

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

On the Use of Static Checking in the Verification of Interlocking Systems

Haxthausen, Anne Elisabeth; Østergaard, Peter H.

Published in:
Proceedings of the 7th International Symposium on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2016)

Link to article, DOI:
10.1007/978-3-319-47169-3_19

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Haxthausen, A. E., & Østergaard, P. H. (2016). On the Use of Static Checking in the Verification of Interlocking
Systems. In Proceedings of the 7th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2016): Discussion, Dissemination, Applications - Part II (pp. 266-278).
Springer. (Lecture Notes in Computer Science, Vol. 9953). DOI: 10.1007/978-3-319-47169-3_19

http://dx.doi.org/10.1007/978-3-319-47169-3_19
http://orbit.dtu.dk/en/publications/on-the-use-of-static-checking-in-the-verification-of-interlocking-systems(167da592-f374-4e95-9375-d7152b7b2cfe).html

On the Use of Static Checking in the
Verification of Interlocking Systems

Anne E. Haxthausen? and Peter H. Østergaard?

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
aeha@dtu.dk

Abstract. In the formal methods community, the correctness of inter-
locking tables are typically verified by model checking. This paper sug-
gests to use a static checker for this purpose and it demonstrates for the
RobustRailS verification tool set that the execution time and memory
usage of its static checker are much less than of its model checker. Fur-
thermore, the error messages of the static checker are much more infor-
mative than the counter examples produced by classical model checkers.

1 Introduction

An interlocking system is one of the central components of any railway sig-
nalling system. It is responsible for guiding trains safely through a given railway
network such that train collisions and derailments are avoided. Therefore inter-
locking systems have the highest safety integrity level (SIL4) according to the
CENELEC 50128 standard [3] for railway applications. The safety verification
of interlocking systems represents a considerable challenge and for such SIL4
applications CENELEC 50128 strongly recommends the use of formal methods.
Therefore, formal verification of interlocking systems is an active research topic
investigated by several research groups, e.g. in [23, 17, 1, 9, 10, 21, 2, 13, 11, 5, 6,
12]. An overview of the trends in this research field can be found in [4]. In this
paper we will consider how static checking can be used as a part of the formal
verification of interlocking system designs.

Conventional development and verification of interlocking systems. Typically
for a product line of interlocking systems, each interlocking system consists of
(1) a generic part that is the same for all instances of the product line and
(2) a part which depends on the network under control and the routes through
this and therefore is specific for that system. The generic part is developed and
verified once-and-for-all. For an interlocking instance of a product family, first
the layout of the network under control is specified and then the specific part
is specified by a so-called interlocking table1. The interlocking table describes
the allowed train routes in the network and the specific control rules that the

? The authors’ research has been funded by the RobustRailS project granted by In-
novation Fund Denmark.

1 Interlocking tables are also sometimes called control tables.

interlocking instance must obey. Later the specific part is developed according
to the specification expressed by the interlocking table and then integrated with
the generic part. One of the verification tasks in this development is to verify
that the interlocking table does not contain errors, while another verification
task is to verify that the instantiated system is safe. The first verification task
is conventionally manual and informal, while the second task is conventionally
done by testing.

Automated, formal verification of interlocking systems. As manual, informal ver-
ification is time-consuming and error-prone, and testing first can be done after
implementation, automated, formal verification of these tasks in the design phase
is an active research topic. Some research groups, e.g. [17, 13, 2, 5, 11], verify the
interlocking tables by translating these into interlocking design models and then
formally verify by model checking that these models are safe. However, there
might be errors in the interlocking tables that can’t be found by model checking
as they do not lead to safety violations. Also it is a well-known problem that for
large networks model checking takes long time and uses much memory (and in
worst case fails due to the state-space-explosion problem).

Instead of verifying interlocking tables by means of model checking, we sug-
gest to use a static checker that is able to catch all kinds of data errors in
interlocking tables, also those that do not lead to safety violations and therefore
can’t be found by model checking. The use of a static checker not only has the
advantage that it can find more kinds of errors, it is also faster and uses less
memory than model checking (as experiments in this paper will show). Time is
especially saved, if there are several errors in the interlocking table, as a static
checker in contrast to a model checker typically can find all of the errors in one
run. In a second step, after having verified the correctness of an interlocking
table, we suggest to use a model checker to catch errors in the designed control
algorithms of the interlocking model instance that can be derived from the con-
trol table. An example of the latter kind of error could be a missing check for the
status of conflicting routes in the route allocating protocol. This could lead to a
safety violation even the interlocking table were correct. So to detect this kind
of error the model checking step is needed. The static checking in the first step is
needed as the table can contain errors that do not lead to safety violations and
therefore can’t be caught by model checking. Hence, the two steps complement
each other.

We have previously [7, 8] used this idea for the old relay-based Danish inter-
locking systems and recently [21] in the RobustRailS2 project for the interlocking
systems of the new Danish ERTMS/ETCS level 2 based signalling systems which
are currently being developed. In this paper we will analyse the advantages of
using a static checker, and for the RobustRailS tool suite we will make some
experiments comparing the execution time and memory usage when using the
static checker and the model checker of the RobustRailS tool suite, respectively,
to catch errors in interlocking tables. Note that in this comparison we use the

2 http://robustrails.man.dtu.dk

model checker in a way for which it is not intended. We compare with this
use of the model checker as this use is the way other research groups usually
catch errors in interlocking tables. To our best knowledge such an analysis and
comparison has not been made before.

Paper overview. The remainder of the article is organised as follows: First, in
Section 2, we introduce the RobustRailS verification tools and basic notions of
the railway domain, including the notions of track plans and interlocking tables.
Next, in Section 3 and Section 4, we describe the static checker and report on
experimental results comparing the execution time and memory usage of the
static checker and the model checker for the RobustRailS tool suite. Finally, in
Section 5, we make a conclusion.

2 Background

This section gives a brief introduction to (1) the new Danish railway networks,
(2) interlocking tables, and the (3) RobustRailS verification method and tools.

2.1 Railway Networks

A railway network in ETCS Level 2 consists of a number of track-side elements
like linear sections, points, and marker boards. Figure 1 shows an example layout
of a railway network having six linear sections (b10,t10,t12,t14,t20,b14), two
points (t11,t13), and eight marker boards (mb10, . . . , mb21). These terms, as
well as their functionality within the railway network, will be explained in more
detail in the next paragraphs.

t10 t14t13t12

mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

Fig. 1. An example railway network layout.

A linear section is a section with up to two neighbours. For example, the
linear section t12 in Figure 1 has t13 and t11 as neighbours. A point can have
up to three neighbours: one at the stem, one at the plus end, and one at the
minus end, e.g., point t11 in Figure 1 has t10, t12, and t20 as neighbours at its
stem, plus, and minus ends, respectively. The ends of a point are named so that
the stem and plus ends form the straight (main) path, and the stem and minus
ends form the branching (siding) path. A point can be switched between two

positions: PLUS and MINUS. When a point is in the PLUS (MINUS) position,
its stem end is connected to its plus (minus) end, so traffic can run from its
stem end to its plus (minus) end and vice versa. It is not possible for traffic
to run from plus end to minus end and vice versa. Linear sections and points
are collectively called (train detection) sections, as they are provided with train
detection equipments used by the interlocking system to detect the presence of
trains on the sections.

Along each linear section, up to two marker boards (one for each direction)
can be installed. A marker board can only be seen in one direction and is used
as reference location (for the start and end of routes) for trains going in that
direction. For example, in Figure 1, marker board mb13 is installed along section
t12 for travel direction up. Contrary to legacy systems, there are no physical
signals in ETCS Level 2, but interlocking systems have a virtual signal associ-
ated with each marker board. Virtual signals play a similar role as physical sig-
nals in legacy systems: a virtual signal can be OPEN or CLOSED, respectively,
allowing or disallowing traffic to pass the associated marker board. However,
trains (more precisely train drivers) do not see the virtual signals, as opposed
to physical signals. Instead, the aspect of virtual signals (OPEN or CLOSED)
are communicated to the onboard computer in the train via a radio network.
For simplicity, the terms virtual signals, signals, and marker boards are used
interchangeably throughout this paper.

2.2 Interlocking Tables

An interlocking system monitors constantly the status of track-side elements, and
sets them to appropriate states in order to allow trains travelling safely through
the railway network under control. A common approach of interlocking systems
is to use the concept of train routes, where a (train) route is a path from a source
(entry) signal to a destination (exit) signal in the given railway network. The
idea is that trains should travel along predefined routes in the network. Before a
train can enter a route, the route must first be set, i.e. resources such as sections,
points, and signals must be allocated (set to appropriate states) for the route
and then locked exclusively for that train. For more details on the interlocking
principles for the new Danish systems, see [20–22, 19].

An interlocking table specifies routes in the railway network under control
and the conditions for setting these routes. The specification of a route r and
conditions for setting r include the following information:

– id(r) – the route’s unique identifier,
– src(r) – the source/entry signal of r ,
– dst(r) – the destination/exit signal of r ,
– path(r) – the list of sections constituting r ’s path from src(r) to dst(r),
– overlap(r) – a list of the sections in r ’s overlap, i.e., the buffer space after

dst(r) that would be used in case trains overshoot the route’s path,
– points(r) – a map from points3 used by r to their required positions,

3 These include points in the path and overlap, and points used for flank and front
protection. For detail about flank and front protection, see [16].

id src dst path points signals conflicts
1a mb10 mb13 t10;t11;t12 t11:p;t13:m mb11;mb12;mb20 1b;2a;2b;3;4;5a;5b;6b;7
1b mb10 mb13 t10;t11;t12 t11:p mb11;mb12;mb15;mb20;mb21 1a;2a;2b;3;5a;5b;6a;6b;7;8
2a mb10 mb21 t10;t11;t20 t11:m;t13:p mb11;mb12;mb20 1a;1b;2b;3;5b;6a;6b;7;8
2b mb10 mb21 t10;t11;t20 t11:m mb11;mb12;mb13;mb15;mb20 1a;1b;2a;3;4;5a;5b;6a;6b;7
3 mb12 mb11 t11;t10 t11:p mb10;mb20 1a;1b;2a;2b;5a;6b;7
4 mb13 mb14 t13;t14 t13:p mb15;mb21 1a;2b;5a;5b;6a;6b;8
5a mb15 mb12 t14;t13;t12 t11:m;t13:p mb13;mb14;mb21 1a;1b;2b;3;4;5b;6a;6b;8
5b mb15 mb12 t14;t13;t12 t13:p mb10;mb13;mb14;mb20;mb21 1a;1b;2a;2b;4;5a;6a;6b;7;8
6a mb15 mb20 t14;t13;t20 t11:p;t13:m mb13;mb14;mb21 1b;2a;2b;4;5a;5b;6b;7;8
6b mb15 mb20 t14;t13;t20 t13:m mb10;mb12;mb13;mb14;mb21 1a;1b;2a;2b;3;4;5a;5b;6a;8
7 mb20 mb11 t11;t10 t11:m mb10;mb12 1a;1b;2a;2b;3;5b;6a
8 mb21 mb14 t13;t14 t13:m mb13;mb15 1b;2a;4;5a;5b;6a;6b

Table 1. Interlocking table generated for the network layout in Figure 1. The overlap
column is omitted as it is empty for all of the routes. (p means PLUS, m means MINUS.)

– signals(r) – a set of protecting signals used for flank or front protection [16]
for the route, and

– conflicts(r) – a set of conflicting routes which must not be set while r is set.

Table 1 shows an example of an interlocking table for the network shown in
Figure 1. Each row of the table corresponds to a route specification. The column
names indicate the information of the route specifications that these columns
contain. As can be seen, one of the routes has id 1a, goes from mb10 to mb13

via three sections t10, t11 and t12 on its path, and has no overlap. It requires
point t11 (on its path) to be in PLUS position, and point t13 (outside its path)
to be in MINUS position (as a protecting point). The route has mb11, mb12 and
mb20 as protecting signals, and it is in conflict with routes 1b, 2a, 2b, 3, 4, 5a,
5b, 6b, and 7.

2.3 The RobustRailS Verification Method and Tool Set

This section describes shortly the RobustRailS verification method and tool set.
For more information, see [20–22, 19].

The tools are centred around a domain-specific language (DSL) for represen-
tations of network diagrams and interlocking tables as described in the preceding
subsections. The tools comprise among others:

– A static checker for checking that a DSL specification follows certain general
wellformedness rules.

– The bounded model checker of RT-Tester [14, 18] which is set up such that
it can make a k-induction proof.

– Generators which from a DSL specification produce input to the model
checker: (1) a formal, behavioural model of interlocking system and its en-
vironment and (2) required safety properties expressed as formulae in the
temporal logic LTL.

There are additional tools supporting automated, model-based testing of imple-
mented interlocking systems, see [19].

(1) Specification

(2) Static Checker

(3) Generators

Network

Interlocking
Table

Checking
Result

Generic
Model

Generic
Verification
Conditions

Model

Verification
Conditions

(4) k-induction
by bounded

model checking

×
Counter-examples

X

Fig. 2. The RobustRailS verification process.

The tools can be used to verify the design of an interlocking system in the
following number of steps, as illustrated in Fig. 2:

1. Write a DSL specification of the interlocking system:
(a) first the network layout,
(b) and then the interlocking table (this is either done manually or generated

automatically from the network layout)
2. Validate the specification using the static checker.
3. Apply the generators to generate input to a model checker.
4. Apply the model checker to that input to investigate whether the model

satisfies the required safety properties.

The static checking in step (2) is intended to catch errors in the network layout
and interlocking table, while the model checking in step (4) is intended to catch
safety violations in the control algorithm of the instantiated model.

3 Static Checker

This section describes the static checker of the RobustRailS tool set.
The static checker takes as input a network layout and an associated inter-

locking table and checks whether these are well-formed. In case there are errors,
it suggests what might be wrong and in some cases also how this can be fixed. It
checks for instance that the network layout represents a legal railway network of
track elements and that the interlocking table satisfies the following conditions:

Elements Exist It refers only to existing track elements in the network layout.
Path The path of a route is a connected path in the network layout.
Overlap The overlap of a route must be a connected path that continues right

after the last section of the route path itself.
Entry/Exit The entry/exit signal of a route must be at the start/end of the

path of the route and be visible in the direction of the route.
Elementary The route must be elementary, i.e. between the entry signal and

exit signal of a route, there must not be any signal visible in the direction
of the route.

Points Points in the path and overlap of a route must appear in the points field
of the route and the required position of each of these points must fit the
path of the route (to avoid derailments).

Front/Flank Protection For each route a sufficient front and flank protection
must be given by (1) the signals listed in the signals field and/or (2) required
point settings (in the points field) for points outside the route.

Route Conflicts Routes that are in conflict4 with a route must be listed in
the conflicts field of the route.

The checker has been formally specified in the RAISE Specification Language,
RSL [15], as described in [20, 19], and implemented in C++.

3.1 Examples of error messages from the static checker

Below we give examples of some illegal interlocking tables for the network layout
given in Fig. 1 and show the error messages that the static checker gives for these
tables. In each case it is explained how the illegal interlocking table is obtained
from Table 1 by modifying some of the fields for route 1a.

If a table contains several errors, the static checker will provide error messages
for each of these.

Example breaking the Path condition: Remove t10 in the path field. For this
the static checker provides the error message:

In route 1a, two consecutive segments, b10 and t11, are not

connected.

Example breaking the Point condition: Remove t11 in the points field. For this
the static checker provides the error message:

For route 1a, point t11 is not given a point position.

Example breaking the Point condition: Require point t11 to be in a wrong
position (m rather than p). Note that this change means that route 1a now
also becomes in conflict with route 6a, as these two routes require t11 to be in
different positions, but in the interlocking table we have not listed them as being
in conflict. Therefore, the static checker provides the error message:

For route 1a, point t11 is set to MINUS,

but it should have been set to PLUS.

Routes 1a and 6a are in conflict, but are not listed as being in

conflict. Reasons to be in conflict:

- Shared point required in different positions: t11.

4 This essentially means that they use the same track elements. For a complete defi-
nition, see [19].

Example breaking the Route Conflicts condition: Remove route 7 in the con-
flicts field (and remove 1a from the conflicts field of route 7). For this the static
checker provides the error message:

Routes 1a and 7 are in conflict, but not listed as being in

conflict. Reasons to be in conflict:

- Non-concatenated routes with shared elements: {t10, t11}.

- Entry signal of one route used as protecting signal for the other

route.

Example breaking the Flank Protection condition: Remove protecting point
t13 in the points field. Note with this change, routes 1a and 4 are not anymore
in conflict. For this the static checker provides the error message:

Routes 1a and 4 are listed as being in conflict, but they are not.

Improper protection of section t12 in route 1a.

Possible protections:

Signals: {}

Points: {t13:m}

Signals: {mb15, mb21}

Points: {}

As it can be seen, two alternative ways of obtaining a flank protection for section
t12 are suggested. The first one corresponds to re-introducing what was removed,
while the second one corresponds to the protection in route 1b.

4 Experiments

This section compares for a selection of railway networks the execution time and
memory usage of the static checking and the model checking of these.

4.1 Selection of networks

Ten cases of networks from [19] have been selected. The layout of the seven
smallest cases are shown in Figure 3. These seven networks are inspired by
the typical examples used in other studies about formal verification of rail-
way interlocking systems. The three last networks are some real examples from
Denmark: Gadstrup-Havdrup and Køge are extracted from the Early Deploy-
ment Line (EDL) in the Danish Signalling Programme. The EDL is the first
regional line in Denmark to be commissioned in the Danish Signalling Pro-
gramme. The line goes from Roskilde station to Næstved station and is over
55 kilometres long. It includes eight stations ranging from simple stations sim-
ilar to the one shown in Figure 1, to complex stations such as Køge. The

t

mb01 mb03

mb02 mb04

bd bu

(a) Tiny

t20

t10
t11

t12

mb20

mb10 mb12

mb13

mb21

mb11
b10

b20

b12

(b) Toy

t20

t10 t11

mb21

mb11

t13

t30

mb12

mb30

t12

mb10

b10

mb13

b13

mb20

b20

mb31

b30

(c) Twist

t10 t11

mb11
t20

t12

t21

mb20

t30

mb30

t13

mb12

t

mb10

b10

mb13

b13

mb21

b21

mb31

b30

(d) Fork

t10 t11 t12
mb12

mb21

t20 t21 t22

mb11
mb22

mb10

b10

mb23

b22

mb20

b20

mb13

b12

(e) Cross

t10 t14t13t12

mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

(f) Mini

t10 t11 t12

mb13

mb20

t20 t21

mb11 mb12
mb21

t32

mb33

mb32

mb14

t14

t30

mb31

mb34

t34t31

t22

t13

t33

mb15

b14

mb10

b10

mb30

b30

mb35

b34

(g) Lyngby

Fig. 3. The seven smallest railway network cases.

Linears Points Signals Routes States

Tiny 3 0 4 2 1011

Toy 6 1 6 4 1026

Twist 8 2 8 8 1039

Fork 9 2 8 6 1040

Cross 8 2 8 10 1041

Mini 6 2 8 12 1037

Lyngby 11 6 14 24 1079

Gadstrup-Havdrup 21 5 24 33 10113

Køge 57 23 60 73 10332

EDL 110 39 126 179 10651

Table 2. Metrics of network cases.

network descriptions (in XML representation) and the corresponding gener-

ated properties and model instances for the first seven cases can be found at
http://www.imm.dtu.dk/~aeha/RobustRailS/data/casestudy.

Table 2 lists the following metrics for each of the selected networks: The
number of linear sections, points, and signals, the number of routes in the inter-
locking table that can be generated from the network, and the number of states
in the model that can be generated from the network and the interlocking table.

4.2 Experiments with correct networks and interlocking tables

For each of the networks we first used the interlocking table generator to generate
an interlocking table for that network. Then for each case we used

1. the static checker to verify correctness conditions for the network and inter-
locking table and

2. the generator tools to generate a model and safety conditions, whereupon
we used the model checker to check the model against the safety conditions.

In all cases the static check and the model check confirmed that there were no
static errors in the network layout or interlocking table and that the instantiated
model was safe, respectively. All experiments have been performed on a machine
with Intel(R) Xeon(R) CPU E5-2667 @ 2.90GHz, 64GB RAM, CentOS 6.6,
Linux 2.6.32-504.8.1.el6.x86 64 kernel.

Static Checker Model Checker Time Ratio
Time Memory Time Memory

Tiny 0.20 − 0.74 18.4 3.7
Toy 0.52 − 2.78 86.3 5.4
Twist 0.24 − 9.76 170.4 41
Fork 0.22 − 8.80 168.8 40
Cross 0.28 − 14.48 191.8 52
Mini 0.26 − 17.56 197.4 68
Lyngby 0.30 − 254.3 868.1 848
Gadstrup-Havdrup 0.36 − 230.1 1146 639
Køge 0.34 − 5528.5 8471.6 16260
EDL 0.43 − 19358.9 23389.4 45020

Table 3. Execution times and memory usage.

Table 3 shows for each of the network cases, the approximate real execution
time (in seconds) and memory usage (in MB) for the static checking and the
model checking (incl. model generation), respectively. Furthermore, the last col-
umn shows the ratio between the execution time of the model check and the
execution time of the static check. As it can be seen the static checking is much
faster than the model checking. For the smallest network it is a factor 3.7 faster,
and then it increases up to a factor 45020 for the largest network. The static
checker ran too quick for the profiler tool (runlim) to measure the memory usage.

4.3 Experiments with illegal interlocking tables

We also tried to inject some errors in the interlocking tables. Also in this case
the static checker was much faster to catch errors than the model checker. For
instance, if we for route 1a in Table 1 require t11 to be m instead of p in the
points field, then the static checker detects this in 0.14 seconds, while it takes
the model checker 20.54 seconds. I.e. the static checker is a factor 146.7 faster.

In some cases the errors are even not caught by the model checker, as the
wrong data does not lead to a safety violation in the instantiated model. The
reason for this is that the interlocking system (and thereby also the model)
contains redundant checks to make the system more fault tolerant. This fact
also indicates the advantage of using a static checker.

Furthermore, the error messages provided by the static checker are much
more informative. They explain exactly what the problem is and in some cases
suggest how to fix it. In contrast to that, when the model checker gives a counter
example, this has to be analysed to find out what the problem is: first it has to
be determined whether the unsafe situation is due an error in the interlocking
table or in the model.

5 Conclusion

In the formal methods community, the correctness of interlocking tables are typ-
ically verified by model checking. While this is a good method, it suffers from the
state space explosion problem for larger networks. This paper has suggested to
use a static checker to verify the correctness of interlocking tables. Experiments
using the RobustRailS interlocking verification tool set showed for a selection of
railway networks with associated interlocking tables that the execution time and
memory usage of verifying the interlocking tables using the static checker was
much less than of using the model checker5. Furthermore, the error messages of
the static checker are more informative and do not need an analysis to find out
what the error is, as it is the case of the counter examples of the model checker.
The static checker can also in contrast to the model checker catch several errors
in the same execution. So our conclusion is that for the checking of interlocking
tables it is worth to provide such a user-friendly static checker.

Acknowledgements. The authors would like to express their gratitude to (1) Jan
Peleska and Linh Hong Vu for the excellent contribution to the development
of the RobustRailS interlocking verification method and tool set (including the
static checker discussed in this paper) and for an always very enjoyable collabora-
tion, (2) Ross Edwin Gammon and Nikhil Mohan Pande from Banedanmark and

5 It should here be noted that using this model checker in a second step for verifying
the safety of the model of the instantiated interlocking system has actually turned
out to be very efficient. For instance, it succeeded to verify the EDL line, where
other model checkers failed within some given resources, cf.[22].

Jan Bertelsen from Thales for helping with their expertise about Danish inter-
locking systems, and (3) Uwe Schulze and Florian Lapschies from the University
of Bremen for their help with the implementation in the RT-Tester toolchain.

References

1. M. Banci, A. Fantechi, and S. Gnesi. Some Experiences on Formal Specification
of Railway Interlocking Systems Using Statecharts. 2005.

2. Y. Cao, T. Xu, T. Tang, H. Wang, and L. Zhao. Automatic Generation and
Verification of Interlocking Tables Based on Domain Specific Language for Com-
puter Based Interlocking Systems (DSL-CBI). In Proceedings of the IEEE Inter-
national Conference on Computer Science and Automation Engineering (CSAE
2011), pages 511 – 515. IEEE, 2011.

3. C. European Committee for Electrotechnical Standardization. EN 50128:2011 –
Railway applications – Communications, signalling and processing systems – Soft-
ware for railway control and protection systems. 2011.

4. A. Fantechi. Twenty-Five Years of Formal Methods and Railways: What Next?
In S. Counsell and M. Núñez, editors, Software Engineering and Formal Methods,
volume 8368 of Lecture Notes in Computer Science, pages 167–183. Springer, 2014.

5. A. Ferrari, G. Magnani, D. Grasso, and A. Fantechi. Model Checking Interlocking
Control Tables. In E. Schnieder and G. Tarnai, editors, FORMS/FORMAT 2010 –
Formal Methods for Automation and Safety in Railway and Automotive Systems,
pages 107–115. Springer, 2010.

6. H. H. Hansen, J. Ketema, B. Luttik, M. R. Mousavi, J. van de Pol, and O. M. dos
Santos. Automated Verification of Executable UML Models. In B. K. Aichernig,
F. S. de Boer, and M. M. Bonsangue, editors, Formal Methods for Components
and Objects, volume 6957 of Lecture Notes in Computer Science, pages 225–250.
Springer, 2010.

7. A. E. Haxthausen. Towards a Framework for Modelling and Verification of Relay
Interlocking Systems. In R. Calinescu and E. Jackson, editors, Foundations of
Computer Software. Modeling, Development, and Verification of Adaptive Systems,
number 6662 in Lecture Notes in Computer Science, pages 176–192. Springer, 2011.

8. A. E. Haxthausen. Automated Generation of Formal Safety Conditions from Rail-
way Interlocking Tables. International Journal on Software Tools for Technology
Transfer (STTT), Special Issue on Formal Methods for Railway Control Systems,
16(6):713–726, 2014.

9. A. E. Haxthausen, M. L. Bliguet, and A. A. Kjær. Modelling and Verification of
Relay Interlocking Systems. In C. Choppy and O. Sokolsky, editors, Foundations of
Computer Software, Future Trends and Techniques for Development, volume 6028
of Lecture Notes in Computer Science, pages 141–153. Springer, 2010.

10. A. E. Haxthausen, J. Peleska, and S. Kinder. A Formal Approach for the Construc-
tion and Verification of Railway Control Systems. Formal Aspects of Computing,
23(2):191–219, 2011.

11. P. James, F. Möller, H. N. Nguyen, M. Roggenbach, S. Schneider, H. Treharne,
M. Trumble, and D. Williams. Verification of Scheme Plans Using CSP||B. In
S. Counsell and M. Núñez, editors, Software Engineering and Formal Methods,
volume 8368 of Lecture Notes in Computer Science, pages 189–204. Springer, 2014.

12. C. Limbrée, Q. Pecheur, C. Moller, and S. Tonetta. Verification of railway interlock-
ing - Compositional approach with OCRA. In T. Lecomte, R. Pinger, and A. Ro-
manovsky, editors, Reliability, Safety and Security of Railway Systems - RSSR
2016, volume 9707 of Lecture Notes in Computer Science. Springer, 2016.

13. A. Mirabadi and M. B. Yazdi. Automatic Generation and Verification of Railway
Interlocking Control Tables Using FSM and NuSMV. Transportation Problems,
pages 103–110, 2009.

14. J. Peleska. Industrial-Strength Model-Based Testing - State of the Art and Current
Challenges. In A. K. Petrenko and H. Schlingloff, editors, Proceedings 8th Work-
shop on Model-Based Testing, Rome, Italy, volume 111 of Electronic Proceedings
in Theoretical Computer Science, pages 3–28. Open Publishing Association, 2013.

15. The RAISE Language Group: Chris George, Peter Haff, Klaus Havelund, Anne E.
Haxthausen, Robert Milne, Claus Bendix Nielsen, Søren Prehn, Kim Ritter Wag-
ner. The RAISE Specification Language. The BCS Practitioners Series. Prentice
Hall Int., 1992.

16. G. Theeg, S. V. Vlasenko, and E. Anders. Railway Signalling & Interlocking:
International Compendium. Eurailpress, 2009.

17. D. Tombs, N. Robinson, and G. Nikandros. Signalling Control Table Generation
and Verification. In CORE 2002: Cost Efficient Railways through Engineering, page
415. Railway Technical Society of Australasia/Rail Track Association of Australia,
2002.

18. Verified Systems International GmbH. RT-Tester Model-Based Test Case and Test
Data Generator - RTT-MBT - User Manual, 2013. Available on request from
http://www.verified.de.

19. L. H. Vu. Formal Development and Verification of Railway Control Systems - In the
context of ERTMS/ETCS Level 2. PhD thesis, Technical University of Denmark,
DTU Compute, 2015.

20. L. H. Vu, A. E. Haxthausen, and J. Peleska. A Domain-Specific Language
for Railway Interlocking Systems. In E. Schnieder and G. Tarnai, editors,
FORMS/FORMAT 2014 - 10th Symposium on Formal Methods for Automation
and Safety in Railway and Automotive Systems, pages 200–209. Institute for Traffic
Safety and Automation Engineering, Technische Universität Braunschweig, 2014.

21. L. H. Vu, A. E. Haxthausen, and J. Peleska. Formal Modeling and Verification of
Interlocking Systems Featuring Sequential Release. In C. Artho and P. C. Ölveczky,
editors, Formal Techniques for Safety-Critical Systems, volume 476 of Communica-
tions in Computer and Information Science, pages 223–238. Springer International
Publishing, 2015.

22. L. H. Vu, A. E. Haxthausen, and J. Peleska. Formal Modeling and Verification of
Interlocking Systems Featuring Sequential Release. Science of Computer Program-
ming, 2016. http://dx.doi.org/10.1016/j.scico.2016.05.010.

23. K. Winter, W. Johnston, P. Robinson, P. Strooper, and L. van den Berg. Tool
Support for Checking Railway Interlocking Designs. In Proceedings of the 10th
Australian workshop on Safety Critical Systems and Software - Volume 55, SCS
’05, pages 101–107, Darlinghurst, Australia, Australia, 2006. Australian Computer
Society, Inc.

