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Abstract

We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the so-
lution is available in the form of training images. We first construct a non-negative dictionary based on prototype
elements from the training images; this problem is formulated within the framework of sparse learning as a regular-
ized non-negative matrix factorization. Incorporating the dictionary as a prior in a convex reconstruction problem,
we then find an approximate solution with a sparse representation in the dictionary. The dictionary is applied to
non-overlapping patches of the image, which reduces the computational complexity compared to previous formula-
tions. Computational experiments clarify the choice and interplay of the model parameters and the regularization
parameters, and we show that in few-projection low-dose settings our algorithm is competitive with total variation
regularization and tends to include more texture and more correct edges.

Keywords: Tomography, Dictionary learning, Inverse problems, Regularization, Sparse representation, Image
reconstruction.
2010 MSC: Primary: 65F22, Secondary: 65K10.

1. Introduction

Computed tomography (CT) is a technique to compute an image of the interior of an object from measurements
obtained by sending X-rays through the object and recording the damping of each ray. CT is used routinely in medical
imaging, materials science, nondestructive testing and many other applications.

CT is an inverse problem [30] and it is challenging to obtain sharp and reliable reconstructions in low-dose mea-
surements where we face underdetermined systems of equations, because we must limit the accumulated amount of
X-rays for health reasons or because measurement time is limited. In these circumstances the classic methods of
CT, such as filtered back projection [20] and algebraic reconstruction techniques [14], are often incapable of produc-
ing satisfactory reconstructions because they fail to incorporate adequate prior information [3]. To overcome these
difficulties it is necessary to incorporate prior information about the solution that can compensate for the lack of data.

A popular prior is that the image is piecewise constant, leading to total variation (TV) regularization schemes [21],
[38]. These methods can be very powerful when the solution is approximately composed of homogeneous regions
separated by sharp boundaries.

A completely different approach is to use prior information in the form of “training images” that characterize the
geometrical or visual features of interest, e.g., from high-accuracy reconstructions or from pictures of specimen slices.
The goal of this work is to elaborate on this approach. In particular we consider the two-stage framework where the
most important features of the training data are first extracted and then integrated in the reconstruction problem.

A natural way to extract and represent prior information from training images is to form a dictionary that sparsely
encodes the information [31]. Learning the dictionary from given training data appears to be very suited for incorpo-
rating priors that are otherwise difficult to formulate in a closed form, such as image texture. Dictionary learning —
combined with sparse representation [5, 9, 37] — is now used in many image processing areas including denoising
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[7], [24], inpainting [27], and deblurring [25]. Elad and Ahron [10] address the image denoising problem using a
process that combines dictionary learning and reconstruction. They use a dictionary trained from a noise-free image
using the K-SVD algorithm [1] combined with an adaptive dictionary trained on patches of the noisy image.

The use of dictionary learning in tomographic imaging has also emerged recently, e.g., in X-ray CT [12, 39,
41], magnetic resonance imaging [16, 32], electron tomography [26], positron emission tomography [8], and phase-
contrast tomography [29]. Two different approaches have emerged — either one constructs the dictionary from the
given data in a joint learning-reconstruction algorithm [8, 16, 26, 32], or one constructs the dictionary from training
images in a separate step before the reconstruction [12, 29, 39, 41]. Most of these works use K-SVD to learn the
dictionary (except [12] that uses an “online dictionary learning method” [28]), and all the methods regularize the
reconstruction by means of a penalty that is applied to a patch around every pixel in the image. In other words,
all patches in the reconstruction are required be close to the subspace spanned by the dictionary images. While all
these methods perform better than classical reconstruction methods, they show no significant improvement over the
TV-regularized approach.

In simultaneous learning and reconstruction, where the dictionary is learned from the given data, the prior is
purely data-driven. Hence, one can argue that it violates a fundamental principle of inverse problems where a data-
independent prior is incorporated to eliminate unreasonable models that fit the data. For this reason we prefer to
separate the two steps (which requires that reliable training images are available). We describe and examine a two-
stage framework where we first construct a dictionary that contains prototype elements from these images, and then
we use the dictionary as a prior to regularize the reconstruction problem via computing a solution that has a sparse
representation in the dictionary.

Our two-stage algorithm is inspired by the work in [12] and, to some extent, [39]. The algorithm in [12] is
tested on a simple and ideal tomography setup with no noise in the data, and in [39] the dictionary is trained from an
image reconstructed by a high-dose X-ray exposure and then used to reconstruct the same image with fewer X-ray
projections.

The focus of this paper is a new formulation of tomographic reconstruction where training images are used as
a strong prior. Our algorithm utilizes the dictionary in a different way than previous formulations, by using non-
overlapping blocks of the image which reduces the number of unknowns and thus the computational work. We use
state-of-the-art numerical optimization methods to handle the large-scale optimization problems, and we apply this
algorithm applied to underdetermined problems where a strong prior is necessary. We perform comprehensive studies
of the influence of the learned dictionary structure and the dictionary parameters on the CT reconstruction, and we
compare our algorithm with both classical methods and with TV regularization.

Our paper is organized as follows. In section 2 we briefly discuss dictionary learning methods and present a
framework for solving the image reconstruction problem using dictionaries, and in Section 3 we describe the imple-
mentation details of algorithm. Section 4 presents careful numerical experiments where we study the influence of
the algorithm and design parameters. Section 5 summarizes our work. We use the following notation, where A is an
arbitrary matrix:

‖A‖F =
(∑

i j A2
i j

)1/2
, ‖A‖sum =

∑
i j |Ai j|, ‖A‖max = maxi j |Ai j|.

2. The Reconstruction Framework

X-ray CT is based on the principle that if we send X-rays through an object and measure the damping of each ray
then, with infinitely many rays, we can perfectly reconstruct the object. The attenuation of an X-ray is proportional to
the object’s attenuation coefficient, as described by Lambert-Beer’s law [6, §2.3.1]. We divide the domain onto pixels
whose unknown non-negative attenuation coefficients are organized in the vector x ∈ Rn. Similarly we organize the
measured damping of the rays into the vector b ∈ Rm. Then we obtain a linear system of equations A x = b with a
large sparse system matrix A governed solely by the geometry of the measurements: element ai j is the length of the
ith ray passing through pixel j, and the matrix is sparse because each ray only hits a small number of pixels [30].

The matrix A is ill-conditioned, and often rank deficient, due to the ill-posedness of the underlying inverse problem
and therefore the solution is very sensitive to noise in the data b. For this reason, a simple least squares approach with
non-negativity constraints fails to produce a meaningful solution, and we must use regularization to incorporate prior
information about the solution [13].
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This work is concerned with underdetermined problems where m < n, and the need for regularization is even
more pronounced. Classical reconstruction methods such as filtered back projection and algebraic iterative methods
are not suited for these problems because they fail to incorporate enough prior information. TV regularization, which
is suited for edge-preserving reconstructions, takes the form

min
x

1
2 ‖A x − b‖22 + λTV

∑
1≤i≤n

∥∥∥Dfd
i x

∥∥∥
2 subject to x ≥ 0, (1)

where we have included a non-negativity constraint; Dfd
i x is a finite-difference approximation of the gradient at pixel i,

and λTV > 0 is a regularization parameter. TV methods produce images whose pixel values are clustered into regions
with almost constant intensity [35], with the result that textural images tend to be over-smoothed (except for the sharp
edges). Another drawback is that the TV problem (1) tends to produce reconstructions whose intensities are incorrect
[35].

Our goal is to incorporate prior information — e.g., about texture — from a set of training images. We focus
on formulating and finding a learned dictionary W from the training images and solving the tomography problem
such that x = Wα is a sparse linear combination of the dictionary elements (the columns of W). We build on ideas
from sparse approximation [5, 9, 37] which seeks an approximate representation of a signal/image using a linear
combination of a few known basis elements.

As mentioned in the Introduction, some works use a joint formulation that combines the dictionary learning
problem and the reconstruction problem into one optimization problem, i.e., the dictionary is learned from the given
noisy data. This corresponds to a “bootstrap” situation where one creates the prior as part of the solution process.
Our work is different: we use a prior that is already available in the form of a set of training images, and we use this
prior to regularize the reconstruction problem. To do this, we use a two-stage algorithm where we first compute the
dictionary from the given training images, and then we use the dictionary to compute the reconstruction.

The dictionary W should comprise all the important features of the desired solution. A learned dictionary — while
computationally more expensive than a fixed dictionary — has the advantage that it is tailored to the characteristics of
the desired solution and optimized for the training images. Dictionary learning is a way to summarize and represent
a large number of training images into fewer elements and, at the same time, compensate for noise or other errors in
these images. The learned dictionary should be robust to irrelevant features, and the number of training images should
be large enough to ensure that all image features are represented; hence dictionaries are typically overcomplete.

Using training images of the same size as the image to be reconstructed would require a huge number of training
images and lead to an enormous dictionary. All algorithms therefore use a patch dictionary D learned from patches
of the training images. But contrary to previous algorithms that apply a dictionary-based regularization based on
overlapping patches around every pixel in the image, we divide the reconstruction into non-overlapping blocks of
the same size as the patches and use the dictionary D within each block (ensuring that we limit blocking effects);
conceptually this corresponds to building a global dictionary W from the patch dictionary D.

Let the patches be of size P × Q, and let the matrix Y ∈ Rp×t
+ consist of t training image patches arranged as

vectors of length p = PQ. Then the dictionary learning problem can be viewed as the problem of approximating
the training matrix as a product of two matrices, Y ≈ DH, where D ∈ Rp×s is the dictionary of s dictionary image
patches (the columns of D), and H ∈ Rs×t contains information about the approximation of each of the training image
patches. Such a decomposition is clearly not unique, so we must incorporate further requirements to “shape” the patch
dictionary D and the representation matrix H.

Imposing norm and/or non-negativity constraints on the elements of D and H or imposing sparsity constraint on
matrix H are widely used in unsupervised learning. We take the same approach, and thus our generic dictionary
learning problem takes the form:

min
D,H

Ldic(Y,DH) + Φdic(D) + Φrep(H). (2)

Here, the misfit of the factorization approximation is measured by the loss function Ldic, while the priors on the patch
dictionary D and the representation matrix H are taken into account by the regularization functions Φdic and Φrep.

The dictionary learning problem (2) is a non-convex optimization problem. If we choose the functions Ldic, Φdic
and Φrep to be convex, then the optimization problem in (2) is not jointly convex in (D,H), but it is convex with
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respect to each variable D or H when the other is fixed. A natural way to find a local minimum is therefore to use an
alternating approach, first minimizing over H with D fixed, and then minimizing over D with H fixed.

Various dictionary learning methods proposed in the literature share the same overall structure but they consider
different priors when formulating the dictionary learning problem. Examples of such methods include, but are not
limited to, non-negative matrix factorization [22], the method of optimal directions [11], K-means clustering [18] and
its generalization K-SVD [10], and the online dictionary learning method [28]. The methods in [19] and [23] are
designed for training data corrupted by additive noise; but this it is not important for our work.

Having computed the patch dictionary D and formed the corresponding global dictionary W, the second step is to
solve the reconstruction problem. Using ideas from sparse approximation, we compute a solution x = Wα where α
solves the problem

min
α

Lrec(AWα, b) + Φsp(α) + Φip(Wα), (3)

in which the data fidelity is measured by the loss function Lrec and regularization is imposed via penalty functions.
Specifically, the function Φsp enforces the Sparsity Prior on α, often formulated in terms of a sparsity inducing norm,
while the function Φip enforces the Image Prior. If we choose the three functions Lrec, Φsp and Φip to be convex, then
the problem formulation (3) can be solved by means of convex optimization methods. Given a solution α? to (3) we
compute the solution as x? = Wα?. In Section 4 we illustrate with numerical examples that the sparsity penalties in
(2) and (3) tend to have a regularizing effect on the reconstruction.

3. Details of Formulation and Implementation

Recall that the proposed framework for dictionary-based tomographic reconstruction consists of two conceptual
steps: (i) computing a dictionary (using techniques from machine learning), and (ii) computing a reconstruction
composed of images from the dictionary. In this section we describe one of many ways to efficiently implement such
a scheme. We pose the dictionary-learning problem as a so-called non-negative sparse coding problem, and we use
least squares optimization with non-negative variables and 1-norm regularization to compute a reconstruction.

3.1. The Dictionary Learning Problem

Dictionary learning problems of the form (2) are generally non-convex optimization problems due to the bilinear
term DH where both D and H are unknown. Applying a convergent iterative optimization method therefore does
not guarantee that we find a global minimum (only a local stationary point). To obtain a good dictionary, we must
be careful when choosing the loss function Ldic and the penalties Φdic and Φrep on D and H, and we must also pay
attention to implementation issues such as the starting point; see the Appendix for details.

A non-negative matrix factorization (NMF) has the ability to extract meaningful factors [22], and with non-
negative elements in D its columns represent a basis of images. Similarly, having non-negative elements in H corre-
sponds to each training image being represented as a conic combination of dictionary images, and the representation
itself is therefore non-negative. NMF often works well in combination with sparsity heuristics [15] which in our appli-
cation translates to training image patches being represented as a conic combination of a small number of dictionary
elements (basis images).

The dictionary learning problem that we will use henceforth takes the form of non-negative sparse coding [15] of
a non-negative data matrix Y:

min
D,H

1
2 ‖Y − DH‖2F + λ ‖H‖sum s.t. D ∈ D, H ∈ Rs×t

+ , (4)

where the set D is compact and convex and λ ≥ 0 is a regularization parameter that controls the sparsity-inducing
penalty ‖H‖sum. This problem is an instance of the more general formulation (2) if we define

Ldic(Y,DH) = 1
2 ‖Y − DH‖2F

and
Φdic(D) = ID(D), Φrep(H) = IRs×t

+
(H) + λ‖H‖sum ,
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where ID denotes the indicator function of the set D. Note that the loss function Ldic is invariant under a scaling
D 7→ ζD and H 7→ ζ−1H for ζ > 0, and letting ζ → ∞ implies that Φrep(ζ−1H) → 0 and ‖ζD‖ → ∞ if D is nonzero.
This means that D must be compact to ensure that the problem has well-defined minima. Here we will consider two
different definitions of the setD, namely

D∞ ≡ {D ∈ Rp×s
+ | ‖d j‖∞ ≤ 1} and D2 ≡ {D ∈ Rp×s

+ | ‖d j‖2 ≤
√

p}.

The set D∞ corresponds to box constraints, and D2 is a spherical sector of the 2-norm ball with radius
√

p. As we
will see in the next section, the use ofD∞ as a prior gives rise to binary-looking images (corresponding to the vertices
ofD∞) whereasD2 gives rise to more “natural looking” images.

We emphasize an important difference between the classical K-SVD method and our method. While K-SVD
requires that we explicitly set the sparsity level, in our approach we affect sparsity implicitly through 1-norm regular-
ization and via the regularization parameter λ.

We use the Alternating Direction Method of Multipliers (ADMM) [4] to compute an approximate local minimizer
of (4). Learning the dictionary with the ADMM method has the advantages that the updates are cheap to compute,
making the method suited for large-scale problems. The implementation details are described in the Appendix.

3.2. The Reconstruction Problem

Recall that we formulate the CT problem as Ax ≈ b, where b contains the noisy data and A is the system matrix.
The vector x represents an M ×N image of absorption coefficients, and these coefficients must be nonnegative to have
physical meaning. Hence we must impose a nonnegativity constraint on the solution.

Let us turn to the reconstruction problem based on the patch dictionary D and the formulation (3). For ease of
our presentation we assume that the image size M × N is a multiple of the patch size P × Q, and we partition the
image into an (M/P) × (N/Q) array of non-overlapping blocks or patches represented by the vectors x j ∈ Rp for
j = 1, . . . , q = (M/P)(N/Q). The advantage of using non-overlapping blocks, compared to overlapping blocks, is
that we avoid over-smoothing the image textures when averaging over the overlapping regions, and it requires less
computing time.

Each block of x is expressed as a conic combination of dictionary images, and hence the dictionary prior is
expressed as

x = Π Wα, W = (I ⊗ D), α ≥ 0, (5)

where Π is a permutation matrix which ensures that we reconstruct the image block by block, W is the global dictio-
nary, and

α =


α1
...
αq

 ∈ Rs × · · · × Rs︸          ︷︷          ︸
q times

is a vector of coefficients for each of a total of q blocks. With this non-overlapping formulation, it is straightforward
to determine the numebr of unknowns in the problem (8). The length of α is sq = n s/p which is equal to the product
of the over-representation factor s/p and the number of pixels n in the image.

In pursuit of a nonnegative image x, we impose the constraint that the vector α should be nonnegative. This
implies that each block x j of x lies inside a polyhedral cone

C = {Dz | z ∈ Rs
+} ⊆ Rp

+ (6)

as illustrated in Figure 1. Clearly, if the dictionary contains the standard basis of Rp then C is equivalent to the entire
nonnegative orthant in Rp. However, if the cone C is a proper subset of Rp

+, then not all nonnegative images have an
exact representation in C, and hence the constraints x j ∈ Cmay have a regularizing effect even without a sparsity prior
on α. This can also be motivated by the fact that the faces of the cone C consist of images x j that can be represented
as a conic combination of at most p − 1 dictionary images.

Adding a sparsity prior on α, in addition to nonnegativity constraints, corresponds to the assumption that x j can be
expressed as a conic combination of a small number of dictionary images and hence provides additional regularization.
We include a 1-norm regularizer in our reconstruction problem as the standard approximate sparsity prior on α.
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Figure 1: Polyhedral cone in Rp
+ spanned by five nonnegative dictionary elements, where ei denotes the ith canonical unit vector in Rs.

Reconstruction based on non-overlapping blocks often gives rise to block artifacts in the reconstruction because
the objective in the reconstruction problem does not penalize jumps across the boundaries of neighboring blocks. To
mitigate this type of artifact, we add a penalty term that discourages such jumps. We choose a penalty of the form

ψ(z) = 1
2 ‖L z‖22/`, ` = M(M/P − 1) + N(N/Q − 1) (7)

where L is a matrix such that L z is a vector with finite-difference approximations of the directional derivatives across
the block boundaries. The factor ` is the total number of pixels along the boundaries of the blocks in the image.

The constrained least squares reconstruction problem is then given by

minimizeα 1
2

1
m ‖AΠ(I ⊗ D)α − b‖22 + µ 1

q‖α‖1 + δ2 ψ(Π(I ⊗ D)α)
subject to α ≥ 0

(8)

with regularization parameters µ, δ > 0. We normalize the problem formulation by i) division of the squared residual
norm by the number of measurement m, ii) division of the 1-norm of α by the number of blocks q, and iii) division
by ` in the function ψ. Problem (8) is convex and it is an instance of a sparse approximation problem similar to
formulations studied in [10].

4. Numerical Experiments

In this section we use numerical examples to demonstrate and quantify the behavior of our two-stage algorithm
and evaluate the computed reconstructions. In particular we explore the influence of the dictionary structure and
its parameters (number of elements, patch sizes) on the reconstruction, in order to illustrate the role of the learned
dictionary.

The underlying idea is to compute a regularized least squares fit in which the solution is expressed in terms of
the dictionary, and hence it lies in the cone C (6) defined by the dictionary elements. Hence there are two types of
errors in the reconstruction process. Typically, the exact image does not lie in the cone C, leading to an approximation
error. Moreover, we encounter a regularization error due to the combination of the error present in the data and the
regularization scheme.

In the learning stage we use a set of images which are similar to the ones we wish to reconstruct. The ground-truth
or exact image xexact is not contained in the training set, so that we avoid committing an inverse crime. All images are
gray-level and scaled in the interval [0, 1].

All experiments were run in MATLAB (R2011b) on a 64-bit Linux system. The reconstruction problems are
solved using the software package TFOCS (Templates for First-Order Conic Solvers) [2]. We compare with TV re-
constructions computed by means of the MATLAB software TVReg [17], with filtered back projection solutions com-
puted by means of MATLAB’s “iradon” function, and solutions computed by means of the algebraic reconstruction
technique (ART, also known as Kaczmarz’s method) with nonnegativety constraints implemented in the MATLAB
package AIR Tools [14]. (We did not compare with Krylov subspace methods because they are inferior to ART for
images with sharp edges.)
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4.1. The Test Image and the Tomographic Test Problem
The test images used in Sections 4.2–4.5 are square patches from a high-resolution photo of peppers with uneven

surfaces resembling texture, making them interesting test images for studies of the reconstruction of textures and
structures with sharp boundaries. Figure 2 shows the 1600 × 1200 high-resolution image and the exact image of
dimensions M × N = 200 × 200. This size allows us to perform many numerical experiments in a reasonable amount
of time; we demonstrate the performance of our algorithm on a larger test problem in Section 4.6.

Figure 2: Left: the high-resolution image from which we obtain the training image patches. Right: the 200 × 200 exact image xexact.

All test problems represent a parallel-beam tomographic measurement, and we use the function paralleltomo

from AIR Tools [14] to compute the system matrix A. The data associated with a set of parallel rays is called a
projection, and number of rays in each projection is given by Nr = b

√
2Nc. If the total number of projections is Np

then the number of rows in A is m = NrNp while the number of columns is n = MN. Recall that we are interested in
scenarios with a small number of projections. The exact data is generated with the forward model after which we add
Gaussian white noise, i.e., b = Axexact + e.

4.2. Studies of the Dictionary Learning Stage
A good dictionary should preserve the structural information of the training images as much as possible and, at

the same time, admit a sparse representation as well as a small representation error. These requirements are related to
the number of dictionary elements, i.e., the number of columns s in the matrix D ∈ Rp×s. Since we want a compressed
representation of the training images we choose s such that p ≤ s � t, and the precise value will be investigated. The
optimal patch size P × Q is unclear and will also be studied; without loss of generality we assume P = Q.

The regularization parameter λ in (4) balances the matrix factorization error and the sparsity constraint on the
elements of the matrix H. The larger the λ, the more weight is given to minimization of ‖H‖sum, while for small λ
more weight is given to minimization of the factorization error. If λ = 0 then (4) reduces to the classical nonnegative
matrix factorization problem.

From the analysis of the upper bound on the regularization parameter λ in the Appendix, we know λ ≥ p implies
H = 0; so λ can be varied in the interval (0, p] to find dictionaries with different sparsity priors. Note that the scaling
of the training images affects the scaling of the matrix H as well as the regularization parameter λ.

To evaluate the impact of the dictionary parameters, we use three different patch sizes (5×5, 10×10, and 20×20)
and the number of dictionary elements s is chosen to be 2, 3, and 4 times the of the number of rows p in the dictionary
D. We extract more than 50, 000 overlapping patches from the high-resolution image in Figure 2. For different
combinations of patch sizes and number of dictionary elements we solve the dictionary learning problem (4).

Figure 3 shows examples of such learned dictionaries, where columns of D are represented as images; we see that
the penalty constraint D ∈ D∞ gives rise to “binary looking” dictionary elements while D ∈ D2 results in dictionary
elements that use the whole gray-scale range.

To evaluate the approximation error, i.e., the distance of the exact image xexact to its projection on the cone C (6),
we compute the solutions α?j to the q approximation problems for all blocks j = 1, 2, . . . , q in xexact,

min
α j

1
2

∥∥∥Dα j − xexact
j

∥∥∥2
2 s.t. α j ≥ 0. (9)
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(a) 5 × 5, s = 100 (b) 10 × 10, s = 300 (c) 20 × 20, s = 800

(d) 5 × 5, s = 100 (e) 10 × 10, s = 300 (f) 20 × 20, s = 800

Figure 3: Examples of dictionary elements. Top row: with the constraint D ∈ D∞ the images appear as “binary looking.” Bottom row: with the
constraint D ∈ D2 the images appear to use the whole gray-scale range.

Then PC(xexact
j ) = Dα?j is the best representation/approximation of the jth block in the cone. The mean approximation

error (MAE) is then computed as

MAE =
1
q

q∑
j=1

1
√

p

∥∥∥PC(xexact
j ) − xexact

j

∥∥∥
2. (10)
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Figure 4: Mean approximation errors (10) for both D ∈ D∞ and D ∈ D2 with different patch sizes and different s.

The ability of the dictionary to represent features and textures from the training images, which determines how
good reconstructions we are able to compute, depends on the regularization parameter λ, the patch size, and the
number of dictionary elements. Figure 4 shows how the mean approximation error MAE (10) associated with the
dictionary varies with patch size p, number of dictionary elements s, and regularization parameter λ. An advantage
of larger patch sizes is that the variation of MAE with s and λ is less pronounced than for small patch sizes, so overall
we tend to prefer larger patch sizes. In particular, for a large patch size we can use a smaller over-representation factor
s/p than for a small patch size. As λ approaches p we have that ‖H‖sum approaches 0, the dictionary D takes arbitrary
values, and the approximation errors level off at a maximum value. Regarding the two different constraints D ∈ D∞
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Figure 5: Contour plots of the reconstruction error RE (11) versus λ and µ/q.

and D ∈ D2 we do not see any big difference in the approximation errors for 10 × 10 and 20 × 20 patches; to limit the
amount of results we now useD2.

The computational work depends on the patch size and the number of dictionary elements which, in turn, affects
the approximation error: the larger the dictionary, the smaller the approximation error, but at a higher computational
cost. We have found that a good trade-off between the computational work and the approximation error can be
obtained by increasing the number of dictionary elements until the approximation error levels off.

4.3. Studies of the Reconstruction Stage

Here we evaluate the overall reconstruction framework including the effect of the reconstruction parameters as
well as their connection to the dictionary learning parameter λ and the patch size.

We solve the reconstruction problem (8) using projection data based on the exact image given in Figure 2. We
choose Np = 25 uniformly distributed projection angles in [0◦, 180◦]. Hence the matrix A has dimensions m = 7, 050
and n = 40, 000, so the problem is highly underdetermined. We use the relative noise level ‖e‖2/‖Axexact‖2 = 0.01.
Moreover, we use 5 × 5, 10 × 10 and 20 × 20 patches and corresponding dictionary matrices D(5), D(10), and D(20) in
D2 of size 25 × 100, 100 × 300, and 400 × 800, respectively. Examples of the dictionary elements are shown in the
bottom row of Figure 3.

We first investigate the reconstruction’s sensitivity to the choice of λ in the dictionary learning problem and the
parameters µ and δ in the reconstruction problem. It follows from the optimality conditions of (8) that α? = 0 is
optimal when µ ≥ µ̄ =

q
m ‖(I ⊗DT )ΠT AT b‖∞ and hence we choose µ ∈ [0, µ̄]. Large values of µ refer to the case where

the sparsity prior is strong and the solution is presented with too few dictionary elements. On the other hand if µ is
small and a sufficient number of dictionary elements are included, the reconstruction error worsens only slightly when
µ decreases. In the next subsection we show that we may, indeed, obtain reasonable reconstructions for µ = 0.

To investigate the effect of regularization parameters λ and µ, we first perform experiments with δ = 0 correspond-
ing to no image prior. The quality of a solution x is evaluated by the reconstruction error

RE = ‖x − xexact‖2/‖xexact‖2 (11)

and Figure 5 shows contour plots of RE as a function of λ and µ/q. The reconstruction error is smaller for larger patch
sizes, and also less dependent on the regularization parameter λ and the normalized regularization parameter µ/q. The
smallest reconstruction errors are obtained in all dictionary sizes for λ ≈ 3.

Let us now consider the reconstructions when δ > 0 in order to reduce block artifacts. Figure 6 shows contour
plots of the reconstruction error versus µ/q and δ, using a fixed λ = 3.16. It is no surprise that introducing δ acts as
a regularizer that can significantly reduce blocking artifacts and thus improve the reconstruction. Sufficiently large
values of δ yield smaller reconstruction errors. Consistent with the results from Figure 5, the reconstruction errors are
smaller for 10 × 10 and 20 × 20 patch sizes than for 5 × 5 patches. For larger patch sizes (which allow for capturing
more structure in the dictionary elements) the reconstruction error is quite insensitive to the choice of δ and µ. The
contour plots in Figure 6 suggest that with our problem specification, we should choose δ ≥ 1.
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Figure 6: Contour plots of the reconstruction errors RE (11) versus µ/q and δ for a fixed λ = 3.16.

Finally, in Figure 7 we compare our reconstructions with those computed by means of filtered back projection
(FBP), the algebraic reconstruction technique (ART), and TV regularization. We used the Shepp-Logan filter in
“iradon.” To be fair, the TV regularization parameter and the number of ART iterations were chosen to yield an
optimal reconstruction.

• The FBP reconstruction contains the typical artifacts associated with this method for underdetermined problems,
such as line structures.

• The ART reconstruction – although having about the same RE as our reconstruction – is blurry and contains
artifacts such as circle structures and errors in the corners.

• The TV reconstruction has the typical “cartoonish” appearance of TV solutions and hence it fails to include
most of the details associated with the texture; the edges of the pepper grains are distinct but geometrically
somewhat un-smooth.

• Our reconstructions, while having about the same RE as the TV reconstruction, include more texture and some
of the details from the exact image (but not all) are recovered, especially with D(20). Also the pepper grain edges
resemble more the smooth edges from the exact image.

We conclude that our dictionary-based reconstruction method appears to have an edge over the other three methods.
Our formulation in (8) enforces that the solution is an exact representation in the dictionary, and searching for

solutions in the cone spanned by the dictionary elements is a strong assumption in the reconstruction formulation. In
[33] we investigated this requirement experimentally and showed that relaxing the equality x = Π (I⊗D) does not give
an advantage, i.e., approximating a solution by x ≈ Π (I⊗D)α and minimizing ‖x−Π (I⊗D)α‖2 does not improve the
reconstruction quality, and one can compute a good reconstruction as a conic combination of the dictionary elements.

4.4. Simplifying the Computational Problem

We have been working under the assumption that α ≥ 0 and that it is sparse. Imposing both non-negativity and
a 1-norm constraint on the representation vector α are strong assumptions in the reconstruction formulation. If we
drop the non-negativity constraint in the image reconstruction problem, then (8) takes the form of a constrained least
squares problem:

min
α

1
2

∥∥∥∥∥∥∥
 1
√

m A Π (I ⊗ D)
δ
√
`
L Π (I ⊗ D)

α − (
b
0

)∥∥∥∥∥∥∥
2

2

s.t. ‖α‖1 ≤ γ, (12)

where γ > 0. Alternatively we can neglect the parameter µ. This is motivated by the plots in Figures 5 and 6 which
suggest that for sufficiently large λ, δ and patch sizes, the reconstruction error is almost independent of µ as long as it
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(a) FBP, RE = 0.481

10 iterations

(b) ART, RE = 0.225

λ
TV

=1.833

(c) TV, RE = 0.214

µ=34.5, δ=13.3

(d) 5 × 5, RE = 0.224

µ=8.62, δ=13.3

(e) 10 × 10, RE = 0.220

µ=2.15, δ=237

(f) 20 × 20, RE = 0.226

Figure 7: Reconstructions for different patch sizes, with D ∈ D2 and λ = 3.16, compared with the FBP, ART and TV solutions. Note that in all our
three reconstructions µ/q = 0.022. RE denotes the reconstruction error (11).

is small. When µ = 0 (8) reduces to a nonnegatively constrained least square problem:

min
α

1
2

∥∥∥∥∥∥∥
 1
√

m A Π (I ⊗ D)
δ
√
`
L Π (I ⊗ D)

α − (
b
0

)∥∥∥∥∥∥∥
2

2

s.t. α ≥ 0. (13)

We use the same test problem with 25 projections and relative noise level 0.01 as in Section 4.3. We solve problem
(12) for D(10) ∈ D2, which resulted in the smallest reconstruction error when solving (8) (cf. Figure 7). Likewise we
choose 10 × 10 and 20 × 20 patch sizes and D(10),D(20) ∈ D2 to solve (13). Figures 8 and 9 show the respective
reconstructions.
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Figure 8: Contour plots of the reconstruction error RE for problem (12), similar to Figures 5 and 6. Left: RE versus λ and γ when δ = 0. Middle:
RE versus γ and δ with fixed λ = 10. Right: The best reconstruction with RE = 0.243.

There are two difficulties with the reconstructions computed via (12). The lack of a nonnegativity constraint on
α can lead to negative pixel values in the reconstruction, and this is undesired because it is nonphysical and it leads
to a larger reconstruction error . Also, as can be seen in Figure 8, the reconstruction is very sensitive to the choose
of the regularization parameter γ; it must be sufficiently large to allow the solution to be represented with a sufficient
number of dictionary elements, and it should be carefully chosen to provide an acceptable reconstruction.

The solution to problem (13) for a 20 × 20 patch size, compared to the solution shown in Figure 7, is not sig-
nificantly worse both visually and in terms of reconstruction error. This suggests that using the dictionary obtained
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Figure 9: Plots of reconstruction error versus δ for problem (13), using fixed λ = 3.16 and µ = 0, together with the best reconstructions with
RE = 0.242 and RE = 0.231. Left and right parts correspond to patch sizes 10 × 10 and 20 × 20, respectively.

from (4) with a proper choice of λ and patch size and a nonnegatively constraint may be sufficient for the reconstruc-
tion problem, i.e., we can let µ = 0. While this seems to simplify the problem – going from (8) to (13) – it does
not significantly simplify the computational optimization problem, since the 1-norm constraint is handled by simple
thresholding in the software; but it help us to get rid of a parameter in the reconstruction process. However, when the
1-norm constraint is omitted, additional care is necessary when choosing λ and the patch sizes to avoid introducing
artifacts or noise.

4.5. Studies of Robustness
To further study the performance of our algorithm, in this section we consider reconstructions based on (8) with

more noise in the data, and with projections within a limited range. The first two tests use 25 and 50 projections with
uniform angular sampling in [0◦, 180◦] and with relative noise level = 0.05, i.e., a higher noise level than above. For
our highly underdetermined problems we know that both filtered back projection and algebraic iterative techniques
give unsatisfactory solutions, and therefore we only compare our method with TV. As before the regularization
parameters λ and µ are chosen from numerical experiments such that a solution with the smallest error is obtained.

The reconstructions are shown in the top and middle rows of Figure 10. The reconstruction errors are still sim-
ilar across the methods. Again, the TV reconstructions have the characteristic “cartoonish” appearance while the
dictionary-based reconstructions retain more the structure and texture but have other artifacts – especially for Np = 25.
We also note that these artifacts are different for the two different dictionaries.

The third set uses 25 projections uniformly distributed in the limited range [0◦, 120◦] and with relative noise level
0.01. In this case the TV reconstructions display additional artifacts related to the limited-angle situation, while such
artifacts are somewhat less pronounced in the reconstructions by our algorithm.

In the numerical studies performed in this paper there is an underlying assumption that the scale and orientation
of the training images are consistent with the unknown image. While this assumption is convenient for the studies
performed here, it may not be entirely realistic. In a separate work [33] we therefore investigated the sensitivity
and robustness of the reconstruction to variations of the scale and orientation in the training images, and we discuss
algorithms to estimate the correct relative scale and orientation from the data (scale being the more difficult parameter
to estimate).

4.6. A Large Test Case
We also verified our method on two larger test problems that simulate the analysis of microstructure in materials

science. Almost all common metals and many ceramics are polycrystalline, i.e., they are composed of many small
crystals or grains of varying size and orientation, and the variations in orientation can be random. It is of particular
interest to study how the grain boundaries — the interfaces between grains — respond external stimuli such heat, stress
or strain. Here we assume that priors of the grain structure are available in the form of training images.

The simulated data was computed using images of steel and zirconium grains. The steel microstructure image
from [42] is of dimensions 900 × 1280 and the zirconium grain image (produced by a scanning electron microscope)
is 760 × 1020. More than 50, 000 patches are extracted from these images to learn dictionaries D(20) ∈ D2,D∞ of
size 400 × 800. To avoid doing inverse crime, we obtain the exact images of dimensions 520 × 520 by first rotating
the high-resolution image and then extracting the exact image. The high-resolution images and the exact images are
shown in Figure 11.
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(a) D(10), RE = 0.247

µ=14.7, δ=31.62
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(h) D(20), RE = 0.261
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=0.616

(i) TV, RE = 0.246

Figure 10: The left and middle columns show our reconstructions with λ = 3.16 using D(10) and D(20), respectively; the right column shows the
TV reconstructions. Top and middle rows: Np = 25 and Np = 50 projections in [0◦, 180◦] and relative noise level 0.05. Bottom row: Np = 25
projections in [0◦, 120◦] and relative noise level 0.01.

We consider a parallel-beam tomographic scenario with Np = 50 projections corresponding to 50 uniformly
distributed projections in [0◦, 180◦], leading to m = 36, 750 measurements. We add Gaussian white noise with relative
noise level 0.01 and compute reconstructions by our method as well as the TV method; these reconstruction are shown
in Figure 12. All regularization parameters were chosen to give the best reconstruction as measured by the RE, and
we note that the reconstruction errors are dominated by the error coming from the regularization of the noisy data; the
approximation errors ‖PC(xexact) − xexact‖2/‖xexact‖2 are of the order 0.03 and 0.05 for the steel and zirconium images,
respectively.

As expected, the TV reconstructions exhibit “cartoonish” artifacts, and for the steel grains the black interfaces tend
to be too thick and they are not so well resolved. Our method, for bothD2 andD∞, recovers better the grain interfaces
that are of interest here. We obtain the sharpest interfaces for D∞ but some small black “dots” have appeared which
are not present forD2; in both cases the images are suited for postprocessing via image analysis.
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Figure 11: Left: high-resolution images of steel micro-structure [42] (top) and zirconium grains (bottom) used to generate the training images.
Right: the corresponding exact images of size 520 × 520.

λ=1, µ=67.6, δ=100

(a) D20 ∈ D2, RE = 0.095

λ=2.15, µ=12.02, δ=1000

(b) D20 ∈ D∞, RE = 0.096

λ
TV

=23.357

(c) TV, RE = 0.099

λ=1, µ=67.6, δ=100

(d) D20 ∈ D2, RE = 0.146

λ=1, µ=12.02, δ=100

(e) D20 ∈ D∞, RE = 0.158

λ
TV

=11.288

(f) TV, RE = 0.137

Figure 12: Reconstructions of the 520 × 520 images by our method (left and middle) and by the TV method (right). Top: steel microstructure.
Bottom: zirconium grains.

4.7. The Impact of Wrong Training Images

We finish our numerical experiments with an artificial example that clearly illustrates the impact of a wrong set of
training images. Assume that we again use theD2-dictionary image patches from the peppers training image, but now
we reconstruct an image of matches (that have no resemblance to the peppers). All parameters are identical to those
from Sections 4.2–4.3 and we use a patch size of 20× 20. The exact image and the “best” reconstruction are shown in
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Figure 13: Left: the exact image. Right: the “best” reconstruction based on a dictionary created from the peppers training image.

Fig. 13; it is evident that the dictionary forms a strong prior with the result that the reconstruction is so influence by
the peppers prior that it is very bad reconstruction of the matches.

5. Conclusions

We describe and examine an algorithm that incorporates training images as priors in computed tomography (CT)
reconstruction problems. This type of priors can be useful in low-dose CT where we are faced with underdetermined
systems of equations, and our numerical experiments focus on such problems.

Our algorithm has two stages. In the first stage we compute a learned dictionary from a set of training images
using a regularized nonnegative matrix factorization (NMF). In the second stage, via a regularized least squares fit
we compute a nonnegative reconstruction lying in the cone defined by the dictionary elements; the reconstruction
is sparse with respect to the dictionary. Hence, regularization is obtained by enforcing that the reconstruction is
within the range of the dictionary elements and by the sparsity constraint. An extension of this algorithm to a tensor
formulation, that avoids reshaping of image patches to vectors, is presented in [34].

Our algorithm works with non-overlapping image patches; the same dictionary is used for all patches, and we are
able to minimize blocking artifacts by an additional regularization term. This reduces the computational complexity,
compared to all other proposed algorithms that apply a dictionary-based regularization based on overlapping patches
around every pixel in the image.

Our algorithm includes several regularization parameters. In the first stage a parameter is used to control the
sparsity in the NMF, and in the second stage we use one parameter to control the sparsity of the representation in
the dictionary, and another parameter to avoid blocking artifacts. We perform a series of numerical experiments with
noisy data and without committing inverse crime, where we demonstrate the interplay between these parameters and
the computed reconstructions, and we show that the reconstructions are not very sensitive to these parameters. Further
work is needed to develop automatic parameter choice algorithms.

We conclude that training images can be useful as a strong prior for regularization of low-dose CT problems,
through a sparse representation in a nonnegative dictionary learned from the training images. Our reconstructions
are (not surprisingly) superior to those computed by classical methods such as filtered back projection and algebraic
iterative methods, and they are competitive with total variation (TV) reconstructions. Specifically, in our test problems
our algorithm tends to be able to include more texture and also produces edges whose location is more correct.
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Appendix A. The Dictionary Learning Algorithm

Recall that the dictionary learning problem (4) is non-convex, and hence it is too costly to solve it globally. We
will therefore optimize locally by applying the Alternating Direction Method of Multipliers (ADMM) method [4]to
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the following reformulation of (4)

minimizeD,H
1
2 ‖Y − UV‖2F + λ ‖H‖sum + IRs×t

+
(H) + ID(D)

subject to D = U, H = V, (A.1)

where U ∈ Rp×s and V ∈ Rs×t are auxiliary variables that are introduced in order to make the ADMM-updates
separable and hence cheap. The augmented Lagrangian associated with (A.1) can be expressed as

Lρ(D,H,U,V, Λ, Π) =
1
2
‖Y − UV‖2F + λ ‖H‖sum + IRs×t

+
(H) + ID(D)

+ Tr(ΛT (D − U)) + Tr(ΠT (H − V))

+
ρ

2
‖D − U‖2F +

ρ

2
‖H − V‖2F

(A.2)

where Λ ∈ Rp×s and Π ∈ Rs×l are Lagrange multipliers, and ρ is a fixed positive penalty parameter which can be
chosen prior to the learning process. If we partition the variables into two blocks (D,V) and (H,U) and apply ADMM
to (A.1), we obtain an algorithm where each iteration involves the following three steps: (i) minimize Lρ jointly over
D and V; (ii) minimize Lρ jointly over H and U; and (iii) update the dual variables Λ andΠ by taking a gradient-ascent
step. Since Lρ is separable in D and V , step (i) can be expressed as two separate updates

Dk+1 = min
D∈D

Lρ(D,Hk,Uk,Vk, Λk, Πk) = PD(Uk − ρ
−1Λk) (A.3a)

Vk+1 = min
V

Lρ(Dk,Hk,Uk,V, Λk, Πk) (A.3b)

= (UT
k Uk + ρI)−1(UT

k Y + Πk + ρHk)

where PD(·) is the projection onto the setD. Similarly, Lρ is also separable in H and U, so step (ii) can be written as

Hk+1 = min
H∈Rs×t

+

Lρ(Dk+1,H,Uk,Vk+1, Λk, Πk) (A.3c)

= PRs×t
+

(Sλ/ρ(Vk+1 − ρ
−1Πk))

Uk+1 = min
U

Lρ(Dk+1,Hk,U,Vk+1, Λk, Πk) (A.3d)

= (YVT
k+1 + Λk + ρDk+1)(Vk+1VT

k+1 + ρI)−1

where Sλ/ρ denotes an entrywise soft-thresholding operator, and PRs×t
+

(·) is the projection onto the non-negative or-
thant. Finally, the dual variable updates in step (iii) are given by

Λk+1 = Λn + ρ(Dk+1 − Uk+1) (A.3e)
Πk+1 = Πk + ρ(Hk+1 − Vk+1). (A.3f)

The projection onto the set D∞ is an element-wise projection onto the interval [0, 1] and hence easy to compute.
However, the projection onto D2 does not have a closed form solution, so we compute it iteratively using Dykstra’s
alternating projection algorithm.

The convergence properties of ADMM when applied to non-convex problems of the form (A.1) have been studied
by e.g. [40]. They show that whenever the sequence of iterates produced by (A.3) converges, the limit satisfies the the
KKT-conditions (i.e., the first-order necessary conditions for optimality) which can be expressed as

D = U, H = V,

Λ = −(Y − DH)HT , Π = −DT (Y − DH),

−Λ ∈ ∂Φdic(D), −Π ∈ ∂Φrep(H),

where ∂ denotes the subdifferential operator. The convergence result is somewhat weak, but empirical evidence
suggests that applying ADMM to non-convex problems often works well in practice [4]. It is interesting to note that
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the point D = U = 0 and H = V = 0 satisfies the KKT-conditions, and although it is a stationary point, it is clearly
not a local minima. For this reason, we avoid initializing with zeros. We initialize U with some of the images from
the training set, and we set V = [I 0] (i.e., the leading s columns of V is the identity matrix).

The KKT-conditions can be used to formulate stopping criteria. We use the following conditions

‖D − U‖max

max(1, ‖D‖max)
≤ ε ∧

‖H − V‖max

max(1, ‖H‖max)
≤ ε (A.4a)

‖Π − DT (DH − Y)‖max

max(1, ‖Π‖max)
≤ ε ∧

‖Λ − (DH − Y)HT ‖∞

max(1, ‖Λ‖max)
≤ ε (A.4b)

where ε > 0 is a given tolerance.
The KKT-conditions can also be used to derive an upper bound λ̄ for the regularization parameter λ. It follows

from the optimality conditions that for H = 0s×t, Π = −DTY and hence for some λ̄ and all D ∈ D we have

DTY ∈ λ̄ ∂‖0s×t‖sum,

i.e., H = 0 satisfies the KKT-conditions for all λ ≥ λ̄. Thus, if Y is scaled such that all entries in Y are between 0 and
1, then the upper bound λ̄ = p can be used for both dictionaries since

sup
D∈D2

‖DTY‖max = max
j=1,...,t

√
p‖Ye j‖2 ≤ p and sup

D∈D∞
‖DTY‖max = max

j=1,...,t
‖Ye j‖1 ≤ p

which implies that DTY ∈ λ̄ ∂Φrep(0s×t) for all D ∈ D.
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