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An open-source thermodynamic software library*

DTU Compute Technical Report-2016-12

Tobias K. S. Ritschel, Jozsef Gaspar, Andrea Capolei, John Bagterp Jørgensen

Department of Applied Mathematics and Computer Science & Center for Energy Resources Engineering (CERE),
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

This is a technical report which accompanies the article ”An open-source thermodynamic soft-
ware library” which describes an efficient Matlab and C implementation for evaluation of ther-
modynamic properties. In this technical report we present the model equations, that are also
presented in the paper, together with a full set of first and second order derivatives with respect to
temperature and pressure, and in cases where applicable, also with respect to mole numbers. The
library is based on parameters and correlations from the DIPPR database and the Peng-Robinson
and the Soave-Redlich-Kwong equations of state.

Keywords: Thermodynamic functions, Software, Phase equilibrium

1. Introduction

The purpose of this technical report is to document the equations describing vapor-liquid en-
thalpy, entropy and volume of real and ideal mixtures and pure components, together with their
first and second order derivatives with respect to temperature and pressure, and for mixture prop-
erties, also with respect to mole numbers. For completeness, this technical report also describes
logarithmic fugacity coefficients together with first and second order derivatives. The fugacity
coefficients are defined by means of residual properties that are also described in this report.
However, their second order derivatives require third order derivatives of the residual properties,
which are not described in this report2.

Section 2 presents DIPPR correlations together with derived expressions that are necessary
in the ideal gas and liquid models. Section 3 presents ideal gas properties and Section 4 presents
ideal liquid properties. Section 5 presents real mixture properties based on the Peng-Robinson
(PR) and the Soave-Redlich-Kwong (SRK) equations of state.

2. DIPPR correlations for pure components

This section describes the DIPPR correlations (Thomson, 1996) for ideal gas heat capacity,
vapor pressure and liquid volume together with necessary integrals and temperature derivatives.

*This project is funded partly by Innovation Fund Denmark in the CITIES project (1305-00027B) and in the OPTION
project (63-2013-3), and partly by the interreg project Smart Cities Accelerator (10606 SCA).

2The main motivation for including second order derivatives of fugacity coefficients is that they are necessary for
formulating second order algorithms for dynamic optimization of flash processes.



Furthermore, we present all derivatives of these correlations and derived properties, that are
necessary for the first and second order derivatives in the ideal gas and liquid models.

2.1. Ideal gas heat capacity

The ideal gas heat capacity of the i’th component, cig
P,i = cig

P,i(T ), is

cig
P,i = Ai + Bi

 Ci
T

sinh
(

Ci
T

) 2

+ Di

 Ei
T

cosh
(

Ei
T

) 2

(1)

The parameters (Ai, Bi,Ci,Di, Ei) are specific to each substance and also to the ideal gas heat
capacity correlation. They are provided by the DIPPR database. The unit for the molar ideal
gas heat capacity is J/(kmoles K) and the temperature must be in K. The integral of the ideal gas
heat capacity is used in computation of ideal gas enthalpy and is expressed using the auxiliary
function Γi = Γi(T ) ∫ T1

T0

cig
P,idT = Γi(T1) − Γi(T0) (2a)

Γi(T ) = AiT + BiCi coth
(Ci

T

)
− DiEi tanh

(Ei

T

)
(2b)

The integral of the ideal gas heat capacity divided by temperature is used for the ideal gas entropy
and is expressed using the auxiliary function Πi = Πi(T )∫ T1

T0

cig
P,i

T
dT = Πi(T1) − Πi(T0) (3a)

Πi(T ) = Ai ln(T ) + Bi

(Ci

T
coth

(Ci

T

)
− ln sinh

(Ci

T

))
− Di

(Ei

T
tanh

(Ei

T

)
− ln cosh

(Ei

T

))
(3b)

The only necessary derivative of the ideal gas heat capacity is the first order temperature deriva-
tive

∂cig
P,i

∂T
=

2
T 2

(Ai − cig
P,i

)
T +

BiCi

tanh
(

Ci
T

)  Ci
T

sinh
(

Ci
T

) 2

+ DiEi tanh
(Ei

T

)  Ei
T

cosh
(

Ei
T

) 2 (4)

2.2. Vapor pressure

The vapor pressure or saturation pressure of the i’th component, Psat
i = Psat

i (T ), is

Psat
i = exp

(
ln Psat

i

)
(5a)

ln Psat
i = Ai +

Bi

T
+ Ci ln(T ) + DiT Ei (5b)

The substance specific correlation parameters (Ai, Bi,Ci,Di, Ei) are provided by the DIPPR database
and are specific to the vapor pressure correlation. Because both the vapor pressure and its first
order temperature derivative appear in the ideal liquid model, we present first, second and third
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order derivatives of the above correlation. The derivatives of the vapor pressure are expressed
through the derivatives of the logarithmic vapor pressure

∂Psat
i

∂T
= Psat

i

∂ ln Psat
i

∂T
(6a)

∂2Psat
i

∂T 2 = Psat
i

(∂ ln Psat
i

∂T

)2

+
∂2 ln Psat

i

∂T 2

 (6b)

∂3Psat
i

∂T 3 = Psat
i

∂3 ln Psat
i

∂T 3 + 3
∂2 ln Psat

i

∂T 2

∂ ln Psat
i

∂T
+

(
∂ ln Psat

i

∂T

)3 (6c)

The derivatives of the logarithmic vapor pressure correlation are

∂ ln Psat
i

∂T
=

1
T

(
Ci −

Bi

T
+ DiEiT Ei

)
(7a)

∂2 ln Psat
i

∂T 2 =
1

T 2

(
2

Bi

T
−Ci + DiEi(Ei − 1)T Ei

)
(7b)

∂3 ln Psat
i

∂T 3 =
1

T 3

(
−6

Bi

T
+ 2Ci + DiEi(Ei − 1)(Ei − 2)T Ei

)
(7c)

2.3. Liquid volume
The liquid volume of the i’th component, vl

i = vl
i(T ), is

vl
i =

B
1+

(
1− T

Ci

)Di

i

Ai
(8)

The substance specific correlation parameters (Ai, Bi,Ci,Di) are provided by the DIPPR database
and are specific to this correlation. Because both the liquid volume and its first order derivative
appear in the ideal liquid model, we present first, second and third order temperature derivatives
of the liquid volume correlation. The derivatives are

∂vl
i

∂T
= − ln Bi

Di

Ci

(
1 −

T
Ci

)Di−1

vl
i (9a)

∂2vl
i

∂T 2 = −

ln Bi
Di

Ci

(
1 −

T
Ci

)Di−1

+
Di − 1

Ci

(
1 − T

Ci

)  ∂vl
i

∂T
(9b)

∂3vl
i

∂T 3 = −

ln Bi
Di

Ci
+

Di − 1

Ci

(
1 − T

Ci

)  ∂2vl
i

∂T 2 −
Di − 1

Ci

(
1 − T

Ci

) ln Bi
Di

Ci
+

1

Ci

(
1 − T

Ci

)  ∂vl
i

∂T
(9c)

3. Thermodynamic functions for ideal gases

This section presents enthalpy, entropy and volume of ideal gas mixtures and pure compo-
nents. These equations are based on the reference enthalpy and entropy of formation provided
by the DIPPR database, together with the correlation for the ideal gas heat capacity and the ideal
gas law.
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3.1. Pure component properties
We describe the computation of enthalpy, entropy and volume of a pure component i

3.1.1. Enthalpy
The molar ideal gas enthalpy, hig

i = hig
i (T ), is a function of temperature only

hig
i = hig

i (T0, P0) − Γi(T0)︸                  ︷︷                  ︸
ĥig

f ,i

+Γi(T )
(10)

It is more efficient to store ĥig
f ,i = hig

i (T0, P0) − Γi(T0) rather than storing hig
i (T0, P0) and recom-

puting Γi(T0) at every evaluation of hig
i . The derivatives of the molar enthalpy are

∂hig
i

∂T
= cig

P,i (11a)

∂2hig
i

∂T 2 =
∂cig

P,i

∂T
(11b)

where the ideal gas heat capacity and its temperature derivative are given by (1) and (4).

3.1.2. Entropy
The molar ideal gas entropy, sig

i = sig
i (T, P), is a function of temperature and pressure

sig
i = Πi(T ) − R ln(P)

+ sig
i (T0, P0) − Πi(T0) + R ln(P0)︸                                  ︷︷                                  ︸

ŝig
f ,i

(12)

It is more efficient to store ŝig
f ,i = sig

i (T0, P0) − Πi(T0) + R ln(P0) than recomputing Πi(T0) at

every evaluation of sig
i . The first order temperature and pressure derivatives of the molar ideal

gas entropy are

∂sig
i

∂T
=

cig
P,i

T
(13a)

∂sig
i

∂P
= −

R
P

(13b)

The second order derivatives of the molar ideal gas entropy are

∂2sig
i

∂T 2 =
1
T

dcig
P,i

dT
−

1
T 2 cig

P,i (14a)

∂2sig
i

∂P2 =
R
P2 (14b)

∂2sig
i

∂T∂P
= 0 (14c)

where again, the ideal gas heat capacity and its temperature derivative are given by (1) and (4).
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3.1.3. Volume
The molar ideal gas volume, vig

i = vig
i (T, P), is

vig
i =

RT
P

(15)

The first order derivatives of the ideal gas molar volume are

∂vig
i

∂T
=

R
P

(16a)

∂vig
i

∂P
= −

RT
P2 (16b)

The second order derivatives are

∂2vig
i

∂T 2 = 0 (17a)

∂2vig
i

∂P2 = 2
RT
P3 (17b)

∂2vig
i

∂T∂P
= −

R
P2 (17c)

3.2. Mixture properties
We describe the computation of volume, enthalpy and entropy of an ideal gas mixture of

NC components using the molar properties of each component and the composition of the gas
mixture. The mixture contains n = {ni}

NC
i=1 moles of each component.

3.2.1. Enthalpy
The ideal gas mixture enthalpy, Hig = Hig(T, n), is

Hig =

NC∑
i=1

nih
ig
i (18)

The first order derivatives are

∂Hig

∂T
=

NC∑
i=1

nic
ig
P,i (19a)

∂Hig

∂nk
= hig

k (19b)

The second order derivatives are

∂2Hig

∂T 2 =

NC∑
i=1

ni
∂2hig

i

∂T 2 (20a)

∂2Hig

∂T∂nk
= cig

P,k (20b)

∂2Hig

∂nl∂nk
= 0 (20c)

5



3.2.2. Entropy
The ideal gas mixture enthalpy, S ig = S ig(T, P, n), is

S ig =

NC∑
i=1

nis
ig
i − R

NC∑
i=1

ni ln(yi) (21)

where the total amount of moles, N, and the vapor mole fraction, yi, are

yi =
ni

N
(22a)

N =

NC∑
i=1

ni (22b)

The derivatives of the mixture entropy are

∂S ig

∂T
=

1
T

NC∑
i=1

nic
ig
P,i (23a)

∂S ig

∂P
= −

NR
P

(23b)

∂S ig

∂nk
= sig

k − R ln(yk) (23c)

The second order derivatives are

∂2S ig

∂T 2 =
1
T

NC∑
i=1

ni

∂cig
P,i

∂T
−

1
T

cig
P,i

 (24a)

∂2S ig

∂P2 =
NR
P2 (24b)

∂2S ig

∂T∂P
= 0 (24c)

∂2S ig

∂T∂nk
=
∂sig

k

∂T
=

cig
P,k

T
(24d)

∂2S ig

∂P∂nk
=
∂sig

k

∂P
= −

R
P

(24e)

∂2S ig

∂nl∂nk
= −R

(
δkl

nl
−

1
N

)
(24f)

3.2.3. Volume
The ideal gas mixture volume, V ig = V ig(T, P, n), is

V ig =
NRT

P
(25)
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The first order derivatives of the ideal gas mixture volume are

∂V ig

∂T
=

NR
P

(26a)

∂V ig

∂P
=

NRT
P2 (26b)

∂V ig

∂nk
=

RT
P

(26c)

The second order derivatives are

∂2V ig

∂T 2 = 0 (27a)

∂2V ig

∂P2 = 2
NRT

P3 (27b)

∂2V ig

∂T∂P
= −

NR
P2 (27c)

∂2V ig

∂T∂nk
=

R
P

(27d)

∂2V ig

∂P∂nk
= −

RT
P2 (27e)

∂2V ig

∂nl∂nk
= 0 (27f)

4. Thermodynamic functions for ideal liquids

This section presents enthalpy, entropy and volume of ideal liquid mixtures and pure compo-
nents. These are based on ideal gas properties, vaporization properties and pressure correcting
terms. The latter two are further based on the DIPPR correlations for vapor pressure and liquid
volume, together with their first order temperature derivatives.

4.1. Pure component properties

The properties of pure component liquids are based on ideal gas properties at vaporization
temperature and pressure, T and Psat

i = Psat
i (T ), as well as vaporization properties. The vapor-

ization enthalpy, ∆hvap
i = ∆hvap

i (T ), entropy, ∆svap
i = ∆svap

i (T ), and volume, ∆vvap
i = ∆vvap

i (T ),
are

∆vvap
i =

RT
Psat

i
− vl

i (28a)

∆svap
i =

∂Psat
i

∂T
∆vvap

i (28b)

∆hvap
i = T∆svap

i (28c)
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where Psat
i = Psat

i (T ) is the vapor pressure (5) and vl
i = vl

i(T ) is the liquid volume (8). The
derivatives of the vaporization volume are

∂∆vvap
i

∂T
=

R
Psat

i

(
1 −

T
Psat

i

∂Psat
i

∂T

)
−
∂vl

i

∂T
(29a)

∂2∆vvap
i

∂T 2 = −
R(

Psat
i

)2

(
2
∂Psat

i

∂T

(
1 −

T
Psat

i

∂Psat
i

∂T

)
+ T

∂2Psat
i

∂T 2

)
−
∂2vl

i

∂T 2 (29b)

The derivatives of the vaporization enthalpy are

∂∆hvap
i

∂T
= ∆svap

i + T
∂∆svap

i

∂T
(30a)

∂2∆hvap
i

∂T 2 = 2
∂∆svap

i

∂T
+ T

∂2∆svap
i

∂T 2 (30b)

The derivatives of the vaporization entropy are

∂∆svap
i

∂T
=
∂2Psat

i

∂T 2 ∆vvap
i +

∂Psat
i

∂T
∂∆vvap

i

∂T
(31a)

∂2∆svap
i

∂T 2 =
∂3Psat

i

∂T 3 ∆vvap
i + 2

∂2Psat
i

∂T 2

∂∆vvap
i

∂T
+
∂Psat

i

∂T
∂2∆vvap

i

∂T 2 (31b)

The molar liquid saturation enthalpy, hsat
i = hsat

i (T ), and entropy, ssat
i = ssat

i (T ), are

hsat
i = hv

i (T ) − ∆hvap
i (T ) (32a)

ssat
i = sv

i (T, Psat
i ) − ∆svap

i (T ) (32b)

The derivatives of the molar liquid saturation enthalpy are

∂hsat
i

∂T
= cig

P,i −
∂∆hvap

i

∂T
(33)

∂2hsat
i

∂T 2 =
∂cig

P,i

∂T
−
∂2∆hvap

i

∂T 2 (34)

The derivatives of the molar liquid saturation entropy

∂ssat
i

∂T
=
∂sv

i

∂T
(T, Psat

i ) +
∂sv

i

∂P
(T, Psat

i )
∂Psat

i

∂T
−
∂∆svap

i

∂T
(35)

∂2ssat
i

∂T 2 =
∂2sv

i

∂T 2 (T, Psat
i ) + 2

∂2sv
i

∂T∂P
(T, Psat

i )
∂Psat

i

∂T
+
∂2sv

i

∂P2 (T, Psat
i )

(
∂Psat

i

∂T

)2

−
∂2∆svap

i

∂T 2 (36)

The molar liquid enthalpy, hid
i = hid

i (T, P), entropy, sid
i = sid

i (T, P), at arbitrary pressure are

hid
i = hsat

i +

vl
i − T

∂vl
i

∂T

 (P − Psat
i

)
(37a)

sid
i = ssat

i −
∂vl

i

∂T

(
P − Psat

i

)
(37b)
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The molar ideal liquid volume is given by the DIPPR correlation (8). The first order derivatives
of liquid enthalpy are

∂hid
i

∂T
=
∂hsat

i

∂T
− T

∂2vl
i

∂T 2

(
P − Psat

i

)
−

vl
i − T

∂vl
i

∂T

 ∂Psat
i

∂T
(38a)

∂hid
i

∂P
= vl

i − T
∂vl

i

∂T
(38b)

The second order derivatives are

∂2hid
i

∂T 2 =
∂2hsat

i

∂T 2 −

∂2vl
i

∂T 2 + T
∂3vl

i

∂T 3

 (P − Psat
i

)
+ 2T

∂2vl
i

∂T 2

∂Psat
i

∂T
−

vl
i − T

∂vl
i

∂T

 ∂2Psat
i

∂T 2 (39a)

∂2hid
i

∂P2 = 0 (39b)

∂2hid
i

∂T∂P
= −T

∂2vl
i

∂T 2 (39c)

The first order derivatives of liquid entropy are

∂sid
i

∂T
=
∂ssat

i

∂T
−

(
∂2vl

i

∂T 2

(
P − Psat

i

)
−
∂vl

i

∂T
∂Psat

i

∂T

)
(40a)

∂sid
i

∂P
= −

∂vl
i

∂T
(40b)

The second order derivatives are

∂2sid
i

∂T 2 =
∂2ssat

i

∂T 2 −

(
∂3vl

i

∂T 3

(
P − Psat

i

)
− 2

∂2vl
i

∂T 2

∂Psat
i

∂T
−
∂vl

i

∂T
∂2Psat

i

∂T 2

)
(41a)

∂2sid
i

∂P2 = 0 (41b)

∂2sid
i

∂T∂P
= −

∂2vl
i

∂T 2 (41c)

4.2. Mixture properties

We present volume, enthalpy and entropy of an ideal gas mixture of NC components using
the molar properties of each component and the composition of the gas mixture. The mixture
contains n = {ni}

NC
i=1 moles of each component.

4.2.1. Enthalpy
The ideal liquid mixture enthalpy, Hid = Hid(T, P, n), is

Hid =

NC∑
i=1

nihid
i (42)

9



The first order derivatives are

∂Hid

∂T
=

NC∑
i=1

ni
∂hid

i

∂T
(43a)

∂Hid

∂P
=

NC∑
i=1

ni

vl
i − T

∂vl
i

∂T

 (43b)

∂Hid

∂nk
= hid

k (43c)

The second order derivatives are

∂2Hid

∂T 2 =

NC∑
i=1

ni
∂2hid

i

∂T 2 (44a)

∂2Hid

∂P2 = 0 (44b)

∂2Hid

∂T∂P
= −T

NC∑
i=1

ni
∂2vl

i

∂T 2 (44c)

∂2Hid

∂T∂nk
=
∂hid

k

∂T
(44d)

∂2Hid

∂P∂nk
= vl

k − T
∂vl

k

∂T
(44e)

∂2Hid

∂nl∂nk
= 0 (44f)

4.2.2. Entropy
The entropy of an ideal liquid mixture is given by

S id(T, P, n) =

NC∑
i=1

nisid
i − R

NC∑
i=1

ni ln xi (45)

where the liquid mole fraction, xi, is

xi =
ni

N
(46)

and the total amount of moles, N, is given by (22b). The first order derivatives are

∂S id

∂T
=

NC∑
i=1

ni
∂sid

i

∂T
(47a)

∂S id

∂P
= −

NC∑
i=1

ni
∂vl

i

∂T
(47b)

∂S id

∂nk
= sid

k − R ln(xk) (47c)
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The second order derivatives are

∂2S id

∂T 2 =

NC∑
i=1

ni
∂2sid

i

∂T 2 (48a)

∂2S id

∂P2 = 0 (48b)

∂2S id

∂T∂P
= −

NC∑
i=1

ni
∂2vl

i

∂T 2 (48c)

∂2S id

∂T∂nk
=
∂sid

k

∂T
(48d)

∂2S id

∂P∂nk
= −

∂vl
k

∂T
(48e)

∂2S id

∂nl∂nk
= −R

(
δkl

nl
−

1
N

)
(48f)

4.2.3. Volume
The ideal liquid mixture volume, V id = V id(T, n), is

V id =

NC∑
i=1

nivl
i(T ) (49)

(50)

The first order derivatives are

∂V id

∂T
=

NC∑
i=1

ni
∂vl

i

∂T
(51a)

∂V id

∂nk
= vl

k (51b)

The second order derivatives are

∂2V id

∂T 2 =

NC∑
i=1

ni
∂2vl

i

∂T 2 (52a)

∂2V id

∂T∂nk
=
∂vl

k

∂T
(52b)

∂2V id

∂nl∂nk
= 0 (52c)

5. Thermodynamic functions for real mixtures

This section presents the enthalpy, entropy and volume of a real vapor or liquid mixture.
These are based on ideal gas properties and residual properties. The latter are obtained from
either of the cubic equations of state, Soave-Redlich-Kwong (SRK) or Peng-Robinson (PR)
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5.1. Mixture properties
We consider a vapor or liquid phase containing NC components with mole numbers n =

{ni}
NC
i=1. The total amount of moles in the phase, N, and the mole fraction of the i’th component,

zi, are given by

N =

NC∑
i=1

ni (53a)

zi =
ni

N
(53b)

The molar enthalpy, h = h(T, P, n), and entropy, s = s(T, P, n), are

h = hig + hR (54)

s = sig + sR (55)

where hig = hig(T, P, n) and sig = sig(T, P, n) are molar ideal gas enthalpy and entropy, and
hR(T, P, n) and sR = sR(T, P, n) are molar residual enthalpy and entropy. The molar volume,
v = v(T, P, n), is the solution of either the Peng-Robinson or the Soave-Redlich-Kwong equations
of state, both of which are in the cubic form

P =
RT

v − bm
−

am

(v + εbm)(v + σbm)
(56)

where the scalars ε and σ are specific to each equation of state but independent of the given
substances. In practice, the equation of state (56) is solved for the compressibility factor Z =

Z(T, P, n) in which case the molar mixture volume is

v =
RTZ

P
(57)

Appendix A presents a direct and an iterative approach for solving the cubic equations of state for
the compressibility factor. The mixture parameters am = am(T, n) and bm = bm(n) are obtained
with van der Waals mixing rules

am =

NC∑
i=1

NC∑
j=1

ziz jai j (58a)

bm =

NC∑
i=1

zibi (58b)

where the mixing parameter ai j = ai j(T ) is

ai j = (1 − ki j)
√

âi j (59)

The parameter âi j = âi j(T ) = ai(T )a j(T ) is introduced for convenience and the substance specific
parameters ai = ai(T ) and bi are determined from the critical temperature, Tc,i, and critical
pressure, Pc,i, of the i’th component

ai = α(Tr,i, ωi)Ψ
R2T 2

c,i

Pc,i
(60a)

bi = Ω
RTc,i

Pc,i
(60b)

12



Table 1: Parameters in the Soave-Redlich-Kwong and the Peng-Robinson equations of state.

Eq. ε σ Ω Ψ

SRK 1 0 0.08664 0.42748
PR 1 +

√
2 1 −

√
2 0.07779 0.45724

where α(Tr,i, ωi) is a function of the reduced temperature, Tr,i = T/Tc,i, and the acentric factor,
ωi, given by

α(Tr,i, ωi) =
(
1 + m(ωi)(1 − T 1/2

r,i )
)2

(61)

The scalars Ψ and Ω are related to the equation of state parameters, ε and σ, and their values are
shown in Table 1. The function m(ωi) is a second order polynomium in the acentric factor, ωi,
for the Peng-Robinson and Soave-Redlich-Kwong equations of state and is given by

mSRK(ωi) = 0.480 + 1.574ωi − 0.176ω2
i (62a)

mPR(ωi) = 0.37464 + 1.54226ωi − 0.26992ω2
i (62b)

The cubic equation of state (56) is solved for the compressibility factor Z = Z(T, P, n) and is
therefore rewritten using the third order polynomial q = q(Z)

q = Z3 +

2∑
m=0

dmZm = 0 (63)

where the polynomial coefficients {dm = dm(A, B)}2m=0 are

d2 = B(ε + σ − 1) − 1 (64a)

d1 = A − B(ε + σ) + B2(εσ − ε − σ) (64b)

d0 = −
(
AB +

(
B2 + B3

)
εσ

)
(64c)

The dimensionless quantities A = A(T, P, n) and B = B(T, P, n) are introduced for convenience
and are given by

A =
Pam

R2T 2 (65a)

B =
Pbm

RT
(65b)

5.2. Residual enthalpy and entropy
The molar residual enthalpy and entropy are given in terms of the four auxiliary functions

f = f (Z, B), gh = gh(T, n), gs = gs(T, n) and gz = gz(Z, B)

hR = hR(T, P, n) = RT (Z − 1) +
1

ε − σ
gh f (66a)

sR = sR(T, P, n) = Rgz +
1

ε − σ
gs f (66b)
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The auxiliary functions, f = f (Z, B), gh = gh(T, n), gs = gs(T, n) and gz = gz(Z, B), are

f = ln
( Z + εB
Z + σB

)
(67a)

gh = Tgs −
am

bm
(67b)

gs =
1

bm

∂am

∂T
(67c)

gz = ln(Z − B) (67d)

The function f = f (Z, B) depends on the equation of state parameters, ε and σ, whereas gh =

gh(T, n), gs = gs(T, n) and gz = gz(Z, B) do not. The first order derivatives of the residual
enthalpy, hR = hR(T, P, n), are

∂hR

∂T
= R(Z − 1) + RT

∂Z
∂T

+
1

ε − σ

(
∂gh

∂T
f + gh

∂ f
∂T

)
(68a)

∂hR

∂P
= RT

∂Z
∂P

+
1

ε − σ
gh
∂ f
∂P

(68b)

∂hR

∂nk
= RT

∂Z
∂nk

+
1

ε − σ

(
∂gs

∂nk
f + gh

∂ f
∂nk

)
(68c)

The second order derivatives are

∂2hR

∂T 2 = 2R
∂Z
∂T

+ RT
∂2Z

∂T 2 +
1

ε − σ

(
∂2gh

∂T 2 f + 2
∂gh

∂T
∂ f
∂T

+ gh
∂2 f

∂T 2

)
(69a)

∂2hR

∂P2 = RT
∂2Z

∂P2 +
1

ε − σ
gh
∂2 f

∂P2 (69b)

∂2hR

∂T∂P
= R

∂Z
∂P

+ RT
∂2Z
∂T∂P

+
1

ε − σ

(
∂gh

∂T
∂ f
∂P

+ gh
∂2 f
∂T∂P

)
(69c)

∂2hR

∂T∂nk
= R

∂Z
∂nk

+ RT
∂2Z
∂T∂nk

+
1

ε − σ

(
∂2gh

∂T∂nk
f +

∂gh

∂T
∂ f
∂nk

+
∂gh

∂nk

∂ f
∂T

+ gh
∂2 f
∂T∂nk

)
(69d)

∂2hR

∂P∂nk
= RT

∂2Z
∂P∂nk

+
1

ε − σ

(
∂gh

∂nk

∂ f
∂P

+ gh
∂2 f
∂P∂nk

)
(69e)

∂2hR

∂nl∂nk
= RT

∂2Z
∂nl∂nk

+
1

ε − σ

(
∂2gh

∂nl∂nk
f +

∂gh

∂nk

∂ f
∂nl

+
∂gh

∂nl

∂ f
∂nk

+ gh
∂2 f
∂nl∂nk

)
(69f)

The first order derivatives of the residual entropy, sR = sR(T, P, n), are

∂sR

∂T
= R

∂gz

∂T
+

1
ε − σ

(
∂gs

∂T
f + gs

∂ f
∂T

)
(70a)

∂sR

∂P
= R

∂gz

∂P
+

1
ε − σ

gs
∂ f
∂P

(70b)

∂sR

∂nk
= R

∂gz

∂nk
+

1
ε − σ

(
∂gs

∂nk
f + gs

∂ f
∂nk

)
(70c)
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The second order derivatives are

∂2sR

∂T 2 = R
∂2gz

∂T 2 +
1

ε − σ

(
∂2gs

∂T 2 f + 2
∂gs

∂T
∂ f
∂T

+ gs
∂2 f

∂T 2

)
(71a)

∂2sR

∂P2 = R
∂2gz

∂T 2 +
1

ε − σ
gs
∂2 f

∂P2 (71b)

∂2sR

∂T∂P
= R

∂2gz

∂T∂P
+

1
ε − σ

(
∂gs

∂T
∂ f
∂P

+ gs
∂2 f
∂T∂P

)
(71c)

∂2sR

∂T∂nk
= R

∂2gz

∂T∂nk
+

1
ε − σ

(
∂2gs

∂T∂nk
f +

∂gs

∂T
∂ f
∂nk

+
∂gs

∂nk

∂ f
∂T

+ gs
∂2 f
∂T∂nk

)
(71d)

∂2sR

∂P∂nk
= R

∂2gz

∂P∂nk
+

1
ε − σ

(
∂gs

∂nk

∂ f
∂P

+ gs
∂2 f
∂P∂nk

)
(71e)

∂2sR

∂nl∂nk
= R

∂2gz

∂nl∂nk
+

1
ε − σ

(
∂2gs

∂nl∂nk
f +

∂gs

∂nk

∂ f
∂nl

+
∂gs

∂nl

∂ f
∂nk

+ gs
∂2 f
∂nl∂nk

)
(71f)

5.3. Fugacity coefficients

In this report we also present an explicit expression for the logarithmic fugacity coefficients
{ln φi}

NC
i=1 derived from the residual properties (66). The expression for the fugacity coefficients is

obtained using the auxiliary functions f = f (Z, B), gz = gz(Z, B) and gφ,i = gφ,i(T, n)

ln φi = (Z − 1)
bi

bm
− gz −

1
ε − σ

gφ,i f (72)

where the auxiliary function gφ,i = gφ,i(T, n) is

gφ,i =
1

RTbm

2 NC∑
j=1

z jai j − am
bi

bm

 (73)

The first order derivatives are

∂ ln φi

∂T
=
∂Z
∂T

bi

bm
−
∂gz

∂T
−

1
ε − σ

(
∂gφ,i
∂T

f + gφ,i
∂ f
∂T

)
(74a)

∂ ln φi

∂P
=
∂Z
∂P

bi

bm
−
∂gz

∂P
−

1
ε − σ

gφ,i
∂ f
∂P

(74b)

∂ ln φi

∂nk
=
∂Z
∂nk

bi

bm
− (Z − 1)

bi

b2
m

∂bm

∂nk
−
∂gz

∂nk
−

1
(ε − σ)

(
∂gφ,i
∂nk

f + gφ,i
d f
dnk

)
(74c)
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The second order derivatives are

∂2 ln φi

∂T 2 =
∂2Z

∂T 2

bi

bm
−
∂2gz

∂T 2 −
1

ε − σ

(
∂2gφ,i
∂T 2 f + 2

∂gφ,i
∂T

∂ f
∂T

+ gφ,i
∂2 f

∂T 2

)
(75a)

∂2 ln φi

∂P2 =
∂2Z

∂P2

bi

bm
−
∂2gz

∂P2 −
1

ε − σ
gφ,i

∂2 f

∂P2 (75b)

∂2 ln φi

∂T∂P
=

∂2Z
∂T∂P

bi

bm
−

∂2gz

∂T∂P
−

1
ε − σ

(
∂gφ,i
∂T

∂ f
∂P

+ gφ,i
∂2 f
∂T∂P

)
(75c)

∂2 ln φi

∂T∂nk
=

∂2Z
∂T∂nk

bi

bm
−
∂Z
∂T

bi

b2
m

∂bm

∂nk
−

∂2gz

∂T∂nk

−
1

(ε − σ)

(
∂2gφ,i
∂T∂nk

f +
∂gφ,i
∂T

d f
dnk

+
∂gφ,i
∂nk

d f
dT

+ gφ,i
∂2 f
∂T∂nk

)
(75d)

∂2 ln φi

∂P∂nk
=

∂2Z
∂P∂nk

bi

bm
−
∂Z
∂P

bi

b2
m

∂bm

∂nk
−

∂2gz

∂P∂nk

−
1

(ε − σ)

(
∂gφ,i
∂nk

d f
dP

+ gφ,i
∂2 f
∂P∂nk

)
(75e)

∂2 ln φi

∂nl∂nk
=

∂2Z
∂nl∂nk

bi

bm
−

(
∂Z
∂nk

∂bm

∂nl
+
∂Z
∂nl

∂Z
∂nk

)
bi

b2
m

+ (Z − 1)
bi

b2
m

(
2

bm

∂bm

∂nk

∂bm

∂nl
−

∂2bm

∂nl∂nk

)
−

∂2gz

∂nl∂nk
−

1
(ε − σ)

(
∂2gφ,i
∂nl∂nk

f +
∂gφ,i
∂nk

d f
dnl

+
∂gφ,i
∂nl

d f
dnk

+ gφ,i
∂2 f
∂nl∂nk

)
(75f)

5.4. Auxiliary functions
Note on nomenclature: In order to keep the derivative information brief we introduce the

auxiliary variables w1 and w2. Each of these variables are a placeholder for either temperature,
T , pressure, P, or a mole number, nk. We will use these auxiliary variables in cases where the
structure of the derivative equations do not depend on the type of variable.

The first order derivatives of f = f (Z, B) with respect to temperature, pressure and mole
numbers are expressed through the derivatives with respect to the compressibility factor Z =

Z(T, P, n) and B = B(T, P, n)

∂ f
∂w1

=
∂ f
∂Z

∂Z
∂w1

+
∂ f
∂B

∂B
∂w1

, w1 ∈ {T, P, nk} (76)

The second order temperature, pressure and composition derivatives are

∂2 f

∂w1
2 =

∂2 f

∂Z2

(
∂Z
∂w1

)2

+
∂ f
∂Z

∂2Z

∂w1
2 + 2

∂2 f
∂Z∂B

∂Z
∂w1

∂B
∂w1

+
∂2 f

∂B2

(
∂B
∂w1

)2

+
∂ f
∂B

∂2B

∂w1
2 (77a)

∂2 f
∂w1∂w2

=
∂2 f

∂Z2

∂Z
∂w1

∂Z
∂w2

+
∂2 f

∂B2

∂B
∂T

∂B
∂w2

+
∂ f
∂Z

∂2Z
∂w1∂w2

+
∂ f
∂B

∂2B
∂w1∂w2

+
∂2 f
∂Z∂B

(
∂Z
∂w1

∂B
∂w2

+
∂Z
∂w2

∂B
∂w1

)
(77b)
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where w1 ∈ {T, P, nk} and w2 ∈ {T, P, nl}. Note: w1 and w2 can represent different mole
numbers, nk and nl, respectively. The first order derivatives of f = f (Z, B) with respect to the
compressibility factor Z and B are

∂ f
∂Z

=
1

Z + εB
−

1
Z + σB

(78a)

∂ f
∂B

=
ε

Z + εB
−

σ

Z + σB
(78b)

The second order derivatives are

∂2 f

∂Z2 = −
1

(Z + εB)2 +
1

(Z + σB)2 (79a)

∂2 f

∂B2 = −

(
ε

Z + εB

)2
+

(
σ

Z + σB

)2
(79b)

∂2 f
∂Z∂B

= −
ε

(Z + εB)2 +
σ

(Z + σB)2 (79c)

The first order derivatives of gh = gh(T, n) are

∂gh

∂T
= T

∂gs

∂T
(80a)

∂gh

∂nk
= T

∂gs

∂nk
−

1
bm

(
∂am

∂nk
−

am

bm

∂bm

∂nk

)
(80b)

The second order derivatives are

∂2gh

∂T 2 =
∂gs

∂T
+ T

∂2gs

∂T 2 (81a)

∂2gh

∂T∂nk
= T

∂2gs

∂T∂nk
(81b)

∂2gh

∂nl∂nk
= T

∂2gs

∂nl∂nk
−

1
bm

∂2am

∂nl∂nk

+
1

b2
m

(
∂am

∂nl

∂bm

∂nk
+
∂am

∂nk

∂bm

∂nl
+ am

(
−2
bm

∂bm

∂nl

∂bm

∂nk
+

∂2bm

∂nl∂nk

) )
(81c)

The first order derivatives of gs = gs(T, n) are

∂gs

∂T
=

1
bm

∂2am

∂T 2 (82a)

∂gs

∂nk
=

1
bm

∂2am

∂T∂nk
−

1
b2

m

∂bm

∂nk

∂am

∂T
(82b)

17



The second order derivatives are

∂2gs

∂T 2 =
1

bm

∂3am

∂T 3 (83a)

∂2gs

∂T∂nk
=

1
bm

∂3am

∂T 2∂nk
−

1
b2

m

∂bm

∂nk

∂2am

∂T 2 (83b)

∂2gs

∂nl∂nk
=

1
b2

m

[ (
2

bm

∂bm

∂nl

∂bm

∂nk
−

∂2bm

∂nl∂nk

)
∂am

∂T

−
∂bm

∂nk

∂2am

∂T∂nl
−
∂bm

∂nl

∂2am

∂T∂nk
+ bm

∂3am

∂T∂nm∂nk

]
(83c)

The first order derivatives of gz = gz(Z, B) with respect to temperature, pressure and mole num-
bers are expressed through the derivative with respect to the compressibility factor Z = Z(T, P, n)
and B = B(T, P, n)

∂gz

∂w1
=
∂gz

∂Z
∂Z
∂w1

+
∂gz

∂B
∂B
∂w1

, w1 ∈ {T, P, nk} (84)

The second order temperature, pressure and composition derivatives are

∂2gz

∂w1
2 =

∂2gz

∂Z2

(
∂Z
∂w1

)2

+
∂gz

∂Z
∂2Z

∂w1
2 + 2

∂2gz

∂Z∂B
∂Z
∂w1

∂B
∂w1

+
∂2gz

∂B2

(
∂B
∂w1

)2

+
∂gz

∂B
∂2B

∂w1
2 (85a)

∂2gz

∂w1∂w2
=
∂2gz

∂Z2

∂Z
∂w1

∂Z
∂w2

+
∂2gz

∂B2

∂B
∂T

∂B
∂w2

+
∂gz

∂Z
∂2Z

∂w1∂w2

+
∂gz

∂B
∂2B

∂w1∂w2
+

∂2gz

∂Z∂B

(
∂Z
∂w1

∂B
∂w2

+
∂Z
∂w2

∂B
∂w1

)
(85b)

where w1 ∈ {T, P, nk} and w2 ∈ {T, P, nl}. Note: these derivative equations are structurally
identical to the derivatives of f (76)-(77). The first order derivatives of gz = gz(Z, B) with respect
to the compressibility factor Z and B are

∂gz

∂Z
=

1
Z − B

(86a)

∂gz

∂B
= −

1
Z − B

(86b)

The second order derivatives are

∂2gz

∂Z2 = −
1

(Z − B)2 (87a)

∂2gz

∂Z2 =
1

(Z − B)2 (87b)

∂2gz

∂Z∂B
=

1
(Z − B)2 (87c)
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The first order derivatives of the auxiliary function gφ,i = gφ,i(T, n) are

∂gφ,i
∂T

=
1
T

 1
Rbm

2 NC∑
j=1

z j
∂ai j

∂T
−
∂am

∂T
bi

bm

 − gφ,i

 (88a)

∂gφ,i
∂nk

=
1

bm


 2

N

aik −

NC∑
j=1

x jai j

 − bi

bm

(
∂am

∂nk
−

1
bm

∂bm

∂nk

) − ∂bm

∂nk
gφ,i +

1
RT

 (88b)

The second order derivatives are

∂2gφ,i
∂T 2 =

1
T

 1
Rbm

2 NC∑
j=1

z j
∂2ai j

∂T 2 −
∂2am

∂T 2

bi

bm

 − 2
∂gφ,i
∂T

 (89a)

∂2gφ,i
∂T∂nk

= −
1
T

(
∂gφ,i
∂nk

+
1

bm

∂bm

∂nk
gφ,i

)
+

1
bm

[
−
∂bm

∂nk

∂gφ,i
∂T

+
1

RT

(
2
N

∂aik

∂T
−

NC∑
j=1

x j
∂ai j

∂T

 − 1
bm

(
∂2am

∂T∂nk
−

1
bm

∂bm

∂nk

)
bi

)]
, (89b)

∂2gφ,i
∂nl∂nk

= −
1

bm

(
∂gφ,i
∂nl

∂bm

∂nk
+
∂bm

∂nl

∂gφ,i
∂nk

+
∂2bm

∂nl∂nk

)
+

1
RT

1
bm

[
2

N2

2 NC∑
j=1

x jai j − ail − aik


−

1
bm

{
∂2am

∂nl∂nk
−
∂am

∂nk

1
bm

∂bm

∂nl
−

1
b2

m

[(
∂am

∂nl
− 2am

1
bm

∂bm

∂nl

)
∂bm

∂nk
+ am

∂2bm

∂nl∂nk

] }
bi

]
(89c)

5.5. Compressibility factor
The compressibility factor is implicitly defined by the cubic equation (63) for a given tem-

perature pressure and composition. The first order derivatives of the compressibility factor
Z = Z(T, P, n) are given in terms of the derivatives of the polynomium q = q(Z) given in (63)-
(64).

∂Z
∂w1

= −

(
∂q
∂Z

)−1
∂q
∂w1

, w1 ∈ {T, P, nk} (90a)

The second order derivatives are

∂2Z

∂w1
2 = −

(
∂q
∂Z

)−1 (
∂2q

∂w1
2 +

∂2q

∂Z2

(
∂Z
∂w1

)2

+ 2
∂2q

∂w1∂Z
∂Z
∂w1

)
(91a)

∂2Z
∂w1∂w2

= −

(
∂q
∂Z

)−1 (
∂2q

∂w1∂w2
+
∂2q

∂Z2

∂Z
∂w1

∂Z
∂w2

+
∂2q

∂w1∂Z
∂Z
∂w2

+
∂2q

∂w2∂Z
∂Z
∂w1

)
(91b)

where w1 ∈ {T, P, nk} and w2 ∈ {T, P, nl}. The first order derivatives of the cubic polynomium
q = q(Z) are expressed through the derivatives of the polynomial coefficients {dm = dm(A, B)}2m=0

∂q
∂Z

= 3Z2 +

2∑
m=1

mdmZm−1 (92a)

∂q
∂w1

=

2∑
m=0

∂dm

∂w1
Zm, w1 ∈ {T, P, nk} (92b)
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The second order derivatives are

∂2q

∂Z2 = 6Z + 2d2 (93a)

∂2q
∂Z∂w1

=

2∑
m=1

m
∂dm

∂w1
Zm−1 (93b)

∂2q

∂w1
2 =

2∑
m=0

∂2dm

∂w1
2 Zm (93c)

∂2q
∂w1∂w2

=

2∑
m=0

∂2dm

∂w1∂w2
Zm (93d)

where w1 ∈ {T, P, nk} and w2 ∈ {T, P, nl}.

5.6. Polynomial coefficients

The temperature, pressure and composition derivatives of the polynomial coefficients are
expressed through the derivatives with respect to A = A(T, P, n) and B = B(T, P, n). The first
order derivatives of {dm = dm(A, B)}2k=0 are

∂dm

∂w1
=
∂dm

∂A
∂A
∂w1

+
∂dm

∂B
∂B
∂w1

, w1 ∈ {T, P, nk} (94)

The second order derivatives are

∂2dm

∂w1
2 =

∂2dm

∂A2

(
∂A
∂w1

)2

+
∂dm

∂A
∂2A

∂w1
2 + 2

∂2dm

∂A∂B
∂A
∂w1

∂B
∂w1

+
∂2dm

∂B2

(
∂B
∂w1

)2

+
∂dm

∂B
∂2B

∂w1
2 (95a)

∂2dm

∂w1∂w2
=
∂2dm

∂A2

∂A
∂w1

∂A
∂w2

+
∂2dm

∂B2

∂B
∂w1

∂B
∂w2

+
∂dm

∂A
∂2A

∂w1∂w2

+
∂dm

∂B
∂2B

∂w1∂w2
+
∂2dm

∂A∂B

(
∂A
∂w1

∂B
∂w2

+
∂A
∂w2

∂B
∂w1

)
(95b)

where w1 ∈ {T, P, nk} and w2 ∈ {T, P, nl}. Note: w1 and w2 can represent different mole
numbers, nk and nl, respectively. The first order derivatives of the polynomial coefficient d2 =

d2(A, B) with respect to A and B are

∂d2

∂A
= 0 (96a)

∂d2

∂B
= (ε + σ − 1) (96b)
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The second order derivatives are

∂2d2

∂A2 = 0 (97a)

∂2d2

∂B2 = 0 (97b)

∂2d2

∂A∂B
= 0 (97c)

The first order derivatives of d1 = d1(A, B) are

∂d1

∂A
= 1 (98a)

∂d1

∂B
= −(ε + σ) + 2(εσ − ε − σ)B (98b)

The second order derivatives are

∂2d1

∂A2 = 0 (99a)

∂2d1

∂B2 = 2(εσ − ε − σ) (99b)

∂2d1

∂A∂B
= 0 (99c)

The first order derivatives of d0 = d0(A, B) are

∂d0

∂A
= −B (100a)

∂d0

∂B
= −

(
A + εσ(2B + 3B2)

)
(100b)

The second order derivatives are

∂2d0

∂A2 = 0 (101a)

∂2d0

∂B2 = −εσ(2 + 6B) (101b)

∂2d0

∂A∂B
= −1 (101c)

5.7. The quantities A and B
The first order derivatives of A = A(T, P, n) are given in terms of the derivatives of the mixing

parameter am = am(T, n)

∂A
∂T

=
∂am

∂T
P

R2T 2 −
2
T

A (102a)

∂A
∂P

=
am

R2T 2 (102b)

∂A
∂nk

=
∂am

∂nk

P
R2T 2 (102c)
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The second order derivatives are

∂2A

∂T 2 =
P

R2T 2

(
∂2am

∂T 2 −
1
T
∂am

∂T

)
−

3
T
∂A
∂T

(103a)

∂2A

∂P2 = 0 (103b)

∂2A
∂T∂P

=
∂am

∂T
1

R2T 2 −
2
T
∂A
∂P

(103c)

∂2A
∂T∂nk

=
∂2am

∂T∂nk

P
R2T 2 −

2
T
∂A
∂nk

(103d)

∂2A
∂P∂nk

=
∂am

∂nk

1
R2T 2 (103e)

∂2A
∂nl∂nk

=
∂2am

∂nl∂nk

P
R2T 2 (103f)

The first order derivatives of B = B(T, P, n) are given in terms of the derivatives of the mixing
parameter bm = bm(n)

∂B
∂T

= −
bmP
RT 2 (104a)

∂B
∂P

=
bm

RT
(104b)

∂B
∂nk

=
∂bm

∂nk

P
RT

(104c)

The second order derivatives are

∂2B

∂T 2 = 2
bmP
RT 3 (105a)

∂2B

∂P2 = 0 (105b)

∂2B
∂T∂P

= −
bm

RT 2 (105c)

∂2B
∂T∂nk

= −
∂bm

∂nk

P
RT 2 (105d)

∂2B
∂P∂nk

=
∂bm

∂nk

1
RT

(105e)

∂2B
∂nl∂nk

=
∂2bm

∂nl∂nk

P
RT

(105f)

5.8. Mixing parameters
The derivatives of the mixing parameters am = am(T, n) exploit the symmetry of ai j =

ai j(T ) = a ji(T ). The first order derivatives are

∂am

∂T
=

NC∑
i=1

NC∑
j=1

ziz j
∂ai j

∂T
(106a)
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∂am

∂nk
=

2
N

 NC∑
i=1

ziaik − am

 (106b)

The second order derivatives are

∂2am

∂T 2 =

NC∑
i=1

NC∑
j=1

ziz j
∂2ai j

∂T 2 (107a)

∂2am

∂T∂nk
=

2
N

 NC∑
i=1

zi
∂aik

∂T
−
∂am

∂T

 (107b)

∂2am

∂nl∂nk
=

1
N

(
akl + am −

∂am

∂nk
−
∂am

∂nk

)
(107c)

The relevant third order derivatives are

∂3am

∂T 3 =

NC∑
i=1

NC∑
j=1

ziz j
∂3ai j

∂T 3 (108a)

∂3am

∂T 2∂nk
=

2
N

 NC∑
i=1

zi
∂2aik

∂T 2 −
∂2am

∂T 2

 (108b)

∂3am

∂T∂nl∂nk
=

1
N

(
∂akl

∂T
+
∂am

∂T
−

∂2am

∂T∂nk
−

∂2am

∂T∂nk

)
(108c)

The derivatives of the mixing parameter bm = bm(n) are

∂bm

∂nk
=

bk − bm

N
(109a)

∂2bm

∂nl∂nk
=

2bm − bl − bk

N2 (109b)

The derivatives of ai j = ai j(T ) are given in terms of the derivatives of the auxiliary function
âi j = âi j(T )

∂ai j

∂T
=

1 − ki j

2
√

âi j

∂âi j

∂T
(110a)

∂2ai j

∂T 2 =
1
2

1 − ki j√
âi j

∂2âi j

∂T 2 −
1

2âi j

(
∂âi j

∂T

)2 (110b)

∂3ai j

∂T 3 = −
1 − ki j

4
√

âi j

(
1

âi j

∂2âi j

∂T 2 + 2
∂3âi j

∂T 3

)
+

1
2âi j

(
1

âi j

∂âi j

∂T
∂ai j

∂T
−
∂2ai j

∂T 2

)
(110c)
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The derivatives of the auxiliary function âi j = âi j(T ) are given in terms of derivatives of the pure
component properties ai = ai(T )

∂âi j

∂T
=
∂ai

∂T
a j + ai

∂a j

∂T
(111a)

∂2âi j

∂T 2 =
∂2ai

∂T 2 a j + 2
∂ai

∂T
∂a j

∂T
+ ai

∂2a j

∂T 2 (111b)

∂3âi j

∂T 3 =
∂3ai

∂T 3 a j + 3
∂2ai

∂T 2

∂a j

∂T
+ 3

∂ai

∂T
∂2a j

∂T 2 + ai
∂3a j

∂T 3 (111c)

5.9. Pure component properties
The pure component parameters ai = ai(T ) are directly proportional to α = α(Tr,i, ωi) and as

such their derivatives are

∂ai

∂T
=
∂α

∂T
Ψ

R2T 2
c,i

Pc,i
(112a)

∂2ai

∂T 2 =
∂2α

∂T 2 Ψ
R2T 2

c,i

Pc,i
(112b)

∂3ai

∂T 3 =
∂3α

∂T 3 Ψ
R2T 2

c,i

Pc,i
(112c)

The derivatives of α = α(Tr,i, ωi) are

∂α

∂T
= −α

m(ωi)√
αTTc,i

(113a)

∂2α

∂T 2 = −
1
2
∂α

∂T

(
1
T
−

1
α

∂α

∂T

)
(113b)

∂3α

∂T 3 = −
1
2

 ∂2α

∂T 2

(
1
T
−

1
α

∂α

∂T

)
+
∂α

∂T

( 1
α

∂α

∂T

)2

−
1
α

∂2α

∂T 2 −
1

T 2

 (113c)

Appendix A. Solution of cubic equations

There exists a number of approaches for solving the cubic equation of state (56) for the roots
when pressure and temperature are given. These approaches are either direct approaches that
use explicit formula for computing the roots, iterative approaches that approximate the roots of
interest or a combination of both where the direct solution is refined by an iterative approach
in order to remove imprecision arising from rounding errors. In this work we use an iterative
approach as described by Smith et al. (2005) and compare to Cardano’s approach which is briefly
described by Monroy-Loperena (2012). The equation of state (56) is rewritten in terms of the
compressibility factor Z = PV/(RT )

Z3 − Z2 (1 − B(ε + σ − 1))

− Z (ε + σ − B(εσ − ε − σ) − A/B) B

− (A + B(1 + B)εσ) B = 0,
(A.1)
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where A and B are given by

A =
am(T, n)P

R2T 2 (A.2)

B =
Pbm(n)

RT
(A.3)

The equation of state (A.1) is written compactly

q(Z) = Z3 + d1Z2 + d2Z + d3 = 0 (A.4)

Cardano’s direct approach
The number of real roots are determined by the two quantities Q and R

Q = (d2
1 − 3d2)/9 (A.5)

R = (2d3
1 − 9d1d2 + 27d3)/54 (A.6)

There are three real roots if R2 ≤ Q3. In that case, the roots are found by the formula

Z1 = −2
√

Q cos(θ/3) − d1/3 (A.7a)

Z2 = −2
√

Q cos((θ + 2π)/3) − d1/3 (A.7b)

Z3 = −2
√

Q cos((θ − 2π)/3) − d1/3 (A.7c)

where θ is computed by

θ = arccos(R/
√

Q3) (A.8)

If R2 > Q3, there is one real root and two complex conjugate roots that are given by

Z1 = (S + T ) − d1/3 (A.9a)

Z2 = −1/2(S + T ) − d1/3 + i
√

3/2(S − T ) (A.9b)

Z3 = −1/2(S + T ) − d1/3 − i
√

3/2(S − T ) (A.9c)

where

S = −sgn(R)
(
|R| +

√
R2 − Q3

)1/3
(A.10)

T =

{
Q/S (S , 0)

0 (S = 0) (A.11)

In the case of multiple roots, the smallest represents the liquid phase compressibility factor,
Zl = min{Z1,Z2,Z3}, and the largest is vapor phase compressibility factor, Zv = max{Z1,Z2,Z3}.

An iterative Newton approach
The approach described here uses Newton iterations to solve the cubic equation (A.1). It is

possible to use higher-order methods as discussed by Olivera-Fuentes (1993), due to the cubic
nature of the equation. In the Newton approach, an initial guess, Z0, is iteratively improved by

Zk+1 = Zk − q(Zk)/q′(Zk) (A.12)

q′(Zk) = 3Z2
k + 2d1Zk + d2 (A.13)
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The iterative sequence is terminated when both of the following criteria are satisfied

|Zk+1 − Zk | < ε (A.14)

|Z3
k+1 + d1z2

k+1 + d2Zk+1 + d3| < ε (A.15)

Once the sequence is terminated, a single root has been found. The following initial estimates
are used, depending on whether the compressibility factor of the vapor phase, Zv, or of the liquid
phase, Zl, is sought

Zv
0 = 1 (A.16)

Zl
0 = B (A.17)
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