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An open-source thermodynamic software library
DTU Compute Technical Report-2016-12

Tobias K. S. Ritschel, Jozsef Gaspar, Andrea Capolei, John Bagterp Jgrgensen

Department of Applied Mathematics and Computer Science & Center for Energy Resources Engineering (CERE),
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

This is a technical report which accompanies the article ”An open-source thermodynamic soft-
ware library” which describes an efficient Matlab and C implementation for evaluation of ther-
modynamic properties. In this technical report we present the model equations, that are also
presented in the paper, together with a full set of first and second order derivatives with respect to
temperature and pressure, and in cases where applicable, also with respect to mole numbers. The
library is based on parameters and correlations from the DIPPR database and the Peng-Robinson
and the Soave-Redlich-Kwong equations of state.

Keywords: Thermodynamic functions, Software, Phase equilibrium

1. Introduction

The purpose of this technical report is to document the equations describing vapor-liquid en-
thalpy, entropy and volume of real and ideal mixtures and pure components, together with their
first and second order derivatives with respect to temperature and pressure, and for mixture prop-
erties, also with respect to mole numbers. For completeness, this technical report also describes
logarithmic fugacity coefficients together with first and second order derivatives. The fugacity
coefficients are defined by means of residual properties that are also described in this report.
However, their second order derivatives require third order derivatives of the residual properties,
which are not described in this report?.

Section 2 presents DIPPR correlations together with derived expressions that are necessary
in the ideal gas and liquid models. Section 3 presents ideal gas properties and Section 4 presents
ideal liquid properties. Section 5 presents real mixture properties based on the Peng-Robinson
(PR) and the Soave-Redlich-Kwong (SRK) equations of state.

2. DIPPR correlations for pure components

This section describes the DIPPR correlations (Thomson, 1996) for ideal gas heat capacity,
vapor pressure and liquid volume together with necessary integrals and temperature derivatives.

“This project is funded partly by Innovation Fund Denmark in the CITIES project (1305-00027B) and in the OPTION
project (63-2013-3), and partly by the interreg project Smart Cities Accelerator (10606 SCA).

2The main motivation for including second order derivatives of fugacity coefficients is that they are necessary for
formulating second order algorithms for dynamic optimization of flash processes.



Furthermore, we present all derivatives of these correlations and derived properties, that are
necessary for the first and second order derivatives in the ideal gas and liquid models.

2.1. Ideal gas heat capacity

The ideal gas heat capacity of the i’th component, ¢j5; = 5 (T), is

E 2
T
cosh(%)) M

The parameters (A;, B;, C;, D;, E;) are specific to each substance and also to the ideal gas heat
capacity correlation. They are provided by the DIPPR database. The unit for the molar ideal
gas heat capacity is J/(kmoles K) and the temperature must be in K. The integral of the ideal gas
heat capacity is used in computation of ideal gas enthalpy and is expressed using the auxiliary
function I'; = I';(T)

G 2
Clg:l-:Ai'l'Bl‘ TRy Tc +Di
sinh (7)

T .
f ¢5dT = T(T)) ~ T(Ty) (2a)
To
C; E;
I'i(T) = A;T + B;C; coth (?) — D;E; tanh(?) (2b)

The integral of the ideal gas heat capacity divided by temperature is used for the ideal gas entropy
and is expressed using the auxiliary function IT; = IT;(T)

T ciﬁ
f ——dT = TI(T) — Ii(To) )
7, T
IL(T) = A;In(T) + B; (g coth (9) — Insinh (9))
T T T
_Di(é tanh (5) — lncosh(g)) (Sb)
T T T

The only necessary derivative of the ideal gas heat capacity is the first order temperature deriva-
tive

ig
dcp, 2

aT T2

) 2 E :
P B
(Al CRi)T + o (%) [sinh(%)) + D;E;tanh T (cosh(Ei)] ] 4

2.2. Vapor pressure

The vapor pressure or saturation pressure of the i’th component, P! = P{“(T), is
P = exp (ln P ) (5a)
. B;
In P = A; + 7 +C;In(T) + D;TE (5b)

The substance specific correlation parameters (A4;, B;, C;, D;, E;) are provided by the DIPPR database
and are specific to the vapor pressure correlation. Because both the vapor pressure and its first
order temperature derivative appear in the ideal liquid model, we present first, second and third
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order derivatives of the above correlation. The derivatives of the vapor pressure are expressed
through the derivatives of the logarithmic vapor pressure

opP Psmaln P 6
ar ~ i T ar (6a)
3Py puar[ (010 P > PP "
= P; +
oT? ’ oT oT? ©b)
> P i & In P 362 InP¥" 9 In P (3 1n P 3 6
—_— = + +
ar T\ ar or2  oT T (6c)
The derivatives of the logarithmic vapor pressure correlation are
Ol P 1 B
—=—(Ci-= DiEiTEf) 7
T T( T (73)
P 1 (B
—’:—2—’—C,-+D,-E,-E,»—1TE") 7b
= (2% (Ei 1) (7b)
AL 650 1 2¢, + DiEE, - D)(E, - T" 7
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2.3. Liquid volume
The liquid volume of the i’th component, vﬁ = vf(T), is
D,
1+{1-L)"
I _ Bi ( C,) (8)
Vv = Y

The substance specific correlation parameters (4;, B;, C;, D;) are provided by the DIPPR database
and are specific to this correlation. Because both the liquid volume and its first order derivative
appear in the ideal liquid model, we present first, second and third order temperature derivatives
of the liquid volume correlation. The derivatives are

BVﬁ Di T D;—1

ﬁ = —lnB,‘a (1 - a) Vf (93)
P! D; T\?'  p,-1 oV

— == lnBi—l(l——) | (9b)
oT Ci C; C (1 - CL) oT

v D; Di-1 |0,  Di-1 D; 1 M

— = lnBiF - - - — |InBi— + | a7 (9¢)
aT i c,-(l—a) T C,-(l—a) i Ci(l—a)

3. Thermodynamic functions for ideal gases

This section presents enthalpy, entropy and volume of ideal gas mixtures and pure compo-
nents. These equations are based on the reference enthalpy and entropy of formation provided
by the DIPPR database, together with the correlation for the ideal gas heat capacity and the ideal
gas law.
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3.1. Pure component properties

We describe the computation of enthalpy, entropy and volume of a pure component i

3.1.1. Enthalpy ' '
The molar ideal gas enthalpy, i* = h:¥(T), is a function of temperature only

R = h®(To, Po) — Ti(To) +T(T)

L

(10)

Sie
e,

It is more efficient to store fz;gi = h;g (To, Py) — [i(Ty) rather than storing hﬁg (T, Py) and recom-

puting I';(Ty) at every evaluation of h;g . The derivatives of the molar enthalpy are

ﬁ = CP,i (113)
OHE  dcy,
T =5 (11b)

where the ideal gas heat capacity and its temperature derivative are given by (1) and (4).

3.1.2. Entropy ‘ A
The molar ideal gas entropy, s;* = s/*(T, P), is a function of temperature and pressure

5% = I(T) -~ RIn(P)
+ 51%(To, Po) — TIi(Ty) + RIn(Py) (12)

ig
5

It is more efficient to store §j§i = sﬁg(To, Py) — I1;(Ty) + RIn(Py) than recomputing IT;(T,) at

every evaluation of sﬁg . The first order temperature and pressure derivatives of the molar ideal
gas entropy are

057 _ 13
T (3
s R
I A 13b
oP ~ P (13b)
The second order derivatives of the molar ideal gas entropy are
s dcigi 1 .
L= B % (14a)
oT* T dr T ™
Ps R
= — 14b
op* P (140)
s
— =0 14
aToP (14

where again, the ideal gas heat capacity and its temperature derivative are given by (1) and (4).
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3.1.3. Volume A A
The molar ideal gas volume, v} = vi(T, P), is

. RT
A p— 15
= (15)
The first order derivatives of the ideal gas molar volume are
¢ R
R —— 16
or P (162)
¢ RT
L - 16b
oP P2 ( )
The second order derivatives are
PV’
~ = (17a)
ar?
v RT
L =2— 17b
op* P (170)
PV’ R
L= —— 17
oTop ~ P2 (17¢)

3.2. Mixture properties

We describe the computation of volume, enthalpy and entropy of an ideal gas mixture of
N¢ components using the molar properties of each component and the composition of the gas
mixture. The mixture contains n = {ni}ff'l moles of each component.

3.2.1. Enthalpy
The ideal gas mixture enthalpy, H'® = Hé(T, n), is

Ne .
HS = Z nih® (18)

i=1

The first order derivatives are
: N,
OH'8 £ e

= niCp; (19a)

oHs
e = hkg (19b)

The second order derivatives are

. N, 27
PHE & PR

— =) p—L 20a
aT* S ar? 20

i

= 20b
oTon, Pk (200)
O*H™

=0 20
6n,6nk ( C)



3.2.2. Entropy
The ideal gas mixture enthalpy, S = S’(T, P, n), is

N¢ ) N¢
S8 = Zn,»s;g —RZn,- In(y;) 1)
i=1

i=1

where the total amount of moles, N, and the vapor mole fraction, y;, are

n;
L= 22
Yi= N (22a)
Nc
N = n; (22b)
i=1
The derivatives of the mixture entropy are
s 1 &
a = T 2 nic}gi (23a)
aS's NR
- - 23b
oP P (23b)
oS8 ;
W = Skg - Rll’l(yk) (23C)
The second order derivatives are
Psie 1% (acy 1 i
== Y| o2 (24a)
or> T4\ or T
0*Si¢  NR
= — 24b
opP*  P? (240)
9%t
=0 24
aTopP (240)
Psie  dst  cs
=k _ Bk (24d)
o’sie  as¥ R
=—===—= 24
oPdn, _ 9P P (24¢)
d*S's Su 1
=R _ = 24f
6n,6nk ( ny N ( )
3.2.3. Volume
The ideal gas mixture volume, V¢ = V8(T, P, n), is
: NRT
Ve = —— 25
P (25)



The first order derivatives of the ideal gas mixture volume are

oves

NR

T =P (26a)
‘98_‘;* _N Isz (26b)
%—f = g (26c)
The second order derivatives are

8;;15 =0 (27a)
a;;g = % (27b)
v
2v/ig

o ™ 7 @
2v/i

LAY
21/ig

:nl‘ﬁ/nk - @79

4. Thermodynamic functions for ideal liquids

This section presents enthalpy, entropy and volume of ideal liquid mixtures and pure compo-
nents. These are based on ideal gas properties, vaporization properties and pressure correcting
terms. The latter two are further based on the DIPPR correlations for vapor pressure and liquid
volume, together with their first order temperature derivatives.

4.1. Pure component properties

The properties of pure component liquids are based on ideal gas properties at vaporization
temperature and pressure, T and P = P!*(T), as well as vaporization properties. The vapor-
ization enthalpy, Ah}*” = Ah}“"(T), entropy, As;*” = As]“"(T), and volume, Av” = Av/*/(T),
are

vap _ RT I

Ay, = o Vi (28a)
l ;'Yal

As'P = LAY 28b

s; 5T i (28b)

AR = TAs)" (28¢)



where P{* = P{“(T) is the vapor pressure (5) and vf
derivatives of the vaporization volume are

vf(T) is the liquid volume (8). The

oM R T 9PN\ 0V
RS S L I [ S | (29a)
oT P Py oT oT
PAvP R opP! T 0P i ANt
RV ~ poa T —5 -3 (29b)
oT (P§at) oT Pi oT oT oT
The derivatives of the vaporization enthalpy are
AR A TaAs;“” 30
_ = ! +
or ar (300)
PART  OAsT PAs T
= — + T : 30b
or* or oT? (400
The derivatives of the vaporization entropy are
OAs T Pt QPY OAVP
! — 1 v 4 ! 1 (31a)
or or* ! or ar
PAs T PP AP 282Pj‘“’ ANV oPI B2 AV (31b)
= .+
oT? o1 or* oT or o1’
The molar liquid saturation enthalpy, /! = h;*(T), and entropy, s!* = s!*(T), are
h{* = h!(T) — AR[“P(T) (32a)
s = s)(T, P{*) = As}*(T) (32b)
The derivatives of the molar liquid saturation enthalpy are
on AAR]"” 13
ar R 9T 49
Phs dcy. PARY
= - : (34)
or*  OT or*
The derivatives of the molar liquid saturation entropy
6‘9;“” 6‘9:) T. psdt as:} T. p5&t Emt aAS:‘)ap 35
= " + — N _
ar 6T(”)6P(")6T T (53)
azs;at ZSI} T Pvat) 2 azs:’ (T PY[lt)aP;ul 62S:} T Pvat) aP?ar : aZAs:yap 36)
= P + P’ + P —
art a2l T T T =R 7 or? (

The molar liquid enthalpy, h¥ = hi“(T, P), entropy, s = s'(T, P), at arbitrary pressure are

1

. !
i = 3 4 (v§ - Tl) (P-

oT

g—;f (P- P )
8

_ Jsat _
55 =;

P) (37a)

(37b)



The molar ideal liquid volume is given by the DIPPR correlation (8). The first order derivatives
of liquid enthalpy are

6h§d B oh* Ta%g p_ pa ; Tﬁvf (9Pl?’” 38
ar = ar T PP Tar | 5 (382)
O 38b
aw = Tar .
The second order derivatives are
Bzhfd azhf“’ (a%g T63v§](P P"‘”) 2T62v§ c’)Pf“’ (z T@vﬁ)asz”’ (392)
= | —=+T— - P + 2T — —|v.-T— a
or*  or* \ar*  or’ ' ar* or ‘0T ) or?
O*hid
L =0 (39b)
dP?
O*hid 0
L - _T17——1L 39
oToP oT? (39¢)
The first order derivatives of liquid entropy are
6sfd asi 62\25 » Gvf opP™ 10
ar = o OB e ar (402)
6s§d 6v§ 406
P = ot (406)

The second order derivatives are

‘ PVLaP vl PP
P-P)—2—1—! L (41a)

62 S;d 62 S;vat (63 Vﬁ (

or*  or* \or® i o2 aT 9T o12
s

i _g (41b)
dP?
25t vt

Lo 41
oToP oT? (“1c)

4.2. Mixture properties

We present volume, enthalpy and entropy of an ideal gas mixture of N components using
the molar properties of each component and the composition of the gas mixture. The mixture
contains n = {n,-}?f‘l moles of each component.

4.2.1. Enthalpy
The ideal liquid mixture enthalpy, H¢ = H'(T, P, n), is

H =" nihlf 42)

i=1



The first order derivatives are

oH & Ohi

- i— 43
or ~ 4T 3
H & ; !l
- = -1 43b
oP ; " (v’ ar (43b)
aHid )
=h! 43
o W (43c)
The second order derivatives are
92 HH Ne  g2pid
=N (44a)
oT ~ T
azHid
=0 44b
oP* (44)
52 H Ne o g2y1
= —T ,'—l 44
oToP ; " oT? (44c)
2Hd  ohd
=k (44d)
oTon, 0T
02Hid ; avi
=v, - T— 44
oPom, kT (44e)
[)ZHid
— =0 44f
81’1[6nk ( )
4.2.2. Entropy
The entropy of an ideal liquid mixture is given by
Nc Nc
ST, P,n) = Z nisid — RZ ni1n x; (45)
i=1 i=1
where the liquid mole fraction, x;, is
n;
i = 46
XN= (46)
and the total amount of moles, N, is given by (22b). The first order derivatives are
asid & gsid
- i— 47
ar ; "oT (472)
asd & o
= _ it 47b
oP Z T (470)
oS id )
— =51~ RIn(x) (47¢)
6nk
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The second order derivatives are

4.2.3. Volume

gisid  Ne o g2gid

= ni—-
or* 4 or’
52Sid
o
92sid Nc (92‘,5
oToP & o
52sid [)sj{d
oTon, ~ oT
528 avi
oPon; T

6711(911](

The ideal liquid mixture volume, V¢ = V(T n), is

The first order derivatives are

The second order derivatives are

Nc
Vit = 3" na(T)
i=1

avid & !
ot~ LMar
v

— =

ank

2v7id Nc 2.1
FV v

- n—-
or* 4L or?
8y ~ avi
oTon, ~ oT
62vid
=0
3n1(9nk

5. Thermodynamic functions for real mixtures

a*s _ —R(dkl 1

(48a)

(48b)

(48¢c)

(48d)

(48e)

(48f)

(49)

(50)

(51a)

(51b)

(52a)

(52b)

(52¢)

This section presents the enthalpy, entropy and volume of a real vapor or liquid mixture.
These are based on ideal gas properties and residual properties. The latter are obtained from
either of the cubic equations of state, Soave-Redlich-Kwong (SRK) or Peng-Robinson (PR)
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5.1. Mixture properties

We consider a vapor or liquid phase containing Nc components with mole numbers n =
{n[}j\fl. The total amount of moles in the phase, N, and the mole fraction of the i’th component,
Z;, are given by

N = Z n; (53a)

i=1

n;
L= L 53b
=y (53b)

The molar enthalpy, & = h(T, P, n), and entropy, s = s(7, P, n), are

h = h%¢ + ¥ (54)
s= 58458 (55)

where h'® = h8(T,P,n) and s = s8(T,P,n) are molar ideal gas enthalpy and entropy, and
hR(T,P,n) and s® = sR(T, P,n) are molar residual enthalpy and entropy. The molar volume,
v = w(T, P, n), is the solution of either the Peng-Robinson or the Soave-Redlich-Kwong equations
of state, both of which are in the cubic form

RT am
P= - 56
v—b, W+eb,Wv+ob,) (56)

where the scalars € and o are specific to each equation of state but independent of the given
substances. In practice, the equation of state (56) is solved for the compressibility factor Z =
Z(T, P, n) in which case the molar mixture volume is
_RTZ
P
Appendix A presents a direct and an iterative approach for solving the cubic equations of state for
the compressibility factor. The mixture parameters a,, = a,,(T,n) and b,, = b,,(n) are obtained
with van der Waals mixing rules

v (57)

Nc Nc

ay = Z Z ZiZjdij (58a)
i=1 j=1
Nc

b= ) ub; (58b)
i=1

where the mixing parameter a;; = a;;(T) is
aij = (1 = kij) \Jaij (59)

The parameter a;; = a;;(T) = a;(T)a;(T) is introduced for convenience and the substance specific
parameters a; = «;(T) and b; are determined from the critical temperature, 7,;, and critical
pressure, P ;, of the i’th component

R’T?.
a; = a(T;, w)¥ P B (60a)
RT,;
bi=Q—— (60b)
Pc,i
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Table 1: Parameters in the Soave-Redlich-Kwong and the Peng-Robinson equations of state.

Eq. € o Q b4
SRK 1 0 0.08664 0.42748
PR 1+V2 1-+v2 007779 045724

where a(7,;, w;) is a function of the reduced temperature, 7,; = T/T,;, and the acentric factor,
wj, given by

AT ) = (1+m)(1 - T/ (61)

The scalars ¥ and Q are related to the equation of state parameters, € and o, and their values are

shown in Table 1. The function m(w;) is a second order polynomium in the acentric factor, w;,
for the Peng-Robinson and Soave-Redlich-Kwong equations of state and is given by

msrk(w;) = 0.480 + 1.574w; — 0.176a)i2 (62a)

mpr(w;) = 0.37464 + 1.54226w; — 0.26992wl2 (62b)

The cubic equation of state (56) is solved for the compressibility factor Z = Z(T, P,n) and is
therefore rewritten using the third order polynomial ¢ = g(Z)

2
g=2"+) dZ"=0 (63)
m=0
where the polynomial coefficients {d,, = d,,(A, B)}i:0 are
dy=Ble+o—-1)-1 (64a)
di =A-B(e+0)+ B eoc —€—0) (64b)
dy = - (AB + (32 + 33) 60’) (64c)

The dimensionless quantities A = A(T, P,n) and B = B(T, P, n) are introduced for convenience
and are given by

Pa,,

=12 (©5)
Pb,,

== 65b
RT (65b)

5.2. Residual enthalpy and entropy

The molar residual enthalpy and entropy are given in terms of the four auxiliary functions
f = f(Z’ B)9 gh = gh(T’ f'l), gS = gS(T7 n) and gZ’ = gZ(Z7 B)
1
E—0

gsf (66b)

W =T, Pn)=RT(Z-1)+
1

€E— 0O

gnf (66a)

s® = sR(T,P,n) = Rg, +
13




The auxiliary functions, f = f(Z, B), gi = gn(T,n), gs = g(T,n) and g, = g.(Z, B), are

Z+€B
- ln(z o5) )
Tgs am (67b)
by
1 da,,
§ = b, or (67¢)
— In(Z - B) (67d)

The function f = f(Z, B) depends on the equation of state parameters, € and o, whereas g, =
gn(T,n), g = gs(T,n) and g, = g.(Z,B) do not. The first order derivatives of the residual
enthalpy, i = h¥(T, P, n), are

Z}f—R(Z—I)+RTZ—§+E_1 (%f+ Z;) (68a)
aai: =BT+ a5l (68b)
R

i e—lo'(gizf+ ) (68¢)

The second order derivatives are
e =iy T —lcr(f}g;f”%hg—; + 8 j;];) (69)
(ZZT?: = RT% + ﬁgh% (69b)
:;ZI; 2129 RTaa;aZP e—l (?;;h gg L a(;zgp) (69¢)
= e g+ ot o) @9
;;z:k =K aizaznk " e—l (35,’2 21]; te aiZZ ) (69¢)
R Er A e vk it

The first order derivatives of the residual entropy, s® = sR(T, P,n), are

% =R%+$(g‘?f+gsg—§) (70a)

R
f?iP :R% € lo- 21{ (70b)
e~ e o) 0
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The second order derivatives are

% sk g, 1 (d%g, 0gs 0 0?
2 - RZE ( S 420800 j;) (71a)
oT oT —-o\oT oT oT ~ ' 9T
9% sk c')zgz 1 o f
S _ b %) 71b
oP* 6T2 - op (710)
0% sk d’g. 1 (0gsof o f
= — +g 1
oToP aTaP - (aT op T8 aTaP) (71c)
2 R 2 2
9s 985 Bg3ﬂ+3gsﬁ+gsﬁf 71d)
6T6nk 0T6nk €e-0 0T6nk oT on,  Ony OT oT ony,
%R 0gg ﬁf o f (71e)
OPOny, BPank €—o \on 6P 6P(9nk
2 R 2 2
9s 9”85 8gsﬂ+5gsﬁ+gs orf 716
6n16nk anank €e—0 (')nlank ank on;  Ony Ony Oon;ony,

5.3. Fugacity coefficients

In this report we also present an explicit expression for the logarithmic fugacity coefficients
{In ¢,-}f\fl derived from the residual properties (66). The expression for the fugacity coefficients is

obtained using the auxiliary functions f = f(Z, B), g, = g,(Z, B) and g,

where the auxiliary function g4; = g4:(T,n) is

The first order derivatives are

dlng; _
T

01n¢;
opP

dln (}5,’ _
B 6nk bm

6I’lk

0Z b;

0T b,

8¢i =

0g;
oT

-(Z-

= g¢,i(T7 n)
b;
Ing; =(Z - Db_ -8~ (72)
RTb,, ( Z g, ] 7
1 08, of
(—f 8oizr (74a)
1 of
_ 4
c_ 8% 5p (74b)
b dby Dz, 1 [08ss df
2L Pm O 1 (Z8ed Ll 74
)b,% o, Ong  (e—0) ( ony 8. dny (74¢)
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The second order derivatives are

2 2 2 2 R . 2
3 lnng,- _ 6_Z2ﬁ ~ a_; R (a gﬁ,,f+26g¢,za_f +g¢’i0_/;) (759)
oT oT* by  9T* €-0\ T aT or oT
2 2 2 2
Toh ik h gt (75b)
OP OP* by 0P €—0 7P
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1 (0gpidf O f
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_ Pe 1 ( 8si , Ogpidf  08sidf o > f ) 756)
oniony, (e — o) \ Onyony, ony, dn; on; dny & onony,

5.4. Auxiliary functions

Note on nomenclature: In order to keep the derivative information brief we introduce the
auxiliary variables wy and w,. Each of these variables are a placeholder for either temperature,
T, pressure, P, or a mole number, ny. We will use these auxiliary variables in cases where the
structure of the derivative equations do not depend on the type of variable.

The first order derivatives of f = f(Z, B) with respect to temperature, pressure and mole
numbers are expressed through the derivatives with respect to the compressibility factor Z =
Z(T,P,n)and B = B(T, P,n)

of _df oz
Ow,  OZ dw,

af 9B

- T,P 76

The second order temperature, pressure and composition derivatives are
2
o*f ( OB

2
" @(%) !
_Of 0z oz
972 0wy dws
Lor B
0B 6W10W2

0 07 08
0Z0B 0w, 0w,

0Z
ow 1

of &z
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5_36w12
L %f 9B 0B

OB OT Ow,
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dZOB (M%
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0Z 0B
ow owy
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where w; € {T,P,n} and w, € {T,P,n;}. Note: w; and w, can represent different mole
numbers, n; and ny, respectively. The first order derivatives of f = f(Z, B) with respect to the

compressibility factor Z and B are

af 1 1
0Z Z+eB Z+o0B
af € o

OB Z+eB Z+0B
The second order derivatives are
*f 1 . 1
07>  (Z+€B)? (Z+0B)?
() (o)
082 \Z+eB Z+ 0B
o f B € N o
dZOB ~ (Z+€B)? (Z+0B)?

The first order derivatives of g; = g,(T, n) are

agh agv

doh _

oT oT

ogn _ T% 1 (Gam am 6bm)

(?nk 6nk bm
The second order derivatives are

Pgn _ 985, 0%
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6T6nk a (9T6nk
028h ang 1 aZam
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1 (da,, Ob,,  day, Oby, -2 0b,, 0byy,
+ — + — tau|\———"——
bz ﬁn, 8nk 8nk (9?1[ bm Bnl 6nk

m

The first order derivatives of g; = g,(T, n) are
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T ~ by oT>
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ong by 0TOn; b2 ong OT

17

by,
on ,6nk

)

(78a)
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The second order derivatives are

0%gs 1 &a,
Zos 83
o1 by OT? (832)
2 3 2
07 g :i da, _i%a a,, (83b)
OT Ony, b, 6T26nk b%l ony, 8T2
g L[(20by0by _ by )\ day
6n,6nk B b?n bm (9n, Bnk ﬁnl()nk oT
ob,, &*a, b, &a, a, ] (830)

T Bn, 0Ton,  om 9Tom, " 8T on,on

The first order derivatives of g, = g,(Z, B) with respect to temperature, pressure and mole num-
bers are expressed through the derivative with respect to the compressibility factor Z = Z(T, P, n)
and B = B(T, P,n)

Os: _ 08: 02 | 0g: 9B

- , T.P, 84
dw, - 0Zow T oBow, M ETEm 84

The second order temperature, pressure and composition derivatives are

0%g. 0% (0Z 2+ og. #Z 9. 0Z 9B
w2 972 \ow, 0Z dw,>  OZOB dw, dw,

20 (0B ) 2B
08 (0B), 98 0 (85a)
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P _Pg. 07 07 95,08 0B 0. 7
Ow 0wy~ 972 Owy Owy  9B2 OT dwy  OZ Hw 0w,
’B 2 Z AB Z AB
% 9 + % 8_8_+8_8_ (85b)
OB Ow10wy  OZOB \ 0wy Owa  Owy 0w,

where w; € {T,P,n} and w, € {T,P,n;}. Note: these derivative equations are structurally
identical to the derivatives of f (76)-(77). The first order derivatives of g, = g.(Z, B) with respect
to the compressibility factor Z and B are

% = ﬁ (86a)
The second order derivatives are
2
% = _—(Z _1 B (87a)
2
% T - B)? &
e 1 (87¢)

0ZOB ~ (Z - B)?
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The first order derivatives of the auxiliary function g4; = g4:(T, n) are
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The second order derivatives are
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5.5. Compressibility factor

The compressibility factor is implicitly defined by the cubic equation (63) for a given tem-
perature pressure and composition. The first order derivatives of the compressibility factor
Z = Z(T, P,n) are given in terms of the derivatives of the polynomium g = g(Z) given in (63)-
(64).

4z aq\™" aq
— == —, e (T, P, 90
o (62) I wi € { e (90a)
The second order derivatives are
8z ) Pq q(oz\ _ #q 0z
- - (q) ( q+—q(—)+2 4 —) (91a)
ow, z) \ow* 07> \ow w0Z dw,
2Z 2 2 7 7 2 7 2 7
4 = 6q oq +ﬂ6_6_+ oq 0__,. aqa_ (91b)
ow10ws oz Ow 0wy 9720w, Owy  Ow 0Z 0wy Ow,0Z Owy
where w; € {T, P,n;} and w, € {T, P,n;}. The first order derivatives of the cubic polynomium
q = q(Z) are expressed through the derivatives of the polynomial coefficients {d,, = d,,(A, B)}
2
) m—1
0y =30+ Z md, 7, (92a)
0 od,,
L NVIEmgm e (T, P (92b)
awl o 6w1
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The second order derivatives are

62q
7 6Z + 2d, (93a)
8%q 5 Oy,
= Z0m m-— 93b
aZow, Zf W (93b)
Pq < Pdy,
Zd N T Cmgm (93c)
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& 2 9d,
7 _ m (93d)
8W16W2 =0 aW16W2

where w; € {T, P,n;}and w, € {T, P, n;}.

5.6. Polynomial coefficients

The temperature, pressure and composition derivatives of the polynomial coefficients are
expressed through the derivatives with respect to A = A(T, P,n) and B = B(T, P,n). The first

order derivatives of {d,, = d,(A, B)},f=O are

od, dd, 0A 0d, OB
=t — T,P, 94
Gw, - 9A ow, T 0B ow, M1 e B 4
The second order derivatives are
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where

wy € {T,P,n;} and w, € {T, P,n;}. Note: w; and w, can represent different mole

numbers, n; and ny, respectively. The first order derivatives of the polynomial coefficient d, =

d>(A, B) with respect to A and B are

od,
0A

(96a)

(96b)
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The second order derivatives are

0%d
6722 =0 (97a)
0%d
H@; = (97b)
0%d
6A8§3 - ©7¢)
The first order derivatives of d; = d;(A, B) are
od
a_AI =1 (98a)
od
(9_31 =—(e+0)+2e0—€e—0)B (98b)
The second order derivatives are
0%d
E; =0 (99a)
0*d
_6321 =20 —€—0) (99b)
d*d
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The first order derivatives of dy = dy(A, B) are
od
(9_AO =-B (100a)
0dy )
=" (A+ec2B +3BY) (100b)
The second order derivatives are
0%d,
8720 =0 (101a)
8%d
520 = —ec(2 + 6B) (101b)
0%d,
6A6(1)'3’ =-1 (101c¢)

5.7. The quantities A and B
The first order derivatives of A = A(T, P, n) are given in terms of the derivatives of the mixing
parameter a,, = a,,(T,n)

0A Oa, P 2

or = or 12 T0 (1022)
0A a,,
A da, P

- (102¢)

on;  Ong R2T?
21



The second order derivatives are

02A P (62am 1 Bam)_ 3 0A
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The first order derivatives of B = B(T, P, n) are given in terms of the derivatives of the mixing

parameter b,, = b,,(n)

The second order derivatives are

5.8. Mixing parameters
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The derivatives of the mixing parameters a,, = a,(T,n) exploit the symmetry of a;; =
a;j(T) = aj(T). The first order derivatives are

Nc Nc¢

(96% = ZZZI'ZJ'%

i=1 j=1
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The second order derivatives are
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The relevant third order derivatives are
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The derivatives of a;; = a;;(T) are given in terms of the derivatives of the auxiliary function
ajj = a;;(T)
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The derivatives of the auxiliary function a;; = a;;(T) are given in terms of derivatives of the pure
component properties a; = a;(T)
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5.9. Pure component properties

The pure component parameters a; = a;(T') are directly proportional to @ = (T, ;, w;) and as
such their derivatives are

da;, Oda Rszi
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Appendix A. Solution of cubic equations

There exists a number of approaches for solving the cubic equation of state (56) for the roots
when pressure and temperature are given. These approaches are either direct approaches that
use explicit formula for computing the roots, iterative approaches that approximate the roots of
interest or a combination of both where the direct solution is refined by an iterative approach
in order to remove imprecision arising from rounding errors. In this work we use an iterative
approach as described by Smith et al. (2005) and compare to Cardano’s approach which is briefly
described by Monroy-Loperena (2012). The equation of state (56) is rewritten in terms of the
compressibility factor Z = PV/(RT)

Z2-7*(1-Ble+o-1)
—Z(e+o0o-Bleoc—e€e—0)—A/B)B (A.1)
—~(A+B(1 +B)er)B =0,
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where A and B are given by

a,(T,n)P
A= —pr
B= Pb,,(n)
RT

The equation of state (A.1) is written compactly
g2 =22 +d\Z* +drZ +d3 =0
Cardano’s direct approach
The number of real roots are determined by the two quantities Q and R
Q = (di —3dy)/9
R = (2d; — 9d,d» + 27d3)/54
There are three real roots if R?> < Q3. In that case, the roots are found by the formula
Zy =-2+/Qcos(6/3) —d, /3
Zy = =2+/Qcos((6 + 2m)/3) — d, /3
Z3 = =2+/Qcos((6 — 2m)/3) — d; /3

where 6 is computed by

6 = arccos(R/ \/@)
If R?> > @3, there is one real root and two complex conjugate roots that are given by
Zy = +T)-d\/3
Z,=-1/2(S +T)—di/3+iV3/2(S = T)
Zy=—1/2(S +T)—d/3-iV3/2(S - T)

where

S = —sgn(R) (IRl + VR - Q3)l/ ’

r_ Qs (%0
10 (=0

(A.2)

(A3)

(A.4)

(A.5)
(A.6)

(A.7a)
(A.7b)
(A.7c)

(A.8)

(A.9a)
(A.9b)
(A.9¢)

(A.10)

(A.11)

In the case of multiple roots, the smallest represents the liquid phase compressibility factor,
Z! = min{Z;, Z», Z3}, and the largest is vapor phase compressibility factor, Z" = max{Z,, Z,, Z3}.

An iterative Newton approach

The approach described here uses Newton iterations to solve the cubic equation (A.1). It is
possible to use higher-order methods as discussed by Olivera-Fuentes (1993), due to the cubic
nature of the equation. In the Newton approach, an initial guess, Zy, is iteratively improved by

Zin = Zk — 9(Zi) 14" (Zy)
q(Z) =3Z; +2d\Z + d>
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The iterative sequence is terminated when both of the following criteria are satisfied

|Zii1 —Zil < € (A.14)
\Z2 +dizp, + daZir +ds| < € (A.15)

Once the sequence is terminated, a single root has been found. The following initial estimates
are used, depending on whether the compressibility factor of the vapor phase, Z", or of the liquid
phase, Z/, is sought

v =1 (A.16)
7, =B (A.17)
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