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Abstract
Physiologically structured population models have become a valuable

tool to model the dynamics of populations. In a stationary environment
such models can exhibit equilibrium solutions as well as periodic solutions.
However, for many organisms the environment is not stationary, but varies
more or less regularly. In order to understand the interaction between an
external environmental forcing and the internal dynamics in a population,
we examine the response of a physiologically structured population model
to a periodic variation in the food resource. We explore the addition of
forcing in two cases: A) where the population dynamics is in equilibrium in
a stationary environment, and B) where the population dynamics exhibits
a periodic solution in a stationary environment. When forcing is applied
in case A, the solutions are mainly periodic. In case B the forcing signal
interacts with the oscillations of the unforced system, and both periodic
and irregular (quasi-periodic or chaotic) solutions occur. In both cases
the periodic solutions include one and multiple period cycles, and each
cycle can have several reproduction pulses.

Keywords: Structured population model · Periodic variation · Bifurcation
diagram

1 Introduction
Environmental variations are evident drivers of abundance and succession in
temperate ecosystems [15]. Variations in the environment are changes in the
abiotic environment, such as light and temperature, as well as in the biotic
environment, such as presence of prey and predators. These conditions together
affect processes such as growth and mortality for the individual. Variations
may occur on very different time scales, ranging from diel patterns in light
levels, over weather phenomena on weekly time scales and seasonal patterns in
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temperature, to decadal fluctuations such as governed by the North Atlantic
Oscillation (NAO). Some of these variations are strictly periodic whereas others
are less regular.

Here, we consider a model inspired by planktonic crustaceans. Planktonic
crustaceans, such as daphnia in fresh water or copepods in marine environments,
are subjected to environmental changes on daily to yearly time scales. They
are multicellular organisms with a complex life cycle. The weight of each egg
reaches approximately 1% of the individual biomass, and the eggs hatch to
become nauplii which molt through successive stages to become adults. In the
adult stage, all acquired food is going to survival (including building reserves)
and to reproduction. The extended life implies that environmental variability
can have complex effects on the organisms’ life history. Planktonic crustaceans
are a key link between primary producers and higher trophic levels (fish). An
understanding of this link requires an understanding of how their life cycle is
affected by a varying environment.

Existing literature concerning environmental variation in planktonic ecosys-
tems has often modelled unstructured populations. Then, the ecosystem is rep-
resented as a Nutrient-Phytoplankton-Zooplankton (NPZ) model [8], where the
zooplankton, representing planktonic crustaceans, is described by a single state
variable representing their abundance or biomass. In [7], for example, is consid-
ered a seasonal forcing that acts through influence of sunlight on photosynthesis
of the phytoplankton. Studies of forcing in predator-prey models demonstrates a
very rich dynamical behaviour with period doublings, quasi-periodic and chaotic
dynamics, as well as coexisting attractors [17, 20, 22]. These phenomena often
arise in systems that oscillate even in the absence of forcing and for large forc-
ing amplitudes. While these models illustrate the dynamics of forced systems
of unicellular organisms well, they are unable to describe the life history of
multi-cellular organisms such as planktonic crustaceans.

Physiologically structured population models are a well investigated class
of models [6, 16]. They are suited for modelling species when mass-specific
rates of biomass productions and maintenance change significantly with the
size of individuals [6]. In a constant environment, physiologically structured
models can show equilibrium solutions as well as periodic solutions. The periodic
solutions arise as a results of predator-prey dynamics or competition between
adults and juveniles [6]. In [23], a physiologically structured population model
is considered with seasonal variation of environmental conditions as well as
pulsed reproduction at a fixed time of year. The emphasis is on mortality
and conditions for survival. Pulsed reproduction can cause similar effects to
forcing, such as multiple year cycles, without explicit changes in environmental
conditions. An example of this is found in [19] for a physiologically structured
population.

The aim of this paper is to analyze the response of a physiologically struc-
tured population subjected to a periodic variation of the resource production.
We regard the periodic variation of the environment as a driving force of the
population. If the system of the population model oscillates in a constant en-
vironment, the addition of a forcing term implies an interaction between two
(or more) frequencies, and the system resembles that of a forced oscillator. Our
approach is to take a well-known physiologically structured model for a daphnia
population and its algae resource [5]. We look at two basic cases: one where the
system oscillates even in the absence of forcing, and another where it reaches
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a stable equilibrium; and investigate the effect of adding forcing to each case.
The emphasis is on the different dynamics that can occur.

2 Model
We use the Kooijman-Metz model, [4, 11], of a daphnia population feeding on
an algae resource. Individual daphnia allocate energy from food intake between
growth, basic metabolism and reproduction. The daphnia population is size
structured, i.e., the model distinguishes between individuals of different size,
whereas the algae resource is unstructured. The model was first presented in
[11], where it is compared to experimental data, and in [4] the dynamic prop-
erties of the model are explored. We employ the specific formulation of the
Kooijman-Metz model given in [5]:

∂n(x, t)
∂t

+ ∂g(F, x)n(x, t)
∂x

= −µn(x, t) , (1a)

dF (t)
dt = R(F )−

∫ xm

x0

I(F, x)n(x, t) dx , (1b)

g(F, x0)n(x0, t) =
∫ xm

x0

b(F, x)n(x, t) dx . (1c)

Equation (1a) describes the time evolution of the daphnia population density
distribution n(x, t) over the length x of an individual at time t. The daphnia
have a somatic growth rate g(F, x) and a constant mortality rate µ. The concen-
tration of algae F (t) evolves according to (1b); the algae grow at the rate R(F )
in the absence of daphnia. The integral in (1b) represents daphnia ingesting al-
gae at the rate I(F, x). The combined reproduction of the daphnia population
gives rise to the boundary condition (1c) at x0, the length of a daphnia at birth.
We will present expressions for the functions in (1) shortly.

The model presented here is specifically adapted to daphnia and algae, but
the assumptions and basic mechanisms behind the model could also apply to
other species, such as marine copepods. As such, the Kooijman-Metz model rep-
resents a broader class of predator-prey models [4]. It resembles the Rosenzweig-
MacArthur model in the sense that without size structure, i.e., if all individ-
uals are assumed to have the same length x, the system (1) reduces to the
Rosenzweig-MacArthur model, see [4, 5] for details.

In the following, we present the functions entering the system (1). The
expressions are based on the daphnia’s allocation of energy to different processes,
and a detailed derivation is given in [5]. The daphnia’s encounter of algae F is
proportional to a Holling type II functional response,

h(F ) = F

Fh + F
,

where Fh is the half-saturation constant. The ingestion rate I(F, x) of daphnia is
proportional to the surface area of the individual and to the functional response,
giving

I(F, x) = νh(F )x2 , (2)
where ν is a proportionality constant. The somatic growth rate of daphnia is

g(F, x) = γ (xmh(F )− x) , (3)
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where xm is an upper bound on the length a daphnia can achieve, and γ is a
proportionality constant. The maximum length of an individual thus depends
on the available energy. Individuals become mature and start to reproduce when
they reach a specific length xj . Individuals above this length allocate a fixed
proportion of their energy intake to reproduction. This gives a birth rate of the
form

b(F, x) =
{
rmh(F )x2 for x ≥ xj

0 for x < xj

, (4)

where rm is a proportionality constant. Finally, the algae are assumed to have
logistic growth R(F ) in the absence of predators:

R(F ) = αF

(
1− F

K

)
. (5)

Here, α is the specific growth rate of algae and K is the carrying capacity of
algae. In the basic model, α = α0 is constant. The default parameter values
are listed in table 1 and are from [5].

Table 1: Variables and parameter values.

Symbol Value Unit Description
x - mm Length of individual
t - day Time

F (t) - mgC/L Density of algae food resource
n(x, t) - 1/L Number density distribution of

daphnia population
x0 0.6 mm Length at birth
xj 1.4 mm Length at maturity
xm 3.5 mm Largest possible length for any

conditions
Fh 0.164 mgC/L Half-saturation resource level
γ 0.11 1/day Somatic growth constant
rm 1.0 1/(day ·mm2) Birth rate constant
ν 0.007 mgC/(day ·mm3) Ingestion constant
α0 0.5 1/day Specific resource growth rate
K [0; 1] mgC/L Carrying capacity of resource
µ [0; 0.3] 1/day Mortality
af [0; 1] - Strength of forcing
Tf [5; 100] day Period of forcing

The system (1) can exhibit four types of solutions [4, 5] depending on daphnia
mortality µ and carrying capacity K of the algae. The daphnia population can
go extinct, i.e., n(x, t) = 0 for all x and t, or reach a positive equilibrium, i.e.,
n(x, t) = ñ(x) for all t, with a positive number of individuals in the daphnia
population. Furthermore, the system can show periodic solutions, categorized as
either cohort cycles or predator-prey cycles [5]. For cohort cycles, the population
is dominated by a cohort of individuals concentrated around a single length x.
When the individuals in the cohort grows larger and reaches maturity, they give
birth to a new cohort that eventually takes over. The mechanism in predator-
prey cycles is that first the amount of prey increases, which leads to an increase
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of the predator. This in turn causes the prey to diminish, which leads to a
decrease of the predator, and then the cycle repeats itself. In our case, the
daphnia population plays the role of the predator and the algae act as the prey.
Predator-prey cycles are also called paradox of enrichment oscillations [18], and
are similar to the oscillations in Lotka-Volterra models. The transition between
cohort and predator-prey cycles in the model (1) is gradual and some solutions
have characteristics of both types. The existence and stability of the different
solution types depends on the parameter values.
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Figure 1: Bifurcation diagram for the system (1) in (µ,K)-parameter space.
The solid blue line defines the boundary of existence of the positive equilibrium
solution, and the dash-dot red line shows when this solution becomes unstable.
Below the solid blue line only the equilibrium solution with zero daphnia exists,
and above the dash-dot red line periodic solutions emerge. The dotted green
line indicates an approximate boundary between the cohort and predator-prey
cycles. The points marked A and B represents the two parameter cases we will
use.

Figure 1 is a bifurcation diagram showing regions where different solution
types exist and are stable. The parameters varied are the daphnia mortality µ
and the carrying capacity K of the algae. We have used the criteria presented
in [4, 5] to distinguish between solution types. The solutions to the equations
are continued using the continuation software Coco [2, 3] for Matlab [14].
The solid blue line in figure 1 shows the existence boundary for the equilibrium
solution with a non-zero number of daphnia. Below this line, the only solution
is the equilibrium with zero daphnia. Based on the linear stability analysis in
[4, 5], the dash-dot red line depicts where the positive equilibrium solution looses
stability and a periodic solution emerges, corresponding to a Hopf bifurcation.
An approximate separation between cohort cycles and predator-prey cycles is
indicated by the dotted green line. The transition is not characterized by a bi-
furcation, but by a descriptive criterion derived in [4]. The criterion comes from
comparing the stability conditions for the structured model to those for a corre-
sponding unstructured model. The Hopf line has two small hairpin turns close to
µ = 0.05, which differs from a corresponding bifurcation diagram in [5]; presum-
ably this is because we use a continuation approach that captures more details.
We will use the parameter values indicated by the points A (µ = 0.25day−1,
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K = 0.5mgC/L) and B (µ = 0.25day−1, K = 0.7mgC/L) as representative
cases for an equilibrium solution and a periodic solution, respectively.

The discontinuity of the birth rate function b(F, x) in equation (4) at x = xj ,
leads to ambiguity of certain solutions with cohort cycles, but otherwise the
model is well-posed [21]. We will not investigate solutions with cohort cycles,
so we expect the solutions are uniquely defined, even when the forcing term
introduces a smooth variation of parameters.

2.1 Forcing
We proceed to introduce variation of the environment in the model (1). This
can be done by letting one or more of the parameters vary with time. In [17],
they investigate six different choices of parameters for applying periodic varia-
tion to the Rosenzweig-MacArthur model, and conclude that all six possibilities
give qualitatively similar results. Here, we follow the approach by [9, 20, 22]
and introduce the forcing via the resource growth rate, α, to reflect variations
in for example light level and nutrient conditions. Numerical investigations re-
veal that this parameter has very little influence on the bifurcation diagram in
figure 1 close to the points A and B, which is consistent with the analysis in
[4]. Therefore, the system does not switch between regions of the bifurcation
diagram when α changes with time, and the effects of forcing will not be mixed
with qualitative changes in the basic model. For a system with no daphnia,
forcing of the algae growth rate, α, results in the algae stabilizing at the car-
rying capacity K. However, the systems we are considering are never close to
extinction of daphnia, so we do not expect to see such equilibrium solutions.

The environmental variation is implemented as a sinusoidal change of the
algae growth rate, α, that now becomes time-dependent:

α(t) = α0

(
1 + af sin

(
2π
Tf
t

))
(6)

We keep the mean value fixed to the default value, α0, from the original model.
The amplitude, af ∈ [0, 1], is a measure of the magnitude of the variations, and
Tf defines the period of the variations.

We are interested in the relation between the time scale of the forcing, Tf ,
and a time scale of the internal dynamics of the unforced system, Tsys, so we
introduce the ratio: θ = Tf/Tsys. If the unforced system (1) exhibits stable
oscillations, we define the time scale Tsys as the period of these oscillations,
and compute it directly from the solution. The parameter values in case B give
an oscillatory solution with an estimated period of Tsys ≈ 27.6 days. When
the unforced population dynamics display damped oscillations towards a stable
equilibrium, we define the time scale Tsys as the quasi-period of such small-
amplitude transient oscillations. To estimate this value, we numerically compute
the Jacobian of the discretized system at the equilibrium; the discretization of
the system is described in section 2.2. The quasi-period is determined from
the imaginary part of the dominating eigenvalue of the Jacobian. An example
of such dynamics arises for the parameter values in case A where the period
is approximately Tsys ≈ 27.4 days. We have varied the forcing period in the
range Tf ∈ [5, 100] days as simulations revealed the most interesting dynamics
for these values.
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2.2 Numerical integration
For the Kooijman-Metz model in (1), analytic solutions exist for the equilibrium
solutions, but not for the periodic solutions. With the addition of forcing, the
system becomes more complex and hence we concentrate on numerical solutions.
We use the method of lines [10, 12], and discretize the partial differential equa-
tion (PDE) given by (1a) in the size variable x. This leaves a system of ordinary
differential equations (ODEs) in time t, which we integrate with a fourth order
Runge-Kutta method using Matlab’s ODE solver ode45 [14]. As equation (1a)
is a type of advection or transport equation with velocity g(F, x), we discretize
with a first order upwind scheme [10, 12], where the upwind direction changes
with the sign of g(F, x). Simulations indicates that 300 linearly distributed dis-
cretization points is ample for resolving the solution, and we use this number in
all computations. For each set of parameter values, the system is integrated in
time until the solution has settled to a stable stationary or periodic state.

3 Results
3.1 Population without self-oscillations
In this section we examine the effect of the forcing (6) to the system (1) with
the parameters in case A (µ = 0.25day−1, K = 0.5mgC/L; see figure 1).
Without forcing, this system has a stable equilibrium solution with a non-zero
daphnia population, see figure 2a, and transient oscillations with a period of
Tsys ≈ 27.4 days, see section 2.1. A typical solution to the forced system is
stable periodic oscillations, that resembles predator-prey cycles, see figure 2b.

(a) af = 0 (b) af = 0.4

Figure 2: Examples of solutions for the population density distribution n(x, t)
in case A (µ = 0.25day−1, K = 0.5mgC/L). (a) The unforced system has
a stable stationary solution. (b) The forced system, with forcing amplitude
af = 0.4 and forcing period Tf = 30days, has a stable periodic solution with
period Tsol = Tf .

First, the forcing period is kept fixed at Tf = 30 days, which is close to the
time scale of the unforced system Tsys, giving the time scale ratio θ ≈ 1.1. For
this period, we consider a series of examples with increasing value of the forcing
amplitude af , see figure 3. For each amplitude, the system is integrated until the
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solution has settled to a stable stationary or periodic state. To characterize the
population distribution n(x, t) with a single measure (for each point in time),
we use the birth rate of the entire population,

B(t) :=
∫ xm

x0

b(F, x)n(x, t) dx . (7)

This is also the right hand side of the boundary condition (1c). Initially, the
solution locks in phase with the forcing, and the amplitude of the birth rate
increases with the forcing amplitude af (figure 3a). Increasing the forcing am-
plitude further leads to a period doubling (figure 3b). After the period doubling,
the solution changes gradually from having one dominating birth pulse for every
forcing period Tf , to having one for every two forcing periods. This is a typical
pattern for case A when keeping the forcing period Tf fixed and varying the
forcing amplitude af .
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(t

) 
  [

m
m

/(
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y·
 L

)]

af=0.00 af=0.05 af=0.10 af=0.20

(a)

0 1 2 3 4

 t/T
f
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(t

) 
  [

m
m

/(
da

y·
 L

)]
af=0.40 af=0.50 af=0.60 af=0.80

(b)

Figure 3: Combined birth rate B(t) of the population in case A (µ = 0.25day−1,
K = 0.5mgC/L). The forcing period is kept constant for a time scale ratio of
θ ≈ 1.1, while the forcing amplitude af is varied. Each section on the vertical
axis represents the interval [0; 6]mm/(day · L). (a) The non-oscillating solution
locks to the phase of the forcing and the amplitude of the birth rate increases
with af . (b) As af increases further, the birth rate changes in a period doubling.

For a more detailed exploration of the population’s response to changes in
the forcing amplitude, we do a systematic parameter sweep. This entails we
repeatedly change the parameter af a small amount and integrate the system
in time until it has settled to a stable stationary or periodic state. The final
solution is used as the starting point in the next iteration. Experimenting
showed that the transient behavior has vanished after 100 forcing periods or
at least 3000 days. To have a sample of the steady state solution, the solution
is integrated for 12 forcing periods or at least 360 days after the transient has
vanished. For oscillatory solutions with a period up to four forcing periods,
this gives a sample of at least three whole periods. First, a forward sweep runs
through the values af = 0, 0.1, ..., 1 and then a backward sweep goes through
the same values, but in opposite direction. To get an overview of the results,
we characterize each solution with a few measures, which are described in the
following. Figure 4 shows the results of a parameter sweep where the forcing
period is again kept constant at Tf = 30days, giving the time scale ratio θ ≈ 1.1.
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Figure 4: Parameter sweep in the forcing amplitude af for case A (µ =
0.25day−1, K = 0.5mgC/L) with a forcing period corresponding to the time
scale ratio θ ≈ 1.1. The figures indicate a period doubling at af ≈ 0.47 and
af ≈ 0.97. (a) The local maxima Bmax of the combined birth rate for each value
of af . (b) The period of the solution, Tsol, and the average time between birth
pulses, δ.

The first characteristic measure of the solutions is the local maxima Bmax
of the birth rate B(t). For each iteration in the parameter sweep the values of
all the local maxima, occurring after the transient behavior, are recorded and
plotted against the forcing amplitude af , see figure 4a. In other words, for each
peak in the birth rate B(t) there is a dot indicating the height of the peak. This
gives multiple points for each value of af , where some or all the points may
coincide. The birth rate has a single repeated pulse for af < 0.47, indicating a
periodic solution. However, the period of the cycle cannot be determined from
this figure, as the time steps between the maxima are not shown. At af ≈ 0.47,
the single branch divides into two, indicating a period doubling. Along with
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the period doubling, a third branch of maxima appears clearly below the other
branches. Comparing with figure 3, this branch is identified as small extra peaks
on the function B(t).

Another characteristic measure of a solution is its period Tsol. The period
is determined by sampling the settled solution at time intervals of length Tf ,
and comparing the solution at these sample points. This is used to determine
whether the solution period is an integer multiple of the forcing period. The
solution period Tsol is plotted against the forcing amplitude af , see figure 4b.
The solution period jumps directly from Tsol = Tf to Tsol = 2Tf confirming
there is a period doubling at af ≈ 0.47.

We will use one more characteristic measure of a solution. The solution
shifts gradually from having one birth pulse every Tf to having one pulse ev-
ery 2Tf (figure 3b), and this is not reflected in the solution period that changes
abruptly. Therefore, we introduce the average time distance between consecu-
tive birth pulses, denoted δ. To compute the number of birth pulses, the notion
of total variation V[a,b](B), of the birth rate function B, is employed,

V[a,b](B) =
∫ b

a

|B′(t)|dt .

This reflects the sum of all the increases and decreases in the function value
B(t) in the interval [a, b]. Furthermore, the amplitude A[a,b](B) of the birth
rate function B(t) taken for the interval [a, b] is given by

2A[a,b](B) = max
t∈[a,b]

B(t)− min
t∈[a,b]

B(t) .

We define the number of (full size) birth pulses P[a,b](B) in a time interval [a, b]
as the total variation in units of the amplitude:

P[a,b](B) =
V[a,b](B)

4A[a,b](B) .

The factor 4 comes from considering a continuous function B(t) that is periodic
on the interval [a, b]. For such a function, the total variation will measure the
height of every peak twice, since each peak goes both up and down. In addition,
the amplitude will measure half the height of the biggest peak. Dividing with
the length of the time interval gives the average number of birth pulses per time,
Γ = P[a,b](B)/(b − a). The inverse value, δ = Γ−1, corresponds to the average
time between two full birth pulses,

δ = b− a
P[a,b](B) . (8)

The length of the time interval, ∆t = b − a, should be an integer multiple of
the forcing period Tf , and for periodic solutions it should also be an integer
multiple of the solution period Tsol. Further, the solution is assumed to have
reached a stable stationary or periodic state at time t = a. The value of δ is
computed for each iteration in the parameter sweep, see figure 4b. After the
period doubling at af ≈ 0.47, the average time between birth pulses changes
gradually from δ = Tf to δ = 2Tf .

Combining the information from the different measures of the solution, we
summarize the results of the parameter sweep for the time scale ratio θ ≈ 1.1
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(figure 4). The solution locks in phase with the forcing for af < 0.47 with a
single pulse in each forcing period, δ = Tf . At af ≈ 0.47, there is a period
doubling followed by a gradual change in the solution to a birth pulse every
δ = 2Tf . At af ≈ 0.97, there is another period doubling resulting in a period
of 4Tf .

0 0.2 0.4 0.6 0.8 1

 a
f

1

2

3

θ

Figure 5: Bifurcation diagram for case A (µ = 0.25day−1, K = 0.5mgC/L)
with parameters for the forcing amplitude af and the time ratio θ = Tf/Tsys.
The colors indicate the solution period Tsol in units of Tf , Tsol = Tf is orange,
Tsol = 2Tf is green, and Tsol = 4Tf is purple. White indicates Tsol > 4Tf

or that no period was found, while black indicates the forward solution was
different from the backward solution.

Repeating the procedure of a parameter sweep for different forcing periods
Tf = 5, 6, . . . , 100days and combining the results, leads to a bifurcation diagram
in the parameters af and θ = Tf/Tsys, see figure 5. For all forcing periods the
solution immediately phase locks to the forcing when the forcing amplitude
is increased above 0. There are no period doublings for amplitudes less than
af ≈ 0.37 or for time scale ratios less than θ ≈ 0.37. When θ increases, period
doublings occur for larger values of forcing amplitude af .

Transients times become very large close to the period doublings, and hence
the forward and the backward solutions do not completely agree, since the simu-
lations are for finite time. Therefore, we observe a hysteresis-like phenomenon,
and in the theory of phase transitions this is referred to as critically slowing
down [13]. There is also an area with hysteresis (black) for large af and large
θ, where the forward and backward solution are clearly distinct.

3.2 Self-oscillating population
In this section, we turn our attention to case B (µ = 0.25day−1,K = 0.5mgC/L;
see figure 1) and investigate the effect of adding forcing to the system (1), using
the same approach as in case A. Without forcing, case B gives an oscillatory
solution with predator-prey driven cycles, see figure 6a, and has a period of
Tsys ≈ 27.6days (see section 2.1). In figure 6b, an example is shown of the forced
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system where the solution locks to the forcing, that is Tsol = Tf . The solution
still resembles the predator-prey cycles from the unforced system, except every
other bloom of the population has a larger amplitude.

(a) af = 0 (b) af = 0.4

Figure 6: Examples of solutions for the population density distribution n(x, t)
in case B (µ = 0.25day−1, K = 0.7mgC/L). (a) The unforced system has
a stable periodic solution with period Tsol ≈ Tf/2.2. (b) The forced system,
with forcing amplitude af = 0.4 and forcing period Tf = 60 days, has a stable
periodic solution with period Tsol = Tf .

First we consider a forcing with constant period Tf = 60days, giving the
time scale ratio θ ≈ 2.2. The combined population birth rate B(t) is plotted
for different forcing amplitudes af , see figure 7. For small forcing amplitude
af , the solution resembles the unforced solution, but the pulses are irregular.
Increasing af results in phase locking with the forcing, where the birth rate has
two pulses repeating every period. When af is increased further, the solution
first becomes irregular and eventually periodic again, but now there is only one
birth pulse in each period.
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Figure 7: Combined birth rate B(t) of the population in case B (µ = 0.25day−1,
K = 0.7mgC/L). The forcing period is kept constant for a time scale ratio of
θ ≈ 2.2, while the forcing amplitude af is varied. Each section on the vertical
axis represents the interval [0; 10]mm/(day · L). The function changes between
being irregular and periodic.
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We proceed as for case A and make a parameter sweep where the forcing
amplitude af is varied in small steps while the forcing period Tf is kept fixed.
Again the local maxima Bmax of the birth rate function B(t) are recorded, as
well as the solution period Tsol and the average time δ between consecutive
pulses (figure 8). As the forcing amplitude is increased from zero, Bmax shows
increasingly irregular behavior and δ shows increasing distance between the
birth pulses. The solution locks to the forcing frequency at af ≈ 0.30, and is
followed by at least one period doubling. When the amplitude af is increased
further, the periodic solutions break down and the solutions become irregular
again. At af ≈ 0.70, the irregular solutions are succeeded by another window
of periodic solutions containing at least one period doubling. Both intervals
of phase locking start with a period of Tsol = Tf , but the time between birth
pulses is less than the forcing period, i.e., δ < Tf , in the first interval, whereas
it is exactly δ = Tf in the second interval. In the second interval, the forcing
frequency completely dominates the solution and the influence of the oscillations
in the unforced system are no longer visible. This example displays some features
that are also characteristic for other values of θ. These general features include
that as the forcing amplitude af increases, the solution gradually changes from
being dominated by the period Tsys of the unforced system to being dominated
by the forcing period Tf .

To construct a bifurcation diagram in the parameters af and θ, we repeated
the simulations for a range of forcing periods Tf = 5, 6, . . . , 100 days, and com-
bined the results, see figure 9. In large regions of the parameter space, the
solutions are irregular or have a period Tsol > 4 (white area), suggesting the
solutions become quasi-periodic or even chaotic. The regions with irregular so-
lutions are interrupted by windows of periodic solutions that spreads out from
points on the θ-axis and undergo period doublings when af increases. Similar to
case A, there are hysteresis-like phenomena (black) near the period doublings,
because the transient times become very large here. However, there are also
larger areas of real hysteresis with existence of two distinct stable states.

Wedges with period Tsol = Tf (yellow) are clearly visible going out from
θ = 1, 2, 3 and around θ = 1/2, 3/2, 5/2 are some less distinct wedges with
period Tsol = 2Tf (green). This structure resembles the Arnold tongues found
in the Mathieu’s differential equation, see e.g. [1]. The average time between
pulses is not shown, but generally δ/Tf increases when moving down and to the
right in figure 9. Close to the θ-axis, the tongue from θ = 1 have exactly δ = Tf ,
whereas the tongues from θ = 2, 3 have varying values around δ ≈ 0.7Tf , 0.45Tf ,
respectively.

4 Discussion
We have studied the effect of environmental variations on a physiologically struc-
tured population. This was done by taking a size structured model by Kooijman
and Metz [4, 11] and introducing forcing, both when the unforced system ex-
hibit an equilibrium solution (case A) and when it exhibits an oscillatory solu-
tion (case B). In each case, the amplitude and period of the forcing were varied
systematically.

Environmental variations can be more or less regular, in both frequency,
amplitude and shape. If the cycles of the variations are close to being periodic,
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Figure 8: Parameter sweep in the forcing amplitude af for case B (µ =
0.25day−1, K = 0.7mgC/L) with a time scale ratio θ ≈ 2.2. (a) The local
maxima Bmax of the birth rate for each value of af . There are regions with
periodic solutions and period doublings, and regions with irregular behavior.
(b) The period Tsol of the solution and the average time δ between birth pulses.
There are two intervals with period Tsol = Tf , but with different values of δ,
implying a difference in the solutions.
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Figure 9: Bifurcation diagram for case B (µ = 0.25 day−1, K = 0.7mgC/L)
with parameters for the forcing amplitude af and the time ratio θ = Tf/Tsys.
The colors indicate the solution period Tsol in units of Tf , Tsol = Tf is orange,
Tsol = 2Tf is green, Tsol = 3Tf is blue, and Tsol = 4Tf is purple. White
indicates Tsol > 4Tf or that no period was found, while black indicates the
forward solution was different from the backward solution.

we expect the results presented here will still be applicable. In reality, some
variations might be far from periodic and could even resemble random noise,
and then a different approach would be needed. Here, we have chosen to focus
on periodic variations.

In case A, the unforced system has a stable equilibrium solution with oscil-
latory transient behavior, and the results of adding forcing are summarized in
figure 5. When forcing with low amplitudes (af close to 0) is introduced, the
population oscillates in phase with the forcing. When the forcing amplitude is
increased, the system undergoes (one or more) period doublings, and thus show
solutions with longer periods than that of the forcing. The period doublings
occur for lower forcing amplitude when θ is close to 1, i.e., when the forcing
frequency is close to the systems internal frequency. These results suggest that
the population oscillates in phase with the environmental variations, though
period doublings may occur, particularly near resonance frequencies.

The system in case B exhibits a stable periodic solution in the absence of
forcing. The effects of forcing are summarized in figure 9 and resembles the
classic pattern of Arnold tongues [1]. The tongues start at rational values of θ
and represents windows of phase-locking. Period doublings occur as the forcing
amplitude af is increased. The broadest tongues are the ones starting at integer
values of θ, corresponding to forcing periods of Tf ≈ 27.6, 55.2, 82.7 days. These
tongues represent solutions that have the same period as the forcing (before pe-
riod doublings), but with different number of birth pulses per cycle. Outside the
tongues are regions with irregular (chaotic or quasi-periodic) solutions. These
regions generally become more dominant when moving away from θ = 1.

Our findings agree with similar studies of forcing in predator-prey mod-
els without size structure. Forcing of the unstructured Rosenzweig-MacArthur
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model reveals bifurcations diagrams with Arnold tongues similar to figure 9,
for parameters giving oscillatory solutions in the absence forcing, as in case B
[20, 22]. For parameters corresponding to case A, i.e., parameters where the
unforced system displays oscillatory decay towards a stable equilibrium, forcing
of the Rosenzweig-MacArthur model gives results resembling those in figure 5
[20].

The tongues of phase-locking in case B start at rational values of the ratio θ =
Tf/Tsys. We believe this pattern is general for environmental variations with
period Tf and populations with self-oscillations with period Tsys. Therefore,
our results could also apply to populations of other species. For example, for
a population with internal oscillation period of Tsys = 6 months subjected to
an annual variation, we have θ = 2 and thus expect the population to have two
birth pulses repeating each year for a wide range of forcing amplitudes.
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