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Abstract

This work presents a generalization of the Slot Planning Problem which raises when the
liner shipping industry needs to plan the placement of containers within a vessel (stowage
planning). State-of-the-art stowage planning relies on a heuristic decomposition where con-
tainers are first distributed in clusters along the vessel. For each of those clusters a specific
position for each container must be found. Compared to previous studies, we have intro-
duced two new features: the explicit handling of rolled out containers and the inclusion of
separations rules for dangerous cargo. We present a novel integer programming formulation
and a Greedy Randomized Adaptive Search Procedure (GRASP) to solve the problem. The
approach is able to find high-quality solution within 1 second. We also provide comparison
with the state-of-the-art on an existing and a new set of benchmark instances.
Keywords: Container Vessel Stowage Planning; Slot Planning; Integer Programming; Heuris-
tic algorithms; GRASP

1 Introduction

Over the past two decades there has been a continuous increase in demand for cost efficient
containerized transportation. In order to meet this demand, shipping companies have deployed
larger container vessels, which can nowadays transport up to 19000 TEUs (Twenty-Foot Con-
tainer Equivalent Units). These vessels sail from port to port loading and unloading thousands of
containers. Minimizing the time a vessel spends in port involves, among other issues, an efficient
stowage plan; a plan that describes where each container should be loaded on the vessel.

Container vessels are ships specially designed for the transportation of large amounts of con-
tainers with a small crew. Containers are metal boxes designed to withstand significant outer
forces. They are particularly robust to high vertical compression, which makes it possible to cre-
ate high stacks. All containers are fitted with corner castings designed to support the container’s
weight, and to which security fittings can be attached. ISO standard containers are usually 20’,
40’, or 45’ long. In the US trade it is also possible to find 48’ or 53’ containers (although they
are not standard in liner shipping). ISO containers are 8’ wide and 8’6” high, with the exception
of high-cube containers, which are 1 foot taller. High-cube 20’ foot containers are rare and we
assume they do not exist when modeling the slot planning problem. Longer containers, such as
45’ containers, are equipped with two extra sets of castings at a 40’ distance. The extra castings

∗francisco.parreno@uclm.es

1



Stack
Aft Fore Reefer Plug

Stacks

Ti
e
rs

2

4

6

82

84

12 34 5

Hatch Cover

Bay

Waterline

Figure 1: The layout of a container vessel

allow the longer containers to be stacked on top of 40’ containers. No castings, however, exist at
the 20’ position, which means that 20’ containers cannot be stacked on top of longer containers.

Aside from the standard and high-cube containers, there are a number of specialized containers
for different kinds of cargo. Fruits and vegetables, for example, must be transported in refrigerated
containers called reefers. Liquids can be transported in tank containers, while break bulk cargo is
transported on platforms and/or open-top containers (these, however, constitute only a very small
percentage of the cargo). Containers transporting dangerous goods are called IMO containers.
Depending on the nature of the cargo, a special IMO code is assigned to the container. Strict
separation rules apply to IMO containers (Storck, 2015).

The layout of a container vessel is shown in Figure 1. The figure shows how containers are
arranged in storage areas called bays, along the entire length of the vessel. A bay is composed of a
number of cells, each indicating a possible stowage position. Cells usually have a capacity of two
TEUs (Twenty-Foot Equivalent Units), meaning that they can either stow two 20’ containers or
one 40’ (or 45’) container. Each TEU position within a cell is referred to as a slot. Slots toward
the bow of the vessel are called Fore slots and those towards the stern are called Aft slots. Cells
are identified by a stack number, indicating its horizontal position within a bay, and a tier number
indicating its vertical position. In general there is a distinction between on-deck and below-deck
areas of a bay. The below-deck areas are closed by hatch-covers (or hatch-lids), which are tight
metallic structures that prevent water from entering. Note that often 45’ containers are only
allowed on-deck, and that the below-deck part of a bay is sometimes also called the hold. Figure
1 also shows how only a subset of the cells have access to electric power (or reefer plugs).

A feasible stowage plan has to satisfy high-level constraints ensuring that the vessel is stable
and seaworthy, and low-level constraints concerning the way in which each container is loaded
into a position on the vessel. Using this constraint classification, state-of-the-art stowage planning
typically follows a 2-phase hierarchical decomposition of the problem (Pacino, Delgado, Jensen, &
Bebbington, 2011; Ambrosino, Paolucci, & Sciomachen, 2015; Kang & Kim, 2002; Wilson & Roach,
2000). In the first phase, called Master Planning, containers are distributed to subsections of the
vessel called locations. The distribution of containers must satisfy seaworthiness requirements. The
draft of the vessel (the immersion depth) must be within limits; e.g. to ensure that the propeller is
under water or that the vessel does not run aground when at port. The center of gravity must also
be controlled in order for the vessel to be stable and to adjust the trim (the difference between
the draft at stern and bow). The uneven cargo distribution and the shape of the vessel’s hull
result in different opposing forces that stress the structure of the vessel. Example of those are
shear and bending moments which must also be within tolerance. One of the main objectives of
the Master Planning phase is to minimize hatch-overstowage, meaning the number of containers
on deck that need to be removed to get access to containers placed below deck. Since this is not
the focus of this study, we refer the reader to Pacino et al. (2011) for a detailed description. The
second phase of the decomposition, Slot Planning, refines the container distribution and identifies
the exact position of each container in each vessel location. This phase is concerned with low-
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level constraints governing the physical position of the containers, ensuring that weight and height
capacities are satisfied, and that reefers (refrigerated containers) are assigned to positions where
a power outlet is available.

Figure 2 depicts the decomposition approach. Master Planning requires a loadlist and port
and vessel data. The loadlist includes the containers to be loaded at the current port and a
forecast of those to be loaded at later ports. Vessel and port data include information about the
layout of the ship and the depth of the ports of call. As its output is a class-based stowage plan
(where only container types are taken into account), it is possible to solve an independent Slot
Planning Problem for each location on the vessel. Though this might seem to be a simplification
of the problem, the reason for following this path is rooted in the container terminal part of the
optimization. Given a class-based stowage plan, terminals can optimize the load sequencing of
the containers and thus further reduce the ship’s time in port (Monaco, Sammarra, & Sorrentino,
2014).

Since the Master Planning does not take stacking constraints into consideration, there is the
possibility that the resulting Slot Planning problems are not feasible. Pacino et al. (2011) handle
this issue with a post-optimization procedure whereby containers are removed from the solutions
until a feasible slot plan is reached. The authors also show that the number of rolled out containers
is so low that more iterations of the decomposition are not needed.
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Figure 2: The Master Planning and Slot Planning decomposition of container ship stowage plan-
ning

Since solving the stowage planning problem over multiple ports requires the use of forecasts,
stowage planners wish to be able to analyze different forecast scenarios. According to Pacino et al.
(2011) and Pacino and Jensen (2012) 10 minutes is the maximum time the industry deems accept-
able for stowage planning software to complete computations, which in turn leaves an estimated
time of 1 second to solve each Slot Planning Problem.

This paper focuses on the Slot Planning Problem, and presents several contributions:

• It proposes a generalization of the Slot Planning Problem that addresses the feasibility issue
in the decomposition proposed in Pacino et al. (2011). We address this issue by incorporating
maximum container intake in the objectives of the problem, thus improving the solutions
otherwise obtained by greedily removing constraint violating containers.

• The Slot Planning problem is further extended with the inclusion of IMO containers (dan-
gerous goods). A representative set of the rules is modelled as a demonstration of how the
complete set could be handled.

• We propose a novel Integer Programming (IP) formulation that not only models the gener-
alized problem, but also has a much tighter bound than the state-of-the-art formulation of
Delgado, Jensen, Janstrup, Rose, and Andersen (2012).

• Since even our improved mathematical formulation is not able to solve the problem within the
required time limit, we also propose a novel, high-performing, GRASP approach including
two constructive procedures, two randomizing strategies, and several improvement moves.
The results show that the new algorithm obtains high-quality solutions in very short running
times of 1 CPU second per location, outperforming previously published procedures.
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The remainder of the paper is structured as follows. A review of relevant literature is presented
in Section 2. In Section 3 we define the Slot Planning Problem and present an integer programming
formulation. Our proposed solution approach is presented by describing first the construction
heuristics in Section 4, followed by the GRASP algorithm, detailed in Section 5. Computational
results are presented in Section 6 and conclusions and directions for future work are discussed in
Section 7.

2 Literature review

A growing number of studies on stowage planning have been published in the past few years. The
contributions can roughly be classified as belonging to multi-phase or single-phase approaches. As
we have commented before, multi-phase approaches (Wilson & Roach, 2000; Kang & Kim, 2002;
Pacino et al., 2011; Ambrosino, Anghinolfi, Paolucci, & Sciomachen, 2010; Ambrosino et al., 2015)
are currently the best performing solutions, where the stowage planning problem is hierarchically
divided into sub-problems, often into master planning and slot planning. The master planning
phase focuses on satisfying vessel stability in an aggregated container distribution. In Pacino et
al. (2011), for example, master planning decides the number of containers of a specific type to be
allocated to a location (a logical subsection of the vessel). This is done taking into account hatch-
overstowage and loading crane performance. The distribution of containers is then refined on a
per location basis, where stacking constraints are taken into account. Recently a new heuristic
for a master planning phase based on a partial variable fixing procedure has been presented in
Ambrosino et al. (2015) .

Single-phase approaches consider the stowage planning problem as a whole. Since most of
these works involve only a very simplified representation of ship stability, they can also be seen
as slot planning approaches. Solution methods include mathematical programming (Aslidis, 1984;
Botter & Brinati, 1992; Ambrosino, Sciomachen, & Tanfani, 2004; Li, Tian, Cao, & Ding, 2008),
constraint programming (CP) (Ambrosino & Sciomachen, 1998; Delgado et al., 2012), constraint-
based local search (Pacino & Jensen, 2012), genetic algorithms (Davidor, 1998; Dubrovsky, Levitin,
& Penn, 2002), dedicated heuristics (Avriel, Penn, Shpirer, & Witteboon, 1998; Ding & Chou,
2015), 3D-packing (Sciomachen & Tanfani, 2003), simulation (Aye, Low, Ying, Jing, & Min,
2010), and case-based methods (Nugroho, 2004). Of those that are relevant for the Slot Planning
Problem, in Avriel et al. (1998), Ambrosino and Sciomachen (1998), and Dubrovsky et al. (2002)
all containers are considered to be of the same size and no distinction is made for reefer and high-
cube containers. Approaches that include both 20’ and 40’ containers are Aslidis (1984), Botter
and Brinati (1992), Sciomachen and Tanfani (2003), and Ambrosino et al. (2004). Of these,
Sciomachen and Tanfani (2003) also include high-cubes, while Ambrosino et al. (2004) include
reefers.

To the best of the authors’ knowledge, the only two papers that propose a Slot Planning
problem comparable to our definition are Delgado et al. (2012) and Pacino and Jensen (2012). In
Delgado et al. (2012) a constraint programming model is able to find optimal solutions in very short
computational times, and the results are shown to outperform those of a mathematical formulation.
The model includes custom built propagators and partial solution evaluators to improve the branch
& bound search. Propagators are algorithms repetitively called during the search that help to
remove infeasible values from the domain of each variable, while partial solution evaluators are
lower bounds calculated on partial variable assignments that can help to cut branches of the search
tree. The model, moreover, uses channeling constraints which are binary relations used to merge
two different models: in this specific case, one model where the variables decide which container
to assign to a slot and another in which variables decide which slot to assign to a container. If a
propagator removes infeasible values from the domain of a variable in one model, the channeling
constraint removes the corresponding value in the other model.

The approach proposed in Delgado et al. (2012), however, is not robust and fails to find solu-
tions in a number of instances. The application of this model to our generalization of the problem
is not trivial. IMO containers could easily be incorporated using an automaton-based propagator;
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however, modeling the intake maximization would break the channeling constraint, which assumes
that all containers must be loaded. This would involve a significant change in the modeling of
the problem. The constraint-based local search approach in Pacino and Jensen (2012) combines
a constructive algorithm with a local search guided by constraint violation. The procedure starts
from a possibly infeasible solution. Each constraint calculates its degree of violation, which the
procedure aims to minimize. This is done using a swap operator between containers. Objectives
are also modelled as constraints and are then minimized in the same way. Even though the proce-
dure is very fast and often finds near-optimal solutions, it still fails to solve all the tested instances.
Moreover, this approach requires the implementation of a delta evaluation and a delta assignment
procedure for each of the implemented constraints and search operators. In Pacino et al. (2011) the
constraint programming described and the constraint-based local search approach are combined
to solve the slot planning problem. For the instances where no solution is found, constraint-
violating containers are removed until a feasible configuration is reached. The diving heuristic of
the constraint programming approach and the construction heuristic of the constraint-based local
search seem to be the strengths of the two solution methods. This motivates our hypothesis that
a GRASP-based approach will be able to achieve good results even in a generalized version of the
slot planning problem.

3 Problem definition and mathematical formulation

As previously mentioned, Slot Planning assumes that a solution to Master Planning is given. We
are thus provided with a set of containers (or container types) to be loaded into a single vessel
location. A representative Slot Planning problem was presented in Delgado et al. (2012) and Pacino
and Jensen (2012). We extend this definition by including IMO restrictions and maximization of
the loaded cargo. Thus, given a set of containers1 to load into a location, a feasible solution must
satisfy the following rules:

a) Assigned cells must form stacks (containers stand on top of each other in the stacks; they
cannot hang in the air).

b) 20’ containers cannot be stacked on top of 40’ containers.

c) A 20’ reefer container must be placed in a reefer slot. A 40’ reefer container must be placed in
a cell with at least one reefer slot.

d) The length constraint of a cell must be satisfied (some cells hold only 40’ or only 20’ containers).

e) The sum of the heights and the sum of the weights of the containers stowed in a stack must be
within the stack limits.

f) All containers already on board must be stowed in their original position and they cannot be
moved.

g) A cell must be either empty or have both slots occupied (no odd slots).

h) IMO rules must be satisfied.

IMO rules dictate how far apart incompatible cargoes must be stowed (Storck, 2015). Since in
Slot Planning we only focus on a location, it is sufficient to concentrate only on rules that enforce
stack segregation. Segregation that goes beyond the stack level must be handled at the Master
Planning stage. Without loss of generality, we have devised a representative set of rules based on
4 IMO categories. Table 1 shows these rules. The first column represents the IMO category of
dangerous goods. For each of those categories, the second column shows the type of cargo that can
be stowed in proximity, and the third, cargo that must be kept at least one stack away. Containers
with no IMO categorization (or IMO 0) are assumed to be compatible with any other cargo.

1Which can be 20’, 40’, high-cube, reefers and IMO
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IMO ID Free Stack Segregation

1 1, 4 2, 3
2 2 1, 3, 4
3 3, 4 1, 2
4 1, 3, 4 2

Table 1: Representative cargo segregation rules

According to stowage coordinators, an optimal Slot Plan has to minimize the weighted sum of
the following objectives:

a) Minimize the number of containers left out of the solution. Sometimes is not possible to stow
all the containers in the location. A unit cost, α1, is paid for each container left out of the
solution.

b) Minimize overstows, which are movements of containers that allow the unloading of other
container placed below. A unit cost, α2, is paid for each container overstowing any containers
below.

c) Avoid stacks with containers to be discharged at many different ports. A unit cost, α3, is paid
for each discharge port included in a stack.

d) Keep stacks empty if possible. A unit cost, α4, is paid for each stack used.

e) Avoid loading non-reefer containers into reefer slots. A unit cost, α5, is paid for each reefer
slot occupied by a non-reefer container.

The cost structure is designed to reflect the fact that the main objective, by far, is to load all
the containers assigned to a location. The secondary objectives allow us to distinguish between
solutions that load the same number of containers. Among the secondary objectives, the most
important is the minimization of unproductive moves. The weighting of the cost components
follows the suggestion by Delgado et al. (2012) (see Section 6.2 for the actual values).

Delgado et al. (2012) developed an integer linear formulation for the slot planning problem.
Using it as a basis, we have developed an improved model, reducing the number of constraints and
binary variables, maximizing the number of containers loaded instead of imposing the condition
of loading all of them, which could be impossible in some cases, and adding constraints to deal
with IMO containers. Let us now introduce the mathematical notation:

Sets
I Index set of containers
T Index set of 20’ containers
F Index set of 40’ containers
L Set of containers already on-board
D Index set of discharge ports
M Index set of IMO categories

IMO Set of category pairs that need segregation
J Index set of stacks
Kj Index set of cells in stack j ∈ J

6



Constants
Hc
i Height of container i ∈ I

W c
i Weight of container i ∈ I

Rci Indicates whether container i ∈ I is reefer or not
Mi IMO category of container i ∈ I.
Aid Indicates whether container i ∈ I is unloaded at port d ∈ D or not
Rjk Number of reefer plugs in cell k ∈ Kj of stack j (0,1,2)
W s
j Weight limit of stack j ∈ J

Hs
j Height limit of stack j ∈ J

αf Weight in the objective function of cost criterion f ∈ {1, . . . , 5}

Variables

ojk =


0 if no containers in stack j ∈ J , cell k ∈ Kj , overstows other container below in the stack

1 if one 40’ or one 20’ container, occupying cell k ∈ Kj of stack j ∈ J , overstows other container

2 if two 20’ containers, occupying cell k ∈ Kj of stack j ∈ J , overstow other container

cjki =

{
1 if container i ∈ I is stowed in cell k ∈ Kj of stack j ∈ J
0 otherwise

ej =

{
1 if stack j ∈ J is used

0 otherwise

pjd =

{
1 if at least one container in stack j ∈ J is to be unloaded at port d ∈ D
0 otherwise

ujkd =

{
1 if a container below cell k ∈ Kj of stack j ∈ J is to be unloaded before port d ∈ D
0 otherwise

vjm =

{
1 if at least one container with IMO category m ∈M is stowed in stack j ∈ J
0 otherwise

Using these variables and parameters, the model is:

Min α1(|I| −
∑
i∈I

∑
j∈J

∑
k∈Kj

cjki) + α2

∑
j∈J

∑
k∈Kj

ojk + α3

∑
j∈J

∑
d∈D

pjd + α4

∑
j∈J

ej

+ α5

∑
j∈J

∑
k∈Kj

(Rjk

∑
i∈F

cjki(1− Rc
i ) +

∑
i∈T

cjki(
1

2
Rjk − Rc

i )) (1)

s.t
1

2

∑
i∈T

cj(k−1)i +
∑
i∈F

cj(k−1)i −
∑
i∈F

cjki ≥ 0 ∀j ∈ J, k ∈ Kj \ {1} (2)

∑
i∈T

cjki −
∑
i∈T

cj(k−1)i ≤ 0 ∀j ∈ J, k ∈ Kj \ {1} (3)

1

2

∑
i∈T

cjki +
∑
i∈F

cjki ≤ 1 ∀j ∈ J, k ∈ Kj (4)

∑
j∈J

∑
k∈Kj

cjki ≤ 1 ∀i ∈ I (5)

∑
i′∈T

cjki′ − 2cjki ≥ 0 ∀j ∈ J, k ∈ Kj , i ∈ T (6)

∑
i∈I

R
c
i cjki − Rjk ≤ 0 ∀j ∈ J, k ∈ Kj (7)

∑
k∈Kj

∑
i∈I

W
c
i cjki ≤ W s

j ∀j ∈ J (8)

∑
k∈Kj

(
1

2

∑
i∈T

H
c
i cjki +

∑
i∈F

H
c
i cjki) ≤ Hs

j ∀j ∈ J (9)

7



d−1∑
d′=1

(
∑
i∈F

Aid′cjk′i +
1

2

∑
i∈T

Aid′cjk′i) ≤ ujkd

∀j ∈ J, k ∈ Kj , k > 1, k
′ ∈ K, k′ < k

d ∈ D, d > 1, d
′ ∈ D, d′ < d

(10)

∑
i∈F

Aidcjki + ujkd ≤ 1 + ojk ∀j ∈ J, k ∈ Kj , d ∈ D (11)

1

2

∑
i∈T

Aidcjki + ujkd ≤ 1 + 1
2 ojk ∀j ∈ J, k ∈ Kj , d ∈ D (12)

|Kj |ej − (
∑
i∈F

cj1i +
1

2

∑
i∈T

cj1i) ≥ 0 ∀j ∈ J (13)

|Kj |pjd −
∑

k∈Kj

(
∑
i∈F

Aidcjki +
1

2

∑
i∈T

Aidcjki) ≥ 0 ∀j ∈ J, d ∈ D (14)

cjki = 1 ∀(j, k, i) ∈ L (15)

|Kj |vjm −
∑

k∈Kj

(
∑

i∈F,Mi=m

cjki +
1

2

∑
i∈T,Mi=m

cjki) ≥ 0 ∀m ∈M, j ∈ J (16)

vjm1 + vj+1m2 ≤ 1 ∀j ≤ |J| − 1, (m1,m2) ∈ IMO (17)

vjm1 + vjm2 ≤ 1 ∀j ∈ J, (m1,m2) ∈ IMO (18)

The objective function is the sum of the cost criteria defined above, weighted by parameters
αf , f ∈ {1, . . . , 5}. Constraints (2) ensure that there are either two 20’ or one 40’ container below
a cell stowing a 40’ container, to avoid 40’ containers hanging in the air. Similarly, (3) force that
there must be 20’ containers below a cell stowing 20’ containers. Cell capacity is handled in (4),
which requires that a cell stows at most two 20’ containers or one 40’ container. Constraints (5)
impose that each container can occupy at most one cell. Moreover, constraints (6) force the number
of 20’ containers in a cell to be 0 or 2, since a cell must be empty or with both slots occupied.
With constraints (7) we ensure that reefer containers are only stowed in cells with reefer plugs.
The weight and height limits of the stacks are enforced by constraints (8) and (9) respectively.
Note that as stated in Section 1, all 20’ containers are assumed to have the same height since we
do not consider 20’ high-cubes. Constraints (10) ensure that variables ujkd take value 1 if in cell
k′, below cell k of stack j, there is a container that has to be unloaded at d′, a port earlier than d
in the vessel route. Variables ujkd are then used to assign the values of the overstowage variables
ojk for each cell. Constraints (11) refer to 40’ containers. If there is a 40’container in cell k of
stack j being discharged at port d and ujkd = 1, this container overstows another container placed
below and thus ojk = 1. If any of these two conditions do not hold, there is no overstowage and
ojk = 0. Constraints (12) do the same for 20’ containers. If cell k of stack j is occupied by two 20’
containers and ujkd = 1, the number of these 20’ containers being discharged at port d determines
the number of overstows, which can be 0, 1, or 2. The binary variables ej must be set to 1 if there
at least is one container stowed in stack j. This is done in (13) with a Big −M constraint where
the value of M corresponds to the cardinality of the set Kj . In a similarly fashion, constraints (14)
set the binary variables pjd to 1 if there at least is one container in stack j being unloaded at
port d. Constraints (15) ensure that already loaded containers retain their position. The set L of
already loaded containers is composed of the triples (i, j, k) indicating that container i must be
stowed in stack j and cell k. Constraints (16),(17) and (18) enforce the IMO segregation rules.
First, constraints (16) set the binary variable vjm to 1 if there is at least one container in stack j
belonging to IMO category m. Then, constraints (17) and (18) use variables vjm to enforce the
segregation rules.

4 Constructive algorithm

We are given the list of containers assigned to the location by the solution of the master planning
problem as well as the list of containers already stowed in this location with their positions.
Following an iterative process, we combine two elements: a list Cont of the containers still to be
stowed, initially the complete list of containers, and a list S of stacks. Each stack s ∈ S is then
composed of a list Cs of cells in which it is possible to stow a container.
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At each step, we first choose a stack from S and consider the first cell available in this stack,
that is, the lowest non-occupied cell. Then we choose the container to be stowed from among
the containers in Cont which could be feasibly stowed in it. The process goes on until all the
containers have been stowed or there is no usable space left.

Step 0: Initialization
We have the list Cont ordered by port of discharge, length, reefer, and height. With respect to

the port, containers appear in decreasing order, so that those going to ports visited later are stowed
first. With respect to length, they are in increasing order: we want to stow first 20’ containers
and then 40’ containers. Reefer and high cube containers appear before standard containers in the
ordered list Cont because we want to consider them first when choosing the container to stow.

In list S the partially filled stacks appear first and then the empty stacks. Both sublists are
ordered separately by their number of available cells in decreasing order. This ordering seeks to
minimize the number of stacks being used.

Step 1: Choosing the stack and cell
We choose the first stack in list S and its lowest empty cell. We do not change the stack until

it has no more empty cells or no more containers can be stowed in it.
Step 2: Choosing the container
Once a cell has been chosen, we know the characteristics of the cell and we have information

about other containers previously stowed in this and other adjacent stacks.
A container can be stowed in the selected position if it satisfies a series of conditions:

• Type of container

Some cells hold only 40’ or only 20’ containers. If the selected cell has one of these restrictions,
the container to be stowed must satisfy it.

If the tier below contains a 40’ container, 20’ containers cannot be stowed in the selected
cell.

If a 20’ container is considered for stowage in one of the slots of the cell, we must check that
there is another 20’ container that can occupy the other slot, because both slots of the cell
must simultaneously be empty or occupied.

• Power supply

According to the values of Rjk, the number of plugs in the cell, we can have the following
cases:

– If Rjk = 0 (no plugs in the cell), reefer containers cannot be stowed in the cell.

– If Rjk = 1 (one plug in one side of the cell), one 40’ reefer container or a 20’ reefer
container can be stowed. In the second case, the other 20’ container completing the cell
must be non-reefer. If there are no reefer containers to be stowed in the selected cell,
non-reefer containers can be stowed with a penalty.

– If Rjk = 2 (plugs in both sides of the cell), one reefer 40’ container or a reefer 20’
container can be stowed. In the second case, the other 20’ container completing the cell
should also be reefer, although as in the previous case non-reefer containers can also be
stowed.

• Weight

The weight of the containers already in the stack plus the weight of the new container(s)
must not exceed the total weight limit of the stack.

• Height

The height of the containers already in the stack, plus the height of the new container must
not exceed to the total height limit of the stack.

High-cube containers are subject to an additional test concerning height. We compute the
number of standard containers that could be stowed in the stack according to the remaining
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height. If putting a high-cube container reduces this number, it should not be stowed in
this cell, because that would produce an empty space on top of the stack. For instance, if
the stack has a remaining height of 27’, three standard containers (8’6”) could be stowed.
Putting a high-cube container (9’6”) in this position will reduce the remaining height to 17’6”
and two standard containers could still be stowed in the stack. In this case, the high-cube
container can be stowed in the cell. However, if the remaining height were 26’, the high-cube
container would reduce the remaining height to 16’6” and only one more container could be
stowed. In this case, the high-cube container would not be stowed in this cell. Nevertheless,
this rule only applies if there are other standard containers with the same port of discharge
that could occupy the cell. If only high-cube containers for this port are still to be stowed,
they can occupy the cell, because the priority assigned to the order of ports overrides a
better use of stack height.

• IMO constraints

If there are IMO containers in the stack or in adjacent stacks, the container to be stowed
must not be incompatible with them.

When the selected cell is in a tier in the lower half of the stack, the Cont list, besides being
ordered by port, length, reefer, and height, is also ordered by decreasing weight. Conversely, when
the tier is in the upper half of the stack, the order is by increasing weight. We want to stow
heavyweight containers in the lower half of each stack, and lightweight containers in the upper
half. The idea is to maintain a similar average weight in each stack.

Step 3: Updating the lists
We remove the container (or containers) already stowed from the list and update the values of

the total weight and height of the chosen stack. This process continues until there is no container
on the list or there is no possible cell in which to stow any remaining container.

Tier-by-tier constructive algorithm
In the previous constructive algorithm, once a stack is open we stow all the containers that

fit into the stack before considering a new stack on list S. We call this strategy a sequential
construction. We have also studied an alternative in which instead of choosing a stack and filling
it completely, at Step 1 we always choose the lowest empty cell irrespective of the stack to which
it belongs. With this strategy the location is filled by tiers, starting from the bottom. We call
this strategy a tier-by-tier construction. This alternative is not good for minimizing the number
of stacks used because it keeps all the available stacks open, but it produces diverse solutions that
are useful in the iterative procedure described later.

5 A GRASP algorithm

GRASP, Greedy Randomized Adaptive Search Procedure (Feo & Resende, 1995), is an iterative
procedure that combines a constructive phase and an improvement phase. In the constructive
phase the solution is built step by step, adding one element to a partial solution. For selecting
the element to be added, a greedy strategy is used, but the selection is not deterministic because
a random strategy is used to provide diversity. The improvement phase consists of a local search.
GRASP has been successfully applied to many combinatorial optimization problems, such as
vehicle routing (Prins, Lacomme, & Prodhon, 2014), territory design (Rios-Mercado & Escalante,
2016), or inventory routing problems (Shao, Furman, Goel, & Hoda, 2015), including container
loading problems closely related to the slot planning problem (Moura & Oliveira, 2005; Alonso,
Alvarez-Valdes, Parreño, & Tamarit, 2014).

The GRASP metaheuristic algorithm has been chosen because its structure is very appropriate
for the characteristics of the problem being solved. As the results from Pacino and Jensen (2012)
and Delgado et al. (2012) indicate, proper construction heuristics tend to produce high quality
solutions for the Slot Planning problem. The randomization of the construction heuristic within
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an iterative approach then might be what is needed to escape from the local minima convergence
that afflicts the CBLS approach of Pacino and Jensen (2012).

The approach, which is shown in detail in Algorithm 1, follows this general procedure. First
a randomize construction algorithm finds a solution to the problem. Successively the solution is
improved using a local search procedure, and accepted if it is better than the previous one. These
two steps are iterated until a termination criteria is met. Details of each search component are
described in the following sections.

5.1 Randomizing the constructive algorithm

We consider the constructive algorithm described in the previous section and randomize Step 2,
the order of the list of stacks, and Step 3, the list of containers to be stowed.

In Step 2, we maintained two lists of stacks, first the stacks that are partially filled, and then
the empty stacks. Now, instead of having the lists ordered by decreasing number of available cells,
we assign to each stack a number taken at random from 0 to its number of available cells, and
order each list according to these random numbers. Ties are broken at random.

In Step 3, we considered two ways of ordering the containers depending on the tier of the cell.
Now, instead of considering the complete ordered list of containers, we take a random sample.
The size of this sample is determined by a parameter δ that indicates the proportion of the
containers to be sampled, so each container has a probability δ of being part of the sample. We
go through the ordered sample and the first container that satisfies all the conditions is stowed in
that cell. This technique was proposed by Resende and Werneck (2004), who called it sample plus
construction. The diversity of the process is managed by the value of the parameter δ. If δ = 1, all
the containers are selected for the sample and the first one satisfying all the conditions is always
chosen, making the selection deterministic. On the contrary, when δ is closer to 0, the number of
selected candidates is smaller and the best containers have a lower probability of being selected.
This means that the cell may be occupied by containers that are not so suitable according to their
port, length or reefer property. In that sense, this procedure introduces more diversity into the
set of solutions produced in the iterative procedure. With this method it is, however, possible
that none of the selected containers satisfies all the conditions for occupying the cell. In that
case, we go through the complete ordered list of containers and the first container that satisfy the
conditions is stowed in that position.

In order to introduce even more diversity into the solutions, we use two more randomizing
procedures. On the one hand, since we have developed two constructive methods, sequential and
tier-by-tier, we randomly choose one of them at each iteration to build the solution. On the other
hand, instead of always ordering the containers by decreasing weight in the lower half of the stack
and increasing weight in the upper half, at each iteration we randomly choose between increasing
and decreasing order for the weights.

Due to randomization we can have stacks with some overstowage, which can easily be removed
by reordering the containers in the stack. Then, once a solution is built by the randomized
algorithm we try to reduce this overstowage by reordering the containers stowed in each stack.

5.2 Determining the parameter δ

A preliminary computational experiment showed that no value of δ always produced the best
results. Therefore we decided to use a Reactive GRASP strategy, proposed by Prais and Ribeiro
(2000), in which at each iteration δ is taken at random from a set of discrete values {0.1, . . . , 0.9}.
Initially, all these values have the same probability of being chosen. In the iterative process
we keep the value of the solutions obtained with each value of δ. After a certain number of
iterations the probabilities are modified. Those corresponding to values of δ that have produced
high-quality solutions are increased and, conversely, the probabilities of the values producing low-
quality solutions are decreased. The procedure is similar to that of Delorme, Gandibleux, and
Rodriguez (2004).
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Figure 3: Improving solutions. Removing last containers stowed

As we have two different methods (sequential and tier-by-tier) for building the solution, it is
possible that a given value of δ is good for the sequential but not for the tier-by-tier procedure
or vice versa, so we keep two lists of values for δ, one for the sequential case and another for the
tier-by-tier.

5.3 Improvement phase

In this section we try to improve the solutions obtained by the randomized constructive algorithm
by using local search. We have defined eight improvement moves, based on two basic strategies.
The first strategy consists of removing some of the containers in the solution and then filling
the location again using a deterministic procedure. Six different improvement moves have been
devised from this strategy (also called ruin-and-recreate), which are described in Section 5.3.1.
The second strategy, from which the two remaining moves are created, consists of exchanging
containers between stacks and is described in Section 5.3.2. The eight improvement moves are
applied to each solution that passes the filter described in Section 5.3.3. If some of these moves
produce improvements, we take the one with the best improvement as the new solution.

5.3.1 Removing and filling moves

The first set of three improvement moves is based on the observation that wrong decisions might
be taken by the randomized constructive process, resulting in bad solutions. Let γ be a parameter
determining how much of the current solution should be kept. Since we want to relax the late
decisions, we start removing containers starting from the last inserted. We do so until only γ% of
the original solution is left. The containers are then reinserted using the sequential deterministic
procedure. Values of γ are chosen at random in the interval (35, 95). The values of the interval
are set so as to remove a significant part of the solution without starting the constructive process
from scratch. They are similar to those used in previous studies on related problems (Alonso et
al., 2014; Alvarez-Valdes, Parreño, & Tamarit, 2013).

We use the sequential constructive algorithm described in Section 4 to complete the partially
destroyed solution, but in Step 2 we consider three different ways of ordering the container list.
The first way is to order it by decreasing weight. Another alternative is ordering it by increasing
weight and the third alternative consists of using decreasing weight but choosing the stack with
most available cells instead of the stack with the fewest available cells. Then, three improvement
moves, leading to three different solutions, are defined.
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Figure 4: Improving solutions. Removing stacks

In Figure 3 we can see an example of this improvement move. The small triangle in the top-
left corner indicates that the slot has a power supply and a letter R indicates that it is a reefer
container. The colors indicate the port of destination, dark gray meaning port 1 and light gray
port 2. Overstowing containers are highlighed with a ∗. In the initial solution at the left-hand
side (Figure 3(a)), obtained by the tier-by-tier constructive algorithm, the number of overstowing
containers is 15. We remove a percentage of the last containers stowed (Figure 3(b)) and we
stow them again using the constructive deterministic algorithm (Figure 3(c)). The number of
overstowing containers is reduced to 6, so the solution has been improved.

The second set of three moves is based on the removal of containers within a set of stacks.
We randomly select a set of stacks in the solution and remove all the containers stowed in them.
The solution is then completed again using the deterministic algorithm with the three different
container orderings described before. We can see an example in Figure 4. In this case stacks 1,
2, and 7 are removed. In the new solution there are no overstowing containers and in each of the
new stacks 1, 2, and 7, all the containers have the same port of discharge.

5.3.2 Exchanging containers

In this move we try to improve the solution by exchanging containers between stacks in the current
solution. The procedure is intended to allow more containers to be stowed, so it is only applied
to solutions in which it is not possible to stow all the containers assigned to the location.

We try first to improve the distribution of weights among the stacks. We want to exchange
containers between different stacks in such a way that a heavy stack increases its weight, without
exceeding its limit, and a light stack is made lighter in order to be able to accommodate containers
that have been left out due to the weight constraints. A similar movement is applied to the
distribution of heights.

Figure 5 shows an example of this move. The numbers below each stack correspond to the
weight limit and the total weight of the containers in the stack. The numbers in the containers
represent their weights. We exchange two containers in stack 3, which is the lightest stack, one of
them with a container in stack 1 and the other with a container in stack 2, in order to decrease its
total weight, without exceeding the limits of the other stacks. Having reduced the load in stack 3
(Figure 5(b)), it is possible to add one more container (Figure 5(c)).

5.3.3 Statistical filter

We use a filter to speed up the iterations of GRASP, so that local search is not applied to all the
solutions obtained by the randomized construction phase, but only to some promising unvisited
solutions. This strategy is called GRASP filtering (Feo, Resende, & Smith, 1994).
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Figure 5: Exchanging containers between stacks

The filter tries to identify unpromising solutions, that is, solutions for which there is a high
probability that they will not improve on the best known solution after the improvement phase.
In order to do so, we use the information collected in the iterative process. Initially, the first
500 iterations are made, always going to the improvement phase and collecting at each iteration
the values of solini, the solution obtained by the randomized constructive phase, and solls, the
solution after the improvement phase. We consider the distribution of solini/solls and calculate
its median. Then, in the subsequent iterations of GRASP, a solution obtained in the first phase
with value solini only goes to the improvement phase if solini ≤ median · solbest, where solbest is
the value of the best known solution.

The complete flow of the GRASP procedure appears in Algorithm 1.

6 Computational experiments

The algorithms were coded in C++ and run on a Intel Core Duo 2.93 GHz with 4 GB of RAM.
The IP models were implemented in CPLEX 12.5 and run with a time limit of 120 CPU seconds
and using 4 threads. For the GRASP algorithms the stopping criteria are a time limit of 1 CPU
second, or a maximum of 20000 iterations, or 4000 iterations without improving the best known
solution, whichever occurs first.

6.1 Test instances

We used two sets of instances to evaluate our approach. The first set, Set I, was the one used
by Delgado et al. (2012), composed of 236 slot planning instances derived from complete stowage
plans provided by a shipping company. Each instance was generated by restowing a random
location in one of the stowage plans. Since the plans were applied in real life, we can assume that
the containers were assigned to locations according to the preferences of stowage coordinators. In
this first set, only in one instance was it not possible to stow all the containers in the location.

In order to extend the computational study, we created a new set, Set II, composed of 425
instances. Some of these instances had IMO containers and in general they were more difficult
than those in Set I, because in some of them it was not possible to stow all the containers assigned
to each location. There were 4 groups in total: Weight, HC, Capacity and IMO. Each group was
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Algorithm 1 Reactive GRASP

Require:
D = {1, 2, . . . , 9}, set of possible values of δ
Obest =∞; Oworst = 0
SumD∗i

= 0, sum of the solution values obtained using value Di

P (Di = D∗i ) = PD∗i = 1
|D| ,∀D

∗
i ∈ D, probability of using value Di

numIter = 0
M =∞, quality threshold
SOini, set of first 500 solution values of randomized constructive phase
SOls, set of first 500 solution values of improvement phase

Ensure:
S : Solution,Os : Solution objectivefunction

1: while Stop Criterion not Satisfied do
2: Choose D∗i , with probability PD∗i
3: nD∗i ← nD∗i + 1
4: numIter ← numIter + 1
5: {S,Os} ← ConstructiveRandomized(Di)
6: if Os < M ∗Obest or numIter < 500 then
7: repeat
8: {S,Os} ← Improvement(S)
9: until S not Improved

10: if numIter = 500 then
11: M ← ComputeMedian(SOini, SOls)
12: end if
13: end if
14: if Os < Obest then
15: Obest ← Os
16: end if
17: if Os > Oworst then
18: Oworst ← Os
19: end if
20: SumD∗i

← SumD∗i
+Os

21: if mod(numIter, 500) = 0 then

22: evalD∗i = (
meanD∗

i
−Oworst

Obest−Oworst
)2, ∀D∗i ∈ D

23: P (D∗i ) =
evalD∗

i∑
D

i′∈D
(eval

D
′
i
) , ∀D

∗
i ∈ D

24: end if
25: end while
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aimed at a specific problem property, e.g. in the weight group all instances were forced to have a
total weight of containers equal to a specified percentage of the total weight capacity.

• Weight instances (75), in which the weight was the most important factor. The total weight
of the containers was set to 50%, 75% and 100% of the total weight allowed in the location.

• HC instances (125), in which the High-Cube containers determined the problem. The per-
centage of High-Cube containers was set to 0%, 10%, 20%, 40%, 50%.

• Capacity instances (75), in which the most important factor was the number of containers
being stowed. The percentage of containers with respect to the capacity of the location was
set to 50%, 75%, 100%.

• IMO instances (150), in which there were IMO containers, with their special loading con-
straints. We randomly selected 10 from each of the Weight, HC, and Capacity groups. The
percentage of IMO containers was set to 15%, 30%, 45%, 60% and 75%.

We generated 5 instances for each location and designed 5 locations of different sizes, with
location 1 being the smallest and location 5 the largest. For all instances, except for the Capacity
group, the number of containers was set at random between 70% and 100% of the location capacity.

In Table 2 we can see the characteristics of all the instances. The first row shows the averages
for the 236 instances of Set I, while the instances of Set II are divided, according to the location.
The table shows that instances in Set II have in general more ports of discharge, containers already
loaded, and containers to load. Instances of Set II also include IMO containers, besides the usual
mix of 40’, 20’, and reefer containers.

# PODs #Containers Loaded #Containers to Load

Set Location Min Mean Max Min Mean Max Min Mean Max
I 236 1 1.2 4 0 4.2 117 1 41.7 136
II 1 85 5 15.3 26 6 21.8 40 6 15.5 30
II 2 85 6 17.1 27 12 39.1 70 11 26.2 52
II 3 85 6 17.9 29 17 57.8 102 16 37.8 74
II 4 85 6 18.4 29 24 76.3 134 20 48.7 96
II 5 85 6 18.6 29 34 107.0 186 28 66.9 133

Overall 661 1 11.7 29 0 40.4 186 1 40.0 136

Table 2: Characteristics of the instances of Sets I and II

6.2 Results of the integer linear model

The parameters in the objective function, αf , f = 1 . . . 5, have been set as follows:
α1 = 1000 ∗ (|I|+ |L|+ 1), α2 = 100, α3 = 20, α4 = 10, α5 = 5.
These values, taken from Delgado et al. (2012), represent the preferences of the stowage coor-

dinators consulted in their study.
Table 3 shows the results obtained for the two sets of instances when using the model described

in Section 3, and compares them with those obtained by using the formulation suggested by
Delgado et al. (2012), where the new constraints and objective components have been added. The
table shows the average values of the lower (LB) and upper bounds (UB), in thousands, for each
group of instances, the average running times (Time) and the number of optimal solutions (#Opt).
In the last column we can see the number of optimal solutions using the best lower bound and
upper bound.

The results in Table 3 show that the new model finds significantly higher lower bounds and
significantly lower upper bounds than the formulation by Delgado et al. (2012) for each group of
instances. However, the large average gaps between lower and upper bound indicate that for some
instances the solutions obtained can be very far from the optimal solutions, especially when the
instance size increases.
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Our Integer Formulation IP (Delgado et al., 2012)

# UB LB Time #Opt UB LB Time #Opt #Opt both

Set I 236 41 8 13.5 214 323 8 19.8 203 214
Weight 75 3862 331 81.5 28 20286 277 84.4 26 28
HC 125 13607 418 78.3 51 33417 153 82.7 48 53
Capacity 75 2721 831 67.8 33 16717 733 76.7 29 34
IMO 150 9228 975 82.3 44 19616 925 83.2 46 46

Overall 661 5429 435 55.3 370 15085 356 59.9 352 375

Table 3: Results for the integer formulations

6.3 Comparing different strategies for the GRASP algorithm

Table 4 compares different strategies for the GRASP algorithm:

• The Constructive deterministic algorithm.

• The Randomized constructive algorithm (at each iteration, δ is taken at random in (0.5, 0.95)).

• The Reactive GRASP algorithm (the value of the parameter δ is adjusted reactively as the
iterative process proceeds).

• The Reactive GRASP algorithm with Local Search.

• The Reactive GRASP algorithm using the filter to select the solutions to be improved (Fil-
tering).

For each method the table shows the sum of the number of containers rolled out (#Out) and
the number of optimal solutions obtained (#Opt)2. The last three rows show the sum of these
values for all the problems, the average time, and the average cost per instance, in thousands.

We can see that the Reactive GRASP strategy slightly improves the results obtained when
randomly selecting the value of δ, which in turn significantly improves the results of the determin-
istic constructive algorithm. Much better results are obtained when the solutions produced by the
randomized constructive algorithm go to a Local Search procedure, although with a substantial
increase in the running times. Finally, using the filter slightly reduces the computing times of the
Local Search and obtains very similar results. Therefore our GRASP algorithm includes reactive
adjustment of the parameter δ and local search with filtering.

Constructive Randomized Reactive Local Search Filtering

Type # #Out #Opt. #Out #Opt. #Out #Opt. #Out #Opt. #Out #Opt.

Set I 236 75 160 17 190 16 190 1 209 2 209
Weight 75 145 1 67 8 67 7 41 15 43 15
HC 125 233 0 71 14 62 14 40 17 38 18
Capacity 75 140 0 86 10 87 11 68 17 66 17
IMO 150 933 1 416 29 396 30 297 33 296 32

Overall 661 1526 162 657 251 628 252 447 291 445 291

Time <0.001 0.144 0.156 0.854 0.821

Cost 2868 1331 1266 916 902

Table 4: Comparing strategies for the GRASP algorithm

6.4 Comparing GRASP with Integer Linear Programming models

In this section we compare the results of the GRASP algorithm with the best values obtained
using the two integer formulations (denoted as IP), in order to assess the quality of the GRASP

2Calculated by comparing against the best lower bound found by both integer formulations

17



# IP GRASP IP#out GRASP#out

Set I 236 0 1 5 2
Weight 75 0 12 175 43
HC 125 3 28 969 38
Capacity 75 3 5 124 66
IMO 150 19 51 1031 296

Overall 661 25 97 2304 445

Table 5: Comparing GRASP with IP on instances in which they load different amounts of con-
tainers

Type # Better Equal Worse

Set I 235 2 226 7
Weight 63 8 18 37
HC 94 16 19 59
Capacity 67 7 20 40
IMO 80 12 32 36

Overall 539 45 315 179

Table 6: Comparing GRASP with IP on instances in which they load the same number of con-
tainers

solutions. This comparison is made using two tables. In Table 5 we can see a comparison in
terms of the number of containers loaded, columns three and four show the number of instances
in which one algorithm loads more containers, while columns five and six show the total number
of containers rolled out by each algorithm. It can be observed that of the 661 test instances, there
are only 122 in which GRASP and IP do not load the same number of containers. In most of these
122 instances GRASP obtains better solutions. The table shows how the integer formulations
struggle to load containers, especially in the HC and IMO sets. GRASP, on the other hand, is
able to load a considerably larger number of containers.

Table 6 contains the remaining 539 instances in which both algorithms load the same number
of containers and compares the values of the solutions obtained by each algorithm. It can be
observed that in the majority of cases, 315, the values coincide, while in 179 GRASP obtains
worse values, with an average deviation of 3%, and in 45 GRASP gets better values, with an
average improvement of 11%. These results show that GRASP can effectively be used to find high
quality solutions for the slot planning problem.

Table 7 shows the results when the instances are grouped by size. The first column indicates
the size of the problem measured as the number of containers to be loaded, the second column
the number of instances in each group, the third and fourth columns the results achieved by
Integer Formulations and columns five and six the results of the GRASP algorithm, in terms of
the number of optimal solutions (#Opt) and the number of containers rolled out (#Out). The
last two columns show the number of cases in which GRASP obtains worse and better solutions
than IP. We can see that for small problems the results of integer formulations are better than
GRASP, but as the instance size increases, the results of GRASP improve on the results of the
integer formulations. The number of containers left out in the solutions of the integer formulations
is very high when the size of the problem increases.

6.5 Comparing with other algorithms

Here we compare our GRASP approach to two state-of-the-art algorithms for the Slot Planning
problem: the Constraint-Based Local Search (CBLS) by Pacino and Jensen (2012) and the Con-
straint Programming (CP) model of Delgado et al. (2012). Both approaches assumes that all
containers must be loaded and do not support IMO segregation, thus comparison is only per-
formed for Set I.

According to the literature, the CBLS and CP algorithms have been run on a Linux machine
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IP GRASP GRASP vs IP
Containers # #Out #Opt #Out #Opt #Worse #Better

1-18 131 39 130 49 113 17 0
19-27 134 71 108 78 63 70 0
28-38 125 50 64 34 50 52 19
39-59 141 388 43 129 38 45 56
60-136 132 1756 30 155 27 21 67

661 2304 375 445 291 203 142

Table 7: Comparing with the Integer Formulation with instances grouped by size

with two Quad Core Opteron processors at 1.7 GHz with 8 GB of memory. Even though this is
an older machine, considering that the CBLS is run in parallel, we believe the comparison to be
fair. Moreover, for this comparison, we consider any solutions from our GRASP approach that
rolls out containers to be infeasible.

Table 8 presents the aggregated results of the three approaches on each of the instance groups
of Set I. The fist column indicates the group ID and the second the number of instances it is
composed of. Successively, for each solution method, column %Sol indicates the percentage of
problems solved, column %Opt presents the percentage of problems solved optimally, and column
Time shows the total running time needed to solve all the instances in the group. Note that two
results are presented for the CP approach, one with a time limit of 1 second and one with a time
limit of 10 seconds.

The first thing to notice is that the CBLS approach is generally faster than the GRASP
algorithm. The quality of the solutions found by the GRASP approach are, however, much better.
This indicates that the CBLS converges too fast toward some local minima from which it is not
able to escape.

The CP model performs also extremely well in terms of execution time but lacks in robustness.
It finds both fewer feasible and optimal solutions than the GRASP approach. When CP is given
more time, the results improve but are still not competitive with GRASP. The runtime performance
of the CP model, is highly dependant on the lower bound of the objective. The lower bound, in
the same way as the entire CP model, assumes that all containers must be loaded and thus cannot
be reapplied to the more general case where containers can be rolled out.

Two things are important to notice. First, the GRASP approach is able to find solutions for
all the test instances. Only one instance in class 9 was not solved. However, it turns out that the
instance is infeasible if all containers must be loaded. Second, all instances can be solved within
the 1 second time limit imposed by the industry. These results show that in the special case where
all containers must be loaded, the GRASP approach improves the state-of-the-art while retaining
a comparable runtime performance.

GRASP (1 sec) CBLS CP (1 sec) CP (10 sec)

Class # %Sol %Opt Time %Sol %Opt Time %Sol %Opt Time %Sol %Opt Time

1 13 100 100 6.3 100 59 0.1 100 100 0.1 100 100 0.1
2 22 100 100 15.4 100 77 3.6 91 91 3.6 91 91 21.6
3 13 100 100 7.8 100 92 0.5 100 100 0.5 100 100 0.5
4 78 100 99 37.3 100 92 6.0 96 95 6.0 99 99 19.7
5 36 100 94 22.3 97 58 7.1 92 89 7.1 92 92 39
6 15 100 100 6.0 93 80 1.2 100 93 1.2 100 100 5.4
7 14 100 93 9.0 93 79 2.3 64 57 6.8 64 64 53.5
8 14 100 100 6.1 93 43 1.5 93 93 1.5 93 93 10.5
9 17 94 82 12.3 94 47 5.2 76 76 5.2 88 88 36.5
10 8 100 100 4.8 100 88 0.7 100 100 0.7 100 100 0.7
11 6 100 83 3.2 50 17 1.3 83 83 1.3 83 83 10.3

Total 236 99.6 96.6 130.5 96.2 72.5 29.5 92.0 90.0 34.0 94.0 94.0 198.0

Table 8: Comparing with the Constraint Programming algorithm by Delgado et al. (2012) and
the CBLS heuristic algorithm by Pacino et al. (2012)
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7 Conclusion

We have studied the slot planning problem and introduced two features that have not been con-
sidered in previous studies. On the one hand, we explicitly include the minimization of rolled
out containers and do not assume that all the containers fit into the location, because this is not
always the case in practice. On the other hand, we take into account the separation rules that
arise when handling containers with dangerous goods.

We have developed a new integer formulation. Although it obtains better results than other
existing integer models, the computational results show that it is not suitable for solving real
instances in the very short computing times required by the industry. Therefore we have de-
veloped a GRASP algorithm, combining constructive procedures, randomization strategies, and
improvement moves. We have performed a computational study, using test instances available in
the literature and a new set of instances that we have generated with different characteristics. The
GRASP algorithm can be used as a black box, without further parameter tuning, and the results
show that it performs well on all types of instances, improving on previously reported results.
The handling of unloaded containers and the inclusion of segregation rules for dangerous cargo
contributes to the further applicability of stowage planning optimization in the shipping industry.

In future research we plan to solve a more general slot planning problem in which the solution
of the master planning phase is not given as a set of specific containers assigned to a location,
but as a number of containers of each port, length, and weight class assigned to each bay. That
involves an assignment phase of containers to bays, besides the loading problem for each bay. The
problem is more complex, but also more realistic, and could be addressed using a metaheuristic
scheme similar to that used in this study.
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