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Generation Expansion Planning with Large
Amounts of Wind Power via Decision-Dependent

Stochastic Programming
Yiduo Zhan, Qipeng P. Zheng, Member, IEEE, Jianhui Wang, Senior Member, IEEE, Pierre Pinson, Senior

Member, IEEE

Abstract—Power generation expansion planning needs to deal
with future uncertainties carefully, given that the invested gen-
eration assets will be in operation for a long time. Many
stochastic programming models have been proposed to tackle this
challenge. However, most previous works assume predetermined
future uncertainties (i.e., fixed random outcomes with given
probabilities). In several recent studies of generation assets’
planning (e.g., thermal versus renewable), new findings show that
the investment decisions could affect the future uncertainties as
well. To this end, this paper proposes a multistage, decision-
dependent stochastic optimization model for long-term, large-
scale generation expansion planning where large amounts of
wind power are involved. In the decision-dependent model, the
future uncertainties are not only affecting but also affected by
the current decisions. In particular, the probability distribution
function is determined by not only input parameters but also
decision variables. To deal with the nonlinear constraints in
our model, a quasi-exact solution approach is then introduced
to reformulate the multistage stochastic investment model to a
mixed-integer linear programming (MILP) model. The wind pen-
etration, investment decisions, and the optimality of the decision-
dependent model are evaluated in a series of multistage case
studies. The results show that the proposed decision-dependent
model provides effective optimization solutions for long-term
generation expansion planning.

Index Terms—Decision-Dependent, Stochastic, Wind, Mixed
Integer Programming, Power Generation, Expansion Planning,
Long-term, Endogenous Uncertainties.

NOMENCLATURE

A. Sets and Indices

a(n) The ancestor of node n.
i Index for types of generator: 1 for thermal, 2 for wind.
j Index for stage, j = 1, . . . , J .
l Index for the binary variables introduced for linearization, l =

1, . . . , L.
N The complete set all nodes of the scenario tree.
N− The set of nodes excluding the one in the first stage.
N ′ The set of nodes excluding those in stage J .
n Index for each node n ∈ N .
Sn The successor set of node n in the next stage.
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Bi Levelized investment cost of thermal or wind i ∈ {1, 2}, in
$Billion/TWh.

bi Unit investment (overnight capital) cost of thermal or wind, i ∈
{1, 2}, in $Billion/TW.

βi Capacity factor of thermal or wind i ∈ {1, 2}.
ci Levelized electricity operation and maintenance cost i ∈ {1, 2}, in

$Billion/TWh.
Dn The elastic demand in scenario tree node ∀n ∈ N , in TWh.
δn Price variation level at node n, ∀n ∈ N .
E Elasticity level of demand.
e Incremental level between demands of two consecutive stages.
H Number of hours in a planning stage, in Hour.
L The number of binary variables used to represent the probability at

each node of the scenario tree.
Ml A large number to bound all continuous decisions.
pn Market price offered in scenario tree node n, ∀n ∈ N , in

$Billion/TWh.
Revn Total revenue from selling electricity in scenario tree node n, ∀n ∈

N , in $Billion.

C. Variables

αn
i Future investment on capacity of thermal/wind in scenario tree node

n, ∀n ∈ N , in TW.
COn Total operation cost in scenario tree node n, ∀n ∈ N , in $Billion.
εn The error term when using binary variables to represent the con-

tinuous probability value at node n.
gni Thermal or wind power production in scenario tree node n, ∀n ∈

N , in TWh.
ICn Total investment cost in scenario tree node n, ∀n ∈ N , in $Billion.
ProbnProbability function of scenario tree node n, ∀n ∈ N .
Rn The weighted average total profitability of power generation asset

composition in scenario tree node n, ∀n ∈ N .
SWn The profit in scenario tree node n, ∀n ∈ N , in $Billion.
θn The decision variable introduced to replace the bilinear term con-

taining the error term associated with the probability at node n.
xni Installed capacity for thermal/wind producer in scenario tree node

n,∀n ∈ N , in TW.
znl The lth binary variable used to represent the probability at node n.
ζnl The continuous decision variable introduced to replace the bilinear

term composed of the lth binary variable and a continuous variable
representing the current profit.

I. INTRODUCTION

IN recent years, power generation via fossil fuels has
become a main source of air pollution. The development of

renewable energy becomes a potential solution to maintain a
sustainable future environment. Since 1997, the world’s total
wind power generation capacity has been increasing at an
average rate of more than 25% per year. It is considered
a green alternative to fossil fuels due to its incomparable
features of being plentiful, renewable, and widely distributed,
and producing no greenhouse gases during operations [1].
However, because of the variable and uncertain behavior of
wind, generation planning with high penetration of wind power
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becomes more difficult. In order to make the most effective
and efficient investment decisions, dealing with the increasing
uncertainty in generation planning that involves large-scale
wind power is an urgent and challenging task.

To address these uncertainties, stochastic programming is
one of the most popular approaches applied in power sys-
tem generation planning problems [2], where uncertainties
are described by random variables with some predetermined
probability distributions. Stochastic programming approaches
have been explored by a lot of researches not only in the
short term generation operations [3] but also in the long-
term expansion planning [4, 5]. However, most previous
works were designed to deal with exogenous uncertainty [6],
where the probability distributions of uncertain factors are pre-
determined and fixed before the optimization process. In other
words, the stochastic programming models with exogenous
uncertainties, such as electricity prices, are usually formulated
based on the assumption that future random electricity prices
are independent of the investment decisions at the current
stage. However, in real-world generation planning, the decision
variables in the current stage also play an important role
influencing the future uncertainties. The study in [7] shows
that the decisions on power plant expansion are affected by
several variable criteria including capital costs, current costs,
budget deduction, and electricity prices. It is discovered in [8]
that different risk-aversion levels result in different investment
strategies in wind facilities. In the study in [9], the maximum
social welfare is achieved when the electricity price is varying
according to a user’s energy demands. It is shown in [10]
that different installed capacities of wind power will influence
the entire power system, especially when a large amount of
wind power is involved. The probability distribution of future
electricity prices is affected by the level of wind power. All
of these research findings indicate that decision variables play
an important role in determining the uncertain process at later
stages. Hence, in order to consider the endogenous uncertain-
ties, we adopt a decision-dependent approach that takes into
account decision variables in determining the distributions of
the uncertain process. In the operations research field, several
studies have utilized this decision-dependent approach to deal
with endogenous uncertainties. Among the many approaches,
a hybrid mixed-integer disjunctive programming approach has
been presented in [6] to address a class of stochastic programs
with decision-dependent uncertainties. In [11], a decision-
dependent approach was applied to a mixed-integer stochastic
programming model where the timing of information discov-
ery can be influenced by decisions.

In this paper, we propose a long-term planning model
through a multistage, decision-dependent, stochastic nonlinear
programming approach. We take advantage of the decision-
dependent process where the probability distributions of elec-
tricity prices depend on the key decision variables: the installed
capacities of different types of generation assets. Our proposed
model contains bilinear terms that make the optimization
process computationally very challenging. This model, known
as the bilinear program (BLP), belongs to the class of hard
nonconvex nonlinear programs where functions are twice
continuously differentiable [12]. Previous studies proposed

many theoretical and algorithmic approaches for acquiring
the optimality of BLPs, such as deterministic branch-and-
bound [13], branch-and-contract global optimization algorithm
[14], reformulation-linearization technique [15], Lagrangian
relaxation [16], automatic symbolic reformulation procedure
[17], linear cutting plane algorithms [18], effective heuristic
algorithms [19] and etc. However, there are also limitations a-
mong some of the existing approaches that prevent their direct
applications to our model. For example, some approaches only
work with special BLPs (e.g., disjoint BLP [13], BLP with
nonlinear constraints [14, 18]), some approaches only converge
under certain conditions (e.g., the zero duality gap conditions
for Lagrangian relaxation [16]), some approaches may not
always converge to a global optimum [19]. Nevertheless, the
quasi-exact solution algorithm in [20] uses a straightforward
linearization mechanism that does not have the aforementioned
limitations. Borrowing the method that a modern computer
represents any fractional number by using binary variables, the
quasi-exact approach ensures that the MILP (Mixed Integer
Linear Programming) problem is equivalent to the original
problem when a large number of binary variables are used to
ensure the accurate representation of the fractional numbers.
Hence, the new resulting MILP (Mixed Integer Linear Pro-
gramming) problem can be solved conveniently and efficiently
by using any off-the-shelf MILP commercial solver, but still
attains a high level of accuracy as shown in our numerical
results. Using this model and the solution approach, we study
the impact of the investments of large-scale wind generation
on long-term generation expansion planning.

The structure of this paper is the following. Section II states
model assumptions. Then, the mathematical formulation is
described in details in Section III. The quasi-exact solution
approach using discretization and linearization is discussed in
Section IV. The results from our numerical case studies to
validate the model and the solution method are presented in
Section V. Finally, Section VI presents conclusions.

II. MODEL ASSUMPTIONS

In this section, we discuss the settings and assumptions
of our model. It is assumed that the power system consists
of two types of generators: thermal and wind. The model
considers a planning horizon of 4 stages, each of which
spans 5 years. This model can be also applied to compute
under other lengths of planning horizon by changing the
values of the parameters without loss of generality. Since the
temporal variability of load and wind power is mainly due
to meteorological fluctuations of seasons and hours of the day
[10], in our long-term model these factors have a relative short-
term effect, and thus can use the average values.

Expansion planning models deal with the long-term invest-
ment problem, where long-term load growth and price trends
are the main drivers for investment decisions. Given the size
of the system and the multi-stage nature of the investment
decisions, even simplified investment problems may become
extremely complex and large-scale optimization problems if
all operational constraints, as well as the stochastic, dynamic
characteristics of the renewable generation and load are con-
sidered. Such operational details may result in a large bi-level
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(or tri-level) optimization problem, e.g., in [21]. In addition,
it is often seen that results may not be that different from
the case where some of operational constraints are simplified
or ignored. For example, the commitment for thermal units
can be absent. Besides, from the market perspective, similar
considerations would hold for the modeling of all types of
strategic behaviors of market competitors and the potential
resulting equilibria as in [21]. Hence, in many of the previous
studies, network effects which may be of less importance, have
not been explicitly included (e.g., in the European context as
discussed in [21] and [22]). Other cases without modeling
network effects include short-term models [23, 24] and long-
term models [10]. In addition, regardless of the network, the
overall average electricity price has a negative relationship
with the wind penetration [10]. Therefore, in this paper, since
we focus on a new decision-dependent modeling approach,
where the development of future uncertain prices depends on
current investment decisions, we assume an aggregated level
of operations and uncertain prices without explicitly modeling
the network effects.

A. Planning Horizon and Scenario Tree Settings of the Un-
certain Electricity Price

Our study is aiming at long-term modeling where generation
expansions are usually conducted via multiple steps/stages. We
use a rooted scenario tree with multiple stages and branches
to represent the planning horizon with uncertainty. There are
two key features in the scenario tree: a time horizon divided
into discrete stages, and each node (except the leaf) has several
child nodes with different outcomes that represent the different
realizations of uncertainty. For simplicity, these stages, j ∈
{1, 2, . . . , J}, occur at evenly spaced increments of time. We
denote the complete set of nodes of the scenario tree by N ,
each of which represents a potential state of the market price
of electricity. We also use the set N− = N \{1} to represent
all nodes starting from stage j = 2. For every node n ∈ N−
in stage j, we denote its unique ancestor node as a(n) at stage
j − 1. In contrast, Sn denotes the set of successors of node n
in stage j + 1. Hence, we can use Sa(n) to denote the set of
nodes that share the same ancestor node a(n) in stage j. The
root node is denoted as n = 1 which is in stage j = 1.

We assume that the electricity prices (at different time
periods) are uncertain, and model them by using discrete
random variables. At each ancestor node a(n) (at time j),
each node in the child node set Sa(n) is corresponding to
an outcome/realization of the discrete random electricity price
(at time j + 1). We use pa(n) and pn to represent the prices
in ancestor node a(n) and node n, respectively. Then, δn, a
prefixed parameter, is used to generate the outcome/realization
of price at node n, through the equation,

pn = pa(n) · (1 + δn), ∀n ∈ Sa(n). (1)

For different nodes, δn is chosen differently. For example, in
a binary tree, the two child nodes of a(n) can have opposite
values, e.g., ±5%, to represent an increase and a decrease.

B. Modeling the Decision-Dependent Probability

While a power market is embracing more deregulation
and competition, electricity prices and demands are directly
influenced by the mix of the power generation capacity as
in [25, 26, 27]. Wind generation’s marginal cost (excluding
its maintenance cost) is usually considered as zero. Hence
penetration of wind power will undoubtedly decrease the elec-
tricity price. However, electricity prices are also considered as
uncertain in many long-term expansion planning researches. It
is important to link the price uncertainty with the expansion
planning decisions. As discussed in Section I, one of the key
features of our decision-dependent stochastic model is the
decision-dependent probability distribution, which is modeled
by a function of decision variables. In this paper, we discretize
the electricity price in a known and fixed sample range. In
addition, we assume that the probabilities associated with
given levels of electricity prices are not input parameters
but are dependent on the investment decisions, as evidenced
in the previous literature [7, 9, 10, 28, 29]. For example,
researchers found that the average electricity price would
decrease as the share of wind power in the generation portfolio
increases. Moreover, a low-electricity-price scenario is more
likely to happen if wind power’s share is increasing. The
opposite occurs for a high-electricity-price scenario. This is
largely due to the fact that wind-power generation, compared
to thermal generation, has a lower combined generation plus
maintenance cost (ci) for every magawatt hour of electricity
it generates, even when we factor in the levelized investment
cost (Bi) [30]. To model these findings, we propose a decision-
dependent model to link probabilities of uncertain electricity
price outcomes with investment decisions.

In our proposed model, we assume that the probability
associated with any electricity price outcome (at node n) is
a multivariate function of the possible future electricity price
itself, generation portfolio (including both wind and thermal
power capacity), combined generation and maintenance cost
and levelized investment cost (per megawatt hour). In the
scenario tree, every node (e.g., n representing a price outcome)
is associated with a transition probability from its parent a(n).
As investment is a vital factor driving the electricity prices, for
the decision-dependent uncertain electricity price, we assume
that there is a positive relationship between the likelihood of a
price outcome and its return or profitability on the investment.
Motivated by [31], this probability is modeled as follows,

Probn =

∑
i∈{1,2}

xn
i (p

n−ci−Bi)
Bi(xn

1 +xn
2 )∑

t∈Sa(n)

∑
i∈{1,2}

xt
i(p

n−ci−Bi)

Bi(xt
1+xt

2)

, ∀n ∈ N−. (2)

where Sa(n) is the set of nodes having the same parent node,
a(n). Based on the real-world data (see Table I from [30]),
it is clear that Probn ≥ 0. In addition,

∑
t∈Sa(n)

Probt = 1.

As Bi is the levelized investment cost, we can use (pn−ci−Bi)
Bi

as a measure for the rate of the return on the investment of
generation type i when price is pn, and then

∑
i∈{1,2}

xn
i

xn
1 +xn

2
·

pn−ci−Bi

Bi
can be considered as a measure for the average rate

of return on the total generation capacity. Equation (2) then
defines the transition probability of a specific price outcome
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Fig. 1. Price Probabilities vs. the Wind Capacity of the Power System

pn (i.e., node n in the scenario tree) from its parent node
a(n). It is positively related to the return or profitability
on the composition of the total generation asset. Note that
Equation (2) presents the transition probability as a function
of the market price pn and the generation capacity xni , ∀i.
Unlike the traditional stochastic programming models with
exogenous uncertainties where probability is fixed as a model’s
input parameters, the decision-dependent probability changes
according to the investment decisions, making the model
a decision-dependent stochastic programming model. In a
nutshell, investment decisions affect the random price through
influencing the probabilities of the outcomes while having a
prefixed/known sample space of the price. Figure 1 shows an
example of the two-outcome probability curves that change
in response to the installed wind capacity (i.e., the generation
capacity mix as the thermal capacity is fixed) according to
our model (2). The vertical axis represents the probability
value, and the horizontal axis is the installed capacity of wind
generation. The top and the bottom curves are representing the
probability values under high-price and low-price outcomes
respectively while perturbing the wind generation capacity
from 50 GW to 250 GW. The thermal capacity is fixed at 306
GW. The two price outcomes used are 0.12684 $/Kwh and
0.11476 $/Kwh. All other data regarding levelized investment
costs (Bi) and combined generation plus maintenance costs
(ci) for both types of generations are obtained from EIA data
[30] as shown in Table I. From the plot, we can observe that
the probability is affected by both the price level and the wind
capacity (i.e., its share of the total capacity as the thermal
capacity is fixed). The two discrete outcome’s probabilities
are reflected by two separate curves on the plot. When the
wind capacity is small, the high-price outcome has a higher
probability. When the wind capacity is increasing, the high-
price outcome’s probability starts to decrease and the low-
price outcome’s probability starts to increase. In addition,
the expected value of electricity price decreases while wind
capacity penetration increases.

All of the above observations can be shown as corollaries

of the following theorem.

Theorem 1. In the two-outcome case with a high price
outcome (PH ) and a low price outcome (PL), the ratio
between the corresponding probabilities, ProbH/ProbL, is
a decreasing function of wind generation capacity, x2.

Proof: By plugging in the the formulas of probabilities
of high and low prices defined in (2), we can have

ProbH

ProbL
=

PH − c2 −B2

PL − c2 −B2

+

x1(c1+B1−c2−B2)(P
H−PL)

B1

x1(PL−c1−B1)(PL−c2−B2)
B1

+ x2(PL−c2−B2)2

B2

Indices 1 and 2 are denoting thermal and wind generation
respectively. Based on EIA data [30] (see Table I), c1 +B1−
c2 − B2 > 0, i.e., that the thermal generation has a higher
total sum of the levelized operations cost and the levelized
investment cost. Also we know that PH − PL > 0, and then
when x2 increases, the ratio ProbH

ProbL
decreases.

Corollary 1. ProbH is a decreasing function of x2.

Proof: We know that ProbH + ProbL = 1. Hence
∂ProbH

∂x2
= −∂ProbL

∂x2
. By Theorem 1, we know that

∂ ProbH

ProbL

∂x2
<

0. In addition,

∂ ProbH

ProbL

∂x2
=

∂ProbH

∂x2
ProbL − ∂ProbL

∂x2
ProbH

(ProbL)2

=
∂ProbH

∂x2

(ProbL)2

Hence, ∂ProbH

∂x2
< 0. This also means that ProbL is an

increasing function of x2.

Corollary 2. The average electricity price is a decreasing
function of wind generation capacity, i.e., x2.

Proof: Let AV P denote the expected price, and then
AV P = ProbHPH + ProbLPL. The partial derivative with
respect to x2 is

∂AV P

∂x2
= PH ∂Prob

H

∂x2
+ PL ∂Prob

L

∂x2

=
∂ProbH

∂x2
(PH − PL) < 0

Hence, when x2 increases, the expected price decreases.
This price dependence on capacity is consistent with the

results from other studies on real-world power systems. The
long-term wind power investment study from [10] indicates
that the average expected value of price decreases as wind
farms are added. Similarly, the study from [29] also shows a
decrease of average price due to the increasing wind power.
Therefore, as mentioned in many studies, the price dependency
on wind capacity is important for investors in evaluating the
economic effects of power generation investments.

C. Generating the Market Demands as Inputs to the Model

Since the early seminal study of US electricity demand [32],
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electricity price and demand are founded closely linked. The
relationship is depicted by the elasticity equations between
electricity demand and price. Various research efforts have
been taken to understand this relationship at both national and
regional levels [33, 34, 35]. In this paper, we generate the de-
mands as input parameters by assuming that the load/demand
is affected by the electricity price variation. When price is
increasing, the customer’s desire to consume is lower, and
therefore the load demand should be decreasing. Conversely, a
large amount of demands could be stimulated by cheap prices.
In this paper, we assume an elasticity model based on the
well-known Tellis’s econometric model [36]. The elasticity
of demand to price is defined as E = (∆D/∆p) · (p/D),
where p is the market price, E is the elasticity level, and D
is the elastic demand. Based on this elasticity relation, we
generate the demands in each node by using the following
numerical expression of demand variation with respect to the
corresponding price outcome (pn), i.e.,

Dn =
Da(n)

(pa(n))E
· (pn)

E · (1 + e). (3)

In addition, this equation constructs the connection between
Dn and Da(n), which are the demand in node n and in its
ancestor node a(n), respectively. The parameter E represents
the elasticity which is usually a negative value between −0.13
and −0.15 based on the study in [34], which covered the data
of electricity price and demand relationship in US for more
than two decades. Because E is chosen greater than −1 but
negative, meaning the demand is not change much while price
is varying, it is generally considered as inelastic (as opposed
to the perfectly inelastic case, i.e., E = 0). The incremental
level representing other factors (e.g., population growth, new
electricity appliances) between demands in node n and its
direct ancestor a(n) is represented by e.

III. MATHEMATICAL FORMULATION

The objective of power generation expansion planning is
to maximize the total expected profit (based on the whole
scenario tree), which is calculated as the difference between
total revenue (Rev) and the total cost. The total revenue at
each node n can be calculated by Revn = pnDn. The total
cost consists of two parts: the total investment cost and the
total operational cost (fuel costs plus maintenance costs). In
our model, the investment costs (ICn) are calculated on all
nodes except the nodes associated with the last stage J . This
is because the investment decisions are made to accommodate
the future power system operations, and we assume an invested
infrastructure at the current time period will be available
starting from the next time period. For convenience, we use
N ′ to denote the set of nodes having investment costs. The
operating costs are calculated at each node of the scenario tree
and include both generation costs (mainly thermal generators)
and maintenance costs (both generation types). Hence, the
objective function is a weighted sum of these revenues and
costs, where the weights are simply the probabilities of the
associated nodes in the scenario tree. Then we propose a

multistage stochastic investment [MSI] model as follows,

max SW 1 (4a)
s.t. (2)

SW a(n) = −ICa(n) +
∑

t∈Sa(n)

Probt ·

(
Revt − COt + SW t

)
, ∀n ∈ N− (4b)

ICn =
∑

i∈{1,2}

biα
n
i , ∀n ∈ N ′ (4c)

COn =
∑

i∈{1,2}

cig
n
i , ∀n ∈ N− (4d)

xni = x
a(n)
i + α

a(n)
i , i ∈ {1, 2}, ∀n ∈ N− (4e)

gni ≤ Hβixni , i ∈ {1, 2}, ∀n ∈ N− (4f)
gn1 + gn2 = Dn, ∀n ∈ N− (4g)
gni , α

n
i , w

n
i , P rob

n, xni ≥ 0, ∀i, n ∈ N (4h)

The decision variables αn
i , xni , and wn

i respectively represent
the future invested capacity, currently total, installed, cumula-
tive capacity, and electricity generation of type i at node n. The
cost parameter bi, Bi ,ci, represent the unit investment cost,
levelized investment cost, and levelized operation and mainte-
nance cost of generation type i, respectively. Note that x0i is
the initial installed capacities, which are given as parameters
for both types of generators. The objective function (4a) has
only one term: SW 1, which represents the total expected profit
of the whole planning horizon, being calculated in a recursive
way. Constraint (4b) defines the profit of the ancestor node
a(n) in stage j − 1 that includes two terms: the investment
cost ICa(n) and the expected total cost of node n’s successors.
The expected cost part consists of three terms: the operation
cost COt, the revenue Revt, and the profit SW t at node t,
which is the immediate successor of node a(n). Constraint (4c)
defines the investment cost ICn, which is determined by unit
investment cost bi and the new generation capacity αn

i . The
operational cost COn, given by constraint (4d), is determined
by production level gni . We assume that capacity expansion
investment decisions made at time j will be ready to use at
time j+1. Then the relation between current installed capacity
and the future investment amount is given by constraint (4e).
The power generation amount is also limited by the capacity
factor in (4f). The capacity factors βi represent the average
ratio of currently installed capacity that can be utilized for
generation. The power generation amount is enforced by (4g)
to meet the load demand. According to Section II-B, the
decision-dependent price-capacity settings are included in (2)
to capture the decision-dependent probability distributions.

IV. SOLUTION APPROACH

Since the constraints (4b) and (2) contain bilinear terms
and fractional terms of decision variables, [MSI] is there-
fore a nonlinear optimization model. We first rewrite con-
straint (2) to be Probn ·

∑
t∈Sa(n)

Rt = Rn to elimi-
nate the fractional terms defining the probabilities, where
Rn =

∑
i∈{1,2}

xn
i (p

n−ci−Bi)
Bi(xn

1 +xn
2 )

. In this way, the constraints
(4b) and (2) both contain bilinear terms,

∑
n∈Sa(n)

Probn ·
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(Revn − COn + SWn) and Probn ·
∑

t∈Sa(n)
Rt. A bilinear

term is the product of two decision variables and therefore
makes the problem nonconvex and hence difficult to solve.
As discussed in Section I, linear-reformulation is widely
used to solve nonconvex nonlinear optimization problems
[15, 37, 38, 39]. We employ a quasi-exact method [20] to deal
with the bilinear terms of our model. This method has a close
link to Meyer and Floudas’s [15] reformulation-linearization
technique that reformulates the bilinear program (BLP) into
mixed-integer linear programs (MILP). In both methods, the
BLP is augmented with a set of binary variables. However,
note that in our BLP model, the bilinear terms are very special
which contain a continuous variable between 0 and 1, i.e.,
Probn. The quasi-exact method is specifically designed for
this particular format. Unlike the reformulation-linearization
technique that needs additional linear relaxation preprocessing,
the quasi-exact approach uses a more straightforward approach
that directly transforms the BLP to a series of bilinear products
containing a binary variable and a continuous variable. Even-
tually, these products can be further linearized and therefore
transformed to a series of mixed-integer linear programs. As
the result, the constraints with bilinear terms can be formulated
as a series of mixed-integer linear constraints.

This is because the quasi-exact approach is specifically
designed to deal with bilinear terms that contains a fractional
number between 0 and 1. We represent the variable Probn

via a series of binary variables. Eventually, the [MSI] model
could be transformed to be a mixed-integer linear program-
ming (MILP) problem, which can be solved conveniently by
a state-of-the-art MILP solver.

A. Solving the Bilinear Model through the Discretization-
Linearization Procedure

Given the definition of probability (Probn), it can only take
a value between 0 and 1. In a modern computer system, any
fractional number or variable x that is between 0 and 1 is
represented by a series of binary variables zl ∈ {0, 1} [20],
i.e., x =

∑L
l=0 2−lzl + ε where L is the number of binary

variables needed, and is related to the degree of accuracy. ε
is the nonnegative error term. Its value is confined by L as
ε < 2−L. Clearly, the more binary variables being used, the
more accurate this approximation becomes.

Using the same approach, the variable Probn can be dis-
cretized as follows,

Probn =

L∑
l=0

2−lznl + εn, ∀n ∈ N− (5)

Substituting Probn in model [MSI] with the expression in
(5), we have a new expression for constraints (4b) and (2):

SWa(n) = −ICa(n) +
∑

t∈Sa(n)

(
L∑

l=0

2−lztl + εt

)
·

(
Revt − COt + SW t

)
, ∀n ∈ N−, (6a)∑

t∈Sa(n)

Rt ·
(

L∑
l=0

2−lznl + εn

)
= Rn, ∀n ∈ N− (6b)

However, both znl and εn are variables, and there still exist
bilinear terms in (6a) and (6b). These bilinear terms have the

same format: a binary variable multiplied by a continuous
variable. This type of bilinear terms can be easily linearized
by introducing additional constraints and a big number, Ml

[20]. For constraint (6a), we introduce a new variable ζnl to
replace the bilinear term:

ζnl = znl · (Revn − COn + SWn) , ∀n ∈ N−, l (7)

Furthermore, we can replace the above equation with following
equivalent constraints:

0 ≤ ζnl ≤ Rev
n − COn + SWn, ∀n ∈ N−, l (8a)

(Revn − COn + SWn)−Ml(1− znl ) ≤ ζ
n
l ≤Mlz

n
l , ∀n ∈ N

−, l (8b)

where Ml is a large number to bound the variables.
For another term on the right side of constraint (6a), εn ·
(Revn − COn + SWn), there still exist bilinear terms with
two continuous variables. However, this value is extremely
small when enough binary variables (i.e., a large value for
L) are used to represent the probability. As discussed in
the previous part of this section, the range of the error
term while representing the probability is: 0 ≤ εn < 2−L.
Hence, we can introduce a new variable θn to represent the
remaining bilinear term without losing accuracy by including
the following constraint,

0 ≤ θn ≤ 2−L · (Revn − COn + SWn) , ∀n ∈ N−. (9)

Combining equation (8) and equation (9), we can replace the
nonlinear constraint (6a) with the following linear constraints,

SWa(n) = −ICa(n) +
∑

t∈Sa(n)

(
L∑

l=0

2−lζtl + θt

)
, ∀n ∈ N−, (10a)

0 ≤ θn ≤ 2−L · (Revn − COn + SWn) , ∀n ∈ N−, l (10b)

0 ≤ ζnl ≤ Rev
n − COn + SWn, ∀n ∈ N−, l (10c)

(Revn − COn + SWn)−Ml(1− znl ) ≤ ζ
n
l ≤Mlz

n
l , ∀n ∈ N

−, (10d)

Similarly, constraint (6b) can be converted as,

Rn =

L∑
l=0

2−lηnl + σn, ∀n ∈ N−, (11a)

0 ≤ σn ≤ 2−L ·
∑

t∈Sa(n)

Rt, ∀n ∈ N−, l (11b)

0 ≤ ηnl ≤
∑

t∈Sa(n)

Rt, ∀n ∈ N−, l (11c)

∑
t∈Sa(n)

Rt −Ml(1− znl ) ≤ η
n
l ≤Mlz

n
l , ∀n ∈ N

−, (11d)

Because this quasi-exact solution process uses the error
range of [0, 2−L) to replace the error term εn, it is an
approximation approach. Hence, the accuracy of our model
depends on the number of binary variables used (L). So does
the computational difficulty, but negatively. Therefore, it is
important to find a proper value of L to obtain high accuracy
in a short computational time. This will be discussed in Section
V-B.

B. The Multi-stage Stochastic Mixed-Integer Linear Model

After the bilinear terms are discretized and therefore lin-
earized, the bilinear constraints (4b) and (2) from [MSI] are
replaced by the mixed-integer linear constraints (10) and (11).
A multistage stochastic mixed-integer linear model [MSMIL]
is therefore formulated as shown below:
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min SW 1 (12a)
s.t. (4c)− (4g), (4h), (10), (11) (12b)

znl ∈ {0, 1}, ∀n ∈ N
−, l (12c)

V. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments and
analyze the results on generation expansion planning. Our
model and algorithm are tested in a four-stage (J = 4)
scenario tree. At first, Section V-A introduces the experimental
settings as well as input data for our model. The fidelity
of the quasi-exact approach is verified in Section V-B via
a series of computational experiments to show the relation
between the number of binary variables and the relative
approximation error. Then, Section V-C tests the applicability
of our quasi-exact approach via a series of comparisons with
an existing commercial solver. Finally, the results of numerical
experiments are discussed and analyzed in Section V-D, V-E,
and V-F. The computational model is programmed in C++ by
calling the commercial MILP solver ILOG CPLEX 12.5. All
experiments are implemented on a personal computer, which
has quad Intel Core i7 processors with CPU at 3.40 GHz and
a RAM space of 8GB.

A. Data Preparation

The input data for our model are acquired from US EIA
[30], as shown in Table I. We adopt the data of the conven-
tional coal generator as the thermal generator, and the data
of onshore wind farm as the wind generator. Compared to
thermal generators, the wind generators have lower operation
and investment costs. However, on the other hand, the capacity
factor, which represents the average utilization of the total
capacity, is lower for wind generator than that of thermal
generators because of the nature of the unstable wind speed.
Thus, with consideration of the capacity factor, the actual
effective cost of investment and maintenance of wind is higher
than that of thermal. The detailed data are shown in Table I.
As mentioned in Section II-A, the market price is an uncertain
parameter. The retail price at stage 1 (year 2015) is set at
$0.15/KWh. The variation level δ of price outcomes is adjusted
according to experiment settings. As mentioned in Section
II-C, the load demand changes elastically with respect to the
market price. The initial stage demand D0 is set to be 12303.8
TWh. The number of hours H is set to be 43750 hours as
we assume each stage spans 5 years. The elasticity index E,
which reflects the correlation between demand and price, is
accordingly set to be −0.15. The demand increasing level e
is adjustable with different experiment settings.

B. Accuracy of Model Approximation by MILP

Through a series of computations, we study the accuracy
of our quasi-exact linearized approximation approach with
different values of binary variable (L). The input data of our
calculation comes from Section V-A, and we set the price
variation level to be zero, that is, there is no difference between

TABLE I
INPUT PARAMETERS [30]

Parameter Thermal Wind Unit

x0 0.306 0.0604 TW
c 0.0345 0.013 Billion$ /TWh.
B 0.06 0.0641 Billion$ /TWh.
b 3292 2213 Billion$ /TW
β 0.85 0.30 N/A

different price outcomes (i.e., nodes in the scenario tree). It
is obvious that the probability Probn of each node should be
equal to each other, which is 0.5 for the two-node outcome.
In this case, the [MSI] model could be linearized by setting
the variable Probn to be a fixed value 0.5. Since Probs is
no longer a variable, this simplified [MSI] model becomes a
linear and deterministic model. Therefore, we can eliminate
approximation, and solve the simplified [MSI] model with
a linear solver, providing a benchmark. Without the quasi-
exact linearization process which brings in approximation,
the optimization result of this deterministic model provides a
benchmark for estimating the relative error of the quasi-exact
linearized approximation approach.

Table II lists the error level, the relative error, the optimal
profit, and computational time given to a series of numbers of
binary variables (L). The error level is defined as 2−L. The
relative error is defined as the percentage difference between
the profit SW of the deterministic model and the one from
the quasi-exact approximation approach SWA

L (using SW as
the base), that is, |SWA

L − SW |/SW × 100%.
We notice in Table II that as L increases, the computational

time rises significantly, whereas the relative error decreases
dramatically. When L = 20, the relative error is at the same
level as the result of BARON. As a result, L = 20 is chosen
as the initial approximation setting in the later case studies.

TABLE II
NUMBER OF BINARY VARIABLES AND ERROR

L 2−L Profit(109$) Relative Error Time(s)

Deterministic Result: 4320.9214* 0 0.047
BARON’s Result: 4320.9252 3.87× 10−5 136.91

5 3.13× 10−2 4599.6700 2.84× 10−0 0.27
10 9.77× 10−4 4329.4600 8.71× 10−2 0.61
15 3.05× 10−5 4321.1900 2.74× 10−3 5.43
20 9.54× 10−7 4320.9297 8.50× 10−5 15.21
25 2.98× 10−8 4320.9223 8.77× 10−6 25.17
30 9.31× 10−10 4320.9216 1.02× 10−7 92.32
∗: Computed from simplified [MSI] model with Probs = 0.5

C. Computation Comparison with Nonlinear Solver

To compare our quasi-exact approach with existing non-
linear solver, we embedded the bilinear [MSI] model in the
global solver BARON. BARON is a state-of-the-art commer-
cial software for solving nonconvex optimization problems to
global optimality. We use BARON as a benchmark to test
the applicability of our proposed approach. When solving an
optimization problem, BARON reports an optimal solution
(lower bound) and a upper bound. It declares global optimality



8

when the corresponding optimality gap is less than a certain
threshold.

In the following tests, we conducted the same numerical
experiments in Section V-D by using both BARON and the
proposed quasi-exact approach. The optimality gap of BARON
is set at 10−6. We report the relative difference between the
optimal values from the quasi-exact approach and BARON.
The computational time is also reported along with the results.
Both solvers are implemented on the same personal computer.

TABLE III
COMPUTATION COMPARISON UNDER DIFFERENT PRICE VARIATION

LEVELS

Price Profit (109$) Relative Time (sec)
Uncertainty Quasi-

BARON
Difference Quasi-

BARONLevel exact (%) exact
0% 4320.930 4320.92 0.00% 15.21 247.75
2% 4327.731 4327.68 0.00% 52.59 475.24
4% 4354.652 4354.65 0.00% 25.12 159.07
6% 4401.900 4401.89 0.00% 45.98 159.00
8% 4467.879 4467.88 0.00% 85.53 207.21
10% 4553.001 4552.99 0.00% 161.29 238.01
12% 4658.699 4658.69 0.00% 156.00 603.87
14% 4785.292 4785.27 0.00% 175.31 608.28
16% 4929.447 4929.52 0.00% 172.88 996.42
18% 5093.699 5093.69 0.00% 126.74 493.31
20% 5278.769 5278.91 0.00% 284.35 588.53

TABLE IV
COMPUTATION COMPARISON UNDER DIFFERENT INCREMENTAL LEVELS

FOR DEMANDS

Incremental Profit (109$) Relative Time (sec)
Demand Quasi-

BARON
Difference Quasi-

BARONLevel exact (%) exact
0.0% 4484.35 4484.34 0.00% 144.30 125.56
0.2% 4498.00 4498.00 0.00% 102.17 304.03
0.4% 4511.57 4511.69 0.00% 95.72 313.03
0.6% 4525.44 4525.42 0.00% 101.92 454.07
0.8% 4539.19 4539.19 0.00% 111.45 279.68
1.0% 4553.00 4552.99 0.00% 48.33 238.01
1.2% 4566.85 4566.83 0.00% 374.16 503.07
1.4% 4580.71 4580.71 0.00% 94.44 360.57
1.6% 4592.87 4592.85 0.00% 221.90 477.34
1.8% 4604.58 4604.58 0.00% 121.11 606.18
2.0% 4616.34 4616.33 0.00% 334.81 521.48

In addition, we perform two series of tests. Firstly, we fix the
demand incremental level, and change the price variation level
and compare the computational differences between BARON
and quasi-exact approach. The results is presented in Table III.
Table IV presented the computational differences when we fix
the price variation level but perturb the demand incremental
level. From the results in Table III and Table IV, we notice
that the relative difference in the optimal value between the
proposed quasi-exact approach and BARON is always less
than 0.01%. Hence, the optimality gaps are about at the
same level for both solvers. This indicates that the quasi-exact
method can provide equally accurate results as BARON, but
with much less computational time on average.

In terms of computational time, the proposed quasi-exact
approach finishes the computation in a shorter time in most of
the cases. The quasi-exact method is able to acquire optimal
results within 15 to 374 seconds under different price variation
levels. On the other hand, the solution time of BARON varies

greatly from 125 to 996 seconds for different cases. Especially,
when the price variation level or increment demand level is
getting larger, the computational time of BARON increases
dramatically. This indicates that the quasi-exact method has
a much more stable performance than BARON. In addition,
it is notable that the computational time is not monotonically
increasing while we are increasing the demand incremental
level and the variation level of the price uncertainty. The quasi-
exact model is a mixed integer linear program. With different
data inputs (but the problem size is the same), the cutting
planes from the solver might have different strengths and the
branch-and-bound procedure might take different paths. Hence
it is not predictable if high incremental level or price variation
level means more computational time.

D. Analysis under Different Prices and Demands

The uncertain market price is one of the factors that af-
fects the investment decision. In this case study, we try to
understand the economic effects of market price under price
variation levels from ±0% to ±20%. Table V shows the results
of this case study, including average market price, demand,
profit, and wind penetration at each uncertainty price level.
The average market price is calculated as the weighted average
of market prices in all nodes. Wind capacity penetration is
introduced to quantify the share of wind generators in the
total power system’s capacity as follows,

Wind Capacity Penetration =
Installed Wind Capacity

Total Capacity
× 100%

TABLE V
OPTIMIZATION RESULT UNDER DIFFERENT PRICE VARIATION LEVELS

Price Average Demand Profit Wind
Uncertainty Price Penetration

Level (109$/TWh) (TWh) (109$) (%)

0% 0.150 49422.6 4320.93 16.150%
2% 0.152 49306.2 4327.73 16.194%
4% 0.155 49181.3 4354.65 16.159%
6% 0.158 49048.3 4401.90 16.158%
8% 0.161 48907.5 4467.88 16.134%

10% 0.165 48759.1 4553.00 16.094%
12% 0.169 48603.4 4658.70 16.053%
14% 0.173 48440.7 4785.29 16.014%
16% 0.177 48274.3 4927.45 15.982%
18% 0.182 48102.3 5093.70 15.941%
20% 0.187 47924.5 5278.77 15.940%

In Table V, we see that as the variation level of the uncertain
price increases, the average market price increases and demand
decreases. It is because the demand is affected by the elastic
relationship with the market price; thus, the demand shrinks as
the price increases. We also notice that the wind penetration
level decreases as the market price increases. In the investment
problem of power systems, the more wind power we have, the
lower the electricity price will be because of the price elasticity
curve and the zero marginal cost of wind power. In this paper,
prices (outcomes) are set as input parameters. Hence, when
the average price increases, the wind power penetration is
expected to decrease. This is in line with the previous literature
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[10, 25, 29]. Note that we show the data on average price,
demand, and wind penetration. They are the average of all
nodes in the scenario tree. However, the total installed capacity
is not necessarily monotonically decreasing. This is because
a larger decrease of price will lead to a larger increase of
demand (based on the elasticity equation), and the investment
in the parent node needs to cover the larger demand (from the
low price-outcome node) in stochastic programming, causing
the total capacity to increase. The profit is increasing as the
average price is getting higher. The increment of the average
price from $0.150/KWh to $0.187/KWh makes the profit
increase by 22%. This increase in profit is attributed to two
causes, i.e., the increasing revenue and the decreasing cost.
On one hand, even with a small amount of demand decrease
(3.03%), the large increase of market price (24%) appears
to increase total revenue. On the other hand, lower demand
results in a reduced cost in production and investment.

The demand is also an important factor that influences the
generation expansion decisions, as shown in Table VI. To
analyze the effect of the increasing demand on the power
system, we conduct numerical experiments under different
incremental levels of the demand while the price variation
level is fixed at ±10%. The results are shown in Table VI. It
illustrates that wind penetration and the profit are correlated
outputs: they both change according to different demands.
As the demand increases, the wind penetration decreases
and profit increases. When the demand increases, the needs
for infrastructure expansion increase, which leads to more
investments. The investment decisions tend to invest in less
wind which has higher investment cost.

TABLE VI
OPTIMIZATION RESULT UNDER DIFFERENT INCREMENTAL DEMAND

LEVELS

Demand Demand Profit Wind
Increment Level (TWh) (109$) Penetration

0.0% 48039.2 4484.35 16.25%
0.2% 48182.4 4498.00 16.22%
0.4% 48326.0 4511.57 16.19%
0.6% 48470.0 4525.44 16.16%
0.8% 48614.3 4539.19 16.12%
1.0% 48759.1 4553.00 16.09%
1.2% 48904.2 4566.85 16.06%
1.4% 49049.7 4580.71 16.03%
1.6% 49195.6 4592.87 15.98%
1.8% 49341.9 4604.58 15.91%
2.0% 49488.5 4616.34 15.85%

E. Investment Decision Analysis

To illustrate the result of the [MSMIL] model graphically,
we plot the optimization decisions in scenario trees, as shown
in Figure 2. In Case 1, 2 and 3, the price’s variation level is
fixed at ±10%. The incremental demand level is 1% in Case
1 and 2% in Case 2 and 3. Case 1 and 2 use the decision-
dependent probability model from Section II-B, the probability
in Case 3 is set to be 0.5. The numbers above/below each
branch represent the probability (Probn) of the outcomes. The
two numbers within the parentheses represent the investment
decisions (αn

i ) for thermal and wind generation, respectively.

The numbers in each node represent the node number of the
scenario tree. For the two child nodes of the same parent node,
the market price in upper node is higher than the price in lower
node.
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Fig. 2. Investment Decisions and Probability at Each Outcome

Considering Case 1 and 2, from Section II-B, we can see
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that the probability distribution is affected simultaneously by
both the market price and investment decisions. In order to
highlight the effect of investment decisions, the market price
level is set the same between the first two cases in Figure 2. For
each outcome, when the price level is given, the investment,
on the other hand, plays an important role in determining
the probability distributions. The following example shows
how the investment decisions influence the decision-dependent
probability distributions. While comparing the stage 2 (node
2,3) in Case 1 and 2, we note that, even though the price
levels are the same in both cases, the probability distributions
are different between Cases 1 and 2 ({0.628960, 0.371040} vs.
{0.629078, 0.370922}). This is because the investment in node
1 increases the wind capacity in stage 2 for both cases, but
the amount of wind power investment in Case 1 is larger than
Case 2 (198MW vs. 74MW). This makes the wind capacity
in stage 2 of Case 1 larger than that in Case 2. Thus, this
causes the probability distribution difference between the two
cases. As a result, Figure 2 shows that investment decisions in
stage 1 shift the decision-dependent probability distributions
in stage 2.

From Section V-A, we already know that the thermal
generator has a low-cost investment advantage over wind.
From the result in Case 3, we notice that without decision-
dependent process, the traditional optimization decisions will
focus all on the thermal generator for future investment.
However, attributing to the decision dependent process, the
results in both Case 1 and 2 show the investment decisions
involve both thermal and wind generators.

F. Decision-Dependent Analysis

To examine the effectiveness of the decision-dependent
approach, we introduce a term, the value of decision-dependent
stochastic programming solution (VDDSS). It is extended
from the concept of the value of stochastic programming
solution (VSS). Unlike the VSS that compares a stochastic
approach to a deterministic approach, the VDDSS evaluates
the decision-dependent approach over the traditional stochas-
tic approach (with exogenous uncertainty). To calculate the
VDDSS, we first compute the optimal solution from a tradi-
tional stochastic model that uses the same input parameters and
a prefixed probability distribution (e.g., uniformly distributed).
Then, this solution is plugged into the decision-dependent
formulation and the objective function value is then acquired.
Finally, the VDDSS is calculated as the difference between the
optimal objective value from decision-dependent approach and
the objective value by using the traditional stochastic model
solution in the decision-dependent model.
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Fig. 3. The Value of Decision-dependent Stochastic Programming Solution

Figure 3 shows that as price uncertainty changes from 0%
to 50%, the VDDSS increases dramatically. When the price
variation level is equal to zero, we observe that VDDSS is also
equal to zero. This is because they both reduce to the same
deterministic model. We observe that the VDDSS is greater
than zero which indicates that the optimal solution from
decision-dependent [MSMIL] formulation provides a larger
profit than the one from the traditional stochastic programming
approach. Moreover, as the price variation level increases (i.e.,
the difference of input parameters is greater between out-
comes), the VDDSS is greater. Hence the decision-dependent
approach outperforms the traditional stochastic programming
approach especially when the price variation level is high.
From these results, we can conclude that it is important to take
into account the decision-dependent approach in evaluating
the economics of long-term generation expansion planning
where tremendous uncertainty exists and interplays with the
investment decisions.

VI. CONCLUSION

In this paper, we introduce a decision-dependent stochastic
programming model for long-term power generation expan-
sion planning, where probabilities of price outcomes are
variables dependent on investment decisions. We develop an
optimization strategy to maximize the total profit. To solve this
nonlinear stochastic program, a quasi-exact solution approach
is then adopted to reformulate the multistage, stochastic,
nonlinear model to a MILP model, which is solved by CPLEX.
The analysis of different prices and demands shows that the
wind penetration and the profit are strongly related to both
price and demand. From the analysis of investment decisions,
we discover that generation expansion investment plays an
important role in determining the probability distribution. We
also analyze and compare the solutions from the decision-
dependent model against those from the stochastic model with
exogenous uncertainties. The numerical results show that it is
very important to take into account the proposed decision-
dependent approach in evaluating the economics of long-
term generation expansion planning. We conclude that the
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proposed decision-dependent stochastic programming model,
which adopts the decision-dependent probabilities, can provide
effective optimization information on investment for long-
term generation expansion planning. As operational constraints
and network effects in some cases can be the driving factors
affecting the investment decisions for generation expansion,
we will take a different approach to develop new models
with endogenous uncertainties while including the operational
details of system constraints in our future research endeavors.
Applications of high-performance computing (HPC) may also
be needed.
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