
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

A carbon budget for the Amundsen Sea Polynya, Antarctica: Estimating net
community production and export in a highly productive polar ecosystem

Yager , Patricia L. ; Sherrell, R. M. ; Stammerjohn, S. E.; Ducklow, H. W. ; Schofield, O. M. E. ; Ingall, E. D.
; Wilson, S. E.; Lowry, K. E. ; Williams, C. M.; Riemann, L.; Bertilsson, S.; Alderkamp, A. C. ; Dinasquet,
J. ; Logares, R.; Melara, A. J. ; Mu, L..; Newstead, R. G. ; Post, A.; Swalethorp, Rasmus; van Dijken, G.
Published in:
Elementa

Link to article, DOI:
10.12952/journal.elementa.000140

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Yager , P. L., Sherrell, R. M., Stammerjohn, S. E., Ducklow, H. W., Schofield, O. M. E., Ingall, E. D., ... van
Dijken, G. (2016). A carbon budget for the Amundsen Sea Polynya, Antarctica: Estimating net community
production and export in a highly productive polar ecosystem. Elementa. DOI:
10.12952/journal.elementa.000140

http://dx.doi.org/10.12952/journal.elementa.000140
http://orbit.dtu.dk/en/publications/a-carbon-budget-for-the-amundsen-sea-polynya-antarctica-estimating-net-community-production-and-export-in-a-highly-productive-polar-ecosystem(c6f92496-2c98-46b9-b678-026f8a8f80db).html


1

Domain Editor-in-Chief
Jody W. Deming,  
University of Washington

Associate Editor
Jean-Éric Tremblay,  
Université Laval

Knowledge Domains
Ecology,  
Ocean Science

Article Type
Research Article

Part of an Elementa 
Special Feature
ASPIRE: The Amundsen Sea 
Polynya International Research 
Expedition

Received: October 21, 2015
Accepted: November 7, 2016
Published: December 9, 2016

A carbon budget for the Amundsen Sea 
Polynya, Antarctica: Estimating net 
community production and export in a 
highly productive polar ecosystem
PL Yager1* • RM Sherrell2 • SE Stammerjohn3 • HW Ducklow4 • OME Schofield2 • ED Ingall5 •  
SE  Wilson6 • KE  Lowry7 • CM  Williams1 • L  Riemann8 • S  Bertilsson9 • A-C  Alderkamp7 • 
J  Dinasquet8,10 • R  Logares11 • I. Richert9 • RE  Sipler12 • AJ  Melara1 • L  Mu1 • RG  Newstead6 •  
AF Post13 • R Swalethorp14,15 • GL van Dijken7

1Department of Marine Sciences, University of Georgia, Athens, Georgia, United States
2Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, United States
3Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, United States
4Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, United States
5School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
6School of Ocean Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
7Department of Earth System Science, Stanford University, Stanford, California, United States
8Marine Biological Section, University of Copenhagen, Helsingør, Denmark
9Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University,  
Uppsala, Sweden
10Department of Natural Sciences, Linnaeus University, Kalmar, Sweden
11Institute of Marine Sciences, CSIC, Barcelona, Spain
12Virginia Institute of Marine Science, College of William & Mary, Gloucester Pt., Virginia, United States
13Harbor Branch Oceanographic Institute, Florida Atlantic University, Boca Raton, Florida, United States
14National Institute of Aquatic Resources (DTU Aqua), Section for Oceanography and Climate, Technical University 
of Denmark, Charlottenlund, Denmark
15Department of Biology and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
*pyager@uga.edu

Elementa: Science of the Anthropocene • 4: 000140 • doi: 10.12952/journal.elementa.000140
elementascience.org

Abstract
Polynyas, or recurring areas of seasonally open water surrounded by sea ice, are foci for energy and material 
transfer between the atmosphere and the polar ocean. They are also climate sensitive, with both sea ice extent 
and glacial melt influencing their productivity. The Amundsen Sea Polynya (ASP) is the greenest polynya 
in the Southern Ocean, with summertime chlorophyll a concentrations exceeding 20 µg L−1. During the 
Amundsen Sea Polynya International Research Expedition (ASPIRE) in austral summer 2010–11, we aimed 
to determine the fate of this high algal productivity. We collected water column profiles for total dissolved 
inorganic carbon (DIC) and nutrients, particulate and dissolved organic matter, chlorophyll a, mesozoo-
plankton, and microbial biomass to make a carbon budget for this ecosystem. We also measured primary 
and secondary production, community respiration rates, vertical particle flux and fecal pellet production and 
grazing. With observations arranged along a gradient of increasing integrated dissolved inorganic nitrogen 
drawdown (∆DIN; 0.027–0.74 mol N m−2), changes in DIC in the upper water column (ranging from 0.2 to 
4.7 mol C m−2) and gas exchange (0–1.7 mol C m−2) were combined to estimate early season net community 
production (sNCP; 0.2–5.9 mol C m−2) and then compared to organic matter inventories to estimate export. 
From a phytoplankton bloom dominated by Phaeocystis antarctica, a high fraction (up to ∼60%) of sNCP 
was exported to sub-euphotic depths. Microbial respiration remineralized much of this export in the mid 
waters. Comparisons to short-term (2–3 days) drifting traps and a year-long moored sediment trap captur-
ing the downward flux confirmed that a relatively high fraction (3–6%) of the export from ∼100 m made 
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it through the mid waters to depth. We discuss the climate-sensitive nature of these carbon fluxes, in light 
of the changing sea ice cover and melting ice sheets in the region.

Introduction
The Southern Ocean (south of 50°S) plays a disproportionate role in the global carbon cycle, accounting 
for approximately 25% of the oceanic uptake of atmospheric CO2 from just 10% of the global ocean surface 
(Takahashi et al., 2002, 2009). This CO2 exchange is driven by a balance of contributions from physical (e.g., 
cooling, deep convection) and biological (e.g., photosynthesis, remineralization) processes. The latter drive  
the biological pump, whereby phytoplankton photosynthesis reduces the surface pCO2 and contributes to 
a net uptake of carbon. The total primary production of the Southern Ocean is ∼2 Pg C yr−1, with an inter-
annual variability of ± 4% (Arrigo et al., 2008). This productivity is in part due to macronutrients that are 
generally abundant year-round on Antarctic continental shelves (Moore et al., 2013). The efficiency of the 
soft-tissue biological pump, controlling how much organic carbon sinks to depth, depends on the extent to 
which surface macronutrients are depleted (Sarmiento et al., 2004) among other factors (Frost, 1984; Ducklow 
et al., 2001; Steinberg et al., 2008; Armstrong et al., 2009; Herndl and Reinthaler, 2013). This efficiency, 
especially at high latitudes, exerts control on atmospheric CO2 levels over thousands of years and may be 
linked to availability of micronutrients such as iron (Sarmiento and Toggweiler, 1984; Sigman et al., 2010; 
Sigman and Hain, 2012).

Primary production in the Southern Ocean shows marked seasonality and spatial variability. During 
summer, chlorophyll a concentrations on the Antarctic continental shelves are an order of magnitude higher 
than in the core of the Antarctic Circumpolar Current. Intense spring blooms are often associated with 
coastal polynyas, defined as recurring areas of open water surrounded by ice (Smith and Barber, 2007). The 
combination of an early sea ice retreat and the often-shallow stratification from surface warming and sea ice 
melt favors polynyas as biological oases (they account for 65% of the production on the continental shelf; 
Arrigo and van Dijken, 2003). Dominated by high-productivity regions, relative to the global ocean, the ocean 
south of the Antarctic convergence, roughly at 50°S, accounts for ∼20% of global ocean carbon production 
(Behrenfeld and Falkowski, 1997), ∼30% of the global biogenic silica flux (Tréguer and De La Rocha, 2013), 
and ∼10% of global carbon export to depth (Schlitzer, 2002).

Annual biological production varies considerably among Antarctic polynyas, even when accounting for 
differences in size and latitude. Peak productivity measured by satellite varies from 0.5 to 3 g C m−2 d−1 (40–250 
mmol C m−2 d−1), and peak phytoplankton bloom timing varies from December to February depending on 
the polynya (Arrigo and van Dijken, 2003; Alderkamp et al., 2012, 2015), with some of the variance in mean 
chlorophyll explained by the proximity to melting ice shelves (Arrigo et al., 2015). Whether a polynya eco-
system is characterized by carbon retention (sensu Wassmann, 1998, where the fraction of primary production 
exported, e, is < 0.2) or dominated by export (e > 0.4) can vary seasonally or interannually and is sensitive to 
local forcing (e.g., sea ice cover, hydrography), productivity, food web structure, and bathymetry (Grebmeier 
and Barry, 2007), but the mechanisms, likely related to bloom magnitude and plankton community structure 
(Karl, 1993), are poorly understood (Boyd and Trull, 2007).

The Amundsen Sea Polynya (ASP) is the fourth largest Antarctic polynya (up to ∼80,000 km2; Mu  
et al., 2014), and the most productive on average (per unit area; via satellite algorithm; Arrigo and van Dijken, 
2003; Arrigo et al., 2012, 2015). Summer primary production estimated by satellite typically exceeds  
∼1 g C m−2 d−1 (85 mmol C m−2 d−1), with peak production of ∼3 g C m−2 d−1 (250 mmol C m−2 d−1) in 
January and an average annual production of 105 ± 22 g C m−2 (8.8 ± 1.8 mol C m−2; Arrigo et al., 2015). 
This level of productivity is much higher than the average for the Southern Ocean (57 g C m−2 a−1; Arrigo  
et al., 2012). Few in situ studies have been conducted in the ASP, however, because of its historic inacces-
sibility ( Jacobs and Comiso, 1997; Stammerjohn et al., 2015). Although the circulation is not well known, 
the area is characterized by deep winter mixed layers, large water column inventories of meteoric water,  
and net annual sea ice formation related to a regular wintertime polynya (Randall-Goodwin et al., 2015). 
Deep mixing in the ASP may also be driven by eddies (St. Laurent et al., 2015), tides (Robertson, 2013), or 
drifting icebergs (Randall-Goodwin et al., 2015).

In austral summer 2010–11, the Amundsen Sea Polynya International Research Expedition (ASPIRE) 
visited the ASP onboard the RVIB Nathaniel B. Palmer (see Yager et al., 2012) to determine the mecha-
nisms, climate sensitivity, and fate of the extraordinary phytoplankton bloom. The synthesis effort described 
here aims to calculate a carbon budget for the ecosystem by integrating the large suite of rate and inventory 
measurements obtained. Although the expedition could not sample over the entire open-water season, we 
report here an effort to quantify production and export in the water column at 13 stations sampled during 
the early phases of the bloom (late December and early January), by distinguishing summertime observa-
tions from those expected pre-bloom for Winter Water (WW; potential temperature, θ< −1.79°C, salinity,  
S > 34.1; see Yager et al., 2012; Wong et al., 1998; Randall-Goodwin et al., 2015). We find that the ASP 
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hosts an extraordinarily productive climate-sensitive ecosystem that surpasses its neighbors, including the 
well-studied Ross Sea Polynya, on most measures, exporting a high fraction to depth and contributing sig-
nificantly to both the magnitude and efficiency of the biological pump in the Southern Ocean.

Methods
Field effort
ASPIRE explored the ASP region on board the RVIB Nathaniel B. Palmer between 13 December 2010 and 
8 January 2011. Over the course of the expedition, a total of 68 stations (Yager et al., 2012) were sampled 
using a suite of instruments across an average open water area (≤ 10% ice cover; Mu et al., 2014) of 49,160 
± 9,952 km2 (the greatest open water area during ASPIRE was 63,277 km2 on January 8; Mu et al., 2014), 
while the ship’s underway system continuously measured surface water properties: temperature, salinity, 
chlorophyll fluorescence, oxygen, and carbon dioxide concentrations (Yager et al., 2012; Mu et al., 2014). 
Here, we report data from 13 stations within and around the edges of the ASP (Table 1; Figure 1A) where 
a full suite of inventory and rate measurements was obtained from the upper water column.
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Table 1. Station informationa on location, ice conditions, bloom timing, and surface pCO2

Station 

and 
CTD 
casta

Latitude(°) Longitude(°)
Seafloor 

depth 
(m)

Calendar 
day 

sampled 
(A)

Sea  
Ice  

conc. 
(%) 

on day 
sampled

First 
day 
50% 
ice 

cover 
(B)

First day 
extended 

0% ice 
cover  
(C)

First  
day 

ocean 
color 

detected 
(D)

Open 
water 

duration 
(days)

Ice-  
free 

daysd

Bloom 
spin 
up 

(days, 
D–B)

Bloom 
duration 

(days, 
A–D)

Surface 
pCO2 

(µatm)

Air-
sea 

CO2 
flux 

(mmol 
C m−2 

d−1)

Surface 
mixed 
layer  

depthg 
(m)

Depth 
of 

Tmin_100 

(m)

∆DIN  
(mmol 
N m−2)a

5 (3) −73.97 −118.03 1250 348 26 299 400 370 26 1 71 0 358 4 28 28 27
68 (87) −71.86 −118.28 830 373 68 369 noc noc 8 0 0 0 330 11 14 100 144
6 (4) −73.18 −115.00 770 349 36 281 357 355 15 1 74 0 237 30 10 59 205
34 (31) −72.96 −115.76 684 358 38 336 388 363 12 0 27 0 185 41 11 85 236
66 (85) −72.74 −116.02 659 370 85 336 noc 374 14 0 38 0 171 44 10 60 248
18 (14) −73.00 −113.30 435 355 5 323 377 342 24 0 19 13 173 43 15 68 310
13 (9) −73.57 −112.67 550 352 0 265 318 331 56 34 66 21 265 23 42 75 369
25 (21) −73.12 −112.00 406 356 0 278 338 333 38 15 55 23 197 38 16 80 470
50 (65) −73.42 −115.25 1050 363 0 280 326 330 43 30 50 33 167 44 19 100 558
35 (46) −73.28 −112.10 420 361 0 265 329 332 48 35 67 29 147 49 22 90 565
48 (61) −73.70 −115.45 997 362 0 315 325 342 46 37 27 20 169 44 22 100 606
29 (26) −73.35 −114.13 738 357 0 280 324 346 41 26 66 11 196 38 32 100 646
57 (72) −73.71 −113.27 745 365 0 255 323 333 61 43 78 32 313e 14 81 100 740
AVEa -b - 733 359 20 299 346 346 33 17 49 14 224 32 25 80 394
S.D. - - 256 8 29 34 30 16 18 17 25 13 70 14 19 23 219
n - - 13 13 13 13 11 12 13 13 13 13 13 13 13 13 13
R∆DIN

a −0.38 0.63* −0.21 0.23 −0.68 −0.59* −0.85 −0.74 0.80 0.87 0.31 0.83 (−0.71)f 0.39 0.54* 0.73 1.00
aArranged in order of increasing nitrogen drawdown (∆DIN), and including polynya-wide averages, with standard deviation (S.D.) and n 
value, and correlation (R) of each variable with ∆DIN (significant correlations: p < 0.01 in bold; p < 0.05 with asterisk)
bIndicates not applicable
cno = conditions not observed
dIncludes occasional 1-day ice-free or ice-covered events not included in B
eReflects deep mixing
fImproved correlation if Sta. 57 removed
gAs defined by ∆T method described by Alderkamp et al. (2015)
doi: 10.12952/journal.elementa.000140.t001

Satellite observations
For navigation and planning purposes during the field expedition, sea ice concentration images from Moder-
ate Resolution Imaging Spectroradiometer (MODIS) Terra (250 m resolution) were collected and delivered 
to the ship electronically from the Polar Geospatial Center (PGC; http://www.pgc.umn.edu/; formerly the 
Antarctic Geospatial Information Center), Department of Geology and Geophysics, University of Minnesota. 
Daily ASMR-E satellite images (12.5 km resolution) were also obtained for the 2010–11 season to provide 
an assessment of ice conditions over the larger ASP region and in the months prior to and after the ASPIRE 
sampling period. A summary of the growth of the 2010–11 summer polynya and regional changes in sea ice 
cover during ASPIRE can be found in Mu et al. (2014). This early opening of the polynya in the southeast 
was expected from historical sea ice imagery and was the reason we located a moored sediment trap (MT) 
in this area (Figure 1). The daily ASMR-E images were used to calculate several different measures of ice 
cover timing for each station. Application of these surface-associated conditions to the water column below 
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Figure 1
Study area for ASPIRE.

Maps of the study area showing 
the ice shelf and coastal features 
with numbered stations located on 
A) Moderate Resolution Imaging 
Spectroradiometer (MODIS) Terra 
(250 m resolution) image from  
2 January 2011 showing sea ice 
and land ice (white) and open 
water (black) in the Amundsen 
Sea region; and on B) bathymetric 
contours (gray) from Nitsche et al. 
(2007), with the sea ice margin on 
2 January 2011 shown as a white 
dotted line. The position of the 
moored sediment trap (Ducklow 
et al., 2015) is denoted by MT.
doi: 10.12952/journal.elementa.000140.f001

assumes that horizontal advection was minor compared to vertical controls at the satellite scale (12.5 km 
for ice; 1.24 km for ocean color). Some support for this assumption was found with the good correlations 
between surface conditions and integrated changes to the water column (see below).

Using satellite-derived sea ice concentrations for a patch of ocean surrounding each station, we noted 
the percent sea ice cover (sea ice concentration, %) on the day we sampled. We also calculated the open water 
duration (OWD, or number of open water days) as the total number of days each station location had ≤ 50% 
ice concentration from the date of first opening until (and including) the date of sampling, as consistent 
with Mu et al. (2014) and Lowry et al. (2015). In our experience, waters with ≤ 50% sea ice cover can sustain 
pelagic bloom initiation and development because adequate sunlight reaches the water column. For each 
station patch, the first day of the year that ice concentration dropped ≤50% was noted. At some stations, sea 
ice concentration went up and down for several weeks, so we summed the total number of days ≤ 50% ice 
cover between the first observation until (and including) the day of sampling. Any days in between with a 
sea ice concentration > 50% were not counted as part of OWD. The uncertainty in OWD was calculated as 
the standard deviation of the number of open water days when calculated with a range of sea ice concentra-
tion thresholds (10–90%). We also noted the first date after which the region stayed ice-free (0% ice cover) 
continuously for more than a few days and calculated similarly the number of ice-free days.

We obtained for each station a time series of ocean color by MODIS Aqua (1.24 km resolution) to 
identify the first day that ocean color was observed. At some stations (e.g., 5 and 6), ocean color was detected 
early, but the time series was flat at very low levels (< 0.05 µg L−1), in which case we defined the first day as 
the day ocean color began to increase above baseline. “Bloom spin up” was estimated by the number of days 
between the first day of ≤ 50% ice cover and the first day of ocean color. Bloom duration was estimated by 
the number of days between the first day of ocean color increase and the day of sampling. Bloom duration 
could equal zero if the day of sampling occurred before the start of noticeable ocean color (as it was at 5 of 
the 13 stations). Although most stations showed increases in color over the bloom duration time period, it 
was not always a monotonic increase; sometimes ocean color decreased during the bloom duration interval. 
In summary, four ice-cover-associated, bloom-related time scales were determined: 1) open water duration 
(OWD; days < 50% ice concentration before a station was sampled); 2) ice-free days (days of 0% ice cover 
before station was sampled); 3) bloom spin up time (number of days between the first observation of open 
water (≤ 50%) and an initial increase in ocean color); and 4) bloom duration (number of days between the 
initial increase in ocean color and the day of sampling).
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Water sampling
Hydrographic profiles and discrete water samples were collected from each station using a conventional 
shipboard conductivity-temperature-depth (CTD; Sea-Bird 911+) sensor and a 24 × 10 L Niskin bottle 
rosette sampler (General Oceanics). Potential temperature (θ) and salinity (S) were recorded continuously as 
a function of depth and at the moment of Niskin bottle closure. Continuous dissolved oxygen (DO) profiles 
were measured using a Sea-Bird SBE-43 dissolved oxygen sensor on the CTD and calibrated as reported in 
Mu et al. (2014). A few samples reported here were collected similarly using a trace-metal-clean CTD-rosette 
system (see Sherrell et al., 2015) that was deployed at the same location just before or after the conventional 
CTD. Some hydrographic data from Sta. 4 (near Sta. 68; Figure 1A) were included as they proved useful for 
comparison, even though this station was not covered by the full suite of measurements.

Water samples were collected and processed according to standard protocols (Knap et al., 1996; Dickson 
et al., 2007) for dissolved inorganic carbon (DIC), alkalinity (ALK), nutrients, chlorophyll a (Chl a), par-
ticulate and dissolved organic carbon (POC, DOC), particulate and total dissolved nitrogen (PN, TDN), and 
particulate phosphorus (PP; Planquette and Sherrell, 2012; Planquette et al. 2013). Samples for the oxygen 
isotope ratio (δ18O) of water (H2O) were collected and analyzed as described by Randall-Goodwin et al. 
(2015). Samples from the same depths and stations were also collected for microbial biomass and activity (see 
below; Williams et al., 2016). With a few exceptions (to characterize water mass end members), this paper 
focuses on samples collected from the upper 100 m of the water column. Seafloor depths in the area ranged 
from 300 to 1300 m (Figure 1B; Nitsche et al., 2007), although the 13 stations discussed here were all deeper 
than 400 m (Table 1). Surface mixed layer depths were calculated following Alderkamp et al. (2015), as the 
shallowest depth at which the potential density (σθ) was 0.02 kg m−3 greater than at the surface (Cisewski 
et al., 2008; Alderkamp et al., 2012).

Inorganic nutrients, inorganic carbon, and organic matter analysis
Dissolved inorganic nutrient samples were pre-filtered through 0.45-µm polycarbonate syringe filters, kept 
refrigerated, and analyzed onboard the ship within 1 day of sampling. Nitrate (NO3

−), nitrite (NO2
−), am-

monium (NH4
+), phosphate (HPO4

2−), and silicic acid (Si(OH)4) were measured using a five-channel Lachat 
Instruments QuikChem FIA+ 8000s series autoanalyzer in conjunction with a Lachat Instruments XYZ 
AutoSampler (ASX-500 Series), two Lachat Instruments RP-100 Series peristaltic Reagent Pumps, and 
Omnion Software, version 3.0.220.02. The nitrate + nitrite analysis uses the basic method of Armstrong  
et al. (1967), with minor improvements for precision and ease of operation. Nitrate was first reduced to ni-
trite using a cadmium reduction column and imidazole buffer as described by Patton (1983). Sulfanilamide 
and N-(1-Napthyl) ethylenediamine dihydrochloride react with nitrite to form a colored diazo compound. 
Nitrite analysis was performed on a separate channel, omitting the cadmium reductant. Ammonium was 
determined using the indophenol blue method modified from ALPKEM RFA methodology (EPA, 1984). 
Total dissolved inorganic nitrogen (DIN) was calculated by summing NO3

− + NO2
− + NH4

+. The phosphate 
method was a modification of the molybdenum blue procedure of Bernhardt and Wilhelms (1967), in which 
phosphate was determined as reduced phosphomolybdic acid employing hydrazine as the reductant. The 
silicic acid method was based on Armstrong et al. (1967), as adapted by Atlas et al. (1971). Addition of an 
acidic molybdate reagent forms silicomolybdic acid, which was then reduced by stannous chloride. Detection 
limits (NO3

− + NO2
− = 0.075 µmol L−1; NO2

− = 0.009 µmol L−1; NH4
+ = 0.040 µmol L−1; HPO4

2−= 
0.022 µmol L−1; and Si(OH)4= 1.90 µmol L−1) and precision (NO3

− + NO2
− = ± 0.0076 µmol L−1; NO2

− = 
± 0.0009 µmol L−1; NH4

+ = ± 0.0041 µmol L−1; HPO4
2− = ± 0.0023 µmol L−1; and Si(OH)4= ± 0.193 µmol L−1) 

were determined using multiple runs of standards prepared in low nutrient seawater. Samples with negative 
values following calibration using standard curves were converted to zeros.

Samples for DIC were preserved with mercuric chloride and sealed (Dickson et al., 2007), and then stored 
cool and dark until analysis using the SOMMA at UGA ( Johnson et al., 1993; Cooley and Yager, 2006). 
Accuracy was confirmed with Certified Reference Material from University of California, San Diego (CRM; 
Dickson et al., 2003) and precision was determined to be better than ± 1 µmol kg−1 using duplicate samples 
from surface and 200 m depths. Alkalinity measurements were made on the same samples (following DIC 
analysis) using a programmable open-cell potentiometric titration system (Dickson et al., 2003; Cooley and 
Yager, 2006). Accuracy was established by acid-calibration using multiple daily runs of CRM. Precision was 
determined to be ± 5 µmol kg−1 using replicate samples run on multiple days.

Samples for particulate organic carbon (POC) and nitrogen (PN) were collected by cleanly filtering 100–600 
mL of seawater onto a 25-mm diameter, combusted GF/F filter (nominal pore size of 0.7 µm) which was 
then folded sample side in and frozen at −80°C. Samples were processed at Rutgers University and analyzed 
using a Carlo-Erba CHN analyzer (Hedges and Stern, 1984). Precision, based on replicate filtered volumes 
from the same Niskin bottle, was ± 5% for most samples, but was occasionally higher. Samples for particu-
late phosphate (PP) were collected separately from the same depths and locations as part of a trace metal  
suite and analyzed separately using a Thermo-Finnigan Element I HR-ICP-MS (Sherrell et al., 2015; 
Planquette and Sherrell, 2012; Planquette et al., 2013). Precision was ± 5%. 
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Samples for DOC and TDN were collected cleanly from the filtrate of the POC/PN samples and stored 
frozen until processed at the Georgia Institute of Technology by Shimadzu TOC-5000 analyzer with  
an associated TNM-1 Total Nitrogen Measuring Unit. Precision was ± 4%. Residual dissolved organic nitrogen 
(DON) was calculated by subtracting DIN from TDN. This approach involves taking the difference between 
two relatively large numbers, thus precision of relatively small DON concentrations is strongly affected by 
the precision of the DIN and TDN analyses.

Organismal abundance and biomass analysis
Water column Chl a concentration (used as a proxy for algal biomass) was measured onboard ship using 
acetone extraction and a spectrofluorometer (Alderkamp et al., 2015). Shipboard values were calibrated against 
a second set of samples collected similarly, flash-frozen in liquid N2, stored at −80°C, and analyzed at Mote 
Marine Lab using HPLC (Wright et al., 1991; see Alderkamp et al., 2015). CHEMTAX (Mackey et al., 
1996; Wright et al., 1996; 2010) was applied to determine the relative abundance of phytoplankton classes 
based on pigment analysis (see Alderkamp et al., 2015).

Bacterial abundance samples were collected in triplicate, preserved using 1% paraformaldehyde, and 
deep frozen (−80 °C) until they were counted at The University of Georgia with flow cytometry and SYBR 
Green I nucleic acid staining (Marie et al., 1997). Abundance was calibrated with polystyrene beads, and 
values were crosschecked using DAPI and epifluorescence microscopy (Porter and Feig, 1980). Abundance 
was converted to bacterial carbon (BAC) using a conversion factor (25 fg C cell−1; Simon and Azam, 1989). 
Precision was ± 3%.

Microzooplankton abundance and biovolume were determined at select depths and stations using  
microscopy (Goswami, 2004). Samples were gently siphoned through silicon tubes into 300 ml amber colored 
glass bottles, fixed in acidic Lugol’s solution (2% final concentration), and kept cool and dark until analysis. 
Biovolume calculations followed the HELCOM (2014) manual on appropriate geometrical shapes when 
making length-width measurements for each individual species. Biovolumes were corrected for shrinkage due 
to preservation (vol × 1.33; Stoecker et al., 1994). Heterotrophic/mixotrophic microplankton cell volumes 
were converted to cell carbon (Menden-Deuer and Lessard, 2000) for loricate and aloricate ciliates (CIL), 
and dinoflagellates (DINO).

Heterotrophic nanoflagellates (HNAN) were counted by flow cytometry (Christaki et al., 2011). Each 
sample was stained with SYBR Green, at final concentration of 1:10000 and a minimum staining time of 10 
minutes in the dark. The flow rate was ∼250 µL min−1. Both green and red fluorescence were use to discrimi-
nate between autotrophs and heterotrophs. Data acquisition was 5–10 minutes depending on concentration 
of the sample (or depth). Samples with > 1200 event second−1 were diluted to allow a correct measurement. 
The detected abundance was checked against counts of DAPI filters. HNAN biomass was converted from 
abundance data assuming 3.5 µm3 per cell biovolume (Vaqué et al., 2002) and 220 fg C µm−3 (Børsheim 
and Bratbak, 1987).

Mesozooplankton biovolume and abundance were determined as described by Wilson et al. (2015) and 
converted to biomass (ZOOP) for both daytime and nighttime tows using conversion factors from the  
literature (Gallienne et al., 2001; Forest et al., 2012; Trudnowska et al., 2014).

Biological rate measurements
Phytoplankton net primary production (NPP) rates were determined for 6 light depths in the upper 100 m 
using standard 14C-bicarbonate incubations (Steeman-Nielsen, 1952; Knap et al., 1996) in on-deck incubators 
with light-filtering screens to match in situ light levels. Bacterial production (BP) rates were determined using 
3H-leucine incorporation as described by Williams et al. (2016). Microbial community respiration (MCR) 
rates were determined for near-surface and subsurface depths by changes in CO2 concentrations over 48 
hours in dark incubations, as described in Williams et al. (2016).

An upper bound for microzooplankton grazing rate was estimated as part of another experiment  
(R. Swalethorp, personal communication) by measuring potential microzooplankton growth rates at a peak 
bloom station using large volume incubations over a two-week period. Seawater was collected from the 
fluorescence maximum at Sta. 35 (12 m depth; in situ conditions were determined later to be: Chl a = 
8.6 µg L−1, DIN = 10.4 µmol L−1, DIP = 0.76 µmol L−1). Two treatments were carried out in triplicate 12-L 
containers: whole water and 200-µm filtered (to remove mesozooplankton). Because we did not know their 
in situ concentrations until afterwards, nutrients (15 µmol L−1 NH4Cl and 1 µmol L−1 Na2HPO4) were added 
at the start and containers were incubated at in situ light and temperature (0 ± 0.5 °C) for 15 days. Samples 
for ciliate and dinoflagellate biomass were taken at Day 2, 4, 7, 10, 13 and 15 and analyzed following the 
same procedure as described above for the in situ biomass samples. The rate of increase in biomass over time 
in each of the size fractions was estimated and compared initially using linear regression. Growth rates for 
the microzooplankton were then calculated for each time step using the following equation:
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(1)

where B is the microzooplankton biomass at sampling day t0 and at the following sampling day t0+1. Grazing 
rate was determined from growth rate (Bjørnsen and Kuparinen, 1991) and assumed to be equal to carbon 
demand (= growth + respiration, assuming a gross growth efficiency of 0.3; Straile, 1997, Landry and Calbet 
2004, Chen and Liu, 2011). This assumption would overestimate the grazing rate if many of the microzoo-
plankton were mixotrophs or feeding on other protists and heterotrophic nanoflagellates.

Mesozooplankton grazing rates were measured for both night and day samples from 7–8 depth intervals 
(3–4 intervals in the upper 100 m) at 6 stations (13, 25, 35, 50, 57, 68) using the gut fluorescence method 
(Slaughter et al., 2006; Bernard et al., 2012). Gut pigments were calculated following Strickland and Parsons 
(1972) and converted to grazing rates using a temperature dependent gut evacuation rate (Dam and Peterson, 
1988). Grazing rates were converted to carbon assuming a C:Chl a ratio of 50 (Atkinson et al., 1996) and 
integrated over the upper 100 m, 100–350 m, or lower water column (> 350 m).

Sediment trap material sampling and analysis
Sinking particulate material was collected using two kinds of sediment traps deployed during ASPIRE: 1) 
a year-long moored trap, which was deployed on 16 December 2010 at a single location in the deep central 
trough (MT; Figure 1) with collection at 375 m below the sea surface (Ducklow et al., 2015); and 2) a three-
tiered, drifting sediment trap array (e.g., Knauer et al., 1979; Karl et al., 1996; Munson et al., 2015), which 
was deployed at two stations (35 and 57; Figure 1) for 2–3 days to capture sinking particles at 60, 150, and 
300 m depths. Details of the moored trap methods are reported elsewhere (Ducklow et al., 2015). For the 
drifting traps, an array of polycarbonate collection tubes attached to a fiberglass and stainless steel frame 
was secured to a polyester rope at each of three depths and the entire array was suspended from a series of 
floats and buoys. Each trace-metal-clean collection tube was 7.6 cm inside diameter and 60 cm long, with 
a polycarbonate machined cone in the bottom end, threaded to attach to the neck of a narrow mouth high-
density polyethylene 250 mL bottle (Munson et al., 2015). Trap tubes were filled prior to deployment with 
0.2 µm filtered (Pall Acropak-200 capsule filter) clean brine made by partial freezing of deep water collected 
using trace metal clean techniques (Sherrell et al., 2015) to minimize loss of particulate material by mixing 
and exchange with ambient seawater.

Additional collection tubes were assembled similarly for microbial measurements, except the collection 
bottles were sterile 50 mL centrifuge tubes (Falcon) and the brine was made from filter-sterilized seawater. 
All tubes were tightly covered until just before deployment. After recovery, brine in the trap tubes was si-
phoned off to the level of the top of the collection bottle using clean plastic tubing. The sedimented material 
trapped in the brine-filled 250 mL bottle was vacuum filtered through one or a series of 0.45µm Supor® 
(Pall) polysulfone filters (3–4 filters used sequentially for 60-m material, as the mass of particles caused filter 
clogging), which were transferred to acid-cleaned polystyrene Petri-slides and frozen at sea. Total processing 
time following trap array recovery was ∼6 hours, and trap tubes were kept at 0–5°C in the dark while await-
ing processing. Upon return to Rutgers University, filtered samples were subjected to total acid digestion in 
a hot mixture of nitric and hydrofluoric acid and analyzed for P and other elements by HR-ICP-MS, fol-
lowing the methods of Planquette and Sherrell (2012). Total dry weight was determined at The University 
of Georgia on triplicate samples collected onto pre-weighed glass-fiber filters (GF/F; nominal pore size  
0.7 µm; no salt corrections were made).

Elemental fluxes were calculated for each trap tube using cross-sectional area of tube and duration of  
deployment. The C flux was calculated from P flux and each station's ΔPOC:ΔPP ratio. Fluxes for the  
individual tubes at each depth replicated well, yielding mean P fluxes with 8–10% relative standard deviation 
(RSD; n = 3–4 tubes per depth) for all trap arrays except the 150-m array (28–29% RSD, n = 3–4). Replica-
tion for the dry weights also varied with depth and deployment (7–47%, n = 3). The trapping efficiency of 
the drifting traps is unknown under ASPIRE field conditions. Comparisons to the moored trap and to water 
column calculations should be qualitative only.

Water column calculations
To distinguish biological impacts from physical effects on the carbon and nutrient budgets of the upper water 
column, we calculated for all measured inventories and sample depths the difference between the observed 
concentrations and those expected from physical processes (mixing and ice melt) alone. These calculations 
required assumptions to be made about the relevant integration depth and the initial condition of the win-
tertime water column, which we discuss below.

The choice of integration depth for the upper water column, typically the surface mixed layer or euphotic 
zone, had to consider the rapid temporal changes occurring during the ASPIRE expedition (e.g., a shallowing 
pycnocline, along with dense blooms reducing light penetration). The surface mixed layer depths observed at 
the time of sampling were shallow, but variable (average = 25 ± 19 m; ranging from 10 to 81 m; Table 1). The 
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euphotic zone at the time of sampling was also relatively shallow, but typically deeper than the mixed layer 
and similarly variable (average = 35 ± 19, ranging from 21 to 94 m). Our choice of integration depth had to 
balance the need to catch early season production mixed to depth, without missing production lost to deep 
remineralization later in the season. The process was complicated further by not knowing enough about the 
physical dynamics of the region. On balance, after trying several different approaches, we chose to integrate 
upper water column inventories and their differences over a relatively deep interval (up to 100 m) to allow 
for the high probability of mixing during the early season when the seasonal pycnocline was likely deeper or 
weaker. Going that deep meant that we had to be mindful of deep-water intrusions from below. Because of 
spatial heterogeneity of water masses (see Figure 2 and Results below), we took a station-by-station (local) 
approach, rather than use the same depth for every station.

The upper 100 m of the water column of the ASP was primarily Antarctic Surface Water (AASW) 
overlying remnant Winter Water (WW), the former freshened by sea ice melt and warmed by solar radia-
tion (Yager et al., 2012). Often in polar oceans, dilution by meltwater is corrected by scaling (normalizing) 
observations to a single salinity (see, for example, Sweeney et al., 2000). In the ASP, however, the upper 100 m 
exhibited additional and variable contributions from shoaling, modified Circumpolar Deep Water (mCDW) 
made buoyant by glacial ice melt (Randall-Goodwin et al., 2015). Thus, two sources of meltwater (sea ice and 
glacial ice) modified the upper 100 m but to varying degrees, depending on the influence from mCDW at 
depth (Figure 2). For example, the θ-S curve for Sta. 68 in the west near the shelf break (Figure 1A) shows 
seawater at 100 m with properties near canonical WW, which freshens and warms to the surface (Figure 2),  
indicating very little influence from mCDW. In contrast, Sta. 66 to the south and east (Figure 1A), for 
example, exhibits similar warming and freshening from 60 m to the surface, but below that, the waters  
exhibit warming from mCDW (Figure 2).

Inventory data from all samples of unmodified WW (as defined by θ< −1.75°C and S > 34.1) collected 
during ASPIRE were averaged to estimate biogeochemical “end member” properties (± 1 STD; n = 19). 
We did the same analysis for the samples of mCDW (as defined by S > 34.5; depth > 400 m) to estimate 
similarly its average biogeochemical “end member” properties (± 1 STD; n = 41).

For a subset of seawater samples, we used tracers to determine meltwater fractions (Randall-Goodwin 
et al., 2015; see below) and then applied an end-member mixing model to account for the expected con-
tributions from both sea ice and glacial meltwater. Critical to this effort was defining the winter seawater 
conditions. We intended to use either WW or a winter baseline estimated by the concentrations observed 
at 100 m, which in the ASP were always below the euphotic zone and the base of the summer mixed layer 
(Tynan, 1998; Prézelin et al., 2000; Yager et al., 2012; Schofield et al., 2015). However, because of variable 
subsurface inputs from mCDW (see Figure 2), even temperature and salinity observations at 100 m were 
highly variable from station to station, and consequently so were other inventory contributions from mCDW. 
Thus, to approximate wintertime conditions for each station (as the WW end member), we used the deepest 
value within the upper 100 m that approximated WW without input from mCDW. We determined this 
value to be at the depth of the minimum temperature within the upper 100 m (Tmin_100; noting that for many 
stations, the absolute Tmin for the full-depth profile was well below 100 m). In 5 of the 13 stations (29, 48, 
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Figure 2
Water masses in the ASP.

Temperature-salinity diagram, 
with Winter Water (WW), 
modified Circumpolar Deep Water 
(mCDW), and Antarctic Surface 
Water masses, showing the full 13  
station profiles (labeled with station  
numbers in gray at the surface) 
using oxygen concentration 
(colored according to the legend). 
Solid gray lines indicate the parts 
of the profiles used for the upper 
water column integrations. Black 
segments (also numbered at 
bottom) indicate the lower parts 
of the upper 100 m profiles of the 
eight stations (see Table 1) that 
were not used in the integration 
because of the intrusion of 
mCDW at depth, indicated by 
curving up and right (see inset) 
towards the mCDW water mass 
endpoint. The dotted gray line 
is the seawater freezing line. 
The black, short-dashed line is 
the mixing line between WW 
and mCDW. The black, long-
dashed line shows the mixing line 
between mCDW and glacial melt 
(meteoric) water.
doi: 10.12952/journal.elementa.000140.f002
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50, 57, 68), Tmin_100 was observed at 100 m, so the outcome was identical to the original plan. At the other 8 
stations, however, Tmin_100 ranged from 28 to 90 m (Table 1).

Freshwater fractions for sea ice meltwater (FWFsim) and from meteoric sources derived from glacial melt and 
snow (FWFmet) were determined with the tracer δ18O in the same fashion as described by Randall-Goodwin 
et al. (2015), except that instead of using a regional CDW δ18O end member, we used the value of δ18O at 
Tmin_100 (as described above) as the local WW end member for each station. This approach assumes that the 
wintertime upper water column is well mixed and allowed an estimate of the local meltwater contributions 
relative to WW, i.e., relative to winter concentrations prior to the most recent spring melt. It is in contrast to 
the approach taken by Randall-Goodwin et al. (2015), who integrated over longer and wider time and space 
scales using regional CDW as the δ18O end member, i.e., including regional modification of CDW by net 
annual sea ice production and melt and net annual contribution from meteoric sources. Because the inher-
ent time period covered by our estimates of freshwater contributions included only the spring melt, they do  
not include the negative contribution from sea ice formation (due to brine rejection), and only include a rela-
tively short interval for meteoric contributions. Calculated in this way, freshwater contributions to the upper 
100 m and relative to WW ranged from 0 to 2% for sea ice melt and from 0 to 0.5% for the meteoric water.

Sea ice and glacial melt contribute freshwater that reduces seawater salinity, but it may also contribute 
some inorganic carbon, nutrients, and organic matter to the ocean. Because ASPIRE did not have an ice-
sampling program onboard in 2010–11, sea ice melt and glacial meltwater contributions for nutrients and 
organic matter were estimated from literature values of these endmembers (Xsim and Xmet, respectively, for 
any parameter “X”), some of which came from the ASP region just two years prior to ASPIRE. For sea ice 
melt (Fransson et al., 2011; Thomas and Dieckmann, 2010), we assumed DICsim = 270 µmol L−1, DINsim 
= 2 µmol L−1, DIPsim = 0.3 µmol L−1, DOCsim = 1000 µmol L-1, DONsim = 70 µmol L−1. For glacial melt 
(Rysgaard et al., 2011), we assumed DICmet = 170 µmol L−1, DINmet = DIPmet = 0 µmol L−1, DOCmet = 
50 µmol L−1, DONmet = 0 µmol L−1.

Thus, the expected concentration (Xexp) was determined using the freshwater fractions and their end  
members:

 Xexp = Xsim*FWFsim + Xmet*FWFmet + Xsw*SWF (2)

where Xsw is the seawater concentration at depth of Tmin_100, and

  1 = SWF + FWFsim + FWFmet (3)

The observation (Xobs) at each sample depth was then measured against Xexp, derived from physical contribu-
tions, to calculate the biologically-driven change.

The biological change in the total inorganic nitrogen inventory for the upper water column (∆DIN, 
mmol N m−2) was calculated by trapezoidal integration of the difference between observed and expected 
DIN concentrations down to the depth of Tmin_100. The integrated changes in other chemical inventories 
(∆DIC, ∆DIP, ∆POC, ∆PN, ∆PP, ∆DOC, ∆DON) were calculated similarly. Because particles can move 
independently of water masses, we assumed winter and meltwater end members for particulate matter to be 
zero. This assumption may overestimate particulate production.

Seasonal changes in the surface water column inventories of biomass (∆Chl a, ∆BAC, ∆HNAN, ∆DINO, 
∆CIL, and ∆ZOOP) were calculated similarly to particulate matter (zero meltwater and winter end mem-
bers), except that we integrated to 100 m at all stations. The possibility of deep water contaminating the 
signal was small because biomass decreases dramatically with depth. For overwintering organisms, this use of 
deeper integrations and zero wintertime end members would overestimate their springtime growth. Thus, our 
integrated biomass increases are considered upper limits, but the export calculations below are conservative.

Air-sea CO2 gas exchange during the ice-free period was included in the carbon budget calculation.  
Although photosynthesis may take some time to set up a large pCO2 gradient, melting sea ice contributes  
freshwater and alkalinity to the surface layer, reducing surface pCO2, and setting up the potential for gas 
exchange even before the bloom occurs (Mu et al., 2014). Sea ice algal productivity may also reduce the near 
surface pCO2 (Yager et al., 1995; Miller et al., 2002). The rate of gas exchange, or the CO2 flux density (CO2flux;  
mmol C m−2 d−1), was estimated from underway pCO2 measurements as described by Mu et al. (2014).  
Carbon gained or lost to the surface waters by gas exchange (GasEx) was estimated for each station by using 
the ∆pCO2 observations at each station, calculating CO2flux for that station using the average wind speed 
for the region during the time of ASPIRE (measured shipboard; u10 = 8.7 ± 3.5 m second−1; n = 6209; see  
Mu et al., 2014), and applying that rate over the number of ice-free days to get the total carbon exchanged. 
This approach might overestimate gas exchange because it assumes a steady gradient and the biological 
component of the pCO2 gradient likely took some time to build up to observed levels. This calculation does 
not include any gas exchange that may occur through full or partial sea ice cover, however. The net CO2 uptake  
at all stations, regardless of bloom status, reflects the modest pCO2 reduction (56 µatm) from sea ice  
alkalinity in addition to biological drawdown (see Mu et al. 2014 for complete discussion of mechanisms).
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Because all 13 stations were undersaturated with respect to atmospheric pCO2 (Mu et al., 2014), they 
likely all received some DIC replenishment from air-sea exchange. Thus, the observed ∆DIC would un-
derestimate biological drawdown if we did not account for this gas exchange. The seasonal net community 
production, sNCP (mol C m−2), then, was estimated by adding GasEx to the observed missing inorganic 
carbon inventory, ∆DIC:

  sNCP = ∆DIC + GasEx (4)

For stations where the DIC data were not available, ∆DIN was converted to ∆DIC using the Redfield ratio 
(which was also equal to the average ∆DIC:∆DIN for the region of 6.6 ± 0.9, n = 7). To calculate NCP as a 
rate (mmol C m−2 d−1) rather than a seasonal quantity, we divided sNCP by the open water duration (OWD) 
for each station (see also Ducklow et al., 2015).

A carbon budget was constructed for the upper water column of the ASP (Figure 3; see also Table 8 and 
Figure 11 as described in Results) to determine consistency within individual inventory and rate measurements, 
calculate inferred export, and compare these to direct measures of export (e.g., sediment traps). We assumed 
that the accumulated changes in total carbon in the upper water column could be accounted for among the 
quantities we measured, and that the sum of the changes in total carbon (∆TotalC) would add up to zero:

 ∆TotalC = sNCP – ∆POC – ∆DOC – ∆ZOOP – ExportC = 0 (5)

Seasonal Export C (sExportC, mol C m−2) was thus calculated as:

  sExport C = sNCP – ∆POC – ∆DOC – ∆ZOOP (6)

As we have no observations for wintertime biomass in the ASP, the most conservative estimate for export 
would be to include all observed biomass as new biomass produced locally since winter. Thus, export is deter-
mined by subtracting these values from sNCP. The export calculation would increase if some of the observed 
biomass was already present before the springtime ∆DIC drawdown.

Because we had some (although not many) migrating zooplankton, we used the larger of the two inventories 
(∆ZOOPday or ∆ZOOPnight) to estimate the maximum ∆ZOOP. We did not account for carbon transported 
to depth and respired or released by migrating zooplankton (e.g., Steinberg et al., 2000) because subsurface 
mesozooplankton biomass and respiration rates were low (0.01-0.11 mmol C m−2 and < 0.01 mmol C m−2 d−1,  
respectively; Ducklow et al., 2015).

As with sNCP, the seasonal quantity, sExportC, was converted to a rate (ExportC, mmol C m−2 d−1) 
by dividing by OWD. The exported fraction, based on seasonal quantities only, was estimated by dividing 
sExportC by sNCP. Two different estimates of export efficiency, based on relative rates, were calculated by 
dividing NCP or ExportC by ASPIRE’s best estimate of primary production, NPP. A turnover time (sNCP/
NPP, in days) was also estimated by dividing the seasonal production by the daily production rate.
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Figure 3
Carbon inventories and fluxes in 
the upper water column of the 
ASP.

A cartoon depiction of the one-
dimensional carbon budget for 
the upper water column of the 
ASP. Major carbon inventories 
include dissolved inorganic carbon 
(DIC), particulate organic carbon 
(POC), dissolved organic carbon 
(DOC), and mesozooplankton 
(Mesozoop). Microbial biomass, 
inc luding phytoplankton, 
microzooplankton (Microzoop), 
particle-associated (PA) and free-
living (FL) bacteria (Bact) are  
distributed into the major carbon  
inventories. Exchanges between 
the inventories include net primary  
production (NPP), microbial 
respiration, zooplankton respiration 
(Zoop Resp), grazing (Gr), 
bacterial carbon demand (BCD), 
aggregation (AGG), and fecal 
pellet production (FEC). Additions  
to or losses from the upper water  
column occur through gas exchange  
and export.
doi: 10.12952/journal.elementa.000140.f003
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Uncertainties
Uncertainties in the export calculations were not formally propagated through each equation because 
known uncertainties associated with analytical measurements were small compared to the potential errors 
associated with endmember choices, interpolation between sampled depths, and assumptions about a one-
dimensional water column. After working with these data, it became clear that the calculations were most 
sensitive to variables that were not very well quantified. In the interest of trying to gain the best insight about 
this system, we present these analyses with the caveat that the final export values are estimates and probably 
have an uncertainty of ± 50%. We base this error estimate on rough error propagation efforts combined with 
a sense of how the final values could vary when calculated in different ways. The largest potential source 
of error came from uncertainty associated with the choice of WW endmembers, because small differences 
were then integrated up through the water column. For example, at Sta. 66 (discussed above), integrating to 
the higher NO3

− concentration observed at 100 m (instead of using the value at Tmin_100 at 60 m) would give 
a value for ∆DIN that was 49% larger than the value we determined. Choosing regional averages or using 
WW endmembers increased ∆DIN even further because of the higher NO3

− concentrations. The decision 
to use Tmin_100 to define the endmembers was therefore conservative in terms of estimating the biological 
impacts on carbon and nutrients.

Cross checks 
Because bacterial and microzooplankton biomass are included operationally in the DOC and POC inven-
tories, we did not include them separately in the export calculation. We looked internally, however, at the 
individual carbon components to see if the seasonal increases were consistent with changes in biomass and 
biological rate measurements for each of those pools. For example, although oversimplified, we estimated 
algal carbon (diatoms + Phaeocystis) as follows:

 Algal C = ∆POC – ∆CIL – ∆DINO – ∆HNAN – ∆BAC (7)

Algal C was then compared to Chl a estimates to see if the C:Chl a ratios were consistent with the domi-
nant phytoplankton at each station. Because a significant fraction of bacteria were either particle-associated 
(PA-BACT, Figure 3; Williams et al., 2016) or potentially collected on the GF/F filter used for the POC 
filtration, they were included as part of the POC.

Statistical reporting
Except where noted, average values are reported with ± 1 standard deviation (S.D.) and the number of values 
(n) used to calculate the mean. Significant differences between averages were determined by T-test using 
t0.05[n1 + n2 - 2] as the critical value (Sokal and Rohlf, 1981). When calculations were made using averages, errors 
were propagated according to Bevington (1969). Pearson product-moment correlation coefficients (R) were 
used to relate two sets of values; a significant correlation was determined if R was greater than the critical 
value reported (p < 0.01 or p < 0.05) for a given number (n) of data pairs (Sokal and Rohlf, 1981). Model 
I Linear regression (Sokal and Rohlf, 1981) was applied to calculate rates of change in incubations, where 
the x-axis was time (measured without error); rates were based on slope calculations and are reported with 
± 95% confidence interval. Slopes were considered not significantly different when their 95% confidence 
intervals overlapped.

Results
Physical setting, water mass distributions, and nutrient drawdown
The 13 ASPIRE stations first opened to ≤ 50% ice cover as early as Day 255 (12 September; Sta. 57) and the 
average was Day 299 (26 October) ± 34 d (n = 13; Table 1). Extended ice-free (0%) conditions were observed 
as early as Day 318 (14 November; Sta. 13), but nearly half (6) of the 13 stations experienced ≤ 1 ice-free day 
before sampling (Table 1). A few of the open stations exhibited up to 4 days of 0% ice cover before the ice 
fully cleared, and these days were added to the total of ice-free days for those stations. Sta. 57 in the south-
east, also the site near the moored trap (Figure 1), experienced the most ice-free days (43) before sampling.

The first day that ocean color was detected by satellite at any of the 13 stations (Table 1) was Day 330  
(26 November; Sta. 50), but the average for all stations was Day 346 (12 December) ± 16 days (n = 13;  
Table 1), just one day before the first sampling date of ASPIRE. Thus, the ASPIRE field effort occurred 
during the initial stages of the spring/summer bloom.

Ice concentrations at the time of sampling for the 13 stations (Table 1) ranged from 0% (for the 7 central 
polynya stations) to 85% (Sta. 66, in the marginal ice zone to the north of the central polynya). Open water 
duration (OWD) prior to sampling ranged from 8 to 61 d (Table 1), with an uncertainty that ranged from 
8 to 22 days, and an average of 33 ± 18 days (n = 13). Bloom spin up time was quite variable, ranging from 0 
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to 74 days (average = 49 ± 25 days, n = 13) and bloom duration varied between 0 and 33 days (average = 14 
± 13 days; Table 1).

During ASPIRE sampling, surface pCO2 at all 13 stations was always undersaturated with respect to the 
atmosphere (Table 1; see also Mu et al., 2014), ranging from 167 to 358 µatm. Thus, gas exchange at all 13 
stations was always into the ocean at a rate that ranged from 4 to 49 mmol C m−2 d−1 (Table 1; average = 32 
± 14 mmol C m−2 d−1).

Unmodified Winter Water (WW; θ ∼ −1.75°C, S > 34.1; see also Randall-Goodwin et al., 2015) was 
not observed in the upper 100 m at these 13 stations (Figure 2), as it tended to be found between 200 and  
400 m. Temperature-salinity profiles for the upper 100 m of the 13 stations (Figure 2) showed variable 
extents of warming and freshening of the upper portions of the WW layer through mixing with Antarctic 
Surface Water (AASW), but also sometimes showed the influence of heat and salt from mCDW at depth.

Potential temperatures in the upper 100 m ranged from −1.79 to −0.13°C (Figure 2), with an average of 
−1.31 ± 0.46 (n = 86). At 100 m, the average θ was −1.63 ± 0.15 (n = 13), which was warmer than canonical 
WW (θ < −1.75°C) or the observed minimum potential temperature (Tmin) for the full water column (which 
ranged from −1.82 at Stations 6, 29, and 66 in the northwest to −1.41°C at Sta. 57; with a median of −1.80; 
n = 13; Figure 2). At the surface, potential temperature was greater, ranging from −1.47 to −0.13°C, with 
warmer surface waters associated with increased open water duration, ice-free shallow-stratified conditions, 
and sufficient time to be warmed by solar irradiation (Figure 2). The warmest surface waters were found at 
Sta. 35 and 48 in the upper 10 m (Figure 2). Sta. 57 was ice-free the longest (43 days; Table 1) and its sum-
mer mixed layer was the deepest (81 m; Table 1), presumably because of longer exposure to winds; it was 
also where a large iceberg (with an estimated keel depth of 340–450 m) was observed (see Randall-Goodwin 
et al., 2015). Sta. 13 also experienced a long OWD (56 days) and had a relatively deep mixed layer (42 m;  
Table 1). The depth of the minimum potential temperature in the upper 100 m (Tmin_100) ranged from  
28 to 100 m (Table 1). Eight stations (5, 6, 13, 18, 25, 34, 35) exhibited a subsurface heat contribution from 
mCDW in the upper 100 m (Figure 2; black lines).

Salinity in the upper 100 m ranged between 33.5 and 34.1 (Figure 2), with an average of 33.95 ± 0.11 
(n = 86), and all but three samples had S > 33.7. Surface salinity was reduced relative to deeper waters at 
all open water stations we sampled, indicating that ice melt had already freshened the upper layer (see 
Randall-Goodwin et al., 2015). Salinity was especially reduced at the near surface for two of the partially sea 
ice-covered stations (Sta. 66 at 85% sea ice cover, and Sta. 68 at 68% sea ice cover; Table 1; Figure 2). The 
salinity at 100 m depth varied across the 13 stations, from 33.9 to 34.1 (average = 34.0 ± 0.04, n = 13), and 
was somewhat fresher than canonical WW (S > 34.1), but also indicated variable salt contributions from 
deep mCDW as well (Figure 2).

As described above, Tmin_100 was found at depths < 100 m for 8 of the 13 stations (Table 1; Figure 2). Below 
Tmin_100, the θ-S profile curved upward and to the right (indicating additions of heat and salt), i.e., toward 
the mCDW end member (black line segments on Figure 2). Surface mixed layer depths ranged from 10 to  
81 m (average = 25 ± 19 m, n = 13; Table 1), with the deepest value seen at Sta. 57.

All samples of unmodified WW collected during ASPIRE (entirely from depths below 100 m; n = 19) 
gave fairly narrow ranges for inorganic and organic concentrations (± < 5%; Table 2). The same analysis for 
the samples of mCDW (S > 34.5; depth > 400 m; n = 41) resulted in much higher variability (> 20% in some 
measures; Table 2), perhaps reflecting different degrees of modification from the ice shelf or interaction with 
the seafloor sediments. Inorganic nutrients and carbon were higher in the deeper, warmer, saltier mCDW 
than in WW, although disproportionately so: DIN and DIP were ∼10% higher; Si(OH)4, ∼18% higher; and 
DIC, ∼2% higher. Dissolved oxygen (DO) was significantly lower (32%) in mCDW (Table 2; Figure 2). 
The average concentrations of POC and PN for either water mass were not significantly different from zero 
(given measurement blanks), but could be high in some samples. In contrast, the DOC concentrations in 
both WW and mCDW, 69 ± 9.6 µmol C L−1 and 76 ± 18 µmol C L−1, respectively, were unexpectedly high, 
especially in near-bottom waters (up to 118 µmol C L−1). DON in WW (3.0 ± 2.4 µmol N L−1) was similar 
to that in mCDW (2.6 ± 1.5 µmol N L−1).

In the upper water column of the ASP, the DIN was dominated by nitrate. Ammonium was always  
< 2 µmol L−1, and typically < 1 µmol L−1 except for three sample depths (10, 25, and 40 m) at Sta. 66 (1.3-1.6 
µmol L−1; where significant abundances of ice krill were found; see Wilson et al., 2015) and for one sample 
(85 m) at Sta. 48 (1.2 µmol L−1). Nitrite was always < 0.14 µmol N L−1. Nitrate concentrations in the upper 
100 m ranged from 7.2 to 31.7 µmol L−1. At the 13 stations, deep (100 m) values for DIN were variable and 
ranged from 28.4 to 31.7 µmol N L−1 (average = 29.8 ± 0.88; n = 13), which were slightly lower on aver-
age than, but not significantly different from, the independently determined WW end member (Table 2)  
described above. Concentrations of DIN at Tmin_100, were slightly lower (average = 29.2 ± 1.35; minimum = 26.9;  
n = 13) than at 100 m (29.8 ± 0.91; minimum = 28.4; n = 13), illustrating the variable influence of deep mCDW.
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The estimates of integrated nitrogen drawdown (∆DIN) ranged from 27 to 740 mmol N m−2 (Table 1; 
Figure 4). Plotted against station rank, the increase in ∆DIN was nearly linear (R2 = 0.98; Figure 4), confirm-
ing that even though we did not sample a true time series, ASPIRE stations can be rearranged to represent a 
full range of bloom conditions. Two small breaks in slope (Figure 4) suggest that the stations can be grouped 
into early bloom (Stations 5, 68, 6, 34, and 66), mid-bloom (Stations 18, 13, and 25), and high bloom (Sta-
tions 50, 35, 48, 29, 57) phases. The five early blooms stations were also the westernmost stations (Figure 4). 
The high bloom stations tended to be observed later in the expedition compared to mid-bloom stations, and 
toward the south and east (Stations 35, 48, 29, 57), where the polynya was open longer (Table 1; Figure 4).
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Figure 4
Station classifications.

The ranking and spatial arrangement 
of stations is compared according 
to increasing ∆DIN (mmol N m−2, 
as listed in Table 1). The increase 
in ∆DIN over station rank is linear 
(R2 = 0.98), with small breaks in 
slope near 250 and 550 mmol 
N m−2. One possible grouping 
of stations, therefore, is: 1) early 
bloom stations (light green) 
indicated by ∆DIN < 250 mmol 
N m−2; 2) mid-bloom stations 
(medium green) indicated by 
250 < ∆DIN < 550 mmol N m−2, 
and 3) high bloom stations (dark 
green) indicated by ∆DIN > 550 
mmol N m−2. Geographic map 
shows that light green stations 
(early bloom) are located in the 
northern and western regions 
of the study area (68 is off the 
map, see Figure 1), medium 
green stations (mid-bloom) tend 
towards the northeast, dark green 
stations (high bloom) are central 
and southern. The white lines 
indicate the edge of the open 
water (see Mu et al., 2014) on  
19 November 2010 (dotted) and 
2 January 2011 (dashed), showing 
how the northern stations 
experienced fewer ice-free days.
doi: 10.12952/journal.elementa.000140.f004

Table 2. Water mass endmembers

Parameter AASW a (0–100 m)
WWb ± 1 S.D. (n = 19) mCDW c ± 1 S.D. (n = 41)

Lower value Upper value
Temperature (°C) −1.79 −0.13 −1.79 ± 0.02 +0.70 ± 0.22
Salinity 33.5 34.1 34.13 ± 0.01 34.60 ± 0.070
DIN (µmol N L−1) 7.31 31.84 30.88 ± 0.51 33.45 ± 0.59
HPO4

2− (µmol P L−1) 0.63 2.1 1.95 ± 0.05 2.14 ± 0.05
Si(OH)4 64 99 91.5 ± 4.6 106.7 ± 4.09
dFe (nmol kg−1)d 0.06 0.8 0.3 ± 0.05 0.37 ± 0.05
DIC (µmol C L−1) 2094 2273 2276 ± 5 2320 ± 3
ALK (µmol C L−1) 2225 2377 2358 ± 6 2378 ± 37
DIC (µmol C kg−1) 2038 2213 2215 ± 5 2257 ± 3
ALK (µmol C kg−1) 2166 2314 2295 ± 5 2314 ± 36
DO (µmol O2 L−1) 284 465 287 ± 4.8 196 ± 2.9
POC (µmol C L−1) nde 78 0.013 ± 0.02 0.33 ± 0.37
PN (µmol N L−1) nd 12 0.004 ± 0.005 0.03 ± 0.05
DOC (µmol C L−1) 53 127 69 ± 9.6 76 ± 18
DON (µmol N L−1) nd 8.5 3.0 ± 2.4 2.6 ± 1.5

aAntarctic Surface Water
bWinter Water, defined by all ASPIRE samples where θ < −1.75°C and S > 34.1
cModified Circumpolar Deep Water (mCDW), defined by all ASPIRE samples where S > 34.5 and depth > 400 m
dFrom Sherrell et al. (2015)
eNot detected
doi: 10.12952/journal.elementa.000140.t002
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Across the 13 stations, ∆DIN correlated significantly with several of the ice and bloom timing variables 
(Table 1; p < 0.01, n = 13), most strongly and positively with the number of ice-free days (R = 0.87), and 
inversely with the first day of extended ice-free conditions (R = −0.85). It also correlated significantly  
(p < 0.01) with bloom duration (R = 0.83), open water duration (R = 0.80; Figure 5A), the first day of  
increasing ocean color (R = −0.74), and ice concentration at the time of sampling (R = −0.68). Surface pCO2 
correlated significantly with ∆DIN (R = −0.71, n = 12, p < 0.01) when deeply-mixed Sta. 57 was removed 
from the analysis (Table 1).

As inferred above from the station groupings (Figure 4), the variation in ∆DIN also exhibited some geo-
graphic sensitivity, correlating significantly (R = 0.63, p < 0.05) with longitude (tending to be higher in the 
east, which was also where the sea ice disappeared first). Because spatially heterogeneous sea ice conditions 
explain a larger fraction of the variability in ∆DIN than geography, however, geographic transects through  
the polynya seem less informative than arranging the stations in terms of either sea ice timing or the integrated 
nitrate drawdown. All results are thus presented within the framework of increasing ∆DIN as representative 
of the increasing polynya opening and the subsequent algal bloom.

When stations are arranged according to ∆DIN, physical controls on the bloom progression can be ob-
served (Figure 5). First, as mentioned above, a clear relationship exists between increasing OWD and ∆DIN 
(Figure 5A). Exceptions to the trend include Sta. 5 near the Getz Ice Shelf, and Sta. 13; both had relatively 
long OWD compared to their early or mid-bloom stages. Hydrography at these two stations indicates less 
warming or freshening at the surface (Figures 2, 5B, 5C), perhaps because of fewer actual ice-free days (in 
the case of Sta. 5; Table 1), or deeper wind mixing (in the case of Sta. 13; Table 1).

The progressive warming and freshening in the polynya surface waters during the bloom progression is 
observed when comparing temperature and salinity profiles against ∆DIN (Figure 5B, 5C). At early bloom 
stations, the upper water column is mostly cold (< −1.4 °C; Figure 5B) with surface freshening at some sta-
tions (Figure 5C). Later in the bloom progression, warmth penetrates increasingly deeper into the water 
column through the mid-bloom and then surface temperatures peak during high bloom. Warming was seen 
penetrating deeper waters at several stations, particularly Stations 13 (to 60 m), 35 and 50 (to 90 m), 29 (to 
80 m), and 57 (to 100 m). Freshening from the surface down to the deeper depths corresponded with those 
stations that indicated downward mixing of surface heat (Figure 5C), and suggesting local mixing events.
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Figure 5
Hydrography of the 13 ASP 
stations examined.

Physical characteristics of the 13  
stations examined against 
increasing integrated nitrate 
depletion (∆DIN, mmol N m−2) 
and bloom stage (green scale as in 
Figure 4). A) open water duration 
(days) for each station (numbered); 
(B) potential temperature (°C; 
colored according to legend) 
profiles contoured with increasing 
∆DIN, with the white dotted line  
indicating the depth of integration 
for each station; (C) salinity profiles  
contoured versus ∆DIN. Actual 
measurements indicated by black 
data points.
doi: 10.12952/journal.elementa.000140.f005
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Inorganic carbon and nutrients
Inorganic carbon and nutrients were higher and well mixed at early bloom stations such as Stations 5 and 
68, but then DIC, DIN, and DIP decreased proportionally, starting near the surface and moving to depth 
with increasing ∆DIN (Figure 6A, B, C). An exception was Sta. 57 (and to some extent Sta. 13), which sug-
gested deep mixing, as described above for θ and S. Concentrations of DIC (reported here in µmol L−1 for 
comparison to N and P) ranged from a high of 2273 µmol C L−1 (2213 µmol kg−1) in the deeper waters, to a 
low of 2094 µmol C L−1 (2038 µmol kg−1) in the near surface waters of Sta. 35 (Figure 6A). Concentrations of 
DIN ranged from 7.31 to 31.84 µmol N L−1, with the highest values found at Sta. 5 and in the deeper waters 
of most stations (Figure 6B) and the lowest concentrations (< 10 µmol N L−1) in the surface or near-surface 
waters at high bloom stations. The sample-by-sample concentrations of DIN correlated very well with those 
of DIC (R = 0.99, n = 42, p < 0.01). Concentrations of DIP ranged from 0.63 to 2.1 µmol P L−1 (Figure 6C) 
and also correlated very well with DIC (R = 0.99, n = 42, p < 0.01) and DIN (R = 0.99, n = 81, p < 0.01).

Integrated water column ∆DIC and ∆DIP (Table 3) corresponded very well (R = 0.98; n = 7 and 13, 
respectively; p < 0.01) with integrated ∆DIN calculations. Average stoichiometric ratios for the region 
(∆DIC:∆DIP = 123 ± 45; ∆DIN:∆DIP = 16.8 ± 2.2; ∆DIC:∆DIN = 6.6 ± 0.89; n = 29; Table 3) were not 
significantly different (p > 0.05) from average living marine plankton (C:N:P = 106:16:1; Redfield et al., 
1963). Stoichiometry did not correspond well with bloom stage. Stations 66, 25, 50, and 35 all exhibited 
∆DIC:∆DIP = 104-125, whereas Stations 13 and 57 both had lower values at 90-97. Sta. 5, with ∆DIC: 
∆DIP = 221, was an outlier, suggesting that the biological signal was too small to get a good ratio.

Concentrations of Si(OH)4 in the upper 100 m ranged from 64 to 99 µmol Si L−1 with an average value 
of 85 ± 8 µmol Si L−1 (data not shown). The concentrations at 100 m (average = 89 ± 7 µmol Si L−1) were 
generally lower than but not significantly different from the WW endmember (91.5 ± 0.05 µmol Si L−1). 
With this large observed variability, there may have been a problem with consistency of the daily Si(OH)4 
standard curve on board ship, and concentration data are not comparable from station to station. All samples 
from a single profile were run on the same day with the same standards, however. Thus, for any given station, 

Elementa: Science of the Anthropocene • 4: 000140 • doi: 10.12952/journal.elementa.000140

Figure 6
Carbon, nitrogen, and phosphorus  
inventories in the ASP.

Inventory profiles for the 13 stations 
contoured against increasing nitrate 
depletion (∆DIN; mmol N m−2) 
and bloom stage (green scale as  
in Figure 4). (A) dissolved inorganic  
carbon (DIC, µmol C L−1); (B) 
dissolved inorganic nitrogen (DIN,  
µmol N L−1); (C) dissolved inorganic  
phosphorus (DIP, µmol P L−1);  
(D) particulate organic carbon  
(POC, µmol C L−1); (E) particulate  
organic nitrogen (PN, µmol N L−1);  
and (F) particulate phosphorus 
(PP, µmol P L-1). The left and 
right columns are independently 
measured, so the coherence is 
notable. Samples for PP came 
from separate TMC-CTD casts 
and there were fewer profiles 
available.
doi: 10.12952/journal.elementa.000140.f006
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the silicate drawdown (∆Si; Figure 7) is the better way to examine the data because it shows vertical gradients 
that depend less on a consistent daily standard curve. Although the ∆Si(OH)4 data indicate surface depletion 
at some stations, the silicate depletion did not follow the ∆DIN as well as the other nutrients did (R = 0.68,  
p < 0.01, n = 12). Integrated ∆Si ranged from 9 to 700 mmol Si m−2 (Table 3), except for a negative value at 
one station (Sta. 25) that suggested a deep source or dissolution of advected particulate silicate. The ∆DIC: 
∆Si ratio (Table 3) varied widely but the average (when the one negative value was removed) was higher but 
not significantly different (average = 12.3 ± 7, n = 6) from the typical ratio for diatoms (7.1; Brzezinski, 1985). 
The ∆Si:∆DIP and ∆Si:∆DIN ratios (Table 3) were also highly variable and generally lower on average (9.8 
± 7, 0.63 ± 0.62, respectively; n = 12) than typical for diatoms (15 and 0.94, respectively; Brzezinski, 1985), 
indicating the presence of other phytoplankton groups.

Elementa: Science of the Anthropocene • 4: 000140 • doi: 10.12952/journal.elementa.000140

Table 3. Integrated net changes in inorganic carbon and nutrients, with stoichiometric ratios, over the upper water 
columna

Station 
groupingb Station # Event #

Changing integrated inventories Stoichiometric ratios
∆DIN 

 (mmol N m−2)
∆DIC  

(mmol C m−2)
∆DIP 

(mmolP m−2)
∆Si  

(mmol Si m−2)
∆DIC: 
∆DIP

∆DIC: 
∆DIN

∆DIN: 
∆DIP

∆DIC: 
∆Si

∆Si: 
∆DIN

∆Si: 
∆DIP

Early bloom 5 5.04 27 213 1 9 221 8.0 28 24.3 0.3 9.1

68 68.01 144 - 14 333 - - 11 - 2.3 24
6 6.03 205 - 11 11 - - 19 - 0.1 1.0
34 34.03 236 - 14 36 - - 17 - 0.2 2.6
66 66.02 248 1568 15 141 107 6.3 17 11.1 0.6 10

Mid-bloom 18 18.01 310 - 18 79 - - 18 - 0.3 4.5
13 13.08 369 1921 21 296 90 5.2 17 6.5 0.8 14
25 25.02 470 2917 28 (−185)e 104 6.2 17 (−15.8)e (−0.4)e (−6.6)e

High bloom 50 50.09 558 3736 31 223 121 6.7 18 16.8 0.4 7.2
35 35.11 565 4178 34 489 125 7.4 17 8.5 0.9 15
48 48.02 606 - 34 54 - - 18 - 0.1 1.6
29 29.02 646 - 35 513 - - 18 - 0.8 15
57 57.11 740 4711 49 698 97 6.4 15 6.8 0.9 14

All stations R∆DIN
c -d 1.00 0.98 0.98 0.68 −0.69 −0.31 −0.28 −0.66 −0.03 0.07

AVEc - - - - - 123 6.6 16.8 12.3 0.63 9.8
S.D. - - - - - 45 0.89 2.2 7.0 0.62 6.9

n - - - - - 7 7 13 6 12 12
aIntegrated to Tmin_100, arranged in order of increasing nitrogen drawdown (∆DIN)
bBy bloom stage, as shown in Figure 4
cIncluding polynya-wide averages of stoichiometric ratios, with standard deviation (S.D.) and n value, and correlation (R) of each  
variable with ∆DIN (significant correlations: p < 0.01 in bold)
dIndicates not applicable or not available
eNegative value not included in average or correlation
doi: 10.12952/journal.elementa.000140.t003

Figure 7
Silicate drawdown in the ASP.

Dissolved silicate drawdown (∆Sibio, 
µmol C L−1) profiled for the 
13 stations contoured against 
increasing nitrate depletion (∆DIN, 
mmol N m−2) and bloom stage 
(green scale as in Figure 4). The 
partial coherence with Figure 6 is 
notable.
doi: 10.12952/journal.elementa.000140.f007
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Particulate organic matter
The buildup of particulate organic matter mirrored the drawdown of inorganic nutrients as ∆DIN increased 
from station to station (Figure 6). Concentrations of POC ranged from not detectable to 78 µmol C L−1  with 
highest values in the upper 20 m at stations with higher ∆DIN (Figure 6D). The buildup of POC accounted 
for 49-98% of the inorganic carbon drawdown (∆DIC), with an average of 75 ± 19% (n = 7). Concentrations 
of PN (Figure 6E) ranged from not detectable to 12 µmol N L−1 and showed similar distribution as POC  
(R = 0.98, n = 79, p < 0.01), with sample-by-sample POC:PN values averaging 7.1 ± 2.1 (n = 64). Concen-
trations of PP (from the TMC CTD cast, data only available = 10 m; Figure 6F) correlated significantly 
with POC and PN (R = 0.61 and 0.64, respectively; n = 42; p < 0.01). Notable deviations occurred in the  
10-30 m depths of Sta. 25 where PP was high, but POC and PN were less so.

Across the region, the stoichiometric ratios for particle samples in the upper water column (0-100 m; 
POC:PP = 279 ± 176; POC:PN = 7.4 ± 4.0; PN:PP = 40 ± 25; n = 64 for POC:PN and n = 31 for PP) were 
much more variable than the dissolved inorganic ratios, and tended to be poor in phosphorus, but, with the 
high variances, were not significantly different (p > 0.05) from typical values for living plankton (C:P = 106, 
C:N = 6.6; N:P = 16; Redfield et al., 1963). The large variance suggests some preferential remineralization 
of P and N (relative to C) at some but not all stations and depths.

Integrated water column ∆POC and ∆PN values for each station (Table 4) ranged from 180 to 3229 mmol 
C m−2 and 20 to 500 mmol N m−2, respectively, and correlated significantly with each other (R = 0.96, n = 13, 
p < 0.01) and with ∆DIN (R = 0.82 and 0.81, respectively; n = 13; p < 0.01). With the large maximum at Sta. 
25, integrated ∆PP by station (ranging from 2.8 to 17 mmol P m−2) did not correlate significantly with ∆POC 
(R = 0.62, n = 8, p > 0.05) but was better correlated with ∆PN and ∆DIN (R = 0.70, 0.72, respectively; n = 
8; p < 0.05). Stoichiometric ratios based on integrated values for each station (Table 4; ∆POC:∆PP = 230 
± 63; ∆PN:∆PP = 33 ± 7.8; ∆POC:∆PN = 7.0 ± 0.8) were similar to those described above for individual 
depths, but less variable, distinguishing them better from the Redfield ratios for living plankton. The lower 
P content of particles in the upper 100 m persisted relative to changes in inorganic inventories (Table 4), 
again suggesting some preferential remineralization of phosphorus.

Dissolved organic matter
The balance of DOM sources and sinks in the ASP, as represented by the observed inventories, appear to 
be more complex than for POM and nutrients in that they do not follow the bloom progression as well. 
Generally, DOC and DON concentrations were higher in surface waters relative to subsurface (Figure 8), 
but they did not exhibit the characteristic surface build up or progressive deepening with ∆DIN or bloom 
stage that was observed with POC and PN. Concentrations of DOC in the upper water column ranged from 
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Table 4. Integrated changes in particulate and dissolved organic matter and their ratios over the upper water columna

Station  
groupingb Station #c ∆DIN  

(mmol N m−2
∆POC  

(mmol C m−2)
∆PN  

(mmol N m−2)
∆PP  

(mmol P m−2)
∆POC: 

∆PP
∆POC: 

∆PN
∆PN: 
∆PP

∆DOC 
(mmol C m−2)

∆DON  
(mmol N m−2)

∆DOC: 
∆DON

Early bloom 5 27 180 20 2.8 63 9.0 7 (−38) 1 -
68 144 707 110 - - 6.4 - (−144) (−46) 3.1
6 205 1564 217 3.3 468 7.2 65 750 66 11
34 236 1981 290 - - 6.8 - (−86) 39 -
66 248 1537 208 5.5 279 7.4 38 403 (−10) -

Mid-bloom 18 310 2026 304 8.3 244 6.7 37 895 34 26
13 369 1873 263 - - 7.1 - 265 84 3.1
25 470 1977 310 17.0 116 6.4 18 1130 103 11

High bloom 50 558 2234 348 8.8 254 6.4 40 1210 (−100) -
35 565 2799 338 9.9 284 8.3 34 1390 8 175
48 606 3229 500 - - 6.5 - (−1110) 118 -
29 646 2766 404 - - 6.9 - (−180) 107 -
57 740 2291 358 11.4 201 6.4 31 (−215) 70 -

All stations R∆DIN
c 1.00 0.86 0.87 0.72* 0.01 −0.43 0.08 −0.27 0.33 0.69

AVEc -d - - - 230 7.0 33 - - 38
S.D. - - - - 63 0.81 7.8 - - 67

n - - - - 8 13 8 - - 6
aIntegrated to Tmin_100, arranged in order of increasing nitrogen drawdown (∆DIN)
bBy bloom stage, as shown in Figure 4
cIncluding polynya-wide averages, with standard deviation (S.D.) and n value, and correlation (R) of each variable with ΔDIN  
(significant correlations: p < 0.01 in bold, p < 0.05 with asterisk)
dIndicates not applicable or not available
doi: 10.12952/journal.elementa.000140.t004
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53 to 127 µmol L−1, with peak values at the surface of early bloom Stations 6 and 66 (Figure 8A), which 
were both in the marginal ice zone at the time of sampling. Although typical melting sea ice contributions 
were accounted for in the mixing model, the biomass and algal productivity in sea ice can be extremely 
heterogeneous, and inputs to the ocean from any given melt could vary substantially. A few deeper samples 
also exhibited relatively high concentrations (Sta. 5, 80-100 m; Sta. 29, 80 m; Sta. 48, 100 m), suggesting 
variable subsurface sources of DOC to the water column (contamination was ruled out because the DON 
for those same samples was low).

Concentrations of DON ranged from not detected to 8.5 µmol L−1 (Figure 8B), with some high con-
centrations in the surface and subsurface at higher ∆DIN stations (e.g., Stations 35 and 48). The correla-
tion between sample DOC and DON concentrations was weak but significant for all samples in the upper  
100 m (R = 0.39, n = 80, p < 0.01), with a carbon-rich average DOC:DON ratio of 47 ± 38 (n = 80). The 
C:N ratio dropped to a mean of 23 ± 35 if we subtracted a canonical Southern Ocean deepwater DOC 
value of 45 µmol L−1 from the measured DOC and recalculated the ratio (because we observed DON = 0, 
we did not subtract a deepwater DON). The average DOC value at Tmin_100 (69 ± 10 µmol C L−1) had a large 
range, but matched the WW average and range very well. The average DON at Tmin_100 (1.9 ± 1.5 µmol N L−1,  
n = 13) was a bit lower, but not significantly different from that of WW or from zero.

Integrated ∆DOC values (Table 4) ranged from large and positive (1390 mmol C m−2 at Sta. 35) to un-
expectedly large and negative (−1110 mmol C m−2 at Sta. 48), and they did not correlate significantly with 
∆DIN or correspond with bloom stage. Integrated ∆DON also ranged from large and positive (118 mmol 
N m−2 at Sta. 48) to large and negative (−100 at Sta. 50). The ∆DOC:∆DON ratio (only calculated when 
both ∆DOC and ∆DON were the same sign) also varied widely (ranging from 3 to 170; Table 4). These 
outcomes were driven at least in part by the variability of DOC and DON at Tmin_100 and the high sensitivity 
of the mixing model and integration calculations to small differences in concentration.

Biomass in the upper 100 m
All biomass stocks except mesozooplankton generally exhibited their highest accumulations in the high 
bloom regions with higher ∆DIN (Figure 9), although most did not have significant correlations with 
∆DIN (Table 5). Chlorophyll a concentrations (Figure 9A) ranged from 0.02 to 22 µg Chl a L−1, were 
highest within the surface or near-surface waters of the central polynya, and exhibited an integrated buildup 
that ranged from 74 to 828 mg m−2 (average = 613 ± 147 mg m−2; Table 5) and correlated well with ∆DIN  
(R = 0.68, n = 13, p < 0.01; Figure 9A). A subsurface (10-20 m) Chl a maximum was observed at several mid- 
or high bloom stations (Stations 18, 50, 48, 35, and 29). Concentrations of Chl a correlated positively with 
POC concentrations on individual samples (R = 0.90, n = 79, p < 0.01), with the POC:Chl a ratio ranging 
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Figure 8
Dissolved organic carbon and 
nitrogen inventories in the ASP.

Dissolved organic inventory profiles 
for the 13 stations contoured 
against increasing nitrate depletion 
(∆DIN, mmol N m−2) and 
bloom stage (green scale as in 
Figure 4). A) dissolved organic 
carbon (DOC, µmol C L−1); and 
(B) dissolved organic nitrogen 
(DON, µmol N L−1). The lack 
of coherence with Figure 6 is 
notable.
doi: 10.12952/journal.elementa.000140.f008
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Table 5. Integrated biomass inventories and changes over the upper water columna

Station groupingb

Station #c Chl a  
(mg m−2, A)

∆POC 
(B)

C:Chl a  
(w/w, [Bx12]/A)

∆BAC 
(C)

∆HNAN 
(D)

∆DINO 
(E)

∆CIL  
(F)

∆ZOOP Algal C  
(G=A−C−D−E−F)

Algal C:Chl a 
(w/w, Gx12/A)Day Night

Early bloom 5 177 608 41 59 1.1 - - - - - -
68 74 707 115 -d 1.6 68 45 0.014 0.036 590 96
6 552 1963 43 36 2.6 - - - - - -
34 679 2100 37 53 1.9 101 28 - - 1920 34
66 350 1730 59 67 4.4 122 48 - - 1490 51

Mid-bloom 18 662 2430 44 82 2.1 - - - - - -
13 622 2060 40 51 1.0 82 6 0.047 0.169 1920 37
25 502 1980 47 61 1.6 91 24 0.016 0.023 1800 43

High bloom 50 436 2230 62 58 2.9 178 43 0.035 0.066 1950 54
35 601 2860 57 50 3.0 31e 5e 0.018 0.027 2770 -
48 828 3230 47 81 3.4 181 91 - - 2870 42
29 762 2770 44 36 3.1 - - - - - -
57 690 2290 40 123 1.8 89 66 0.016 0.010 2010 35

All stations R∆DIN
c 0.68 0.79 −0.24 0.48 0.30 0.21 0.31 −0.07 −0.32 0.72 −0.52

aIntegrated biomass (mmol C m−2, except where noted) to 100 m, arranged in order of increasing nitrogen drawdown (∆DIN)
bBy bloom stage, as shown in Figure 4
cIncluding polynya-wide correlation (R) of each variable with ∆DIN (significant correlations: p < 0.01 in bold)
dIndicates not available
eIntegrated to 12 m only (no data below 12 m); not included in correlation
doi: 10.12952/journal.elementa.000140.t005

Figure 9
Biomass in the ASP.

Biomass profiles for the 13 stations 
contoured against increasing 
nitrate depletion (∆DIN, mmol N 
m−2) and bloom stage (green  
scale as in Figure 4). A) algal  
biomass as chlorophyll a 
concentration (µg Chl a L−1); 
(B) bacterial biomass (µmol C L−1); 
(C) nanoflagellate biomass 
(µmol C L−1); (D) dinoflagellate 
biomass (µmol C L-1); (E) ciliate 
biomass (µmol C L-1); and  
(F) maximum zooplankton biomass 
(day or night, µmol C L−1). Note 
that scales are different for each 
microbial contribution.
doi: 10.12952/journal.elementa.000140.f009
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from 28 to 271 (median = 45; n = 76, excluding samples with < 0.5 µg Chl a L−1), with higher values found 
in samples with 1.0-1.5 µg Chl a L−1. Integrated ∆Chl a also correlated significantly with ∆DIC (R = 0.79,  
n = 7, p < 0.05), as well as ∆POC, and ∆PN (R = 0.87, and 0.87, respectively; n = 13; p < 0.01). Correlations 
improve if the same depth intervals are used (e.g., for Chl a100 versus ∆POC100: R = 0.91, n = 13, p < 0.01). 
Integrated ∆POC100:Chl a ratios (Table 5) ranged from 37 (at Sta. 34) to 115 (at the partially ice-covered 
Sta. 68), with a median of 44 (average = 52 ± 20, n = 13), but did not correlate significantly with ∆DIN  
(R = −0.24, n = 12, p > 0.05).

Phytoplankton community structure (as defined by CHEMTAX pigment analysis) was dominated  
(> 80%) by Phaeocystis antarctica at all stations except early bloom Stations 6 and 68 (Table 6), where diatoms 
contributed 50 and 77%, respectively, to the integrated biomass. Diatoms were otherwise a small fraction 
of the integrated biomass (median = 2%) at the time of sampling, and when they were found, they were 
usually in the deeper waters with lower Chl a concentration. Sample-by-sample comparison throughout 
the upper 100 m showed significant negative correlation (R = −0.41, n = 107, p < 0.01) between total Chl a 
concentration and diatom percentage, but a positive correlation (R = 0.41, n = 107, p < 0.01) with Phaeocystis 
percentage. Prasinophytes contributed modestly to most stations (median = 8%; up to 13% at Sta. 35), whereas 
dinoflagellates made minor contributions (< 1%) to most stations (median = 0.2%) except at Sta. 68 (15%). 
Cryptophytes were spotty, contributing 4% at Sta. 68 and 3% at Sta. 50, and were otherwise minor (median 
= 0.5%). Chlorophytes were similarly spotty, abundant at Sta. 66 (5%), but otherwise very minor (median = 
0.0%). Prasinophytes correlated positively with Chl a concentration (R = 0.36, n = 107, p < 0.01), whereas 
dinoflagellates and cryptophytes correlated negatively (R = −0.36 and −0.25, n = 107, p < 0.01). Notably, the 
ratio of ∆Si to sNCP, which ranged from 0.01 to 0.35 (Table 6), correlated significantly with the integrated 
diatom contribution to the algal biomass (R = 0.65, n = 12, p < 0.05), although the correlation was dominated 
by the highest value found at Sta. 68 (and becomes insignificant when that data point is removed).

Bacterial abundance ranged from 1.8 to 8.3 x 108 cells L−1 (average = 3.4 ± 1.3 x 108 cells L−1, n = 72) in the 
upper water column. Bacterial biomass ranged from 0.4 to 1.7 µmol C L−1 (average = 0.7 ± 0.3 µmol C L−1,  
n = 72), generally showed a similar buildup in concert with increasing Chl a and ∆DIN (Figure 9B), and 
correlated significantly with Chl a concentrations (R = 0.35, n = 72; p < 0.01), but exhibited three notable 
maxima observed at the surface of Sta. 66 (in the marginal ice zone) and Sta. 18, and subsurface (30 m) at 
Sta. 57 where Chl a was relatively low. Bacterial biomass contributed 1–14% of the POC in the water column 
(average = 4 ± 3%, n = 54). Integrated over the upper 100 m, bacterial biomass (∆BAC; Table 5) ranged from 
36 to123 mmol C m−2 (average = 63 ± 24 mmol C m−2, n = 12; Table 5), with the highest value at Sta. 57, 
and did not correlate significantly with ∆DIN (R = 0.37, n = 12, p > 0.05).

Heterotrophic nanoflagellate abundance ranged from 0.25 to 11 x 105 L−1, with an average value of 
4.8 ± 2.6 x 105 L−1 (n = 45), and had a significant correlation with Chl a concentration (R = 0.71, n = 45,  
p < 0.01). Biomass (Figure 9C) ranged from 0.0 to 0.07 µmol C L−1 (average = 0.024 ± 0.019, n = 45),  
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Table 6. Integrated phytoplankton composition over the upper water columna

Station groupingb
Station #c Chl a  

(mg m−2)
Phaeocystis  

%
Diatoms 

%
Prasinophytes 

%
Dinoflagellates  

%
Cryptophytes 

%
Chlorophytes 

% ∆Si:sNCP

Early bloom 5 177 87 5 8 0.0 0.4 0.0 0.04

68 74 1 77 2 15 4 0.1 0.35

6 552 45 50 3 2 0.0 0.0 0.01

34 679 89 0.4 10 0.2 0.4 0.0 0.02

66 350 80 12 0.3 1 2 5 0.09

Mid-bloom 18 662 88 0.0 10 0.2 1 0.0 0.04

13 622 87 3 8 0.3 1 0.5 0.11

25 502 89 1 10 0.0 0.2 0.0 -d

High bloom 50 436 83 13 0.2 1 3 0.0 0.04

35 601 86 0.1 13 0.0 1 0.1 0.08

48 828 91 0.0 9 0.2 0.4 0.0 0.01

29 762 86 2 11 0.0 1 0.0 0.10

57 690 91 2 7 0.4 0.3 0.1 0.13

All stations R∆DIN
c 0.68 0.46 −0.47 0.30 −0.36 −0.20 −0.21 −0.11

aBased on CHEMTAX pigment distribution, integrated to 100 m, and arranged in order of increasing nitrogen drawdown (∆DIN), with 
change in ratio of silicate to seasonal net community production (∆Si:sNCP) also included
bBy bloom stage, as shown in Figure 4
cIncluding polynya-wide correlation (R) of each variable with ∆DIN (significant correlations: p < 0.01 in bold)
dIndicates not available
doi: 10.12952/journal.elementa.000140.t006
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accounting for < 1% the POC. The highest values were found near the surface waters of marginal ice zone 
Sta. 66, with smaller peaks at the surface of Stations 35 and 50. Integrated heterotrophic nanoflagellates 
(∆HNAN) ranged from 1.0 to 4.4 mmol C m−2, with an average of 2.5 ± 1.0 mmol C m−2 (n = 13; Table 5), 
and did not correlate significantly with ∆DIN (R = 0.30, n = 13, p > 0.05).

Heterotrophic/mixotrophic dinoflagellate abundance by microscopic counts ranged from 0.32 to 4.6 
x 104 cells L−1, with an average of 1.9 ± 0.97 cells L−1 (n = 25), and correlated significantly with Chl a  
(R = 0.70, n = 24, p < 0.01), but not with the CHEMTAX-designated (autotrophic) dinoflagellate contribution 
(R = −0.15, n = 21, p > 0.05) or the prasinophyte contribution (R = 0.32, n = 21, p > 0.05). Heterotrophic/
mixotrophic dinoflagellate biomass ranged from 0.29 to 2.7 µmol C L−1 (Figure 9D; average = 1.6 ± 0.8,  
n = 25), exceeded bacterial biomass, and contributed an average of 5 ± 3% (n = 18; maximum = 15%) to 
POC. When integrated, heterotrophic/mixotrophic dinoflagellate biomass (∆DINO) contributed up to  
180 mmol C m−2 to the living carbon in the upper water column (Table 5). Integrated dinoflagellate biomass 
correlated best with the POC:PP ratio (R = 0.92, n = 9, p < 0.01).

Ciliate abundance ranged from 0 to 5.6 x 104 cell L−1, with an average of 2.1 ± 1.6 x 104 cell L−1. Biomass 
ranged from 0.02 to 1.7 µmol C L−1 (Figure 9E), with the highest values subsurface at Sta. 57, and it did 
not correlate significantly with Chl a (R = 0.25, n = 25, p > 0.05). Ciliates contributed 0.2–20% of the POC 
(median: 1.3%), with the highest percentages in deep water samples (e.g., Sta. 25 at 100 m). Integrated cili-
ate biomass ranged from 6 to 91 mmol C m−2 (∆CIL; Table 5), with an average integrated value of 44 ± 26 
mmol C m−2, and it did not correlate significantly with ∆DIN (R = 0.31, n = 9, p > 0.05).

Mesozooplankton biomass in the upper 100 m (Figure 9F; Wilson et al., 2015) ranged from 0 to 0.005 
µmol C L−1, was greatest at Sta. 13 (where Chl a was low), and did not correlate with Chl a (R = 0.08,  
n = 23, p > 0.05). Nighttime biomass, which was higher than daytime biomass (except at Sta. 57), was used 
for budget calculations. Mesozooplankton (∆ZOOP) contributed the least amount of living carbon to 
the near surface (0–100 m) organic carbon inventory, with maximum integrated biomass (night or day) of  
∼0.17 mmol C m−2 (Table 5), and they did not correlate significantly with ∆DIN (R = −0.32, n = 6, p > 0.05).

For stations where the full suite of microbial biomass data was available, algal carbon (Algal C) was esti-
mated by subtracting integrated bacterial and microzooplankton biomass from ∆POC100 (Table 5). Algal C 
(which could be either diatoms or Phaeocystis, but did not include mixotrophic microzooplankton) accounted 
for 85–97% of total POC. Thus, most of the POC in the surface waters of the polynya was autotrophic. 
The algal C to Chl a ratio (w/w) was estimated to be 34–96 (average = 42 ± 8, n = 8) which was a bit lower 
and less variable, but not significantly different from the average integrated ∆POC:Chl a ratio of 52 ± 20  
(w/w; n = 13). Both numbers are comparable to values found for early season Phaeocystis blooms in the Ross 
Sea (48–64; Smith et al., 1998).

Biological rates
Measured rates of net primary production (NPP) for individual depths and stations ranged from 0.3 to 9.0 
µmol C L−1 d−1 (average = 2.7 ± 2.0 µmol C L−1 d−1; n = 68; Figure 10A), peaked early in the bloom progres-
sion at Sta. 34, and then were patchy or in decline as ∆DIN and Chl a continued to increase. Integrated 
NPP (Table 7) ranged from 84 to 333 mmol C m−2 d−1 (average = 228 ± 71, n = 13; greater than the satellite 
estimate; Arrigo et al., 2012; 2015) and did not correlate significantly with ∆DIN or ∆Chl a (R = 0.14 and 
0.50, respectively; n = 13; p > 0.05).

Total microbial community respiration rates at individual depths and stations, mostly measured in the 
upper 20 m, were high and of similar scale as NPP, ranging from 1.7 to 8.9 µmol C L−1 d−1 (Figure 10B). 
At a few stations (66 and 57) and near-surface depths, respiration rate was greater than the NPP measure-
ments made at the same depths and stations (see also Williams et al., 2016). Because of the lack of full depth  
coverage, however, integrated rates were not calculated here.

Bacterial production followed the buildup of ∆DIN and Chl a more closely than NPP or community 
respiration (Figure 10C) with rates up to 0.33 µmol C L−1 d−1 (4 µg C L−1 d−1) that exceeded those reported for 
the neighboring Ross Sea or any other Antarctic coastal systems (Williams et al., 2016). Bacterial production 
increases started shallow under the sea ice at Sta. 66 and then deepened with increasing ∆DIN and bloom 
stage. Integrated values (BP; Table 7) ranged from 1.8 to 18 mmol C m−2 d−1 (average = 11 ± 4.3 mmol C 
m−2 d−1, n = 13) that correlated significantly with ∆DIN and ∆Chl a (R = 0.70 and 0.75, respectively; n = 13; 
p < 0.01), but not bacterial biomass (R = −0.08, n = 12, p > 0.05). Integrated BP/NPP ratios ranged from 2 
to 9% (average = 5 ± 2%, n = 13; see Williams et al., 2016).

Dinoflagellate growth in the incubations from Sta. 35 (12 m) was linear (R2 = 0.82, n = 18, p < 0.001) 
over 13 days with a slope of 0.27 ± 0.069 (95% ci) µmol C L−1 d−1, with no significant differences in slope 
found between the two size fractions. Dinoflagellate growth and grazing rates were calculated as 13% C d−1 
and 43% C d−1, respectively. If we apply these rates to the biomass distributions at the other stations, we 
cautiously estimated integrated dinoflagellate grazing rates as 30–77 mmol C m−2 d−1 in the upper 100 m, 
potentially accounting for 13–47% of NPP (Table 7).
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Ciliate growth in the incubations from Sta. 35 (12 m) was also linear (R2 = 0.44, n = 17, p < 0.05) over 
13 days with a slope of 0.033 ± 0.020 (95% ci) µmol C L−1 d−1, with again no significant differences in slope 
found between the two size fractions. Ciliate growth and grazing was thus estimated at 11% C d-1 and  
37% C d−1, respectively. When applied to the biomass distributions at the other stations, integrated ciliate  
grazing was cautiously estimated to be 2–34 mmol C m−2 d−1, potentially accounting for 1–20% of NPP (Table 7).

Mesozooplankton grazers ingested 1.3–11 mmol C m−2 d−1 in the upper 100 m of the water column, or 
1–3% of NPP (Table 7). These low grazing rates suggest that mesozooplankton have little impact on removal 
of the phytoplankton bloom from surface waters within the polynya during the time of sampling. When 
added to the microzooplankton grazing rates estimated above, 17–67% of NPP (average = 34 ± 16%, n = 8) 
could be consumed by grazers in the upper water column. Between 100 and 350 m, mesozooplankton grazing 
ranged from 1.6 to 9.2 mmol C m−2 d−1 and accounted for an additional 1–4% of NPP. At the four deeper 
trough stations (13, 50, 57, and 68), the grazing estimated below 350 m (Table 7) contributed 32–58% (4.7–17 
mmol C m−2 d−1) of the total water column mesozooplankton grazing (4.2–25 mmol C m−2 d−1). Summing 
the available grazing rates (we do not have any estimates of microzooplankton grazing below 100 m), we 
calculated the total potential grazing contribution to be 53-110 mmol C m−2 d−1, or 22–46% of NPP (Table 7).
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Figure 10
Production and respiration in the 
ASP.

Biological rate profiles for the 
13 stations contoured against 
increasing nitrate depletion (∆DIN, 
mmol N m−2) and bloom stage 
(green scale as in Figure 4). A) net  
primary production (NPP, µmol C 
L−1 d−1); (B) community respiration 
(µmol C L−1 d−1); and (C) bacterial 
production (µmol C L−1 d−1).
doi: 10.12952/journal.elementa.000140.f010
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NCP and export calculations
Estimates of gas exchange indicated that some CO2 (up to 1.71 mol C m−2; Table 8; Figure 11) could have 
been added to the surface DIC inventory from the atmosphere, contributing up to 29% of sNCP, primar-
ily at the high bloom stations. The sNCP ranged from 0.22 to 5.89 mol C m−2 (Table 8). At the two high 
bloom stations with the highest sNCP, Stations 35 and 57, nearly half of sNCP was observed as ∆POC still 
present in the upper water column (Figure 11). Much smaller and variable fractions were found in ∆DOC 
and ∆ZOOP (Figure 11; Table 8).
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Table 7. Integrated biological productivity over the upper water column and grazing rates in upper and subsurface waters

Station 
groupinga

Station 
#b

Upper water column ratesc (0–100 m, mmol C m–2 d–1) Subsurface water,  
mesozoop grazing All 

depths, 
total  

mesozoop 
grazingb

All grazers, all 
depths  

(0–>350 m)

NPP BP
BP / 
NPP  
(%)

CIL 
grazingd

CIL 
grazing 
/ NPP 

(%)

DINO 
grazingd

DINO 
grazing / 
NPP (%)

Mesozoop 
grazing All 

grazinge

All  
grazing/ 

NPP  
(%)

100–350 m > 350 m Total 
grazing

Grazing 
/ NPP 

(%)Night Day Night Day Night Day
Early 
bloom

5 84 1.8 2.1 - - - - - - - - -   - - - - -
68 165 4.4 2.7 17 10 30 18 5.1 3.8 51 31 5.9 3.8 9.4 4.7 16 63 38
6 325 11 3.2 - - - - - - - - - - - - - - -
34 333 12 3.5 11 3 44 13 - - 54f 16 - - - - - - -
66 206 11 5.5 18 9 53 26 - - 71f 34 - - - - - - -

Mid-
bloom

18 244 10 4.2 - - - - - - - - - - - - - - -
13 270 14 5.4 2 1 35 13 11 7.0 46 17 4.1 6.8 8.7 4.9 21 58 22
25 182 10 5.7 9 5 40 22 3.7 1.5 52 28 1.6 1.6 - - 4.2 53 29

High 
bloom

50 237 13 5.7 16 7 77 33 4.9 3.9 97 41 7.7 3.3 6.8 7.1 17 110 46
35 294 18 6.0 - - - - 2.4 1.3 - - 4.4 8.1 - - 8.1 - -
48 168 16 9.4 34 20 78 47 - - 112f 67 - - - - - - -
29 256 13 5.0 - - - - - - - - - - - - - - -
57 196 11 5.6 25 13 38 20 1.7 2.9 65 33 9.2 7.3 17 12 25 88 45

aBy bloom stage, as shown in Figure 4
bArranged in order of increasing nitrogen drawdown (∆DIN)
cNPP = net primary production, BP = bacterial production, CIL = ciliates, DINO = dinoflagellates
dApproximate only; estimated by applying grazing rates from Sta. 35 (12 m) to biomass distribution at other stations
eUsing average of day and night rates for mesozooplankton
fMay be underestimate; includes only microzooplankton rates
doi: 10.12952/journal.elementa.000140.t007

Table 8. Summary of carbon inventories, quantities, and export calculationsa

Station 
groupingb

Station #c

Changes in carbon inventories and quantities  
(mol C m−2)

Exported 
C quantity 

(mol C m−2)

Exported C flux  
(mmol C m−2 d−1)

Trap C flux  
(mmol C m−2 d−1)

∆DIC GasEx sNCP  ∆POC ∆DOC ∆Zoop sExportC Export C Drifting Moored
60 m 150 m 300 m 365 m

Early 
bloom

5 0.21 0.00 0.22 0.18 (−0.04) 0.032e 0.04 1.7 -f - - -
68 0.95d 0.00 0.95 0.71 (−0.14) 0.036 0.35 44 - - - -
6 1.35d 0.03 1.38 1.56 0.75 0.032e (−0.96) (−64) - - - -
34 1.56d 0.00 1.56 1.98 (−0.09) 0.032e (−0.37) (−31) - - - -
66 1.57 0.00 1.57 1.54 0.40 0.032e (−0.40) (−29) - - - -

AVE 1.13 0.01 1.14 1.19 0.18 0.03 0.20 22.9        
S.D. 0.57 0.01 0.57 0.73 0.39 0.00 0.22 29.9        

Mid-
bloom

18 2.05d 0.00 2.05 2.03 0.89 0.032e (−0.91) (−38) - - - -
13 1.92 0.79 2.71 1.87 0.26 0.169 0.40 7.1 - - - -
25 2.92 0.57 3.49 1.98 1.13 0.023 0.35 9.3 - - - -

AVE 2.30 0.45 2.75 1.96 0.76 0.07 0.38 8.20        
S.D. 0.54 0.41 0.72 0.08 0.45 0.08 0.04 1.56        

High 
bloom

50 3.74 1.33 5.06 2.23 1.21 0.066 1.55 36 - - - -
35 4.18 1.71 5.89 2.80 1.39 0.027 1.68 35 18 3.0 0.98 -
48 3.99d 1.62 5.62 3.23 (−1.11) 0.032e 3.47 75 - - - -
29 4.26d 1.00 5.26 2.77 (−0.18) 0.032e 2.64 64 - - - -
57 4.71 0.58 5.29 2.29 (−0.21) 0.016 3.20 53 27 2.7 2.2 3g (8)h

AVE 4.18 1.25 5.42 2.66 0.22 0.03 2.5 52.6        
S.D. 0.36 0.47 0.33 0.41 1.06 0.02 0.9 17.4        

aIntegrated carbon inventories and quantities (to Tmin_100) used to infer export, with comparisons to other ASP export estimates
bBy bloom stage, as shown in Figure 4
cIncludes averages for station groupings, with standard deviations (S.D.)
dStations where ∆DIC data were filled in using ∆DIN and ∆DIC:∆DIN = 6.6
eStations where ∆Zoop was filled in using median of six measured stations
fIndicates not available. The C flux for drifting traps was calculated from P flux and the station's ΔPOC:ΔPP ratio (Table 4). 
gFlux at the same time of Sta. 57 sampling; relative trap efficiencies of drifting versus moored designs not known
hPeak flux in mid-January after ASPIRE departed
doi: 10.12952/journal.elementa.000140.t008
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After subtracting organic inventories from sNCP, sExportC estimates ranged from −0.96 to 3.47 mol 
C m−2, with five stations (mostly early bloom: 68, 6, 34, 66, and 18) indicating net carbon import, and eight 
stations (mostly high bloom: 5, 13, 25, 50, 35, 48, 29, and 57) showing positive carbon export. The stations 
exhibiting positive export tended to have longer OWD and greater nutrient drawdown (∆DIN). Sta. 35 
notably had a large ∆pCO2 deficit and rapid gas exchange, with about equal contributions to ∆DOC and 
export (Figure 11). In contrast, Sta. 57 was more deeply mixed, had a smaller ∆pCO2 deficit, less gas exchange 
(at the time of observation), but no observed buildup of ∆DOC; consequently, sExportC at Sta. 57 was 
greater than at Sta. 35.

Where sExportC was positive (Stations 5, 13, 25, 50, 35, 48, 29, 57), the inferred Exported Fraction 
(Export C / sNCP) accounted for 10–62% of the total potential export estimated by the available sNCP 
(Table 9). Because of the tight correlation between ∆DIC and ∆DIN, the sNCP, sExportC, and Exported 
Fraction all correlated significantly (Table 9) with ∆DIN (R > 0.66, n = 13, p < 0.01) and OWD (R > 0.53, 
n = 13, p < 0.05).

When dividing the sExportC by a relevant time scale (OWD; Table 1), the Export C flux ranged from 
−64 (import) to 75 mmol C m−2 d−1 (export; Table 8). For the two stations where we have drifting sediment 
trap deployments (Stations 35 and 57; Table 8; Figure 11), the inferred export fluxes were somewhat larger 
than, but within a factor of two of, the trap fluxes directly measured at 60 m (18–27 mmol C m−2 d−1; Table 
8; Figure 11), a reasonable match given that the capture efficiency of the drifting traps is not known. The 
comparison between Export C and the moored trap fluxes from the same or later time intervals, revealed 
sharp declines (only 6% of ExportC getting to 365 m at the time of sampling; Figure 11) in sinking material 
from the base of the surface layer to 365 m (Table 8; Figure 11), suggesting rapid remineralization in the 
mid-depths (see Ducklow et al., 2015; Williams et al., 2016).

When sNCP was converted to a rate (NCP; using OWD) and compared to NPP (Table 9), the export 
efficiency (NCP/NPP) ranged from 10 to 73% (average for high bloom stations = 52 ± 12%, n = 5). Once 
converted to a rate, the correlations of NCP or export efficiency with ∆DIN were no longer significant  
(R < 0.43, n = 13, p > 0.05; Table 9).

If we did not assume a bloom time scale, and instead calculated a turnover time (the ratio of sNCP:NPP), 
values ranged from 2.6 to 32 days with an average for high bloom stations of 24 ± 5 days. This estimate of 
the turnover time correlated significantly (p < 0.01) with ∆DIN and OWD (Table 9), further corroborating 
the bloom gradient as a useful construct in this system.

As expected (by definition), changes in seasonal inventories (such as sNCP and sExportC) tended to 
increase with ∆DIN through the early, mid-, and high bloom stages. We note, however, that once scaled by 
time, many of the rates (e.g., NCP and NPP) were steady through all three bloom stages (Table 9). Similarly, 
exported fraction and particle export efficiency (ExportC/NPP) increased with bloom stage, but export  
efficiency (NCP/NPP) did not (Table 9).
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Figure 11
Carbon budgets for two peak 
bloom stations in the ASP.

Values for carbon budget 
inventories (white boxes, mol C m−2) 
and fluxes (blue boxes, mmol C m−2 
d−1) measured directly at two high 
bloom stations (35 and 57), with 
percent transfers in red. Seasonal net 
community production (sNCP) 
is the sum of the integrated 
observed drawdown in dissolved 
inorganic carbon (∆DIC) and gas 
exchange (GasEx). Some of the 
sNCP contributes to the buildup 
of mesozooplankton biomass 
(∆Zoop), particulate organic 
carbon (∆POC), and dissolved 
inorganic carbon (∆DOC). The 
remainder is seasonal export 
(sExportC). This inventory is 
converted to a rate (ExportC, in 
blue) by dividing by the number 
of open water days (OWD). The 
export rate can then be compared 
to flux measurements from drifting 
traps at 60 m, 150 m, and 300 m  
depths, and the moored trap at 
365 m. Drifting traps and the 
moored trap capture efficiencies 
were not intercalibrated, so 
comparisons are qualitative only. 
The two rate values for the 365 
m trap are for the time at station 
(coincident, left) and at the peak 
flux (about ten days later, right). 
The remaining Export C flux 
is mostly accounted for with 
bacterial carbon demand (BCD) 
and zooplankton respiration 
(ZoopResp); see Ducklow et al. 
(2015). The total annual export 
(0.32 mmol C m−2) to the moored 
trap (365 m) is ∼10% of the 
seasonal sExportC inventory (3.2 
mmol C m−2) at the time of the 
ASPIRE sampling Sta. 57 on 
December 31.
doi: 10.12952/journal.elementa.000140.f011
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Discussion
An extremely strong and efficient biological pump
The ASPIRE observations support the designation of the ASP as one of the most productive bloom sys-
tems in the world. Both the strength and efficiency of the biological pump (sensu Sarmiento et al., 2004) 
are high relative to other ocean systems. Clearly, the capacity for nitrate and carbon drawdown in the ASP 
is large, once this area is released from micronutrient and light limitation (Alderkamp et al., 2015; Sherrell 
et al., 2015; Schofield et al., 2015). The early season surface nitrate concentration (∼31 µmol L−1) is near the 
global maximum (World Ocean Atlas, 2001) and nitrate concentration in upwelling mCDW is even higher  
(33.5 µmol L−1; Table 2). With the iron supplied in association with the melting ice sheet (Yager et al., 
2012; Sherrell et al., 2015), nitrate at the surface was reduced to as low as 7.2 µmol L−1 during our late 
December observations, giving a biological pump efficiency (based on surface nitrate depletion relative 
to subsurface nitrate concentration) of ∼80%, similar to the North Atlantic and North Pacific (Sarmiento  
et al., 2004). Unlike those other ocean areas, however, the exported carbon flux (the strength of the pump) 
was also very high (up to 75 mmol C m−2 d−1). Coastal polynyas often have shallow mixed layers created 
by melting seasonal sea ice and enhanced by solar heating that provide a favorable physical environment 
for phytoplankton growth as long as nutrients are available (Smith and Barber, 2007). Relatively shallow 
mixed layers (average = 25 ± 19 m) in the ASP relieved the light limitation common in most other parts of  
the Southern Ocean, although self-shading may have become an issue during the high bloom stage (Schofield  
et al., 2015).
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Table 9. Comparison of net primary production (NPP), net community production (NCP), and inferred export  
quantities and rates

Station 
groupinga

Station 
#b

NPP  
(mmol C m−2 d−1)

NCP and Export
Seasonal quantities Rates Particle export  

efficiency  
(ExportC rate /  

NPP, %)

Turnover time 
(sNCP / NPP, 

days)
sNCP  

(mol C m−2)

sExportC  
(mol C 

m−2)

Exported  
fraction  

(%)

NCP 
(mmol C  
m−2 d−1)

Export  
efficiency  

(NCP/NPP, %)

Early 
bloom

5 84 0.22 0.04 20 8.4 10 2.0 2.6

68 165 0.95 −0.32 (−33) 119 72 - 5.8

6 325 1.38 −0.96 (−69) 92 28 - 4.3

34 333 1.56 −0.37 (−24) 130 39 - 4.7

66 206 1.57 −0.40 (−26) 112 54 - 7.6

AVE 223 1.14 −0.40 -c 92 41 - 5.0

S.D. 107 0.57 0.36 - 49 24 - 1.9

Mid-
bloom

18 244 2.05 −0.91 (−44) 85 36 - 8.5

13 270 2.71 0.40 15 48 18 2.6 10

25 182 3.49 0.36 10 92 51 5.1 19

AVE 229 2.75 −0.05 13 75 35 4 13

S.D. 44 0.72 0.75 4 24 17 2 5.7

High 
bloom

50 237 5.06 1.55 31 119 50 15 21

35 294 5.89 1.68 28 123 42 12 20

48 168 5.62 3.47 62 122 73 45 32

29 256 5.26 2.64 50 128 50 25 21

57 195 5.29 3.20 60 87 45 27 27

AVE 230 5.42 2.51 46 116 52 25 24

S.D. 50 0.33 0.87 16 16 12 13 5

All  
stations

R∆DIN
b −0.15 0.96 0.86 0.75 0.43 0.37 0.68 0.92

ROWD
b −0.05 0.79 0.73 0.64* −0.13 −0.08 0.32 0.76

aBy bloom stage, as shown in Figure 4
bIncludes averages for station groupings, with standard deviations (S.D.), and polynya-wide correlation (R) of each variable with ΔDIN 
and with open water duration (OWD) (significant correlations: p < 0.01 in bold, p < 0.05 with asterisk)
cIndicates not available
doi:10.12952/journal.elementa.000140.t009
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Net Primary Production
Maximum NPP observed (up to 333 mmol C m−2 d−1, or 4 g C m−2 d−1) exceeded reports from most 
other coastal polar ecosystems (Northeast Water: 1.1 g C m−2 d−1, Smith, 1995; Barents Sea: 1.1 g C 
m−2 d−1, Luchetta et al., 2000; Chukchi Shelf: 2.4 g C m−2 d−1, Chen et al., 2002; Cape Bathurst Polynya:  
2.7 g C m−2 d−1, Arrigo and van Dijken, 2004; West Greenland Sea: 3.2 g C m−2 d−1, Jensen et al., 1999) 
except the North Water polynya (∼6 g C m−2 d−1; Mei et al., 2003) which receives a steady supply of limiting 
nitrate from the southward flowing Polar Surface Water (Tremblay and Smith, 2007) and the Fram Strait 
during peak rates in a springtime Phaeocystis bloom (∼8 g C m−2 d−1; Smith et al., 1991).

Mesozooplankton community ingestion rates and grazing impact are within a range similar to those 
published for other Southern Ocean systems (Lee et al., 2013; Bernard et al., 2012; Pakhomov and  
Froneman, 2004; Atkinson et al., 1996). Zooplankton grazing cleared < 2.5% of primary production in 
South Georgia Island, Antarctica (Atkinson et al., 1996). Lee et al. (2013) also reported generally low  
grazing impact of mesozooplankton within the Amundsen Sea Polynya (< 1%) and no correlation between 
Chl a and zooplankton ingestion rates.

Our relatively low zooplankton biomass results were similar to those of the nearby Ross Sea (Huntley 
and Zhou, 2000; Tagliabue and Arrigo, 2003), where primary productivity is also high. A somewhat higher 
zooplankton biomass was observed in Terra Nova Bay, hypothesized to be better able to keep up with the 
slower growing diatom population there (Tagliabue and Arrigo, 2003). Zooplankton biomass is an order 
of magnitude higher in the vicinity of South Georgia Island (Ward et al., 1995) and at the Antarctic Polar 
Front (Fransz and Gonzalez, 1997). In the Northeast Water Polynya (Arctic), results similar to ours were 
observed, with lower zooplankton abundances inside vs. outside the open water area (Ashjian et al., 1997). 
Zooplankton are not necessarily significant consumers of the primary production within polynyas during a 
spring bloom (less than 10% in the Arctic’s North Water polynya; Saunders et al., 2003) due to high primary 
production rates and low abundance of zooplankton (Ashjian et al., 1997; Deibel and Daly, 2007). There is 
little evidence that polynyas are food limited (Deibel and Daly, 2007); late summer may be a more important 
time for higher trophic levels.

Calanoides acutus dominated the mesozooplankton community within the ASP (Wilson et al., 2015). 
C. acutus has been shown to select heterotrophic microplankton over phytoplankton (Calbert et al., 2006) 
and may be feeding selectively within the ASP rather than using the dominant phytoplankton species  
(P. antarctica), which is known to produce potentially toxic acrylic acid (Sieburth, 1959, 1960, 1961). Wilson 
et al. (2015) show a negative correlation between zooplankton abundance and the proportion of Phaeocystis 
in the phytoplankton.

Although the fate of NPP within the upper mixed layer seemed uncoupled from mesozooplankton popula-
tions, it showed some connection with heterotrophic microzooplankton and bacteria. Grazing by ciliates and 
dinoflagellates in the upper water column could have consumed for a significant fraction (14 −67%) of NPP. 
Still, the estimated dinoflagellate and ciliate grazing rates were at the lower end of what has been reported 
in other studies from the Southern Ocean (4 ± 2% d−1 of Algal C, 34 ± 16% d−1 of NPP100; Froneman and 
Perissinoto, 1996; Froneman and Balarin, 1998; Froneman, 2004). Furthermore, large colonial Phaeocystis 
are not easily grazed by microzooplankton (Caron et al., 2000; Nejstgaard et al., 2007), thereby reducing 
the amount of fixed carbon that could be recycled in the upper mixed layer within the microbial loop via 
the protozoans (Froneman and Perissinoto, 1996). Although P. antarctica was the dominant phytoplankton 
group, there were other primary producers such as sea ice algae and diatoms to support higher trophic levels 
(Table 6). Indeed, during the early bloom, the “negative” export could be explained by net import of ice algal 
carbon that could fuel some bacteria (Sipler and Connelly, 2015) or zooplankton (ice krill found at Sta. 66; 
Wilson et al., 2015).

For the stations where we have estimates for both grazing size classes, however, exported carbon flux 
(Table 8) correlated positively (r = 0.85, n = 6) with the “All grazing (0–100 m)” fraction of NPP (Table 7), 
so it seems that additional grazing does not reduce export.

Bacterial production accounted for only a small fraction of the fate of NPP, but growth efficiencies were 
quite low and the integrated bacterial carbon demand in the upper 100 m (0.8–2.8 g C m−2 d−1) could have 
consumed a large fraction (25–128%, median = 43%) of NPP during ASPIRE’s bloom development (Williams  
et al., 2016). As some bacteria may be in mutualistic associations with the Phaeocystis (Delmont et al., 2014, 
2015), further investigation of these microbial linkages is warranted.

Net Community Production
Despite these heterotrophic demands on NPP, the magnitude of NCP in the ASP was still greater than that 
of most other well-studied polynyas around the world (Northeast Water: Yager et al., 1995; Weddell Sea: 
Hoppema et al., 1999; Brown et al., 2015; Ross Sea: DiTullio et al., 2000; North Water, Miller et al., 2002; 
Miller and DiTullio, 2007) and about a factor of two larger than NCP values reported from the Palmer-
LTER region west of the Antarctic Peninsula (2–54 mmol C m−2 d−1; Huang et al., 2012), which is located 
at a lower latitude range (64–70°S) than the ASPIRE area. The ASP exhibited higher surface and integrated 
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Chl a concentrations, and ∆DIC than the extensive, early season (18 December–08 January) Phaeocystis 
bloom observed by the ROAVERRS project in the more southern Ross Sea Polynya (RSP; Arrigo et al., 
1999; DiTullio et al., 2000) and greater ∆POC and ∆DIN than the spring Phaeocystis bloom in the Greenland 
Sea (Smith et al., 1991). Although estimated differently, NCP in ASP was more comparable to the values 
reported for the highly productive North Water (April–July average = 93 mmol C m−2 d−1; Tremblay et al., 
2002) and to rates reported for summertime conditions in the much shallower Chukchi Sea (Bates et al., 
2005), with both of those Arctic ecosystems dominated by diatoms.

With ASPIRE sampling during the buildup stages of the bloom, the estimated NCP in the ASP (up to 
130 mmol C m−2 d−1) was comparable to the intense spring bloom observed in the North Atlantic during a 
week in May (115 mmol C m−2 d−1; Alkire et al., 2012). Because ASPIRE departed from the region before 
the productivity peak observed by satellite, the annual NCP is very likely greater than we measured as sNCP. 
If the observed sNCP in the ASP (up to 5.9 mol C m−2 on 31 December) represented the region’s entire 
production for the year (i.e., in the unlikely event that the bloom shut down the day ASPIRE departed), it 
would still exceed the annual NCP for most non-polar regions (2–4 ± 1 mol C m−2 year−1; Emerson, 2014). 
Notably, the late December maximum sNCP measured during ASPIRE is already 67% of the mean total 
annual production (for 1998–2014) estimated by satellite (8.8 ± 1.8 mol C m−2; Arrigo et al., 2015).

The seasonal net community production measured in the ASP during December was most comparable 
to the late season RSP where sNCP values ranged from 1.2 to 11 mol C m−2 during mid-January to early 
February across three distinct eco-regions, with a regional average of 4.8 ± 1.9 mol C m−2 (Sweeney et al., 
2000), similar to the late December value of 5.9 mol C m−2 at ASP Sta. 57. Values for sNCP during ASPIRE 
were most similar to the northern edges of the RSP (Region III; 1.2–4.2 mol C m−2; at latitudes similar 
to ASP), which also had shallow mixed layer depths (average = 27 m; similar to ASP), remnant WW, and 
intrusion of mCDW from depth. This region of the RSP was thought to have lower NCP compared to the 
more productive regions to the south because of either light or micronutrient limitation. The ASP, though, 
presumably had the potential to continue to bloom during the remaining summer months.

Most stations in the ASP differed from Region III of the RSP, however, in having a much lower ΔSi:sNCPmax 
ratio (median = 0.08, versus 0.10–0.31 in the RSP; Sweeney et al., 2000), and by being dominated (more than 
80% at most stations; Table 6) by P. antarctica rather than by diatoms. Only four stations in the ASP (68, 13, 
29, and 57) exhibited ΔSi:NCP ratios ≥ 0.10, reflecting some diatom influence over the course of the bloom, 
and only two stations (68 and 6; Table 6) showed diatoms contributing significantly to the phytoplankton 
assemblage at the time we sampled. Because Phaeocystis can enhance carbon drawdown relative to diatoms 
(Arrigo et al., 1999), this difference in phytoplankton assemblage likely influences the biogeochemical cy-
cling and relative carbon flux of the two areas. Stoichiometric  ratios for changes in inorganic and organic 
inventories in the ASP fell between those for diatom- and Phaeocystis-dominated waters in the RSP (Arrigo 
et al., 1999), but tended more toward the latter.

High bloom stations in the ASP (e.g., 50, 35, 48, 29 and 57), with sNCP values > 5 mol C m−2, resembled 
observations reported from the Phaeocystis-dominated central region of the RSP (Region II; Sweeney et al., 
2000), where sNCP ranged from 4.4 to 11 mol m−2 and ΔSi:sNCP was 0.04 ± 0.02. This favorable comparison 
suggests that if ASPIRE had sampled later into the summer, we would have likely confirmed sNCP even 
higher than in the central RSP (on a per meter squared basis, as suggested by satellite observations; Arrigo 
and van Dijken, 2003; Arrigo et al., 2012, 2015), although the causes for the ASP bloom termination (well 
prior to return of the sea ice; Arrigo and van Dijken, 2003) are unknown, and its timing is variable.

An export-dominated ecosystem?
The inferred export from the upper water column of the polynya during the ASP bloom (up 
to 75 mmol C m−2 d−1) was larger than we expected for a developing bloom, particularly relative to other 
well-studied marine environments (Berelson, 2001). It was greater by far than the estimated fecal pellet 
production (3.2–9.3 mmol C m−2 d−1; Ducklow et al., 2015), but agreed reasonably well (within a fac-
tor of two when available; Figure 11, Table 8) with direct measures of export from the shallow drifting 
sediment traps that captured mostly sinking phytodetritus. Although Phaeocystis phytodetritus is generally  
considered to be a low-efficiency vector for particle flux (Beaulieu, 2002; Reigstad and Wassmann, 2007; 
Turner, 2015), exceptions have been observed in both northern and southern polar ecosystems (Wassman  
et al., 1990; Smith et al., 1991; DiTullio et al., 2000; Bauerfeind et al., 2009; Le Moigne et al., 2015). Ducklow 
et al. (2015) reported Phaeocycstis aggregates in the ASP moored trap at Sta. 57.

Particle export efficiency (e = ExportC rate/ NPP) was low during the early and mid-bloom periods, sug-
gesting that the near-surface polynya retained carbon (Wassmann, 1998) during the early season. It increased, 
however, during the high bloom, with three of the stations exceeding 0.2, but only one station exceeding  
e > 0.4. An alternate measure of export efficiency (NCP / NPP) gave higher values during the high bloom, 
but was also high during the other stages. These efficiencies were high relative to other marine systems  
(Berelson, 2001) including some in polar latitudes (Sweeney et al., 2000), although this outcome may be 
because we used 14C-bicarbonate uptake incubations to assess NPP instead of using the preferred oxygen 
isotope method for GPP (Quay et al., 2010).
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Such rate-based calculations depend on matching up appropriate time scales, however, and are likely 
sensitive to the point in time when ASPIRE sampled. When seasonal quantities were compared instead, 
the estimate for the exported fraction (sExportC / sNCP) was high for the high bloom stations only. These 
export fractions (average = 46 ± 16%) were comparable to those observed in the RSP much later in the sum-
mer (Sweeney et al., 2000), but do not reach the extremely high fractions of the extraordinary ROAVERRS 
bloom observations during the early season RSP (∼80%; DiTullio et al., 2000).

If ∼50% of the annual ASP production of 8.8 ± 1.8 mol C m−2 (from satellites; Arrigo et al., 2015) were 
exported, that would generate an export of 4.4 mol C m−2 over an average area of 31,844 ± 4679 km2, or 0.14 ± 
0.02 Tmol C per year (1.7 ± 0.25 Tg C y−1). This ASP export estimate is similar to the estimate for CO2 uptake 
by the central polynya during the early season (1.3 ± 0.6 Tg C; Mu et al., 2014). The ASP contributes 2–3%  
of the Southern Ocean CO2 uptake in about 0.25% of the area, a approximate 10-fold enhancement, sug-
gesting that something special is going on in the ASP.

A few of the stations (6, 34, 66, and 18) exhibited negative export (or import). Interestingly, all of these 
stations still had some sea ice present. Thus, in addition to its contributions of fresh water to the water 
column (up to 2%), the sea ice may be contributing more organic matter (either as DOC or POC) than we 
expected. Although we tried to account for these contributions in our mixing model, sea ice communities 
are extremely patchy and variable (Thomas and Dieckmann, 2010; Fransson et al., 2011). Heterogeneous 
contributions from the melt could explain how more organic matter was observed than could be explained by 
changes in inorganic carbon inventories alone. Gas exchange through partial sea ice cover could also explain 
the mismatch for we assumed that exchange to be negligible. Microbial utilization of DOC from sea ice is 
rapid (Sipler and Connelly, 2015), but incorporation to biomass may not be particularly efficient (Williams 
et al., 2016), so we would not likely see these inputs linger, as they would be respired back to DIC. Subsurface 
contributions of organic matter, imported from the sediments or deep water, also need to be constrained 
better to improve confidence in these export estimates. Concentrations of DOC in WW and mCDW (69 
and 76 µmol C L-1; Table 2) were higher than expected for deeper water in the Southern Ocean (usually 
about 45 µmol L−1; Hansell et al., 2009), perhaps reflecting benthic inputs. Given their higher nutrient and 
DOM concentrations, upwelling or mixing of deep waters into the euphotic zone would enhance nutrient 
availability and also influence the estimates of NCP and export. Horizontal advection could also explain some 
of the imbalance, but is not required given the known inputs from the sea ice and sea floor.

Subsurface remineralization
Once settled into the subsurface, however, the exported material was susceptible to microbial degradation. 
Estimated rates of bacterial respiration in the mesopelagic were sufficient to account for the difference between 
the ExportC flux from the surface layer and the material captured in the moored sediment trap (Ducklow  
et al., 2015; Williams et al., 2016). If the Phaeocystis colonies break up into single cells (perhaps by turbulence) 
once they sink into the mid-waters, they would become more susceptible to microzooplankton grazing and 
bacterial degradation (Wassmann, 1993). Microbial degradation of the sinking flux in the ASP may be more 
determined by particle-associated microbial activity (Delmont et al., 2014; Williams et al., 2016) than in 
other marine systems, although subsurface microbial breakdown of POC is probably more complex and wide-
spread than previously thought (Kellogg et al., 2011; Collins et al., 2015). The fraction of exported particulate  
carbon that sank to greater depths (>150 m) ranged from 3 to 6% at the time of sampling, and was low com-
pared to most other ocean ecosystems (Buesseler and Boyd, 2009). A similar decline in the deep flux was seen 
in the Ross Sea (Collier et al., 2000), however, and in two Arctic polynyas (Tremblay et al., 2012), presenting 
the possibility that low export efficiency to greater depths may be typical of biologically productive polar 
seas, whether Antarctic or Arctic.

Applying the Martin equation to the drifting trap profile for the decline in particle flux with depth  
(POC fluxz = POC flux100 (z / 100)b, where z is depth below 100 m and b is a fitting parameter that increases 
with decay rate; Martin et al., 1987), gives b values for both deployments of ∼1.8, greater than those found 
in other marine environments (where b ranges from 0.6 to 1.3; Berelson, 2001). Using instead our estimated 
ExportC from the upper water column and assuming the deep traps were perfectly efficient gives an even 
higher b (> 3) for both stations where we have trap data. A high b value was not entirely unexpected, given 
the very high productivity and export quantities from the upper water column, but the ASP b values were 
even higher than the linear relationship from other studies would predict (e.g., Fig. 6 in Berelson, 2001),  
suggesting non-linearity in extremely high productivity regions or regions dominated by Phaeocystis. 
The timing of ASPIRE may also be playing a role. The behavior of the sinking POC we observed in 
the ASP during the early season may be unique in the absence of significant grazing pressure from  
mesozooplankton. Model simulations that could be used to estimate advective fluxes in this region would also 
improve our understanding of spatial heterogeneity and the long-term fate of the carbon, especially given that 
the ultimate destination of these midwaters and their time scale for potential outgassing is poorly known.

A key question relates to what happened in the region after ASPIRE departed. The carbon flux into the 
moored sediment trap more than doubled between the sampling of Sta. 57 in late December and the peak 
trap flux in mid-January (Ducklow et al., 2015). This increase suggests an increase in productivity, an increase 

Elementa: Science of the Anthropocene • 4: 000140 • doi: 10.12952/journal.elementa.000140



Amundsen Sea Polynya carbon budget

29

in the exported fraction, or a lag in the sinking of the export from December. Certainly there was adequate 
∆POC available in the upper water column to support the increased flux later in January (see Figure 11; 
total annual capture in the moored trap was 0.3 mol C m−2; Ducklow et al., 2015). The mechanisms trig-
gering the Phaeocystis to sink in the late season ASP are unknown, but likely involve a regionally specific 
combination of physics and ecology (Wassmann, 1993). The same passing icebergs, eddies, or winds that 
trigger deep mixing and enhance nutrient flux to the surface, extending the bloom, would also facilitate the 
downward flux of surface particles. In support of this idea, the exported fraction (60%) at iceberg-impacted 
Sta. 57, which also had the longest OWD and the deepest mixed layer, was notably one of the highest in the 
region. A late season export event in the Ross Sea was driven by pteropods (Collier et al., 2000) following 
a diatom bloom triggered by a wind event. In the ASP, zooplankton fecal pellets contributed increasingly  
to material collected by the moored trap during the summertime peak flux, but they were dominated by those 
produced by mid-sized copepods such as Metridia gerlachei (Ducklow et al., 2015).

Three-dimensional ocean dynamics and links to the melting ice sheet
In the ASP, macronutrients are initially replete, allowing for large accumulations of biomass and high net  
community production (Eppley, 1989), as long as there is an adequate supply of trace nutrients like iron. 
Iron often controls the primary productivity in areas where macronutrients are abundant (Sunda and  
Huntsman, 1998; Moore et al., 2013), and incubation studies suggest that the rate of bloom development in 
the ASP  is controlled by delivery rate of Fe to the euphotic zone (Alderkamp et al., 2015). Several sources 
of iron may contribute to the exceptional productivity of the ASP (Yager et al., 2012; Sherrell et al., 2015) 
and the supply of iron to this ecosystem is intimately linked to the melting ice sheet and the physical delivery 
of iron- and meltwater-rich deep water to the euphotic zone (see Randall-Goodwin et al., 2015; Sherrell 
et al., 2015). This important discovery from ASPIRE implies a three-dimensional pathway for iron, from 
the Dotson Ice Shelf cavity to the euphotic zone of the ASP bloom region located 20–100 km offshore. 
Such a 3-D pathway differs from the traditional one-dimensional view, where nutrients are injected into the  
euphotic zone by vertical mixing. More complex physical mechanisms, where mesoscale structures and eddies 
may play a central role, may need to be invoked to account for the transport of Fe from the ice shelves to 
the ASP. Modeling studies are currently ongoing to investigate controls on the iron flux to the central ASP 
and the sensitivity of this flux to future increases in ice-sheet melting. Whether increasing rates of ice-sheet 
melt (Mouginot et al., 2014; Joughin et al., 2014) will lead to more iron delivery and more productivity in 
the ASP remains to be determined.

This iron delivery process, which likely varies regionally, also imposes a multi-dimensional framework on 
what would otherwise be a fairly straightforward one-dimensional calculation of NCP. We have assumed 
in our calculations that the wintertime water column is well-mixed and has the same properties throughout 
the upper 100 m. The same processes that deliver iron to the surface also modify the “wintertime” conditions 
against which we measured observed inventories, impact our ability to estimate changes from these variable 
endmember values, and potentially set the initial conditions constraining the subsequent bloom. In the  
absence of direct wintertime observations, these heterogeneities increase the uncertainties in the calculations 
and highlight the need to move away from traditional one-dimensional balances to explain biogeochemical 
processes in this system.

Because of seasonal inaccessibility and the difficult ice environment for moorings that measure near-
surface variables over time, we lack knowledge about whether the WW truly resets to the same physical and 
biogeochemical conditions across the region, confounding the simple mixing model approach and requiring 
the use of “local” endmembers for each station that estimate the most recent winter conditions at each loca-
tion. We estimated the WW conditions just prior to the 2010–11 spring melt from the conditions at the 
lowest temperature observed in the upper 100 m. This approach does not require conditions to be reset to 
the same values every year. In fact, some of the unexplained interannual variability reported for this region 
(Arrigo and van Dijken, 2003; Arrigo et al., 2012, 2015) could be related to variable subsurface conditions at 
the initiation of the bloom season, driven in part by variable meltwater inputs from the ice sheet. Ultimately, 
we need better dynamic understanding of wintertime conditions and ocean mixing processes in the region, 
along with better tracers of the different water mass contributions to the upper water column of the ASP.

Because of large spatial heterogeneity and the observed 3-D nature of ocean circulation and micronutrient 
delivery in this area, greater confidence in a more refined regional carbon budget will require high-resolution 
ocean and biogeochemical numerical modeling. These efforts are currently underway and will no doubt guide 
improved observations of this important region in the future.

Sensitivity to changing sea ice conditions
Because the NCP was so tightly coupled to the number of open water days in the ASP, it is important 
to consider the ASP within the context of historic (Stammerjohn et al., 2015) and future changes in the 
sea ice cover for the region. The Amundsen Sea embayment is part of the larger western Antarctic region 
experiencing long-term (1979–2014) losses in annual ice season duration. In the ASP region in particular, 

Elementa: Science of the Anthropocene • 4: 000140 • doi: 10.12952/journal.elementa.000140



Amundsen Sea Polynya carbon budget

30

open water duration has increased by nearly 50 days since 1979, primarily driven by earlier opening in the 
spring. The area-averaged mean day of sea ice retreat (< 15%) has shifted from Day 398 ± 7 to Day 353  
± 12. A quick comparison to the sampling dates of ASPIRE (Table 1) confirms that, on average, none of the 
13 ASPIRE stations would have been ice-free in 1979–80 at the time of year we sampled them in 2010–11. 
It is likely then, that primary production and export in the ASP region are much higher in December than 
was the case several decades ago. Whether productivity overall has increased over the entire open water season, 
or just shifted in time, is unknown. Satellite analyses show that interannual variability is high and no secular 
trend in total annual production was detectable from 1997 to 2014 (Arrigo et al., 2012, 2015). The fate of 
the bloom may have changed recently, however. Although we have attributed the modest mesozooplankton 
bloom response in our observations to the dominance of Phaeocystis, a climate-driven phenological mis-
match between phytoplankton and grazers may also be at play (Wassmann, 2011); e.g., earlier ice break-up  
may be favoring specific phytoplankton or outpacing the zooplankton response. Regional sediment or ice-core 
records going back further in time could be of some use here.

Looking forward, an even earlier opening would enhance productivity only if light and nutrients were 
adequate to support phytoplankton. Clearly, light and iron were adequate for the bloom during December 
2010 in the ASP region (Alderkamp et al., 2015; Schofield et al., 2015). Whether a progressively earlier 
opening will stimulate production further is unknown. As observed in the west Antarctic Peninsula (see,  
for example, Montes-Hugo et al., 2009), the total loss of sea ice and marginal ice zone conditions can lead to 
deeper mixed layers, greater light limitation, and severe declines in NCP. Any enhancement in productivity 
that we may have observed in response to the early stages of climate change is not likely sustainable in the 
long term if the sea ice continues to disappear.

Conclusions
The Amundsen Sea hosts the most productive polynya in all of coastal Antarctica, with its vibrant green 
waters (> 20 µg Chl a L−1) and high primary productivity (> 200 mmol C m−2 d−1) leading to high early 
season net community production (up to 6 mol C m−2), an efficient biological pump, and carbon export (up 
to 75 mmol C m−2 d−1). During ASPIRE, in austral summer 2010–11, we aimed to determine physical and 
biological mechanisms driving the production and fate of this extraordinary algal bloom, with an eye towards  
predicting how this system will respond to further change. What we found was an extreme phytoplankton 
bloom dominated by Phaeocystis antarctica, supported by stratification provided by seasonal sea ice melt, 
abundant wintertime surface nitrate (> 30 µmol L−1), and an iron flux associated with the nearby melting ice 
sheets. Here, we show that a surprisingly high fraction (up to 62%) of the seasonal net community production 
was exported to sub-euphotic depths during the high bloom conditions, in the absence of significant grazing 
from mesozooplankton, although microbial remineralization in the mid-depths reduced export to the bottom. 
With both high export quantities and high biological pump efficiency, the ASPIRE ecosystem stands apart 
from most other ocean biological pumps, reflecting significant release from both iron and light limitation. 
This globally significant biological pump is clearly linked to climate-sensitive changes in both sea ice cover 
and nearby ice shelves, but the carbon cycle feedbacks to climate may not be sustainable, particularly if sea 
ice continues to disappear from the region.
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