithm were chosen based on the accuracy of the out-of-bag 
estimates. The statistical tests were performed using the test set 
(nonapplied kth fold).

Because of the possibility of repeating prescriptions from the 
same patients, a sensitivity analysis using generalized estimated 
equations was performed using patients as cluster ID. We analyzed 
1 drug at the time, adjusting for the CHA

2
DS

2
VASc score, house in-

come, and hospitalization.
For the tests of the regression parameters being equal to zero in 

the logistic regression model, a 2-sided test with a P value <0.05 
was considered statistically significant. All statistical calcula-
tions were performed using SAS (version 9.4 for Windows; SAS 
Institute Inc, Cary, NC) and R (version 3.2.3 for Windows; The R 
Foundation).

Ethics
The study was approved by the Danish Data Protection Agency (Ref 
no 2007-58-015 I-Suite nr: 02720, GEH-2014-012). The data were 
available at an individual level, but individuals could not be iden-
tified. In Denmark, such retrospective register-based studies do not 
need ethical approval.

Figure 1. Study diagram. Two hundred and twenty drug 
groups were reduced to 10. The reduction was based on an 
association between drug groups and INR changes (10 were 
associated with increasing INR and 10 were associated with 
decreasing INR). The data set was divided into 4 parts. Three 
parts were used for identifying the most important drug groups 
by random forest, and the last part was evaluating the findings 
by logistic regression. The process was done 4× having k 
running from 1 to 4 with k as the test set and the rest as the 
training set. This way all 4 parts of the data set were used both 
as training and test sets. INR indicates international normalized 
ratio.
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Results
We analyzed 61 190 novel perceptions and 220 drug groups 
in 13 695 patients. Of these, 1348 patients had blood samples 
in more than one registry. Five patients were observed in both 
registry 1 (test set in the sensitivity analysis) and in one of the 
registries 2, 3, and 4 (training set in the sensitivity analysis). 
We observed 6022 events of increasing INR after a novel pre-
scription and 5843 events of decreasing INR (Figure 2). In 40 
120 cases, INR remained in therapeutic range after a novel 
prescription (nonevents). Lastly, 9205 prescriptions were in 
between these categories (ie, residuals). Characteristics are 
outlined in Table 1. In general, patients with events were older, 
had more comorbidity, and had a lower household income 
compared with the patients with nonevents.

Interactions
We identified 87 possible interactions based on information 
from the Danish Health Authority (Table I in the Data Supple-
ment). Forty-seven of these were available in the data set, of 
which 7 were rediscovered in our analyses (Tables 2 and 3). 
Already known interactions are marked if reported in the Dan-
ish Drug Interaction Database.10 The robustness of the findings 
is illustrated by the number of folds (of the 4-fold cross-val-
idation) where the drug group had a significant pattern of 
interaction together with the P values for each fold. Table 4 
illustrates how the significant drug groups from Tables 2 and 
3 were distributed between INR categories. Additional drug 
groups were included to illustrate the distribution of undiscov-
ered interactions and noninteracting drug groups. The novel 
finding of natural opium alkaloids was confirmed (P<0.001) 
by a sensitivity analysis applying registries 2, 3, and 4 as a 
training set and a disjoint test set (registry 1). The same sen-
sitivity analysis did, however, not confirm an association with 
increasing INR for the other novel finding antipropulsives. In 
contrast, we observed another interacting drug group in the 
analysis (imidazole and triazole derivatives [ATC; D01AC]; 
Tables 2 and 3).

In another sensitivity analysis, including calendar year, we 
observed a pattern similar to that in the main analysis (data not 
shown). The generalized estimated equations analysis (adjust-
ing for repeated prescriptions) illustrated the same pattern as 
the main analysis (data not shown). However, the combina-
tions of penicillins, including β-lactamase inhibitors, was only 
significant in 1 fold (instead of 2). Two times the generalized 

estimated equations did not converge (heparin group; insulins 
and analogues for injection, long-acting) possibly because of 
a low number of data points for these drugs in the respective 
folds (n=11; n=5).

Model Fitting
The AUC for each of the 3 classes (nonevent; increasing INR; 
and decreasing INR) were between 0.66 and 0.72 using data 
not applied in the training of the model (the kth-fold and the 
out-of-bag data; Table II in the Data Supplement). The sensi-
tivity and specificity for the first fold are illustrated in Table III 
in the Data Supplement.

When the number of trees was >50, the AUC did not 
change considerably. Through the optimization cycle, the opti-
mal mtry was between 5 and 20. The optimal cutoff was 0.85, 
0.08, and 0.07 for nonevents, increasing INR, and decreasing 
INR, respectively.

Discussion
We were able to identify 7 out of 47 possible warfarin–drug 
interactions (at a 5-digit ATC-code level) without a prior 
hypothesis. This was possible even though the physicians 
were expected to pay particular attention to patients after a 
prescription of an interacting drug and adjust the warfarin 
dose accordingly. A known interaction would, therefore, 
be expected to be harder to detect than an unknown inter-
action. One drug group with an unknown interaction had 
a strong signal (natural opium alkaloids). Six drug groups 
(antiarrhythmics class III [amiodarone], other opioids [tra-
madol], glucocorticoids, triazole derivatives, and combina-
tions of penicillins, including β-lactamase inhibitors) were 
known to interact with warfarin and identified as generat-
ing elevated INR. Two drug groups (oripavine derivatives 
and natural opium alkaloids) had not previously been tested 
but are flagged as having a possible interaction in the Dan-
ish interaction database because of the similarity with tra-
madol.10,18–24 Tramadol has a well-known interaction with 
warfarin, likely because of the shared CYP3A4- mediated 
metabolism.22,25,26 Buprenorphine (oripavine derivatives) is 
also metabolized via the CYP3A4 system, and our data sup-
port a potential interaction between buprenorphine and war-
farin. Morphine (natural opium alkaloids) has no apparently 
shared metabolism with warfarin.10,26 Yet, natural opium 
alkaloids had a strong signal of increasing INR (significant 
in 4 out of 4 folds and significant in the sensitivity analysis). 
Similar, antipropulsives had a weaker, previously unknown 
signal (significant in 2 out of 4 folds and not observed in 
the sensitivity analysis). Natural opium alkaloids and anti-
propulsives affect the gastrointestinal tract and may alter the 
absorption of warfarin or vitamin k. Potentially, this may 
have lead to the observed signal.

The total number of warfarin interactions is not well 
established. Some warnings are based on few case reports 
(eg, dopamine agonists) or studies finding only a small 
increase in the INR (eg, propionic acid derivatives). Some 
drugs only increase the bleeding rate but not INR (eg, sali-
cylic acid and derivatives). The real number of warfarin 
interactions affecting INR may, therefore, be lower than the 
47 identified by the Danish Drug Interaction Database.

Figure 2. Flowchart of exclusions. A total of 61 190 prescriptions 
(13 695 patients) were included. ATC indicates anatomic 
therapeutic chemical; and INR, international normalized ratio.
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We had expected 3-hydroxy-3-methylglutaryl coenzyme-
A reductase inhibitors (eg, simvastatin) to have a signal of 
increasing INR because it has been reported to have a signifi-
cant interaction with warfarin.27 Table 4 illustrates that many 
of these prescriptions were found in the residual category and 
to a lesser extent in the increasing INR category compared 
with the rediscovered drug groups having an increasing INR 
signal. It is possible that physicians may be particularly aware 
of this interaction and regulate warfarin dosages accordingly 
or that the interactions cause weaker changes in INR levels 
than our predefined cutoff points for defining high or low INR.

We were able to identify some warfarin–drug interactions 
causing decreasing INR, despite several potential barriers. If 

warfarin is not taken, INR decreases to one. Therefore, poor 
compliance would create noise. A shift in antithrombotic 
therapy without completing the warfarin therapy would also 
create a signal of decreasing INR. This is likely to be the case 
for the drug groups, including platelet aggregation inhibitors 
excluding heparin, direct thrombin inhibitors, and heparin.

The aim of this study was to clarify whether patterns 
of drug–drug interactions could be detected without a prior 
hypothesis. Seven out of 47 possible interactions were redis-
covered. Only 10 drug groups for each category (increasing 
INR and decreasing INR) were extracted from the 220 available 
drug groups and tested. The maximal number of interactions 
that could be identified by the current method was, therefore, 10 

Table 1.  Sample Characteristics

Characteristic Nonevents Increasing INR Decreasing INR Residual

No of prescription 40 120 6022 5843 9205

No of patients 10 897 3399 3438 5101

Age, y, median 77 79 78 78

Age, y, mean (SD) 76.3 (9.0) 78.1 (8.9) 77.0 (9.2) 76.7 (9.0)

Variables of HAS-BLED and CHA
2
DS

2
VASc scores

 � Congestive heart failure, % 15 421 (38.4) 2720 (45.2) 5843 (42.8) 3591 (39.0)

 � Hypertension, % 29 827 (74.3) 4180 (69.4) 4298 (73.6) 6796 (73.8)

 � Age

  �  ≥65 y, % 35 761 (89.1) 5519 (91.6) 5232 (89.5) 8218 (89.3)

  �  65–74 y, % 11 499 (28.7) 1394 (23.2) 1521 (26.0) 2446 (26.6)

  �  ≥75 y, % 24 262 (60.5) 4125 (68.5) 3711 (63.5) 5772 (62.7)

 � Diabetes mellitus, % 2240 (5.6) 362 (6.0) 479 (8.2) 543 (5.9)

 � Vascular disease, % 8797 (21.9) 1515 (25.2) 1439 (24.6) 2121 (23.0)

 � Male sex, % 21 433 (53.3) 3046 (50.6) 3120 (53.4) 4780 (51.9)

 � Abnormal liver function, % 758 (1.9) 102 (1.7) 126 (2.2) 166 (1.8)

 � History of bleeding, % 10 023 (25.0) 1570 (26.1) 1656 (28.3) 2242 (24.4)

 � History of stroke or systemic thromboembolism, % 10 661 (26.6) 1688 (28.0) 1690 (28.9) 2508 (27.2)

 � NSAID, % 21 275 (53.0) 2900 (48.2) 3164 (54.2) 4881 (53.0)

 � Alcohol abuse, % 1471 (3.7) 283 (4.7) 301 (5.2) 366 (4.0)

 � Renal disease, % 2660 (6.6) 478 (7.9) 548 (9.4) 607 (6.6)

 � Vascular disease, % 8797 (21.9) 1515 (25.2) 1439 (24.6) 2121 (23.0)

 � HAS-BLED score 2.80 2.78 2.91 2.80

 � CHA
2
DS

2
VASc score 3.03 3.15 3.14 3.06

Prescriptions and previous hospitalizations

 � Hospitalization because of bleeding, % 191 (0.5) 189 (3.1) 228 (3.9) 42 (0.5)

 � Hospitalization because of TE, % 116 (1.2) 75 (1.2) 82 (1.4) 21 (0.2)

 � Hospitalization of other reasons than TE or bleeding, % 4431 (11.0) 2150 (35.7) 2267 (38.8) 996 (10.8)

 � Number of novel prescriptions in period 1.13 2.2 2.17 1.22

Economic information

 � House income: DKK 302 039 265 042 281 331 297 831

Characteristics are based on claimed prescriptions and not unique patients. CHA
2
DS

2
VASc score indicates congestive heart failure, hypertension, age >75 y, diabetes 

mellitus, history of stroke or thromboembolism, vascular disease, age 65–74 y, female sex; HAS-BLED score, hypertension, abnormal liver function, history of stroke or 
thromboembolism, history of bleeding, age ≥65 y, use of nonsteroidal anti-inflammatory drugs, and unhealthy alcohol use. INR indicates international normalized ratio; 
NSAID, nonsteroidal anti-inflammatory drugs; and TE, thromboembolism.
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for each category. This limit was chosen to have enough power 
for the logistic regression model and to reduce the unwanted 
effect of multiple testing. Yet, it could be argued that correc-
tion (eg, Bonferroni) should be applied to the logistic regression 
because we were testing 10 drug groups. Increasing the num-
ber of important drug groups selected by random forest would 
increase the need for correction and, thereby, lower the power 
to detect drug groups. Even with the relative low discovery 
rate, our method may, nevertheless, be a valuable supplement 
to established systems for evaluating drug–drug interactions.

Strengths and Limitations
The strength of our system is that nonobvious interactions 
may be easier discovered because of the hypothesis-free 
approach, and some interactions may be discovered at an ear-
lier stage. A flipside is the presence of the many confounders, 
and this study demonstrated the importance of field knowl-
edge to identify these. To minimize unmeasured confound-
ing, new findings should ideally be tested in a randomized 
study, but this may be unethical. Evaluation using other end 
points or a new data set would also strengthen the validity. 
This study was based on drugs claimed from prescriptions 
outside the hospitals. Drugs applied only in hospital would, 
thus, remain undiscovered. Moreover, in observational stud-
ies, physicians may create biases by their decisions. Because 

of the knowledge of interactions in warfarin treatment, INR 
may be measured more frequently than if another drug is initi-
ated, precluding INR changes from reaching the prespecified 
threshold (1.5 and 4.0). Some drugs may be correlated with 
confounders, which may affect INR levels. Antipropulsives 
(eg, loperamide) may, for instance, be correlated with obstipa-
tion or diarrhea and the condition (in contrast to the treatment) 
could be the cause of altered INR.

In this study, the random forest and logistic regression 
models held information about the number of novel drugs pre-
scribed in the period, but could not further discern if multiple 
drugs were initiated simultaneously. If 2 drugs often were pre-
scribed together and one but not the other had an interaction, 
the noninteracting drug could wrongly be marked as interact-
ing with warfarin. We did, however, not observe any implau-
sible interactions, suggesting that this may not be a problem 
in the current study.

This study focused on random forest to test the present 
research question, but other methods could also have been 
considered (eg, logistic regression with the least absolute 
shrinkage and selection operator).

Conclusions
This study demonstrated the ability to discover known and 
possibly unknown warfarin–drug interactions without a prior 

Table 2.  Drug Groups Displaying an Association With Decreasing INR After a Novel Prescription

ATC Drug Group Prominent Drug in Group Number of Folds P Values in Each Fold

J01CF β-Lactamase-resistant penicillins* Dicloxacillin (98%) 4 <0.001; <0.001; <0.001; <0.001†

B01AC Platelet aggregation inhibitors excluding heparin Acetylsalicylic acid (89%) 4 <0.001; <0.001; <0.001; <0.001†

B01AE Direct thrombin inhibitors Dabigatran etexilate (100%) 4 <0.001; 0.004; <0.001; <0.001

B01AB Heparin group Dalteparin (58%) 3 <0.001; 0.948; 0.009; 0.044

N03AF Carboxamide derivatives* Carbamazepine (83%) 1 0.03

Number of folds indicates the number of folds showing a significant decreasing INR after a novel prescription (out of 4). The number of P values in each row indicates 
the number of times the drug group has been selected by random forest. ATC indicates anatomic therapeutic chemical; and INR, international normalized ratio.

*A known interaction.
†A significant pattern in the sensitivity analysis using registries 2, 3, and 4 as a training set and registry 1 as a test set.

Table 3.  Drug Groups Having a Significant Association With Increasing INR After a Novel Prescription

ATC Drug Group Prominent Drug in Group Number of Folds P Values in Each Fold

C01BD Antiarrhythmics, class III* Amiodarone (100%) 4 <0.001; <0.001; <0.001; <0.001†

N02AX Other opioids* Tramadol (100%) 4 0.001; <0.001; <0.001; 0.013†

H02AB Glucocorticoids* Prednisolone (79%) 4 <0.001; 0.002; <0.001; <0.001†

N02AA Natural opium alkaloids‡ Morphine (40%) 4 <0.001; 0.003; 0.007; <0.001†

J02AC Triazole derivatives* Fluconazole (94%) 3 <0.001; 0.002; (0.145); <0.001†

J01CR Combination of penicillins, including 
β-lactamase inhibitors*

Amoxicillin+clavulanic acid (100%) 2 0.005; 0.038

N02AE Oripavine derivatives‡ Buprenorphine (100%) 2 0.008; 0.007; (0.130)

A07DA Antipropulsives Loperamide (76%) 2 0.005; 0.038

Number of folds indicates the number of folds with a significant increasing INR after a novel prescription (out of 4). The number of P values in each row indicates the 
number of times the drug group has been selected by random forest. ATC indicates anatomic therapeutic chemical; and INR, international normalized ratio.

*A known interaction causing increasing INR.
†A significant pattern in the sensitivity analysis using registries 2, 3, and 4 as a training set and registry 1 as a test set.
‡An untested drug group having a close related warfarin-interacting drug group (flagged in the Danish Interaction Database).10
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hypothesis using clinical registries. This opens up for new 
approaches in the search for unknown drug–drug interactions 
in cardiovascular medicine.
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