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Abstract. We present a preliminary evaluation of shelter models of different degrees of
complexity using full-scale lidar measurements of the shelter on a vertical plane behind and
orthogonal to a fence. Model results accounting for the distribution of the relative wind direction
within the observed direction interval are in better agreement with the observations than those
that correspond to the simulation at the center of the direction interval, particularly in the
far-wake region, for six vertical levels up to two fence heights. Generally, the CFD results are
in better agreement with the observations than those from two engineering-like obstacle models
but the latter two follow well the behavior of the observations in the far-wake region.

1. Introduction
Our main interest in this study is to evaluate a number of shelter models that are used when
performing wind-resource assessment studies. The shelter behind obstacles is particularly
challenging to model as the flow characteristics can be rather complex. Wind turbines are
generally sited at locations where the influence of obstacles is negligible but more turbines are
being ‘exposed’ to obstacles due to the lack of available ‘free’ sites. Further, small turbines are
installed close to buildings (due to regulations), thus suffering production losses and increased
damage due to loading.

The fence experiment was a full-scale field experiment conducted at the test site of the Risø
campus of the Technical University of Denmark (DTU). The experiment and the measurements
are described in detail in ref. [1]. The result of the experiment is a comprehensive dataset
of observations (namely seven benchmark cases) of the shelter on a vertical plane behind and
orthogonal to a fence and of the inflow conditions that were derived from measurements of
two sonic anemometers mounted on a nearby meteorological mast. The data of the benchmark
cases can be found in ref. [2]. The measurements on the vertical plane were performed with
the WindScanner (WS) system, which consists of three short-range temporally- and spatially-
synchronized continuous-wave coherent lidars; thus the WS is capable of measuring the three
velocity components by combining the measurements of the line-of-sight velocities of the three
lidars. The main purpose of the experiment was to serve as a benchmark for the evaluation
of flow models because full-scale shelter observations are nearly non-existent. Most studies are
focused on porous obstacles ([3–5]) because the experiments are designed to optimize windbreaks
for stock and crop protection. Comparison of flow model simulations of windbreaks with
measurements is provided in ref. [6].
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2. Experimental setup of the fence experiment
In ref. [1], the WS and the sonic anemometer data were classified into seven cases so that the
influence on the shelter of relative direction intervals, atmospheric stability, and porosity can be
studied. In this first evaluation of shelter models, we will focus on case II, which corresponds
to measurements using a solid fence (3 m high, 30 m wide and 0.04–0.1 m thick) with inflow
conditions within an interval of relative wind directions θ = 0◦ ± 30◦ (see Fig. 1-top right).
For this case, the estimated ensemble-average surface roughness length 〈zo〉 and dimensionless
stability parameter 〈z/L〉 are 0.0019 m and 0.015, respectively ([1]), i.e. a roughness typical
of smooth terrain (the influence of the fjord ≈78 m upstream of the fence is notorious; see
Fig. 1–top left) and a slightly stable atmosphere.

In ref. [1], the WS measurements on the vertical plane x-z were gridded so that the final
scanning pattern has 31 × 7 points (see Fig. 1-bottom). The seven vertical levels are always
at the same height above ground, [0.21, 0.46, 0.71, 0.96, 1.46, 1.96, 2.46]h, where h is the fence
height, and in ref. [2] the exact grid locations along the x-coordinate are given.
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Figure 1. The fence experiment at the Risø test site (top-left frame). Schematics of the
experimental setup are also shown: top (top-right frame) and side views (bottom frame). The
positions of the fence of height h (gray rectangle), the WS lidars (blue circles), the mast (triangle
on the top view and black thick line on the side view) with the sonics (S1 and S2), and the
scanning grid (red circles) are also illustrated. The terrain elevation is shown in the black solid
line in the side view
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3. Methods
We evaluate three models using the shelter observations of case II; a computational fluid
dynamics (CFD) model solving the Reynolds Averaged Navier-Stokes (RANS) equations
(hereafter CFD), and two engineering-like obstacle models: the Wind Atlas Analysis and
Application Program (WAsP) shelter model (hereafter WAsP-shelter) and WEMOD. Here we
provide a short overview of the models; further details of the models can be found in ref. [7].
The coordinate system used has its origin at the bottom of the fence (x is positive downwind
and perpendicular to the fence). A right-handed Cartesian coordinate system is used, where
the wind speed components (u, v, w) are aligned with the axes (x, y, z) and the horizontal wind
speed is defined as U = (u2 + v2)1/2. The slope of the terrain is not taken into account in the
models or in their results.

3.1. CFD
The CFD model uses the Ellipsys3D flow solver ([8]), which is a finite volume discretization of
the RANS equations. Turbulence is modeled with a standard two-equation RANS model with
constants typically used for atmospheric flow. The atmosphere is treated as neutral and Coriolis-
related terms are neglected. The fence is physically modeled using the full-scale dimensions
but the thickness in the model is set to 0.5 m in order to improve convergence due to the
chosen CFD mesh block-topology. CFD simulations of the flow over the fence are performed for
θ = [0, 10, 20, 30]◦ with the condition h/zo = 300.

3.2. WAsP-shelter
The model is based on the expression of Perera ([9]),

∆u(z)

uo(h)
= A (1− ϕ)

(x
h

)−1
η exp

(
−0.67η1.5

)
, (1)

where ∆u(z) = uo(z) − u(z), i.e. the difference between the undisturbed (subscript o) and

sheltered value, ϕ is the fence porosity, A a constant (=9.75), η = (z/h) (K x/h)−1/(n+2),
K = 2κ2/ ln(h/zo), and κ is the von Kármán constant (=0.4). Equation (1) is a simplified
version of the expression by Counihan et al. ([10]), which is based on an analytical 2D wake
theory.

The power law is used to estimate the ratio uo(h)/uo(z) with a shear exponent n = ln (z/zo)
−1

and so the wind speed ratio is computed as

u(z)

uo(z)
= 1− ∆u(z)

uo(h)

uo(h)

uo(z)
. (2)

Shelter is estimated in a sector-wise sense, and a wall layer is matched close to the surface and
behaves similar to an internal boundary layer from roughness changes. The wake spreads linearly
and laterally from the obstacle. The simulations are performed with an angular resolution of
1.11◦.

3.3. WEMOD
The model is well described by Taylor and Salmon ([11]) and is, in principle, very similar to
WAsP-shelter. However, in WEMOD the lateral spread of the wake is assumed to be Gaussian.
The simulations are performed with an angular resolution of 1◦.
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4. Preliminary results
For each of the models, there are two types of results for the wind speed ratio (see Fig. 2).
The one in dotted lines refers to the model result at the center of the interval of relative wind
directions, in this particular case at θ = 0◦ (hereafter known as ‘standard’ result). The one in
solid lines refers to the model result that takes into account the distribution of relative wind
directions of the case (see Fig. 3), which are data extracted from ref. [2], i.e. we ensemble-average
the simulated wind speed ratio for each relative wind direction, taking into account its relative
weight in the total wind direction distribution. The latter will be referred to as ‘non-standard’
result.

Figure 2 illustrates the results for the first six vertical levels, where the fence affects the flow
the most. The differences between the non-standard and the standard results increase with
distance from the fence and such differences are higher for the CFD simulations than for the
WEMOD and WAsP-shelter simulations. This is because although WEMOD and WAsP-shelter
can take into account the relative wind direction, only the magnitude of the horizontal wind
speed is modeled, whereas for the CFD simulation the wind field is entirely simulated. For the
standard case, the v-component in the CFD simulation is simply zero, whereas it can have a
strong influence on the horizontal wind speed magnitude as illustrated in Fig. 4, where we show
the results of the CFD model for the lowest level and for θ = 30◦. The shelter observations
show the importance of the v-component (see the right frames in Figs. 9–11 in ref. [1]). The
non-standard CFD results show a ‘step-like’ behavior for z/h ≤ 0.71 because of the v-component
resulting from the simulations with relative directions other than zero. As illustrated in Fig. 4,
the v-component can be large and positive within a region where the u-component changes sign
(in this case at x/h ≈ 4).

WEMOD and WAsP-shelter results are very similar for z/h ≥ 0.96 and for z/h < 0.96 they
disagree for x/h / 6 due to shelter limitations that are ‘artificially’ imposed in WAsP-shelter.
Interestingly, the non-standard CFD results approach those from WEMOD and WAsP-shelter
at all vertical levels when x/h ' 6, which is considered the far-wake region. Near the fence
(the near-wake region), i.e. x/h / 4, the CFD results agree better with the observations than
the engineering-like models, whereas the results from WEMOD, in particular for the region
4 ' x/h ' 5, are in better agreement with the observations. There is a peak in the wind
speed ratio within the near-wake region that is not captured by the engineering-like models for
z/h ≤ 0.46, and in the near-wake region and for z/h > 0.71, the wind speed ratio is generally
underestimated by the engineering-like models and do not follow the behavior of the observations.

5. Discussion
Interestingly, the engineering-like models overestimate the shelter in the far-wake region for
z/h ≤ 1.46, where the 2D wake theory, which serves as basis for the models, can be applied. The
constant A in Eqn. (1) is the product of an integral constant and the wake moment coefficient
([10]); for the latter Perera ([9]) assumes the value 0.8 (based on 2D obstacles) and, later,
Taylor and Salmon ([11]) suggest lower values (about half that of Perera) when dealing with
3D obstacles. This is the main reason why these two engineering-like models are known to be
‘conservative’ when used with the default parameters. When used for wind resource assessment,
the predicted wind climate (PWC) will be underestimated if the obstacles are close to the
wind turbine but the PWC will be overestimated if the obstacles are close to the observations
(e.g. from a mast). It is important to highlight that these two engineering-like models are
recommended for shelter calculations within the region where z/h < 3 and x/h < 50 but
excluding the near wake region (see Fig. 2 in ref. [7]).
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Figure 2. Wind speed ratio on the vertical plane behind and orthogonal to the fence for six
vertical levels for case II of the fence experiment. OBS are the observations and results from
different models are shown in different line types (see text for details)
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Figure 3. Frequency of relative directions for case II based on the measurements of the sonic
anemometer at 6 m
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Figure 4. Wind speed ratio at z/h = 0.21 for the direction θ = 30◦ from the CFD simulation
results. The three lines represent the results using either U , u, or v

6. Conclusions
The CFD results that take into account the relative wind direction distribution are generally
closer to the observations of the fence experiment when compared with those from 1) the
CFD simulation performed at the center of the interval of relative directions and 2) the two
engineering-like models. When compared to the latter two models, the difference is highest in
the near wake. The engineering-like models are in good agreement with the observations in the
far wake, as expected, overpredicting the shelter of the fence for vertical levels below two fence
heights.
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