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PREFACE  

This dissertation serves as a partial achievement of the requirement to obtain 

the doctor degree of philosophy at the PhD School of Technical University 

of Denmark. This work was mainly done at the Yeast Cell Factories group, 

The Novo Nordisk Foundation Center for Biosustainability, Technical 

University of Denmark, Denmark and partly at the Systems and Synthetic 

Biology group (Sys2Bio), Department of Biology and Biological 

Engineering, Chalmers University of Technology, Sweden between 2013 

and 2016, under supervision of Prof. Jens Nielsen and Dr. Irina Borodina. 

The work deployed metabolic engineering strategies and synthetic biology 

techiniques to investigate resveratrol and its derivatives production in 

Saccharomyces cerevisiae. This project was funded by DTU PhD 

scholarship.    

Mingji Li 

April 2016 
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ABSTRACT 

Resveratrol is a natural potent antioxidant with multiple beneficial 

effects on human health and is therefore used in medical, food, and cosmetic 

areas. In my PhD thesis I describe how I engineered yeast cell factory 

Saccharomyces cerevisiae for production of resveratrol by fermentation of 

cheap carbon sources. I adopted rational metabolic engineering rational 

design strategies, synthetic biology techniques and system biology 

approaches to engineer and analyse yeast cell factories. 

There are two biosynthesis pathways of resveratrol, starting from 

tyrosine or phenylalanine, which in this thesis are defined as the TAL 

pathway and PAL pathway respectively. For the TAL pathway, I 

collaborated with Christian Bille Jendresen, Steen Gustav Stahlhut to screen 

fourteen diverse heterologous tyrosine ammonia lyases (TALs) for their 

activity in yeast and E. coli. I expressed the 14 TALs in S. cerevisiae and 

analysed the resulting strains for production of p-coumaric acid. Two of the 

screened TALs, one from Herpetosiphon aurantiacus and another from 

Flavobacterium johnsoniae, were highly active and selective, i.e., they did 

not have a side reaction of converting phenylalanine to cinnamic acid. These 

results were published in Applied and Environmental Microbiology 

(Jendresen et al., 2015). 

I then constructed the TAL pathway to resveratrol by expressing the two 

TAL genes in combination with 4-coumaryl-CoA ligase (4CL) from 

Arabidopsis thaliana and resveratrol synthase (VST) from Vitis vinifera in S. 

cerevisiae; the best combination resulted in 11.66±0.57 mg l
-1

 and 
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2.74±0.05 mg l
-1

 resveratrol on minimum medium in the presence or 

absence of 5 mM tyrosine respectively. In order to improve resveratrol 

production, I increased the flux towards tyrosine precursor by de-regulating 

the aromatic amino acids biosynthesis pathway (overexpression of 

feedback-inhibition resistant versions of Aro4p
fbr

 and Aro7p
fbr

) and the 

supply of malonyl-CoA precursor by de-regulating acetyl-CoA carboxylase 

(overexpression of Acc1p
S659A, S1157A

) to avoid inactivation by the global 

regulator Snf1p. The first strategy resulted in 78% improvement of 

resveratrol titer and the second in 31% improvement. Combining the two 

strategies further improved resveratrol titer to 6.40±0.03 mg l
-1

. I 

hypothesized that the activity of resveratrol biosynthetic enzymes was 

limiting the flux towards resveratrol. To test this hypothesis I integrated the 

resveratrol pathway genes into Ty-4 retrotransposon regions, which resulted 

in integration of up to 8 copies of the pathway genes. Indeed my hypothesis 

was correct as this strategy boosted the elements was revealed to be the key 

limiting factor for resveratrol biosynthesis and sharply improved resveratrol 

production 36-fold and gave 235.57±77.00 mg l
-1

 resveratrol in batch 

fermentation. I fermented the final strain in controlled fed-batch reactors 

with glucose or ethanol feed and obtained 415.65 and 531.41 mg l
-1

 of 

resveratrol respectively. The results were published in Metabolic 

Engineering (Li et al., 2015). 

I also engineered the PAL pathway for resveratrol production by 

introducing PAL2 encoding phenylalanine ammonia lyases, C4H encoding 

cinnamate-4-hydroxylase, and 4CL2 from A. thaliana and VST1 from V. 
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vinifera in S. cerevisiae. To enhance the activity of C4H, a notorious 

cytochrome P450 enzyme, I overexpressed NADPH-cytochrome P450 

reductase (ATR2) from A. thaliana and S. cerevisiae cytochrome b5 (CYB5). 

Ty-4 element-mediated multiple integration of PAL pathway and 

overexpression of ARO4
fbr 

and ARO7
fbr

 together with ACC1
S659A, S1157A

 

resulted in 201.72±7.91 mg l
 -1

 resveratrol. In order to further improve the 

precursor supply, I knocked out ARO10 encoding 

phenylpyruvate decarboxylase and overexpressed a post-translational 

unregulated variant of acetyl-CoA synthetase (ACS1
L641P

) from Salmonella 

enterica, which improved resveratrol production to 272.64±1.34 mg l
 -1

. 

Finally, I obtained 811.50 mg l
-1

 and 754.70 mg l
-1

 resveratrol in fed-batch 

fermentation of the engineered strain using glucose or ethanol feed 

respectively. I further integrated heterologous methyltransferases into the 

resveratrol platform strain and hereby demonstrated for the first time de 

novo biosynthesis of two resveratrol derivatives, pinostilbene and 

pterostilbene, which have better stability and uptake in the human body 

compared to resveratrol. The manuscript has been submitted. 

Key words: resveratrol, tyrosine, phenylalanine, p-coumaric acid, natural 

products, cultured ingredients, biosynthesis, cell factories, metabolic 

engineering, CRISPR/Cas9, synthetic biology, Saccharomyces cerevisiae, 

fermentation.  
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DANSK RESUME 

Resveratrol er et naturligt og meget potent antioxidant, som har flere 

gavnlige effekter på menneskers helbred. Derfor bruges resveratrol i vid 

udstrækning i medicin, fødevarer og kosmetik. I min ph.d.-afhandling 

beskriver jeg videnskabeligt, hvordan gærceller (Saccharomyces cerevisiae) 

kan genmodificeres til at producere resveratrol ved at fermentere billige 

kulstof-kilder. Jeg brugte rationel metabolisk genmodificering og rationelle 

designstrategier, syntetiske biologi-teknologier og en systembiologisk 

tilgang i designet og i analysen af gærcelle-fabrikkerne. 

Resveratrol kan dannes gennem to biosyntetiske veje, som begynder med 

aminosyren tyrosin eller fenylalanin, og som henholdsvis benævnes TAL og 

PAL-vejene i denne afhandling. I forhold til TAL-vejen arbejdede jeg 

sammen med Christian Bille Jendresen og Steen Gustav Stahlhut for at 

screene 14 forskellige heterologe udgaver af tyrosin ammoniak lyase (TALs) 

for deres aktivitet i gær og E. coli. Jeg udtrykte de 14 TALs i S. cerevisiae 

og analyserede cellelinjerne for produktion af p-cumarsyre (p-coumaric 

acid). To af de screenede TALs – en fra Herpetosiphon aurantiacus og en 

fra Flavobacterium johnsoniae – var yderst aktive og selektive i den 

forstand, at de ikke omdannede fenylalanin til uønsket kanelsyre (cinnamic 

acid). Disse resultater er blevet publiceret i Applied and Environmental 

Microbiology (Jendresen et al., 2015).  

Efterfølgende designede jeg TAL-vejen til at producere resveratrol via de to 

TAL-gener kombineret med 4-coumaryl-CoA ligase (4CL) fra Arabidopsis 

thaliana og resveratrol syntase (VST) fra Vitis vinifera i S. cerevisiae. Den 
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mest effektive kombination resulterede i 11.66±0.57 mg l
-1

 og 2.74±0.05 mg 

l
-1

 resveratrol på minimal medie henholdsvist med eller uden 5 mM tyrosin. 

For at optimere resveratrol-produktionen modificerede jeg cellerne, så der 

kom større flux i retning af flere forstadier til tyrosyn. Dette blev gjort ved 

at deregulere biosyntese-vejen for aromatiske aminosyrer (gennem 

overekspression af feedback-inhiberings-resistente versioner af Aro4p
fbr

 and 

Aro7p
fbr

). Desuden forøgede jeg tilførslen af forstadier til malonyl-CoA ved 

at deregulere acetyl-CoA carboxylase (overexpression af Acc1p
S659A, S1157A

) 

for at undgå dens inaktivering ved den globale regulator Snf1p. Den første 

strategi resultetede i 78 % større koncentration af resveratrol, den anden gav 

en 31 % forbedring. Ved at kombinere de to strategier opnåedes 130% 

forbedring af resveratrol koncentration (6.40±0.03 mg l
-1

 i medie uden 

tyrosin). Min hypotese var, at aktiviteten af resveratrol biosyntese-

enzymerne begrænsede fluxen hen mod resveratrol. For at teste hypotesen 

integrerede jeg generne fra resveratrol-vejen i Ty-4 retrotransposon-

regionerne, hvilket resulterede i integration af op til otte kopier af generne. 

Det viste sig, at hypotesen stemte overens med virkeligheden, idet denne 

strageti boostede resveratrol produktionen med en faktor 36 og således gav 

235.57±77.00 mg l
-1

 i fermenteringssuppen. Jeg fermenterede den endelige 

cellelinje i kontrollerede fed-batch reaktorer med glukose eller etanol som 

kulstofskilde, og på denne måde opnåedes en resveratrol-koncentration på 

henholdsvis 416 mg l
-1

 og 531 mg l
-1

. Resultaterne blev publiseret i 

Metabolic Engineering (Li et al., 2015). 

Jeg genmodificerede også PAL-vejen for at øge resveratrolproduktionen. 

Dette gjordes ved at introducere PAL2-kodende fenylalanin ammoniak lyase, 
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C4H (som koder for cinnamate-4-hydroxylase) og 4CL2 fra A. thaliana og 

VST1 fra V. vinifera i S. cerevisiae. For at øge aktiviteten af C4H – et 

almindeligt kendt cytokrom P450 enzym – overudtrykte jeg NADPH-

cytokrom P450 reduktase (ATR2) fra A. thaliana og S. cerevisiae cytokrom 

b5 (CYB5). Ty-4 element-medieret fler-integration of PAL vejen og 

overudtryk af ARO4
fbr 

og ARO7
fbr

 sammen med ACC1
S659A, S1157A

 resulterede 

i 201.72±7.91 mg l
 -1

 resveratrol. For yderligere at forbedre tilførslen af 

forstadier til resveratrol, lavede jeg et knock-out af ARO10, der koder for 

fenylpyruvat dekarboxylase og overudtrykte en post-translationel, ureguleret 

variant af acetyl-CoA syntetase (ACS1
L641P

) fra Salmonella enterica, hvilket 

forbedrede resveratrolproduktionen til 272.64±1.34 mg l
 -1

. Til sidst 

lykkedes det at opnå en koncentration på henholdsvis 811.50 mg l
-1

 og 

754.70 mg l
-1

 resveratrol i fed-batch reaktorer med henholdsvis glukose eller 

ethanol som kulstofskilde. Desuden integrerede jeg heterologe versioner af 

metyltransferaser ind i resveratrol- platforms-cellelinjerne og på den måde 

demonstrerede jeg for første gang de novo biosyntesen af to afledninger af 

resveratrol kaldet pinostilben og pterostilben, som har en bedsre stabilitet og 

optages bedre i menneskekroppen sammenlignet med resveratrol. Dette 

manuskript er blevet indsendt til publikation. 

Nøgleord: resveratrol, tyrosin, fenylalanin, p-cumarsyre, naturlige 

produkter, kultiverede ingredienser, biosyntese, cellefabrikker, metaboliske 

modificeringer, CRISPR/Cas9, syntetisk biologi, Saccharomyces cerevisiae, 

fermentering.
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CHAPTER 1 Introduction 

1.1 Saccharomyces cerevisiae as a yeast cell factory for production of 

chemicals 

The yeast Saccharomyces cerevisiae has been used for over 5,000 years 

for baking and brewing. It was the first eukaryotic organism to be sequenced 

20 years ago and has become an established model organism for studying 

functional genomics of eukaryotes. S. cerevisiae is also one of the major 

industrial microorganisms used for the biosynthesis of biofuels, chemicals 

and proteins. As an industrial host, S. cerevisiae offers many advantages. 

The yeast grows rapidly with a doubling time of approx. 90 min in rich 

medium (Bergman, 2001). It can be grown on completely defined medium, 

which allows the selection of isolates by several nutritional auxotrophic 

markers. It can also metabolise a variety of carbon sources, including 

glucose, galactose, raffinose, ethanol, acetate, etc. It is tolerant to high 

concentrations of sugar, to ethanol and to low pH and many organic acids. 

In contrast to bacteria, the yeast is resistant to phage contamination. Due to 

the long history of usage for baking and brewing, it has been classified as a 

Generally Regarded As Safe (GRAS) microorganism by the US Food and 

Drug Administration. As a GRAS microorganism, it is particularly suitable 

for producing cultured ingredients for food, cosmetics, and beverages. Thus, 

S. cerevisiae was the first genetically modified organism (GMO) approved 

for the production of food additives (Walker, 1998) as well as the first GMO 

to be directly used in beer (Verstrepen et al., 2006). The applications of 

yeast now extend far beyond the food industry. 
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1.1.1 Metabolic engineering case studies 

As a robust cell factory, S. cerevisiae has been used for the production 

of many chemicals, ranging from bulk chemicals and biofuels to high-value 

natural products. Several processes that use native or engineered yeast as the 

host have been commercialised, such as 1
st
 and 2

nd
 generation bioethanol, 

succinic acid (Reverdia in 2012, BioAmber in 2013), isobutanol (Gevo in 

2012 and Dupont in 2013), artemisinin (Amyris in 2013), resveratrol 

(Evolva in 2014), vanillin (Evolva and International Flavors & Fragrances 

in 2014), stevia (Evolva and Cargill expected in 2016), etc.  

Organic acids 

Due to excellent tolerance of low pH, yeast strains are preferred to 

bacteria as hosts for the production of organic acids. The main hurdle in 

engineering of S. cerevisiae for high-level production of bulk chemicals is 

production of ethanol as a by-product under both anaerobic and aerobic 

conditions. Under aerobic conditions, ethanol was found to be produced by 

S. cerevisiae in the presence of high glucose concentrations (Crabtree, 1929), 

which was later named the “Crabtree effect”. Pyruvate decarboxylase (PDC) 

is the key enzyme for alcoholic fermentation. Knocking out PDC resulted in 

a decrease of ethanol production and also led to pyruvate accumulation 

(Flikweert et al., 1997). However, the PDC-deficient strain had two 

problems: 1) it could not grow on high concentrations of glucose and 2) it 

required supplementation of C2 compounds, e.g., ethanol or acetate. These 

problems were overcome by several stages of adaptive laboratory evolution 

(van Maris et al., 2004). It was shown that the evolved strain had a mutation 
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in the regulatory gene MTH1 that decreased glucose uptake rate and hence 

allowed the strain to grow also in media with high glucose concentration 

(Oud et al., 2012). A recent study showed that evolved PDC-deficient 

strains overexpressed ACH1, which lead to production of cytosolic acetyl-

CoA and thus eliminated the requirement for supplementation of medium 

with C2 compounds (Chen et al., 2015). Evolved PDC-deficient strain could 

produce 135 g l
-1

 pyruvate with a yield of 0.54 g g
−1

 glucose in batch 

fermentation (van Maris et al., 2004). The PDC deletion strategy was also 

employed to produce other organic acids, such as lactic acid and malic acid. 

Ishida et al. overexpressed bovine L-lactate dehydrogenase LDH in a pdc1 

mutant to generate an engineered yeast strain, which could produce up to 

122 g l
−1

 L-lactic acid with a yield on glucose of 61% (Ishida et al., 2006)). 

By overexpressing pyruvate carboxylase (PYC2), cytosolic malate 

dehydrogenase (MDH3) and a malate transporter SpMAE1 from 

Schizosaccharomyces pombe in an evolved PDC-deficient strain, Zelle et al. 

produced malic acid (Zelle et al., 2008). The recombinant yeast produced 59 

g l
−1

 malate at a yield of 0.42 mol (mol glucose)
−1

. Another way of 

decreasing Pdcp activity is by limiting the amount of co-factor thiamine. Xu 

et al. applied this strategy for producing fumaric acid in S. cerevisiae (Xu et 

al., 2013). The authors deleted THI2, encoding a transcriptional activator of 

thiamine biosynthesis, and FUM1, encoding fumarate hydratase, as well as 

overexpressed FUM1, PYC (cytosolic pyruvate carboxylase) and MDH 

(malate dehydrogenase) genes from Rhizopus oryzae. Shake flask 

fermentation of the engineered strain resulted in the accumulation of 
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5.64±0.16 g l
−1

 fumaric acid. Recently several non-native acids have been 

produced in S. cerevisiae by introducing synthetic pathways. Weber et al. 

first synthesised muconic acid in S. cerevisiae (Weber et al., 2012) and 

Curran et al. improved the production of muconic acid to 141 mg l
−1

 

through a series of modifications (Curran et al., 2013). The production of 3-

hydroxypropionic acid has also been achieved in S. cerevisiae via synthetic 

malonyl-CoA and β-alanine routes (Borodina et al., 2015; Chen et al., 2014; 

Jensen et al., 2014a; Kildegaard et al., 2016)  

Biofuels 

The budding yeast is inherently tolerant to ethanol and can be 

engineered to utilise xylose, the second most abundant sugar obtained from 

cellulosic materials. Therefore, it has been used as a host to produce the next 

generation biofuels. Bioethanol is one of the most successful scaled-up 

biofuels produced by engineered yeast. Cellulosic ethanol was 

commercialised in 2013 by Beta Renewables, a biotechnology company 

focusing on advanced biofuels and biochemical compounds. The yeast has 

also been genetically modified to generate advanced biofuels, such as 

isobutanol and bisabolene. The isobutanol pathway consisting of 

acetolactase synthase (alsS) from Bacillus subtilis, ketol-acid 

reductoisomerase (ilvC) from Escherichia coli, dihydroxy-acid dehydratase 

(ilvD), 2-keto-acid decarboxylase (kivD), and alcohol dehydrogenase (adhA) 

from Lactococcus lactis was constructed in an S. cerevisiae strain, which 

overexpressed the activator of ferrous transport (AFT1), with deletions of 

the following genes: aldehyde dehydrogenase (ALD6), carbonyl/aldehyde 
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reductase TMA29, glycerol-3-phosphate dehydrogenases (GPD1 and GPD2), 

and pyruvate decarboxylases (PDC1, PDC5, and PDC6). The engineered 

yeast produced 18.6 g l
-1

 isobutanol with a yield of 0.33 g g
-1

 on glucose in 

complex medium (Lies et al., 2012). On the other hand, Avalos et al. 

employed a compartmentalisation strategy by expressing the Ehrlich valine 

degradation pathway in the mitochondria to increase the local enzyme 

concentration and the availability of intermediates (Avalos et al., 2013). The 

engineered strain harbouring the mitochondria-targeted pathway resulted in 

0.64 g l
-1

 isobutanol, 0.13 g l
-1

 isopentanol, and 0.11 g l
-1

 2-methyl-1--

butanol. In the other study, Peralta-Yahya et al. expressed bisabolene 

synthases (Ag1) from Abies grandis (Peralta-Yahya et al., 2011) in a 

farnesyl diphosphate (FPP)-overproducing platform strain. The FPP 

platform strain contained the following genetic modifications: 

overexpression of a truncated HMG-CoA reductase (tHMGR), 

overexpression of FPP synthase (ERG20), deletion of the global 

transcriptional regulator of the sterol pathway (upc2-1), and downregulation 

of squalene synthase (ERG9). The engineered strain accumulated nearly 1 g 

l
−1

 bisabolene in shake flask cultivation. 

Natural products 

Natural products are high-value chemicals usually extracted from plants. 

However this process is dependent on the supply of plant material, which 

can vary depending on the weather, pathogen infections, plant diseases and 

other environmental factors. Microbial synthesis of natural products avoids 

these disadvantages and many natural products have been successfully 
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produced by engineered yeast, such as flavonoids (Trantas et al., 2009), 

isoprenoids (Kirby and Keasling, 2008), alkaloids (Hawkins and Smolke, 

2008), stilbenes (Becker et al., 2003), polyketides (Mutka et al., 2006), etc. 

Biosynthesis of artemisinic acid in S. cerevisiae is a milestone of metabolic 

engineering of natural products in yeast (Ro et al., 2006). Artemisinic acid 

is the direct precursor of artemisinin, which is an effective anti-malarial 

drug. Artemisinin is mainly extracted from the plant sweet wormwood 

Artemisia annua L, which is in short supply. Microbial production of 

artemisinic acid, followed by chemical conversion into artemisinin provides 

a viable source of the drug. Ro et al. identified a key cytochrome P450 

monooxygenase (P450) that converts the precursor farnesyl pyrophosphate 

(FPP) to artemisinic acid (Ro et al., 2006). By engineering the FPP pathway 

and expressing the novel cytochrome P450 and its partner cytochrome P450 

oxidoreductase, more than 115 mg l
-1

 artemisinic acid was obtained. 

Subsequently, the production of artemisinic acid was improved, reaching a 

titre of 25 g l
-1

 by expressing newly discovered and more efficient 

alternative aldehyde dehydrogenase (ALDH1) from Artemisia annua as well 

as a putative alcohol dehydrogenase (ADH1) (Paddon et al., 2013). Another 

breakthrough in biosynthesis of natural products in yeast was recently 

reported by Galanie et al. (Galanie et al., 2015). In this study they identified 

an enzyme which can convert the (R)-enantiomer of reticuline to the (S)-

enantiomer and then built a complete opioid biosynthesis pathway towards 

hydrocodone, consisting of 23 enzymes from different sources (plants, 

mammals, bacteria, and yeast itself) in S. cerevisiae. Although the 
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engineered strain accumulated only small amounts of the product (~0.3 μg l
-

1
), the study demonstrated the feasibility of total biosynthesis of opioids 

through a long complex pathway in S. cerevisiae. 

Although increasingly more examples of using yeast to produce 

different chemicals have been published in scientific journals, the strain 

performance parameters, i.e., titre, rate and yield, are usually several orders 

of magnitude lower than what is required for industrial-scale production. 

Developing a strain from the laboratory proof-of-concept level to a high-

performing cell factory, suitable for large-scale fermentation, is still a major 

endeavour, requiring large investment. There is therefore an urgent need for 

new approaches to enable faster and cheaper strain development.  

1.1.2 System biology approaches 

With the advent of the big-data age, genomics, transcriptomics, 

proteomics, metabolomics and even single cellular analyses generate 

immense amounts of data. Systems biology aims at global understanding of 

the cellular function and regulation and here the ‘omic data availability 

plays the key role. The expectation is that systems biology will lead to a 

more efficient data-guided metabolic engineering. 

Genomics 

The genome of S. cerevisiae was completely sequenced in 1996 

(Goffeau et al., 1996). Two years later, a website, Saccharomyces Genome 

Database (SGD) (http://www.yeastgenome.org/) was created to provide the 

genomic information, functions, pathways, and etc. of the budding yeast 
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(Cherry et al., 1998). Subsequently, the single gene-deletion collection, 

covering 96% of annotated open reading frames (ORFs) of S. cerevisiae, 

was constructed (Giaever et al., 2002). In 2003, the first genome-scale 

model of yeast was generated by Forster et al. by reconstruction of 

metabolic network in S. cerevisiae using available genomic, biochemical, 

and physiological information (Forster et al., 2003). 

Burgard et al. introduced OptKnock, the first rational modelling 

software, to guide gene deletion targets for overproducing targeted products 

(Burgard et al., 2003). The researchers from the same group further 

developed the hierarchical computational algorithm OptStrain to identify 

genetic modifications of gene expressions (over-expressions) and gene 

disruptions to improve metabolites of interest (Pharkya et al., 2004). 

Genome-scale model of S. cerevisiae has been used to identify gene 

disruption strategies for desired phenotype improvements by Patil et al. 

(Patil et al., 2005). In this study, they adopted an OptGene algorithm, which 

uses Evolutionary Algorithms (EAs) and Simulated Annealing (SA) to 

identify the global optimal solutions. OptGene has been used in several 

studies for successfully predicting metabolic engineering strategies, e.g., for 

improving the production of succinic acid (Otero et al., 2013) and vanillin 

(Brochado et al., 2010).  

Transcriptomics 

Transcriptome refers to all RNA transcripts in the cell and serves as one 

of the bridges between genotype and phenotype. Many tools for RNA 

profiling have been developed. Microarray is one such tool, which uses 
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DNA probes to detect labelled cDNA molecules that hybridise to the arrays, 

via fluorescent scans with a laser (Schena et al., 1995). Although there are 

some biases to the early microarrays, such as low reliable data given by 

different companies (Tan et al., 2003), low reproducibility between different 

research groups (Irizarry et al., 2005), and instability induced by ozone 

(Fare et al., 2003), the modern microarray technology has greatly improved 

after decades development and has been successfully applied in yeast (Clark 

et al., 2002). The comparison of microarrays with the recently introduced 

sequencing-based methods demonstrated good correlation and validity of 

microarray data (Malone and Oliver, 2011). RNA-sequencing (RNA-Seq) 

has revolutionized the transcriptome profiling, making it cheaper faster and 

more accurate (Wang et al., 2009). In this approach, the RNA pools are first 

reverse-transcribed to generate a cDNA library and then adaptors are 

attached to the cDNA fragments. The cDNA segments are then sequenced 

by using high-throughput sequencing technologies, such as Illumina IG 

(Nagalakshmi et al., 2008), Applied Biosystems SOLiD (Ondov et al., 

2008), or Roche 454 Life Science (Vera et al., 2008). The reads resulting 

from these sequencing technologies can be either aligned to the known 

transcripts or de novo assembled to generate a genome-scale transcription 

map and expression level of each gene without reference genomic 

information. The advantages of RNA-seq methods include high 

reproducibility, smaller RNA amounts, little or no background signal, high 

accuracy of quantifying expression levels, and the capacity to detect 

transcripts without a known genomic sequence (Wang et al., 2009). RNA-
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seq analysis has been applied in numerous studies on metabolic engineering 

of yeast. E.g., one study systematically investigated the xylose utilisation 

via three different pathways (Feng and Zhao, 2013). In this study, the 

authors identified three transcription factors for xylose metabolism 

regulation and nine transcription factors responsible for host dependence 

regulation. Their findings offered possible metabolic engineering targets for 

improving the production of cellulosic ethanol in yeast. RNA-seq has also 

been used to analyse the transcriptional responses after being subjected to 

genetic perturbations for the identification of precise targets for gene 

expression or repression (Kim et al., 2015).  

Proteomics 

Proteomics aims to quantify and comprehensively characterise all the 

proteins present in a cell. Compared with nucleic acid-based genomics and 

transcriptomics, proteomics methods are more demanding in terms of the 

required instrumentation and personnel expertise. Two-dimensional gel 

electrophoresis (2DE) played an important role in the early stage of the 

development of proteomic analyses. Briefly, proteins are first separated on a 

polyacrylamide gel with a stabilised pH gradient according to their pI using 

isoelectric focusing and subsequently resolved on SDS-PAGE gel according 

to their molecular mass. The spots are identified using MS and the map is 

created. The following analyses are carried out under the same conditions in 

order to obtain the alignment to the original 2DE map. 2DE had many 

disadvantages, such as low reproducibility, poor sensitivity in detecting 

proteins with extreme pH values or molecular mass, and inability to identify 
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low abundant and hydrophobic proteins (Chandramouli and Qian, 2009). 

Due to the rapid developments in mass spectrometry (MS), the LC-MS has 

taken over 2DEs for proteomics analysis. The MS-based techniques separate 

the ionised proteins loaded in the mobile-phase according to their mass to 

charge ratio. The accuracy, high throughput, and robustness of MS make it a 

widely used technique to globally profile proteome with or without 

combination with many other technologies. To study the molecular 

mechanism involved in tolerance to inhibitors during adaption, Lin et al. 

deployed an 
18

O-labeling-aided shotgun comparative proteome analysis to 

study S. cerevisiae subjected to furfural (Lin et al., 2009). Their findings of 

the response of yeast to furfural may assist in development of yeast strains 

tolerant to furfural, which is present in biomass hydrolyzates. By combining 

proteome analysis with phenotype, genotype and transcriptome data, Husnik 

et al. found no apparent difference between the first metabolically 

engineered yeast strain ML01 to be commercialised by the wine industry 

and the parental industrial wine yeast (Husnik et al., 2006). By integrating 

quantitative proteomics with DNA microarrays and databases of known 

physical interactions, Ideker et al. suggested that about 15 of the 289 

detected proteins are regulated post-transcriptionally in response to 

galactose utilisation (Ideker et al., 2001). In addition to protein abundance, 

post-translational modifications and protein interactors, protein 

conformational changes can also be probed directly on a large scale by 

coupling limited proteolysis with a targeted proteomics workflow. Applying 

this method, Feng et al. evaluated the structural features of more than 1,000 
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yeast proteins in their biological matrices simultaneously and observed that 

about 300 proteins changed their conformation when altering nutrients 

(Feng et al., 2014).  

The essence of metabolic engineering is to change the fluxes inside the 

cell in such a way that the major part of carbon is redirected towards the 

product of interest. Therefore, measurements of the intracellular fluxes and 

metabolite concentrations are very useful tools to evaluate the state of the 

cell and to decide on the next metabolic engineering steps.  

Metabolomics 

Metabolomics aims to identify and quantify extracellular or intracellular 

metabolites. Targeted metabolomics aims at quantitating a portion of 

selected representative compounds in the key pathways. It is useful for 

evaluating metabolic changes perturbed by genetic modifications or a given 

environment (Wei et al., 2010). In comparison, non-targeted metabolomics, 

which is a holistic method, focuses on global non-biased analysis of all of 

the small molecule metabolites in one biological system under specific 

conditions (Naz et al., 2014). Because the majority of the intracellular 

metabolites have very high conversion rates, the cells must be quenched 

instantly if one wants to obtain a snapshot picture of the metabolite 

concentration at a given time-point. Several quenching methods suitable for 

S. cerevisiae have been reported (Canelas et al., 2008; Dunn and Winder, 

2011; Song et al., 2015). The application of Mass Spectrometry (MS) in 

metabolomics to analyse cellular metabolites has drastically expanded due 

to its accessibility and versatility in the last two decades (Villas-Boas et al., 
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2005). Hasunuma et al. demonstrated that metabolomics is a powerful tool 

to identify targets for metabolic engineering (Hasunuma et al., 2011). In this 

study, they discovered that acetic acid decreases the flux through the 

pentose phosphate pathway, which is needed for xylose uptake. Zampar et 

al. investigated the collected dynamic and quantitative ‘omics data during 

the diauxic shift in S. cerevisiae to study how metabolism from glycolytic to 

gluconeogenic operation changes in eukaryotic cells (Zampar et al., 2013). 

Based on their analysis, the authors found the key activities responsible for 

the diauxic shift and identified the transcription factors associated with the 

observed changes in protein abundances. The genetic perturbations even at a 

single-cell level can be examined using mass spectrometry-based 

metabolomics. By employing this method, Ibanez et al. observed 

correlations between metabolites from the glycolytic pathway and 

ATP/ADP ratio changes at the single-cell level (Ibanez et al., 2013).  

1.1.3 Synthetic biology techniques 

Global understanding of the microbial metabolism by the ‘omics 

analysis provides potential targets for rational metabolic engineering. In 

order to implement the designed targets, synthetic biology tools for rapid 

and precise genetic manipulation are needed. Fortunately, S. cerevisiae has 

excellent DNA transformation efficiency and high inherent homologous 

recombination efficiency (Petes et al., 1991), which ease the genetic 

manipulations. Since the yeast was sequenced in 1996, the genetic toolbox 

has been under continuous development and the last few years in particular 

have brought significant progress in this area. 
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Promoters 

Regulating the expression level of genes is an important engineering 

tool, hence a library of well-characterised promoters, terminators, and UPRs 

is needed. Jeppsson et al. synthesised an artificial promoter library 

consisting of 37 constructs, the strength of which covered a range of three 

orders of magnitude between the strongest and the weakest ones in S. 

cerevisiae (Jeppsson et al., 2003). Alper et al. generated a 

pTEF1 (translation and elongation factor 1) mutated promoter library using 

an error-prone PCR strategy (Alper et al., 2005). In this study, they 

characterised the mutant promoter library at single-cell-level via measuring 

GFP fluorescence using flow cytometry and at the transcriptional level by 

quantifying relative mRNA levels of GFP using RT-PCR. The final 

functional promoter library had 22 members with a phenotype strength 

spanning a 196-fold range and with a mean value of 29% between adjacent 

members, which thereby allowed for precise quantitative control of gene 

expression in vivo by choosing the corresponding promoter. Partow et al. 

made a comparison and evaluation of seven different constitute promoters 

(pTEF1, pADH1, pTPI1, pHXT7, pTDH3, pPGK1 and pPYK1) in S. 

cerevisiae (Partow et al., 2010) in controlled bioreactors. Two of the tested 

promoters (pTEF1 and pPGK1) showed relatively constant activities at 

different glucose concentrations, while the activity of the other promoters 

was affected by glucose concentration. Peng et al. additionally compared 

several promoters on different carbon substrates and their activity across the 

diauxic shift (Peng et al., 2015). These promoters included glycolytic 

14

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jeppsson%20M%5BAuthor%5D&cauthor=true&cauthor_uid=14618564


 

 

promoters (pPGK1, pTDH3, pENO2, pADH1, and pTPI1), translational 

elongation factor promoters (pTEF1, pTEF2 and pYEF3), galactose 

metabolic promoters (pGAL10/pGAL1), ribosomal protein promoters 

(pRPL3, pRPL15A, pRPL4 and pRPL8B), chaperone promoters (pSSA1 and 

pSSB1), the copper-inducible pCUP1 promoter, low-glucose-inducible 

promoters (pTPS1, pHXT7, pADH2 and pCYC1), and the pPDA1 promoter. 

In order to reduce endogenous cellular interactions and avoid homologous 

recombination, Redden et al. created a series of non-homologous, purely 

synthetic, minimal yeast promoters (Redden and Alper, 2015). By 

assembling short core elements with different UAS elements of 10 bp in 

length, they constructed the shortest fungal promoters of 116 bp with high 

levels of both inducible and constitutive expression. This methodology of 

promoter engineering has great potential for metabolic engineering 

applications.  

Terminators 

In addition to promoters, terminators also play an important role in gene 

expression by influencing the 3′-end processing of mRNA, mRNA stability, 

and translational efficiency. Yamanishi et al. comprehensively evaluated the 

activity of 5,302 terminators from S. cerevisiae and observed a 70-fold 

range variation in terminators activity (Yamanishi et al., 2013). The finding 

indicated that some degradation mechanisms and regulators may exist in the 

yeast and the terminator region can affect gene expression by determining 

mRNA abundance. Subsequently, the researchers from the same group 

tested the activity of the top five strong terminator regions when pairing 
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with different promoters or reporters under different growth conditions in 

several yeast strains (Ito et al., 2013). Their results indicate that the 

activities of all five terminator regions were stronger than that of PGK1 

terminator, the commonly used terminator, in all investigated conditions and 

therefore provide alternatives when engineering yeast cell factories. On the 

other hand, Curran et al. described a set of short (35−70 bp) synthetic 

terminators in S. cerevisiae (Curran et al., 2015). The strongest terminators 

showed 3.7-fold higher expression and 4.4-fold higher transcription relative 

to the commonly used CYC1 terminator. These synthetic terminators 

together with their previously designed artificial minimal promoters offer 

very useful toolboxes when designing metabolic pathways for chemicals 

production in S. cerevisiae.  

RNA tools 

One can also control gene expression at the post-transcriptional level. 

RNA interference (RNAi) is a technique for post-transcriptional silencing 

genes of interest. In the process, the enzyme Dicer encoding the 

ribonuclease III (RNaseIII) endonuclease successively cuts long double-

stranded RNA (dsRNA) into small interfering RNAs (siRNAs) of ~21 nt; 

the siRNAs are then bound to Argonaute (Ago) and subsequently guide Ago 

to identify and cleave the target transcripts (Tomari and Zamore, 2005). 

However, S. cerevisiae lost the RNA silencing pathway (Dicer and 

Argonaute) during evolution (Nakayashiki et al., 2006). Introducing Dicer 

and Argonaute from Saccharomyces castellii proved to restore the RNA 

silencing machinery in S. cerevisiae (Drinnenberg et al., 2009). The RNA 
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interference (RNAi)-assisted genome evolution method (RAGE) was 

developed to accumulate multiplex beneficial genetic modifications in an 

evolving yeast genome (Si et al., 2015). By three rounds of RAGE, the 

authors obtained a strain with substantially improved acetic acid tolerance 

and identified three targets that conferred the improved phenotype. RAGE 

can greatly accelerate the identification of desired traits by rapid and 

iterative genome-wide screening.  

CRISPR/Cas9 system 

The application of the Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems in 

genome editing is a landmark in the development of genetic tools. Recently, 

the CRISPR/Cas9 system has been successfully adopted in a wide range of 

species from bacteria, yeast to plants and mammalian cells (Sander and 

Joung, 2014). The CRISPR/Cas9 system was first introduced into S. 

cerevisiae by DiCarlo et al. in 2013 (DiCarlo et al., 2013). Specifically, the 

DNA target sequence next to the proto-spacer adjacent motif (PAM) site is 

identified and matched with the 20 nt single-stranded guide RNA; the Cas9 

nuclease then binds to the target sequence and generates a double-stranded 

break (DSB); homologous recombination occurs between the DNA adjacent 

to the DSB and the double-stranded oligos (dsOligos) or larger DNA 

fragments. This allows introducing gene knock-outs, promoter replacements, 

protein mutations, expression cassettes, etc. The CRISPR/Cas9 system can 

be used to screen out negative transformants by generating the lethal DSB 

without recombination, thus allowing for high efficient, multiple and 
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simultaneous, and seamless knock-out or knock-in events. Jakociunas et al. 

applied the CRISPR/Cas9 system in S. cerevisiae and targeted up to 5 

different genomic loci at the same time with high efficiency by using only 

90-bp long dsOligos (Jakociunas et al., 2015a). Later, gene insertions and 

gene deletions were achieved simultaneously in a single transformation by 

application CRISPR/Cass9 system in laboratory and industrial S. cerevisiae 

strains (Jakociunas et al., 2015b; Stovicek et al., 2015b).  

Vectors 

A set of vectors named EasyClone was designed for S. cerevisiae to 

simultaneously integrate multiple genes into the genome (Jensen et al., 

2014b). This expression system consist of a backbone with a replication 

origin from bacteria which allows for plasmid amplification in E. coli, a 

USER cloning cassette used for insertion of standardised biobricks, two 

terminators in opposite directions flanking the USER cloning site, an 

auxotrophic selection marker flanked by LoxP sites, and two ‘UP’ stream 

and ‘DOWN’ stream targeting sequences which are homologous to specific 

integration sites on the genome. The integrative plasmid can be linearised at 

the USER cassette, and assembled with the genes of interest and promoters 

by USER cloning (Uracil-Specific Excision Reagent) method. The 

EasyClone vectors allow the integration of up to 6 genes into 3 different loci 

in a single transformation event, when using triple selection. The markers 

can be easily removed by CreA recombinase-mediated loop-out and the 

strain can be further engineered. Subsequently, Stovicek et al. replaced the 

auxotrophic markers with six synthetic dominant markers obtaining 
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EasyClone 2.0 vectors, which allow engineering of industrial strains without 

auxotrophies (Stovicek et al., 2015a). A vector set EasyCloneMulti was 

developed for integrating multiple copies of expression cassettes into 

retrotransposon element (Maury et al., 2016). The genome sequencing 

results reveal that many Ty elements are distributed through the 

chromosomes of S. cerevisiae (Goffeau et al., 1996). High copy number of 

integrations onto Ty elements through a single transformation with a high 

efficiency has been reported (Lee and Da Silva, 1997; Parekh et al., 1996; 

Wang et al., 1996). Maury et al. created a set of integrative vectors that 

targets Ty retrotransposons tagged with different auxotrophic marker 

degradation and has been successfully applied in our study to improve 

resveratrol production (Li et al., 2015).  
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1.2 Microbial production of resveratrol  

1.2.1 Discovery 

Resveratrol (3,4',5-trihydroxystilbene) is a polyphenolic compound with 

antioxidant activity. It was isolated by Takaoka from a poisonous medicinal 

plant Veratrum album in 1939 (Takaoka, 1939). Resveratrol was later found 

in extracts of the roots of Japanese knotweed, Polygonum cuspidatum, 

which is a Chinese herbal medicine and now the main source for 

commercial resveratrol (Nonomura et al., 1963). Subsequently, it was also 

isolated from grape Vitis vinifera and has been characterised as a 

phytoalexin, because it was produced in response to fungal infection or 

exposure to ultraviolet light (Langcake and Pryce, 1976). Red wine was then 

found to be rich in resveratrol (Siemann and Creasy, 1992). This fact was 

hypothesised to explain the French paradox, namely low rate of coronary 

heart diseases among French in spite of the high-fat diet (Renaud and de 

Lorgeril, 1992). Resveratrol also occurs in more than other 70 plant species, 

covering 32 genera, of which most are edible, including peanuts, berries, 

cocoa, etc. (Aggarwal et al., 2004; Fan et al., 2010; Harikumar and 

Aggarwal, 2008; Nikolova, 2007). It is believed that red wine, grape, 

Japanese knotweed and peanuts are the most abundant natural sources of 

resveratrol (Pervaiz and Holme, 2009; Shakibaei et al., 2009). 

1.2.2 Isomers 

Resveratrol exists in two forms, cis-resveratrol and trans-resveratrol 

(Fig. 1.2.1), which differ in the confirmation of the double bond between the 
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two phenolic rings. The two isoforms of resveratrol can be discriminated by 

different UV spectrum (288 nm for the cis isomer and 308 nm for the trans 

isomer) (Trela and Waterhouse, 1996). The trans-resveratrol is the major 

and more stable natural form. However, the trans-resveratrol is unstable 

under exposure to UV light and would undergo cis-isomerization (Camont 

et al., 2009). In the absence of light, the trans-form can remain stable for 

several months if it is kept from high pH environment (Trela and 

Waterhouse, 1996).  

 

Fig 1.2.1 Structures of two resveratrol isoforms. 

1.2.3 Medical research 

Despite resveratrol being discovered in 1939, it did not get much 

attention until the late 1990s (Fig. 1.2.2), when the biological effects of the 

Polygonum-extracted stilbene on lipid metabolism in the liver of mice and 

rats were uncovered (Arichi et al., 1982; Kimura et al., 1983). Thereafter, 

many therapeutic effects of resveratrol have been reported. The International 

Conference on Resveratrol and Health was set up in 2010 and formulated a 

set of recommendations in relation to human consumption (Vang, 2013).  
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Fig 1.2.2 Increasing number of scientific publications on resveratrol.
1
 

Antioxidant  

Resveratrol can function as an antioxidant by forming stable radicals 

through resonance structure of aromatic groups (King et al., 2006). 

Oxidative stress, which refers to the accumulation of reactive oxygen 

species (ROS) generated during cellular metabolism, can result in cellular 

damage by oxidative modification of DNA, protein, and lipids (Arthur et al., 

2008). DNA damage resulting from ROS can lead to mutagenesis, 

                                                           
1  The number of publications was obtained by searching term “resveratrol” in 

title/abstract for each year from 1978 to 2015 on PubMed (http://www. 

ncbi.nlm.nih.gov/pubmed/). 
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oncogenesis and aging. Resveratrol showed the free radical scavenging 

activity to protect DNA against oxidation-induced damage (Burkhardt et al., 

2001; Kumar et al., 2007). The oxidation of low-density lipoprotein (LDL) 

is strongly associated with the development of coronary heart disease 

(Holvoet, 2004). It was reported that resveratrol can inhibit LDL oxidation 

in vitro by chelating copper and directly scavenging free radicals (Frankel et 

al., 1993). In vivo assay also revealed that resveratrol can reduce lipid 

peroxidation and increase plasma antioxidant capacity in rats (Sengottuvelan 

et al., 2006; Wenzel et al., 2005). In addition, resveratrol was shown to 

protect proteins against ROS oxidation (Olas et al., 2006; Olas et al., 2004). 

Cardiovascular  

The potential effect of resveratrol in red wine on the French Paradox 

inspired people to study resveratrol effects on cardiovascular activity. One 

of the notable cardioprotective mechanisms of resveratrol is the inhibition 

on platelet aggregation, which is used to seal damaged blood vessels to stop 

bleeding when wounded (King et al., 2006). Excessive platelet aggregation 

can lead to pathogenesis of cardiovascular disease. Both in vivo and in vitro 

assays support resveratrol having inhibitory effect on platelet aggregation 

(Olas et al., 2008; Wang et al., 2002). There is also evidence that resveratrol 

can up-regulate endothelial nitric oxide synthase (eNOS), which can 

improve nitric oxide (NO)-mediated vasodilation and accelerate blood flow 

(Gresele et al., 2008; Wallerath et al., 2002). Additional explanations of the 

protective impacts of resveratrol on cardiovascular system through 

inhibiting LDL oxidation or anti-proliferation were also reported (Kovanen 

23



 

 
 

and Pentikainen, 2003; Laden and Porter, 2001; Mizutani et al., 2000; Zou 

et al., 2000).  

Anti-tumour 

Cancer is a major challenge to human health worldwide with 8.2 million 

deaths due to cancer in 2012 (Torre et al., 2015). Many studies have been 

dedicated to finding the causes for cancer and ways to decrease the risk of 

the disease. The studies of resveratrol on anticancer activity have 

dramatically increased since 1997, when Jang et al. published the 

chemopreventive activity of resveratrol in the three major stages of 

carcinogenesis, tumour initiation, promotion, and progression (Jang et al., 

1997). It suggested that multiple mechanisms may contribute to the anti-

proliferative activity of resveratrol, including the arrest of the cell cycle 

(Castello and Tessitore, 2005; Joe et al., 2002), the induction of apoptosis 

through activating p53 (Demoulin et al., 2015; Ding and Adrian, 2002), and 

suppressing the nuclear factor-κB (Ivanov et al., 2008), activator protein-1 

(Kim et al., 2012) and cyclooxygenase-2 (Lee et al., 2012). 

An additional explanation is that resveratrol is firstly metabolised to 

piceatanol by the cytochrome P450 1B1 (CYP1B1) enzyme in biological 

system; and it is piceatanol that plays the anti-tumour effect (Potter et al., 

2002). Many in vivo studies clearly and strongly support a chemopreventive 

effect of resveratrol in the development of cancer and therefore many 

clinical trials of resveratrol are underway (Baur and Sinclair, 2006).  
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Anti-aging 

A new application area for resveratrol was opened in the early 2000s 

with the discovery that resveratrol is able to mimic caloric restriction effects 

and extend the lifespan of yeast (Howitz et al., 2003), worms (Viswanathan 

et al., 2005), flies (Bauer et al., 2004), and rodents (Baur et al., 2006) 

through activation of the sirtuin pathways. Sirtuins are silent information 

regulator proteins, which belong to conserved NAD
+
-dependent 

deacetylases (class III histone deacetylases) and overexpression of sirtuins 

can result in extension of lifespan (Tissenbaum and Guarente, 2001). Many 

studies suggested that human sirtuin 1 (SIRT1) was activated indirectly by 

resveratrol (Borra et al., 2005; Kaeberlein et al., 2005; Pacholec et al., 

2010). One potential target of resveratrol is AMP-activated protein kinase 

(AMPK), which has been shown to activate SIRT1 and thus indicates a 

possible mechanism for the indirect activation of SIRT1 by resveratrol 

(Canto et al., 2009). AMPK acts as a regulator of global metabolism to 

increase NAD
+
 levels and activate Sirt1p (Canto et al., 2009). It has been 

suggested that high concentrations of resveratrol can increase the AMP/ATP 

(Carling et al., 1987) or ADP/ATP ratio (Xiao et al., 2011) to indirectly 

activate AMPK (Hawley et al., 2010) and therefore increase the lifespan of 

Caenorhabditis elegans (Apfeld et al., 2004). However, there is no strong 

evidence whether resveratrol can have an anti-aging effect on humans and 

the lifespan extension effect on other organisms is disputed as well.  

Besides, resveratrol has been reported to possess many other therapeutic 

activities, such as anti-inflammatory, neuroprotective, etc. activity 
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(Fernandez-Mar et al., 2012). These potential health benefits partially 

depend on the absorption and the bioavailability of resveratrol (King et al., 

2006). Although the absorption of resveratrol has been shown to be efficient 

following oral administration, the bioavailability of resveratrol is low, which 

limits its application in humans (Cottart et al., 2010; Patel et al., 2011). The 

other issue is the low solubility of resveratrol in water, which is only 0.05 g 

l
-1

. Consequently, additional information and more clinic trials on 

resveratrol are needed to release these constrains.  

1.2.4 Biosynthesis pathway of resveratrol 

Resveratrol is derived from the phenylpropanoid pathway, which exists 

in all higher plants and serves as the source of a wide range of phenolic 

compounds, such as flavonoids, lignins, and coumarins. There are two 

pathways to synthesise resveratrol either from tyrosine or from 

phenylalanine (Fig. 1.2.3), which are defined as TAL pathway and PAL 

pathway respectively in the thesis.  

The first step of PAL pathway is deamination of phenylalanine catalysed 

by phenylalanine ammonia lyase (PAL) to generate cinnamic acid. The 

product of PAL, cinnamic acid, is then converted to p-coumaric acid by 

cinnamate-4-hydroxylase (C4H). C4H is a P450 enzyme, which usually 

requires cytochrome P450 reductase (CPR) to function. Alternatively, p-

coumaric acid can be obtained by one-step deamination from tyrosine 

catalysed by tyrosine ammonia lyase (TAL). The 4-coumaroyl-CoA ligase 

(4CL) then attaches coenzyme A to p-coumaric acid to generate 4-

coumaroyl-CoA. Three molecules of malonyl-CoA are then condensed to 
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one molecule of 4-coumaroyl-CoA by resveratrol synthase (STS) to result in 

one molecule of resveratrol. 

 

Fig. 1.2.3 Biosynthesis pathway of resveratrol. PAL, phenylalanine ammonia lyase; 

C4H, cinnamate-4-hydroxylase; CPR, cytochrome P450 reductase; TAL, tyrosine 

ammonia lyase; 4CL, 4-coumaroyl-CoA ligase; VST, resveratrol synthase. 



 

 
 

1.2.5 Metabolic engineering of microorganisms for resveratrol 

production 

Resveratrol can be obtained by plant extraction, chemical synthesis, and 

microbial production. Resveratrol produced biologically either in plants or 

in recombinant microorganisms is mainly trans-resveratrol. The plant-

derived resveratrol is usually extracted from the most abundant natural 

sources, such as grapes and Japanese knotweed P. cuspidatum. However, 

there are several disadvantages: 1) the supply of the plant resources is 

unstable due to geographic diversity; 2) plant farming is susceptible to 

environmental factors, such as weather and climate change, pest invasion, 

and disease infection; 3) the extraction process is very complicated, which 

lowers the resveratrol extraction efficiency (Karacabey and Mazza, 2008); 4) 

the purity is low and ranges widely, with some preparations containing as 

low as 50% of the active ingredient and additionally containing emodin, 

which has a laxative effect (Srinivas et al., 2007); and 5) it is not 

environmentally friendly. Chemical synthesis of resveratrol has been 

extensively studied and the yield of chemical synthesis is relatively high. 

However, except for the well-known environmental drawback, the 

challenges of resveratrol production via chemical synthesis also lie in: 1) the 

fact that it usually requires multiple steps and harsh conditions, such as high 

temperature, polluting metal catalysts (Fan et al., 2010); 2) it is easily 

contaminated by many unwanted by-products (Mei et al., 2015); and 3) it 

may lack stereoselectivity, which leads to a mixture of trans- and cis-

isomers (Fan et al., 2010). In comparison, the mentioned disadvantages by 
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plant extraction and chemical synthesis of resveratrol can be averted by 

microbial biosynthesis. Many engineered microorganisms have been 

employed for resveratrol production.  

S. cerevisiae 

The first proof-of-concept microbial production of resveratrol was 

reported by Becker et al. in 2003 (Becker et al., 2003). The authors 

expressed 4CL216 from a hybrid poplar (Populus trichocarpa×Populus 

deltoids) and VST1 from Vitis vinifera in S. cerevisiae FY23. The 

recombinant strain accumulated 1.45 μg l
-1

 resveratrol in the form of piceid, 

resveratrol glucoside, when the recombinant yeast culture was fed 10 mg l
-1

 

p-coumaric acid. Later on, Beekwilder et al. integrated the two genes, 4CL2 

from Nicotiana tabacum cv. Samsun and STS from V. vinifera, into the 

genome of S. cerevisiae CEN.PK113-3B, which resulted in 5.8 mg l
-1

 non-

glycosylated resveratrol from 820.8 mg l
-1

 p-coumaric acid on YNB 

medium (Beekwilder et al., 2006). When 4CL1 from Arabidopsis thaliana 

and STS from Arachis hypogaea were introduced into S. cerevisiae W303-

1A, 3.1 mg l
-1

 resveratrol was obtained from 15.3 mg l
-1

 p-coumaric acid on 

YPED medium (Shin et al., 2011). Instead, Sydor et al. used one industrial 

yeast strain isolated from Brazilian sugar cane plantation (Barra Grande) to 

express 4CL1 from A. thaliana and STS from V. vinifera. When growing the 

resulting strain on YEPD medium and feeding it with 15 mM p-coumaric 

acid (2.46 g l
-1

), they obtained 391 mg l
-1

 resveratrol (Sydor et al., 2010a). 

This was the highest production of resveratrol reported in yeast prior to our 

study.  
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Zhang et al. adopted a fusion strategy to channel substrates from 4CL to 

VTS, which were from A. thaliana and V. vinifera, respectively, in yeast S. 

cerevisiae WAT11 (Zhang et al., 2006b). Although the yeast can only 

accumulate 0.65 mg l
-1

 resveratrol on medium with 12 mg l
-1

 p-coumaric 

acid, when they fused 4CL and STS with a Gly-Ser-Gly linker, the yield 

was 15-fold higher than the expression of individual enzymes. Surprisingly, 

9.8% of the total production was found to be cis-resveratrol. Subsequently, 

the structure of the unnatural fusion protein 4-coumaroyl-coA 

ligase::stilbene synthase (4CL::STS) was characterised and its kinetic 

parameters were compared with that of each enzyme (Wang et al., 2011b). 

The results showed that no structural or functional properties of At4CL1 and 

VvVST in the fusion protein were significantly changed. Although the 

fusion protein had a slightly higher catalytic efficiency over each enzyme, it 

was likely that the increased resveratrol production resulted from 

localization of the active sites in close proximity. Instead, they generated 

scaffolds to recruit 4CL and STS for increasing resveratrol production and 

this resulted in 5-fold improvement of resveratrol production to 6.7 mg l
-1

 

over the strain without scaffolds (Wang and Yu, 2012). Therefore, their 

strategies provide an alternative design for metabolic engineering to 

improve catalytic efficiency. In addition, they found 6.0 mg l
-1 

resveratrol 

from extraction of fresh yeast cell pallets, which means that a transporter 

was needed to pump resveratrol out of the cells (Zhang et al., 2006b). To 

address this problem, the same group introduced an E. coli transporter araE 

and obtained 3.1 mg l
-1

 resveratrol, which was 2.44-fold improvement over 
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the control strain (Wang et al., 2011a). They attempted to express tyrosine 

ammonia lyase (TAL) from Rhodobacter sphaeroides in the yeast host, but 

failed due to problems with expression (Zhang et al., 2006b). In a later 

study, they used a codon-optimized TAL gene and produced 1.90 mg l
-1

 

resveratrol from 12 mg l
-1

 tyrosine on synthetic defined drop-out medium  

(Wang et al., 2011a). Notably, 1.06 mg l
-1 

resveratrol was accumulated in 

the medium even without tyrosine supplementation; the authors attributed 

this to the tyrosine contained in the medium.  

Alternatively to TAL, Shin et al. introduced PAL from Rhodosporidium 

toruloides, cinnamic acid 4-hydroxylase (C4H) and 4CL both from A. 

thaliana, and STS from A. hypogaea into S. cerevisiae W303-1A (Shin et al., 

2012). Due to the catalysing activity of PAL from R. toruloides on both 

tyrosine and phenylalanine (Jiang et al., 2005), the engineered strain could 

produce 3.4 mg l
-1

 resveratrol on complex medium. To increase the pool of 

malonyl-CoA, they swapped the ACC1 promoter with a stronger galactose-

inducible GAL1 promoter, which resulted in 2-fold increase of ACC1 

transcriptional level and 1.3-fold increase of the resveratrol production to 

4.3 mg l
-1

. A further improvement of 1.7-fold resveratrol production (5.8 mg 

l
-1

) was achieved when 12 mM tyrosine was added. The other study tried to 

produce resveratrol from phenylalanine by introducing PAL from Populus 

hybrid (Populus trichocarpa × P. deltoids), C4H and 4CL from G. max and 

STS from V. vinifera cv. Soultanina in S. cerevisiae YPH499. In order to 

increase the activity of C4H, they expressed NADPH-cytochrome P450 

reductase (CPR) from the same source as PAL. The final strain only 
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accumulated 0.29 mg l
-1

 resveratrol from 10 mM phenylalanine (Trantas et 

al., 2009). 

Vos et al. investigated the effect of specific growth rate on the 

physiology and productivity of the engineered yeast resveratrol-producing 

strains, which were engineered by Katz et al. (Katz et al., 2011), in aerobic, 

glucose-limited chemostat cultivation (Vos et al., 2015). Stoichiometric 

analysis revealed that de novo production of resveratrol was strongly 

correlated with the growth rate due to requirement of high amount energy 

(13 moles of ATP per mole resveratrol) and involvement of key precursors, 

which were growth rate-dependent, for resveratrol synthesis. Introduction of 

resveratrol biosynthesis pathway into S. cerevisiae resulted in apparent 

transcriptional differences in the genes involved in precursor biosynthesis, 

such as TKL1, ARO7 and ARO9. This highlighted the need for uncoupling 

growth and resveratrol production for industrial application. 

E. coli 

The widely-used host, E. coli, was employed to produce resveratrol. 

Watts et al. expressed 4CL1 from A. thaliana and STS from A. hypogaea in 

E. coli strain BW27784 and obtained 104.5±4.4 mg l
-1

 resveratrol on 

mineral medium supplemented with 1 mM p-coumaric acid (164.16 mg l
-1

) 

(Watts et al., 2006). On the other hand, when 4CL2 from N. tabacum cv. 

Samsun and STS from V. vinifera were introduced into E. coli BL21, the 

recombinant strain resulted in 16 mg l
-1 

resveratrol during the fermentation 

on complex 2×YT medium with 5 mM p-coumaric acid (820.8 mg l
-1

) 

(Beekwilder et al., 2006). The highest accumulation of resveratrol achieved 
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in E. coli reported so far was 2.3 g l
-1

 (Lim et al., 2011). In this study, they 

screened seven resveratrol synthases from V. vinifera (VvSTS), Polygonum 

cuspidatum (Pcu1STS and Pcu3STS), Psilotum nudum (PnSTS), Pinus 

massoniana (PmSTS), Pinus strobes (PsSTS), and Pinus densiflora (PdSTS) 

via bioinformatics and homology modelling. The in vitro assay revealed an 

inhibition effect of acetyl-CoA on STS; the kcat/Km of AhSTS and VvSTS 

were significantly higher than that of STS from the other organisms. The in 

vivo assay of the screened STS showed VvSTS as the best candidate for 

resveratrol production when paring with At4CL from A. thaliana, which 

resulted in 1.38±0.18 g l
-1 

resveratrol on M9 medium from 2.46 g l
-1 

p-

coumaric acid in BW27784. They further improved resveratrol production 

to 2.3 g l
-1 

from by additionally supplementing cerulenin to limit carbon lost 

from malonyl-CoA to fatty acids biosynthesis pathway. Wu et al. also 

reported resveratrol production from tyrosine in E. coli JM109 (Wu et al., 

2013). They deployed a multivariate modular strategy by putting TAL from 

R. glutinis, 4CL from Petroselinum crispum and STS from V. vinifera 

together with malonate assimilation pathway from Rhizobium trifolii (matB 

malonyl-CoA synthetase and matC malonate carrier protein) to increase the 

supply of malonyl-CoA as distinct modules. The optimum strain resulted in 

35.02 mg l
-1

 of resveratrol from 3 mM tyrosine (543.57 mg l
-1

) on MOPS 

medium. Afonso et al. investigated the physiological states and plasmid 

segregation stability of the E. coli strain BW27784 expressing 4CL1 from A. 

thaliana and STS from A. hypogaea on low copy and high copy number 

plasmids, respectively (Afonso et al., 2015). They concluded that culture 
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conditions, cellular viability, and the concentration of p-coumaric acid had 

impact on resveratrol accumulation. Specifically, I) culture conditions, for 

example, temperatures over 35℃ led to resveratrol degradation (Chung et 

al., 2006) and inappropriate pH (<6.5 or >7.0) resulted in reduction of 

resveratrol by affecting cell growth; II) cellular viability affected resveratrol 

production by altering physiological states; and III) high concentration of p-

coumaric acid could result in decrease of cellular viability, such as the 

reduction of cell number by damaging cell membranes, and the disruption of 

cellular functions via binding to the bacterial genomic DNA (Lou et al., 

2012) and consequently affected resveratrol volumetric yields. 

Other microorganisms  

Shi et al. isolated and identified 21 resveratrol-producing 

microorganisms out of 65 endophytes from Merlot wine grapes (V. vinifera 

L. cv. Merlot), wild Vitis (Vitis quinquangularis Rehd.), and Japanese 

knotweed (P. cuspidatum Siebold & Zucc.) (Shi et al., 2012). Among these 

isolates, Alternaria sp. MG1 isolated from cob of Merlot gave constitutive, 

the most stable, and the highest resveratrol production after three 

subcultures. Later on, they investigated the effects of bioconversion 

conditions on resveratrol production (Zhang et al., 2013a). Under the 

optimal conditions (a resting time of 21.3 h with the innoculum of 12.16% 

(wet cell weight in 100 mL medium) in 0.2 mM phosphate buffer together 

with 0.1 g/L MgSO4, 0.2 g/L CaSO4, and 4.66 mM phenylalanine at pH 6.5), 

the strain accumulated 1.376 μg l
-1

 resveratrol. They further identified the 

resveratrol biosynthesis pathway consisting of PAL, C4H and 4CL by 
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analysing and tracking the related enzymes (Zhang et al., 2013b). Due to the 

concentration of piceid (resveratrol-3-O-β-glucoside) being higher than that 

of resveratrol in plants but its bioavailability is relatively much lower, Wang 

et al. used Aspergillus oryzae to ferment P. cuspidatum for bioconversion of 

piceid to resveratrol with the highest yield of resveratrol 1.35% (Wang et al., 

2007). Park et al. expressed 4-coumarate/cinnamate:coenzyme A ligase 

(ScCCL) from Streptomyces coelicolor and codon optimised STS from A. 

hypogaea in Streptomyces venezuelae DHS2001 (Park et al., 2009). The 

recombinant strain resulted in 0.4 mg l
−1

 resveratrol from 1.2 mM p-

coumaric acid (196.99 mg l
−1

).  

Resveratrol derivatives 

The beneficial effects of resveratrol are constrained by its instability, 

which results from its sensitivity to light, oxygen and harsh pH conditions 

and therefore leads to a reduction of the bioavailability and bioactivity 

(Walle et al., 2004). One way to solve this problem is to use more stable 

resveratrol derivatives, such as O-methyl ethers pinostilbene and 

pterostilbene. Pinostilbene is a mono-methyl ester of resveratrol, while 

pterostilbene is dimethylester of resveratrol. Many studies have shown that 

pinostilbene and pterostilbene have equal or even better bioactivities than 

resveratrol (Chao et al., 2010; Fulda, 2010; Rimando et al., 2002). In 

addition, the substitution of hydroxyl group by methoxy group increases the 

hydrophobicity and thus improves oral absorption and cellular uptake 

((Kapetanovic et al., 2011; Remsberg et al., 2008). 
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Consequently, metabolic engineering of microorganisms for production 

of resveratrol derivatives is of great interest. Katsuyama et al. cloned the 

pinosylvin methyltransferase (PMT) homologue from Oryza sativa in a 

resveratrol-producing platform E. coli strain (the strain overexpressed PAL 

from R. rubra, 4CL from Lithospermum erythrorhizon, STS from A. 

hypogaea, and ACC from Corynebacterium glutamicum), which resulted in 

18 pinostilbene and 5.8 mg l
-1

 pterostilbene from 540 mg l
-1

 tyrosine 

(Katsuyama et al., 2007). In 2013, resveratrol O-methyltransferases (ROMT) 

from Vitis riparia and Sorghum bicolor were evaluated in E. coli (Jeong et 

al., 2014). This study suggested that SbROMT was mainly in charge of 

mono-methylation but not di-methylation of resveratrol: 34 mg l
-1

 

pinostilbene and only 0.16 mg l
-1

 pterostilbene were obtained from 1 mM 

resveratrol (228.24 mg l
-1

). In contrast, only a small amount of both 

methylated resveratrol derivatives were generated by VrROMT. Wang et al. 

investigated ROMT from V. vinifera and reported that this variant 

specifically catalysed the methylation of resveratrol into pterostilbene in 

both E. coli and S. cerevisiae (Wang et al., 2015). The engineered E. coli 

and S. cerevisiae could produce 50 mg l
-1

 and 2.2 mg l
-1

 pterostilbene 

respectively from p-coumaric acid by expressing the fusion protein 

4CL::STS and VvROMT. 
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CHAPTER 2 Application of synthetic biology for production 

of chemicals in yeast Saccharomyces cerevisiae. 
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Synthetic biology and metabolic engineering enable generation of novel cell 

factories that efficiently convert renewable feedstocks into biofuels, bulk 

and fine chemicals, thus creating the basis for biosustainable economy 

independent on fossil resources. This review describes synthetic biology 

applications for design, assembly and optimization of non-native 

biochemical pathways in yeast S. cerevisiae. 
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Hørsholm, Denmark, Tel.: +45 4525 8020; Fax: +45 4525 8001; E-mail: irbo@biosustain.dtu.dk
Editor. Hal Alper

ABSTRACT

Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable
feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil
resources. While over a hundred proof-of-concept chemicals have been made in yeast, only a very small fraction of those
has reached commercial-scale production so far. The limiting factor is the high research cost associated with the
development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic biology
has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review
highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in
baker’s yeast Saccharomyces cerevisiae. We describe computational tools for the prediction of biochemical pathways,
molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and
finally approaches for optimizing performance of the introduced pathways.

Key words: synthetic biology; yeast; chemicals; S. cerevisiae; metabolic engineering

INTRODUCTION

Biological production of chemicals from CO2, biomass, waste
streams, and other renewable feedstocks using cell factories
presents an alternative to chemical synthesis from fossil re-
sources. The advantages are reduced (or even negative) carbon
dioxide emissions, independence on oil and gas supply, and pos-
sibility to make novel products or products that are not readily
available from native sources. In some cases, reduced costs can
be obtained as well.

Over the past 20 years, chemicals for different applications
have been produced in metabolically engineered yeast, rang-
ing from fuels to bulk chemicals to pharmaceutical and nu-
traceutical ingredients (Fig. 1). Since the production of the first
non-native chemicals in yeast, such as lactic acid (Dequin and
Barre 1994) or xylitol (Hallborn et al., 1991), which required a sin-
gle heterologous enzyme each, the advances in synthetic biol-
ogy have now enabled assembly of multienzyme pathways for

production of amorphadiene (Westfall et al., 2012), indolylglu-
cosinolate (Mikkelsen et al., 2012), plant alkaloid (Fossati et al.,
2014), and other compounds. Moreover, the pathways are no
longer limited to the naturally occurring pathways in other or-
ganisms, but can also be synthetic de novo pathways composed
of natural or engineered enzymes that do not occur together in
nature (Yim et al., 2011; Borodina et al., 2013).

The road from proof-of-concept compound production to the
market is, however, still very resource intensive (Van Dien 2013),
hampering the introduction of new commercial fermentation-
based processes. The hurdle is engineering of the suitable cell
factory that can produce the product at high titer, rate, and
yield in large-scale fermentation setup. In the early 1990s,
metabolic engineering emerged as a research field, dealing
with directed improvement of cell factories. The flux quan-
tification and metabolic network analysis methods developed
in this field have been instrumental in creating novel cell
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Figure 1. Examples of native, heterologous, and unnatural chemicals that have been produced in yeast.

factories for industrial biotechnology. In contrast to metabolic
engineering, which has a well-defined practical objective, the
synthetic biology has a more fundamental scientific focus. It is
broadly defined as ‘the design and construction of newbiological
systems (e.g. genetic control systems,metabolic pathways, chro-
mosomes, cells) that do not exist in nature through the assem-
bly of well-characterized, standardized, reusable components’
(Nielsen et al., 2014). The applications of synthetic biology, as ex-
cellently demonstrated in International Genetically Engineered
Machine (iGEM) student competitions, are very diverse, span-
ning from medicine to environment to food, etc. For the in-
dustrial biotechnology applications, the two disciplines are very
synergistic, where metabolic engineering defines the direction,
in which the biochemical networks need to be manipulated,
and the synthetic biology provides the tools to accomplish this
task. Synthetic biology is expected to improve the design of the
cell factories by generating well-characterized chassis (platform
strains) and biological parts (BioBricks), which can be rapidly as-
sembled into an organismwith the desired properties, for exam-
ple, producing a specific chemical at high titer, rate, and yield.
BioBricks are typically DNA fragments, encoding enzymes, local-
ization signals, transcription, and translation control elements,
etc. Platform strains can be plug-and-play strains suitable for in-
dustrial fermentation and amenable for genetic manipulation;
they can be tailor-made for resistance to inhibitors, for increased
supply of a specific precursor or co-factor, for tolerance to spe-
cific fermentation conditions (e.g. low pH), or possess other re-
quired features. In this review, we will focus on baker’s yeast

S. cerevisiae, which is an attractive host cell for biorefinery ap-
plications for several reasons: The strain is robust in large-scale
fermentations, it can grow on cheap media, consisting only of
carbon source, salts, and vitamins, the residual cell mass can
be used for animal feed in some countries in cases when the
chemical product is non-toxic, fermentation can be carried out
at low pH,which reduces the risk of bacterial contamination and
gives less waste in production of organic acids, and genetic ma-
nipulation tools are well established. The main disadvantage of
S. cerevisiae is its inability to utilize alternative carbon sources
abundant in the biomass hydrolyzates, such as xylose and ara-
binose; however, this feature can be genetically engineered. A
number of S. cerevisiae strains have been already developed for
commercial production of non-native chemicals by fermenta-
tion, such as artemisic acid (Paddon and Keasling 2014), isobu-
tanol (Urano et al., 2012), and resveratrol (Katz et al., 2012).

The challenges associated with cell factory development are
(1) discovery or synthesis of a biochemical pathway toward the
desired chemical, (2) efficient and rapid assembly of this path-
way in the host, (3) optimization of enzymatic activity and ex-
pression levels of individual enzymes in the pathway, and (4)
optimization of the host cell for efficient supply of precursors,
co-factors, and energy for the process. Here, we review appli-
cation of synthetic biology for the production of chemicals in
yeast from three aspects: computational pathway design, path-
way assembly, and pathway optimization. We will not touch
upon the host cell optimization, which is the traditional realm
of the metabolic engineering discipline. The interested reader
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can be referred to the recent reviews on the subject (Chen and
Nielsen 2013; Tippmann et al., 2013; Van Dien 2013; Borodina and
Nielsen 2014).

COMPUTATIONAL TOOLS FOR PATHWAY
DESIGN

The first step in designing a cell factory for the production
of a specific chemical is defining the biochemical reactions
that can generate the desired compound from the typical in-
termediates of the native cellular metabolism. For the natural
products, the known pathway can be simply moved from the
original organism to the host, although it will not necessarily
be an optimal solution. However, most of the biosynthetic path-
ways leading toward the known 226 000 natural products listed
in the dictionary of natural products have not been fully charac-
terized so far (Seyedsayamdost and Clardy 2014). Besides, there
are no inherent metabolic pathways for many chemicals, which
are currently derived chemically and do not otherwise occur in
nature. An example is 1,4-butanediol, for which a de novo syn-
thesis route was reconstructed (Yim et al., 2011). Therefore, for
pathway design, computational tools can be very helpful, as they
provide a comprehensive set of possible biochemical routes and
can also evaluate feasibility of various pathways based on ther-
modynamic and other considerations. In this section, we review
some computation tools that can be helpful in the design of bio-
chemical pathways (Table 1).

The most traditional pathway prediction algorithms are
based on mining of the known enzymatic reactions and
pathways (reference-based frameworks). Reference-based
frameworks are inherently limited to the known enzymatic
reactions. An algorithm ‘From Metabolite to Meta-bolite’ (FMM)
predicts possible pathways between two chosen metabolites
based on the reactions in KEGG database (Chou et al., 2009).
Chatsurachai et al. searched BRENDA and KEGG databases for
heterologous reactions that can connect non-nativemetabolites
to the genome-scale metabolic networks of several industrially
important hosts (Chatsurachai et al., 2012). They found that
fewer than 33 heterologous reactions are needed to link 3154
non-native metabolites to the metabolic network of Saccha-
romyces cerevisiae and that 67% of these non-native metabolites,
including 1,3-propanediol, isoprene, α-farnesene, and poly-β-
hydroxybutyrate, can be generated from glucose as the sole
carbon source according to the flux balance analysis. An online
tool Metabolic Tinker helps to identify thermodynamically
feasible routes between two chosen metabolites using a heuris-
tic search in reaction networks generated from CHEBI and
RHEA databases (McClymont and Soyer 2013). Metabolic Tinker
was used to predict feasible routes from acetoacetyl-CoA to
isopentenyl diphosphate, a precursor of isoprenoid compounds.
In addition to the native mevalonate route, the algorithm
identified an additional thermodynamically favorable pathway
via S-adenosyl-L-homocysteine, which, however, has not been
experimentally tested. Considering that thermodynamics also
has an influence on the reaction kinetics via the flux–force
relationship, a quantitative methodology eQuilibrator was
proposed to analyze pathways thermodynamic profiles and
to find the limiting steps (Noor et al., 2014). Taking into ac-
count physiological properties, including pH, ionic strength,
metabolite concentration ranges, and cofactor concentration,
the authors applied their framework to the central metabolic
pathways and found that malate dehydrogenase activity and

substrate-level phosphorylation constrain the tricarboxylic acid
cycle and Embden–Meyerhof–Parnas fluxes, respectively.

Other algorithms allow de novo pathway reconstruction by
hypothesizing intermediate metabolites or enzymes that can
connect the source and targetmetabolites. Biochemical Network
Integrated Computational Explorer (BNICE) is a tool developed
for identifying novel metabolites and reactions on the basis of
generalized reaction rules of the Enzyme Commission classi-
fication system (Hatzimanikatis et al., 2005). BNICE also evalu-
ates thermodynamic feasibility of the predicted pathways. By
recruiting this algorithm, a novel pathway for biodegradation
of 1,2,4-trichlorobenzene (Finley et al., 2010), nine novel biosyn-
thetic pathways from pyruvate to 1-butanol (Wu et al., 2011),
and three novel biosynthesis pathways to 3-hydroxypropanoate
(Henry et al., 2010) were predicted, all of them, however, remain
to be experimentally verified. Another algorithm, Reverse Path-
way Engineering (RPE), combines chemoinformatics with bioin-
formatics analysis; it was used to predict the pathways for for-
mation of flavor compound from leucine in lactic acid bacte-
ria (Liu et al., 2014). Based on functional groups transfer, Geno-
matica’s proprietary SimPheny Biopathway Predictor algorithm
was successfully used to identify multiple pathways toward 1,4-
butanediol from inherentmetabolic intermediates in E. coliwith-
out being restricted by the known enzymes (Yim et al., 2011).
Another method uses molecular signatures, which encode the
changes in atom bonding environments, where the reaction is
taking place. Themethod identifies the candidate pathways and
ranks them according to thermodynamic feasibility, host com-
patibility, compounds toxicity, and overall nominal flux based
on genome-scale modeling (Carbonell et al., 2011, 2014). The
method was validated by predicting the pathway toward taxol
production in yeast. Jean-Loup Faulon’s research group also pro-
posed an automatic pipeline Retropath for the design of syn-
thetic metabolic circuits (Carbonell et al., 2013).

While pathway prediction algorithms can suggest an unnat-
ural enzyme that should catalyze a specific reaction, developing
such an enzyme may be quite an endeavor. Structure-based en-
zyme design is so far at an early development stage (Laskowski
et al., 2005; Lopez et al., 2007; Verma et al., 2012), so while speci-
ficity for reducing co-factors can be altered with a rather high
success rate, it is much more difficult to modulate substrate
specificity and allosteric regulation, and it is particularly difficult
to create a specific new enzymatic function (Röthlisberger et al.,
2008). Nevertheless, pathway prediction algorithms are valuable
tools for a synthetic biologist as they facilitate design of un-
usual nonintuitive de novo biosynthetic pathways as well as help
to prioritize strain construction efforts by ranking the possible
pathways.

PATHWAY ASSEMBLY
Parts

Biosynthesis of non-native chemicals often requires multiple-
step pathways containing enzyme-coding genes and control ele-
ments, such as promoters, terminators, sensors, and other parts
(BioBricks). In the future, the whole DNA constructs will likely
be made synthetically from scratch; however, so far, the price
of DNA synthesis is still prohibitory to make large constructs
on a routine basis, and hence, it is more conventional to syn-
thesize or PCR-amplify smaller BioBricks (<10 kb) and assemble
them into an operational pathway. Usage of codon-shuffled
synthetic BioBricks may help to erase native cryptic regulatory
elements, such as alternative translation initiation sites,
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Table 1. Computational tools for prediction of biochemical pathways.

Software Software availability Description References

FFM Web interface at
http://fmm.mbc.nctu.edu.tw/index.php

From Metabolite to
Metabolite (FMM)
reconstructs pathways
between start and end
metabolites based on KEGG
information. Nice
visualization and integration
with information from other
databases (UniProt, GenBank
and dbPTM databases)

Chou et al. (2009)

Chatsurachai
et al.

Python script available at
http://www-shimizu.ist.osaka-u.ac.jp/pathway˙search.zip

The algorithm searches
BRENDA and KEGG databases
to identify heterologous
reactions that connect
non-native metabolites to
the metabolic network of the
host

Chatsurachai et al. (2012)

Metabolic
Tinker

Web interface at
http://osslab.lifesci.warwick.ac.uk/Tinker˙Download.aspx.
Source code in Java can be downloaded and run on a
personal computer or adapted

Metabolic Tinker predicts
thermodynamically feasible
routes between source and
target compounds using
reaction databases CHEBI
and RHEA.

McClymont and Soyer
(2013)

eQuilibrator Web interface at http://equilibrator.weizmann.ac.il/ eQuilibrator estimates
thermodynamic parameters
for an enzymatic reaction
under the defined conditions
(pH, ionic strength, reactant,
and product concentrations)

Noor et al. (2014)

BNICE N/A Biochemical Network
Integrated Computational
Explorer (BNICE) is a
framework for identification
and thermodynamic
assessment of possible
pathways for the degradation
or production of a given
compound

Hatzimanikatis et al. (2005)

Reverse
Pathway
Engineering
(RPE)

N/A The algorithm predicts the
‘missing links’ between
compounds of interest and
their possible metabolic
precursors by combining
chemoinformatics and
bioinformatics.

Liu et al. (2014)

Retropath Webserver, accessible for registered users at
http://www.issb.genopole.fr/˜faulon/retropath.php

The algorithm uses
molecular signatures to
predict and rank possible
biochemical pathways.
Predicts compatibility with
host genes and toxicity
prediction

Carbonell et al. (2013)

transcription factor binding sites, and others. Standardization
of the DNA parts will greatly facilitate the construction process.
Currently, the modular approach for pathway assembly is
hampered by the lack of well-characterized control elements as
promoters and 5′UTRs, which behave predictably in the given
strains and under given conditions (Mutalik et al., 2013).

A number of parts repositories have been established,
such as iGEM Registry of Standard Biological Parts
(http://parts.igem.org), the ‘Standard European Vector Ar-
chitecture’ (SEVA) database (Silva-Rocha et al., 2013), AddGene
(www.addgene.org), and others. All the above-mentioned
repositories have physical collections of parts, which can be
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obtained under licenses or material transfer agreements. Con-
sidering the legal issues and restrictions of use associated with
materials transfer, it is often more expedient and convenient
to synthesize the constructs, particularly in cases where their
commercial application is envisaged. To promote the sharing
of BioBricks, establishment of an open-source policy would be
advantageous. Moreover, there is a need for a central database
for the collection of information on characterization and per-
formance of BioBricks, which will require a major community
effort (Way et al., 2014). To match the requirements of the com-
plex designs and the high-throughput cloning by automation,
the in silico constructs design and sequence analysis of the
resulting constructs need to be automated as well. A freely
available Web-based software j5 was developed in Keasling’s
laboratory (Hillson et al., 2012; http://j5.jbei.org). The program
facilitates cloning designs for DNA BioBricks assembly and
supports several cloning methods. Other free software tools
include raven (Appleton et al., 2014; http://www.ravencad.org),
genocad (Cai et al., 2010; http://www.genocad.org), tinkercell
(Chandran et al., 2009; http://www.tinkercell.com), and others.

Synthetic Biology Open Language (SBOL) was proposed as an
open-source community standard, which can be used for elec-
tronic exchange of designs, also across the different software
environments (http://www.sbolstandard.org/). Computer-aided
design saves researchers’ time and reduces human errors.

DNA ASSEMBLY

In spite of the lack of the standardized BioBricks, there is no de-
ficiency in BioBricks assembly methods. An immense variety of
synthetic biology tools have been developed over the past years,
improving flexibility, speed, and precision of cloning. The classi-
cal restriction-ligation-based cloning has been largely replaced
with restriction-free in vitro techniques, such as Gibson isother-
mal assembly, in-fusion, uracil-specific excision reaction (USER)
cloning, circular polymerase extension cloning (CPEC), ligase cy-
cling reaction (LCR), modular cloning system (MoClo), in vivo ho-
mologous recombination (also known as gap repair), and other
techniques (Fig. 2). While all the methods listed above allow

Figure 2. Examples of DNA assembly methods. DNA parts can be assembled using a variety of techniques, which require different designs of the overhangs on DNA
parts and different enzymes and procedures for assembly.
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Table 2. Technical specifications of several DNA assembly methods.

Assembly
methods Fragment overhangs

Typical number
of fragments for
assembly

Demonstrated size
of assembled
construct (kb) Efficiency References

Gibson 40 bp overlaps c. 4 900 90% (for 3 fragments) Gibson et al. (2009)
In-fusion >15 bp overlaps 2–3 c. 5 >60% (for 2 fragments)

<40% (for 3 fragments)
Sleight et al. (2010)

USER 7–12 bp overlaps,
must contain one dU
at the base

3–7 c. 8 >90% (for up to 7 fragments) Jensen et al. (2014)
Lund et al. (2014)

CPEC 15–25 bp overlaps >4 c. 8 95–100% Quan and Tian
(2009)

MoClo 4 bp overlaps and
recognition site for
type IIS restriction
enzyme

c. 10 33 (in three rounds) >90% Engler et al. (2009)
Weber et al. (2011)

LCR Fragments must be
5′-phosphorylated,
60- to 90-bp-long
bridging oligos are
also needed

>10 20 >90% (up to 6 fragments)
c. 75% (12 fragments)

de Kok et al. (2014)

In vivo recom-
bination in
S. cerevisiae

>40 bp overlaps >10 >20 >90% (up to 6 fragments)
c. 75% (12 fragments)

de Kok et al. (2014)

directional seamless cloning of the DNA fragments, they differ
in the number of fragments and size of construct that can be
assembled with high fidelity (Table 2); moreover, the methods
require different design of DNA parts. If a research laboratory
strives for standardization and reuse of parts within and across
multiple research projects, then adhering to one specific DNA
assembly method saves more money and effort. Here, we will
briefly describe the specifics of the most common methods.

Gibson method allows the assembly of 3–4 fragments
with 90% efficiency via c. 40-bp-long overlapping sequences
(Gibson et al., 2009). The reaction is carried out at 50 ◦C for 15min
and requires a mix of three enzymes: T5 exonuclease to cre-
ate single-stranded 3′-overhangs that facilitate the annealing of
complementary fragment ends, Phusion DNA polymerase to fill
in the gaps within the annealed fragments, and finally Taq DNA
ligase to seal the nicks. Using proof-reading DNA polymerase
minimizes the risk of errors introduced during assembly. All the
enzymes are commercially available; a ready-to-use mix is dis-
tributed by New England Biolabs. The method was used to syn-
thesize the first complete artificial bacterial genome, namely
synthetic 583-kb genome of M. genitalium (Gibson et al., 2010).
Gibson method is particularly well suited for assembly of large
constructs; however, its performance decreases for larger num-
ber of fragments, that is, the efficiency for six fragments was
about 25% (de Kok et al., 2014).

In-fusion method uses a proprietary exonuclease from Clon-
tech. The assembly efficiencies for three fragments using 15 bp
overlaps were below 40% in the study by Sleight et al. (2010).

Uracil-specific excision reaction (USER) allows assembly of
multiple DNA fragments via short overhangs of 7–12 nucleotides
(Nour-Eldin et al., 2006). Each overhang must contain one de-
oxyuridine (dU) nucleotide instead of deoxythymidine (dT) nu-
cleotide. The DNA is treated by uracil DNA glycosidase and DNA
glycosylase-lyase endo VIII (the mix of the two enzymes is com-
mercially available as USERTM from New England Biolabs). This

process releases the sequence upstream from the dU’s and thus
generates sticky ends, which mediate correct annealing of the
fragments. The one-tube assembly reaction takes about an hour.
Due to the overhang size of 7–12 bp, the assembled DNA vec-
tors can be directly transformed into competent E. coli cells
without prior ligation. The DNA fragments for USER assembly
are typically generated by PCR amplification with dU-containing
primers using a high-fidelity DNA polymerase that is tolerant
to dU-containing primers, for example, PhuX7 (Nørholm 2010).
USER assembly is convenient for assembly of 2–7 DNA frag-
ments, where efficiency can be as high as 90% (Lund et al., 2014).

Circular polymerase extension cloning (CPEC) uses re-
peated cycles of denaturation–annealing–extension by DNA
polymerase to fuse multiple fragments (Quan and Tian 2009).
For fusing two fragments, one cycle is sufficient, taking <5 min,
while for fusing multiple fragments 5–25 cycles may be needed
depending on the number of fragments. The method has a high
efficiency of 95% for up to four fragments assembly (Quan and
Tian 2009). The efficiency, however, was below 50% for assembly
of over four fragments (de Kok et al., 2014). The advantage of this
method is the low cost as it does not require other enzymes than
DNA polymerase. The disadvantage of CPEC method is the risk
of introducing mutations during the DNA extension.

Modular cloning system (MoClo) (Weber et al., 2011), based
on type IIS restriction endonuclease, allows assembly of multi-
ple fragments in successive cloning steps. The underlying prin-
ciple, also known as Golden Gate cloning, is based on the ability
of type II restriction enzymes to cleave outside of their recogni-
tion sites; thus, the recognition sites themselves can be removed
in the cleavage process, leaving small sticky ends of 4 bp. The
single-tube reaction contains a type II restriction endonuclease
and ligase; the reaction takes about 5–6 h. The cloning efficiency
for up to 10 fragments was about 90% (Engler et al., 2009). An
advantage of Golden Gate cloning is that the DNA for assembly
is provided as untreated plasmids rather than DNA fragments
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generated by PCR or other means. These both simplifies the pro-
cedure and reduces the risk of errors due to DNA manipulation.
Another advantage of the method is that due to the high effi-
ciency of the assembly, it can be used to generate large shuf-
fled libraries of constructs, when multiple DNA templates are
added to the mix. Finally, by alternating the type IIS enzyme
and selectable markers, multiple hierarchical assembly rounds
can be carried out to assemble basic modules (level 0) into tran-
scription units (level 1) and further into multigene constructs
(level 2) and so on. The assembly of a 33-kb-long multigene con-
struct in three successive cloning steps has been demonstrated
(Weber et al., 2011).

Ligase cycling reaction (LCR) enables scarless assembly of
multiple fragments by employing single-stranded bridging oli-
gos (de Kok et al., 2014). The reaction uses repeated cycles
of denaturation, annealing, and ligation with thermostable
ligase. The single-stranded DNA bridging oligos guide the
correct annealing of fragments. The DNA fragments must be 5′-
phosphorylated, which adds some extra cost on their genera-
tion either by PCR amplification with 5′-phosphorylated primers
or by enzymatic treatment. The total one-tube LCR assembly
procedure takes about 1 h. The optimized method was demon-
strated to efficiently connect up to 20 DNA parts into 20-kb-long
constructs with 60–100% precision. The LCR could connect 12
fragments of the mevalonate pathway with over 75% clones be-
ing correct. The authors benchmarked LCRmethodwith Gibson,
CPEC, and in vivo assembly in yeast, where Gibson and CPEC had
<50% correct clones for assembly of over four fragments, while
efficiency of in vivo assembly was comparable to LCR.

DNA fragments can be directly recombined in vivo in S. cere-
visiae thanks to its efficient DNA repair machinery. Recombina-
tion requires overlaps of more than 30–40 bp, where the preci-
sion of assembly increases with the size of the overlapping se-
quences. The resulting DNA constructs can either replicate in
yeast cells as independent elements (episomal plasmids or yeast
artificial chromosomes) or can be inserted into the genome. The
replicating plasmids can be shuffled into E. coli, where they can
be propagated for sequencing and then transformed into a pro-
ducing yeast strain. The efficiency of assembly by in vivo recom-
bination is similar to LCR (de Kok et al., 2014). Some examples on
using in vivo recombination for direct engineering of S. cerevisiae
strains are given in the section below.

DNA INTRODUCTION INTO HOST

A wide variety of vectors have been developed for the introduc-
tion of recombinant DNA into S. cerevisiae (Krivoruchko et al.,
2011). Here, we will just briefly mention the most recent devel-
opments and give a few application examples. The episomally
replicating vectors suffer from lower stability than chromoso-
mally integrated constructs; they were also shown to have het-
erogeneous expression within population (Jensen et al., 2014);
therefore, methods for chromosomal integration have received
much attention recently. Thanks to the efficient homologous re-
combination machinery of S. cerevisiae, the DNA constructs can
be efficiently targeted to specific chromosomal regions via ho-
mologous sequences of 60–500 bp length. The target regions can
be (1) functional elements, such as open reading frames tar-
geted for deletion, promoters targeted for exchange or others,
(2) unique well-characterized chromosomal regions resulting in
consistent expression levels of the introduced DNA, and (3) mul-
tiple elements scattered through the genome, such as rDNA,
transposon repeats, and δ-sites, resulting inmultiple integration
events. The efficiency of integration by homologous recombi-
nation can be enhanced by introducing a double-strand break
on the target region of the chromosome using highly specific
endonucleases, for example, mitochondrial homing endonucle-
ase I-SceI (Kuijpers et al., 2013a), or using CRISPR-Cas9 system
(DiCarlo et al., 2013) (Fig. 3).

A set of integrative vectors has been developed for stable
high-level expression of introduced genes in S. cerevisiae and
was applied for reconstructing a seven-step pathway toward
an indolylglucosinolate, an anticancer compound from cruci-
fix plants (Mikkelsen et al., 2012). Further development of the
vectors resulted in EasyClone vector set, which allows simul-
taneous stable integration of multiple genes into the genome
of S. cerevisiae, with the option of marker recycling, thus fa-
cilitating the iterative strain construction cycles (Jensen et al.,
2014). EasyClone was successfully used to introduce a synthetic
de novo pathway for the biosynthesis of 3-hydroxypropionic acid
in S. cerevisiae via β-alanine intermediate (Borodina et al., sub-
mitted). In vivo recombination, where DNA was introduced into
multiple δ-sites in the genome, was used for the reconstruction
of pathways for xylose assimilation and for the biosynthesis of
zeaxanthin and aureothin with the assembly efficiency of 10–
70% (Shao et al., 2009; Shao and Zhao 2013). Jack Pronk’s group

Figure 3.Methods for enhancing DNA integration via homologous recombination in Saccharomyces cerevisiae. A double-stranded linear DNA fragment is integrated into

S. cerevisiae genome via sequences homologous to the target site (left); integration efficiency is improved due to the double-strand break at the target site, generated
by I-SceI endonuclease (middle) or CRISPR-Cas9 system (right).
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used 60-bp synthetic overhangs to assemble the glycolytic path-
way in S. cerevisiae (Kuijpers et al., 2013b). Introduction of double-
strand break in the yeast chromosome using meganuclease I-
SceI improved the efficiency of integration of the construct into
the chromosome from 5% to 95% (Kuijpers et al., 2013a). Reiter-
ative recombination method is based on repeated yeast trans-
formations, where a construct is introduced into a specific place
on the chromosome along with amarker in the first transforma-
tion round, and in the next transformation round, the marker
is replaced with a new construct carrying another marker, and
so on (Wingler and Cornish 2011). The integration is facilitated
by digestion with SceI endonuclease. The authors demonstrated
the utility of the method by reconstructing a 3-step lycopene
pathway.

PATHWAY OPTIMIZATION

A variety of methods can be used to boost the flux through the
engineered pathway (Fig. 4). Balancing expression of the indi-
vidual enzyme-coding genes may reduce accumulation of inter-

mediates, which can inhibit certain enzymes or exhibit cellular
toxicity. It also allows reducing the metabolic load on the host.
Other methods bring enzymes in close proximity, to obtain a
metabolic channeling effect, where the product of one reaction
is directly passed over to the next enzyme to serve as a substrate
for the next reaction. Protein engineering is important as well
to modulate co-factor or substrate specificity, remove allosteric
inhibition effects, increase thermostability, and improve other
properties.

More effort has been put into pathway optimization for uti-
lization of D-xylose, the secondmost abundant renewable sugar
in nature, which is, however, not naturally utilized by many
yeast spp. Kim et al. (2013) generated a library of about 8000
variants with different promoter combinations upstream the
xylose-pathway genes; the strains showed a wide range of per-
formance, where, for example, xylitol yield varied from 0.01
to 0.22 g g−1 xylose. Moreover, different promoter combina-
tions were optimal for the growth of different strains on vari-
ous substrates. Customized optimization ofmetabolic pathways
by combinatorial transcriptional engineering (COMPACTER) was

Figure 4.Approaches for optimization of synthetic pathways. A number of variants of enzyme-coding genes are assembled into transcriptional units and pathways and
introduced into the host. The expression levels of individual genes can be balanced using constitutive promoters of different strengths or regulated promoters. Enzymes

can be brought into proximity by fusion, scaffolding, or expression in specific cellular compartments. Enzyme properties can be improved by protein engineering.
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proposed by Du et al. (2012) for rapid optimization of heterolo-
gous pathways in different genetic backgrounds. As a demon-
stration, three native constitutive promoters were subjected to
nucleotide analog mutagenesis to obtain promoter mutants of
varying strengths. The xylose utilization genes were placed un-
der control of these promoters in various combinations, and the
resulting strains were assessed for growth on xylose. The op-
timized xylose utilizing pathways displayed a high xylose con-
sumption rate of 0.4 and 0.92 g L−1 h−1 in laboratory and indus-
trial yeast strains, respectively. The same approach was applied
for a cellobiose utilizing pathway, resulting in cellobiose con-
sumption rates of 1.54 and 2.18 g L−1 h−1 in laboratory and in-
dustrial strains, respectively (Du et al., 2012).

For the multienzyme pathways, it can be an advantage
to bring enzymes in proximity either by compartmentaliza-
tion, fusion or scaffolding. This would prevent the losses in
the transportation due to diffusion, degradation, competing
pathways, avert toxicity caused by intermediates, and increase
turnover rates due to the higher local substrate concentra-
tions (Zhang 2011). Several examples on expressing chemical-
producing pathways in specific cellular compartments have
been published. Isobutanol production in yeast was improved
2.6-fold by overexpressing the pathway in mitochondria instead
of cytosol (Avalos et al., 2013). Similarly, production of valencene
and amorphadiene were improved 8- and 20-fold, respectively,
when heterologous FDP synthase and sesquiterpene synthase
were targeted to mitochondrion (Farhi et al., 2011).

Zhang et al. constructed a fusion protein of 4-coumarate-CoA
ligase (4CL) and stilbene synthase (STS). A 14-fold resveratrol
improvement was observed for the fusion protein 4CL::STS over
co-expression of 4CL and STS in S. cerevisiae (Zhang et al., 2006).
Different fusions of farnesyl diphosphate synthase of yeast
and patchoulol synthase from Pogostemon cablin were studied
in S. cerevisiae, which resulted in twofold increase of patchoulol
production (Albertsen et al., 2011). Another example of improv-
ing chemicals production via fusion strategy is the coupling
of farnesyl diphosphate synthase with amorphadiene synthase
of Artemisia annua, which improved amorphadiene production
fourfold over the control (Baadhe et al., 2013).

Scaffolding of enzymes on proteins or RNA structures is
another way of enhancing substrate channeling. Dueber et al.
constructed scaffolds of three protein–protein interaction do-
mains (mouse SH3 and PDZ domains and rat GBD) to optimize
the mevalonate biosynthetic pathway in E. coli. Three pathway
genes were fused to interaction ligands on their C-terminal via
flexible nine-residue glycine–serine linkers. Different versions
of scaffolds carrying varying ratios of the interaction domains
were tested, and the optimal scaffold resulted in 77-fold in-
crease of mevalonate titer in comparison with the nonscaf-
folded pathway (Dueber et al., 2009). Scaffolding strategy was
also adopted in resveratrol production in S. cerevisiae, resulting in
a 5.0-fold increase over the nonscaffolded control and a 2.7-fold
higher production than that of the fusion strategy (Wang and
Yu 2012). There have been so far no examples of scaffolding on
RNA structures in yeast. In bacteria, a 2-dimensional RNA scaf-
foldwas shown to increase hydrogen production by up to 48-fold
(Delebecque et al., 2011).

The functional properties of the native enzymes may be im-
proved via protein engineering. Themost successful approaches
for protein engineering combine computational methods with
directed evolution. Computational tools guide the design of the
mutant library for the subsequent screening, thus improving the
success rate of the directed evolution. The interested reader is
referred to a comprehensive review on computer-aided protein-

directed evolution (Verma et al., 2012). In the context of yeast
engineering for production of chemicals, protein engineering
has been used to improve stability of the proteins, change co-
factor specificity, remove feedback inhibition, and improve cat-
alytic activity. A truncated formofmalate dehydrogenase, which
is less susceptible to glucose-induced proteolysis (Minard and
McAlister-Henn 1992), was applied for malic acid production
(Winkler et al., 2007). The co-factor specificity of xylose reductase
has been modulated to avoid redox imbalance under xylose as-
similation via xylose reductase–xylitol dehydrogenase pathway.
Liang et al. used an iterative active site-saturation mutagene-
sis strategy in S. cerevisiae to obtain xylose reductase from Pichia
stipitis with increased affinity toward NADH instead of NADPH
(Liang et al., 2007). Similarly, an error-prone PCR strategy was
adopted tomutate the co-factor binding site of xylose reductase,
which resulted in 10-fold hig-her Vmax and increased ethanol
titer 40-fold (Runquist et al., 2010). For xylose assimilation via
xylose isomerase route, the low activity of heterologous xylose
isomerase is a common problem. The strains evolved by adap-
tation on xylose medium were shown to accumulate up to 32
copies of xylose isomerase gene presumably to compensate for
the low activity of the enzyme (Zhou et al., 2012). By applying
three rounds of xylose isomerase mutagenesis, followed by se-
lection for growth on xylose, the enzymatic activity of xylose iso-
merase was improved by 77% and aerobic growth on xylose in-
creased 61-fold (Lee et al., 2012). Removal of feedback inhibition
effects in the aromatic amino acids biosynthesis pathway en-
abled the production of the flavonoid intermediate naringenin
in S. cerevisiae (Koopman et al., 2012).

Enzyme engineering techniques are thus likely to signifi-
cantly advance synthetic biology and metabolic engineering of
cell factories.

PERSPECTIVES

According to the report of NEST High-Level Expert Group, syn-
thetic biology will enable design of biological systems in a ratio-
nal and systematic way (Serrano et al., 2005). Established about
15 years ago (Way et al., 2014), synthetic biology has already de-
livered some impressive results, but also revealed serious ob-
stacles that need to be overcome should it live up to the high
expectations. The complexity, variability, and epigenetics of bi-
ological systems undermine the predictability of the computer-
aided cell designs; the biological parts have limited orthogonal-
ity, that is, their behavior varies significantly in different genetic
backgrounds (Kwok 2010). Synthesis of novel non-natural en-
zymes and regulatory elements is hindered by our lack of un-
derstanding of protein structural–functional relationship. There
are twomain philosophies for approaching these complex prob-
lems. On the one hand, a minimalistic cell approach aims to
reduce the biological complexity by designing minimal cells
consisting of well-defined minimal sets of parts. One synthetic
chromosome has already been reconstructed in the project on
creating a designer S. cerevisiae cell Sc2.0, which will enable eas-
ier genome manipulation as, for example, genome scrambling
(Annaluru et al., 2014). On the other hand, the systems biology
approach strives to understand the complexity and function of
the existing biological systems (Barrett et al., 2006).

The urgent need for novel bio-based processes provides the
stimulus and test beds for the technology development. In
the current cell factory development programs, an integrated
approach, combining synthetic biology, metabolic engineer-
ing, and systems biology, is being implemented. The approach
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is based on iterative design–build–test–analyze (DBTA) cycles,
where multiple cell factory variants are built and screened in
high-throughput fashion, after which the promising candidates
are characterized in greater details using systems-level anal-
ysis and the generated knowledge is used for the computer-
aided design of the next generation of the cell factories. As the
knowledge is accumulated, the number of iterations needed to
obtain the wanted design will decrease and this will result in
drastic reduction of the cost of development of cell factories,
providing new solutions for production of food, chemicals, and
medicine.
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CHAPTER 3 Screening tyrosine ammonia lyase for p-coumaric acid 

production 

Introduction 

p-Coumaric acid serves as one of the commonly used precursors to 

synthesise numerous plant secondary aromatic compounds of 

biotechnological interest. It can either be derived from tyrosine by 

deamination with tyrosine ammonia lyase (TAL) or from phenylalanine by 

deamination with phenylalanine ammonia lyase (PAL) and subsequent 

hydroxylation of the resulting cinnamic acid by a P450 enzyme cinnamate 

4-hydroxylase (C4H). Due to the involvement of a P450 enzyme, which is 

often difficult to express, in the phenylalanine route, TALs may be preferred 

alternative to produce p-coumaric acid and its derivatives in microorganisms. 

However, a lack of highly active and specific TALs has been the limiting 

step in metabolic engineering. We therefore screened 14 sequences based on 

synteny information and sequence divergence (Jendresen et al., 2015) to 

find out enzymes that can high actively and specifically convert tyrosine to 

p-coumaric acid. In vivo assay showed that enzymes from Herpetosiphon 

aurantiacus and Flavobacterium johnsoniae were good candidates for 

production of p-coumaric acid in Saccharomyces cerevisiae.  

Materials and methods 

Strains and plasmids  

All the cloning work including biobricks and plasmids construction was 

done in the Escherichia coli strain DH5α. The primers, biobricks, and 

plasmids used in this study are summarised in Table 3.1, 3.2 and 3.3 
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respectively. The E. coli transformants were screened on Luria-Bertani (LB) 

plates containing 100 mg mL
-1

 ampicillin (LB-amp). The plasmid-

containing E. coli were propagated in liquid LB-amp medium at 37°C for 

plasmid purification.  

Table 3.1. List of primers used in the study 

Name Sequence (5’ to 3’) 

RmXAL_fw AGTGCAGGU AAAACAATGGCACCGAGCGTTGATAGC 

RmXAL_rv CGTGCGAU TTAGGCCATCATTTTAAC 

S-BagA_fw AGTGCAGGUAAAACAATGAAAATTGATGGTCGTGGTCTGACCAT

TAGCCAGACCG 

S-BagA_rv CGTGCGAU TTACAGATTACCGCCTGC 

RsTAL_fw AGTGCAGGUAAAACAATGAGCCCTCCGAAACCGGCAGTTGAACTGG 

RsTAL_ rv CGTGCGAU TTAAACCGGACTCTGTTG 

SeSam8_fw AGTGCAGGU AAAACAATGACCCAGGTTGTTGAACGTCAGG 

SeSam8_ rv CGTGCGAU TTAGCCAAAATCTTTACC 

SrXAL_fw AGTGCAGGU AAAACAATGAGCACCCCGAGCGCA 

SrXAL_ rv CGTGCGAU TTATGCGGTCGGAGGGGT 

R_XAL_fw AGTGCAGGU AAAACAATGCGTAGCGAACAGCTGACC 

R_XAL_ rv CGTGCGAU TTAGGCCAGCAGTTCAAT 

PpPAL_fw AGTGCAGGU AAAACAATGCACGATGATAACACCAGCCCG 

PpPAL_ rv CGTGCGAU TTAACAGCTTGCGCGTGC 

LbTAL_fw AGTGCAGGUAAAACAATGCCTCGTTTTTGTCCGAGCATGTATCTGC 

LbTAL_ rv CGTGCGAU TTAATCGTTCGGGGTCAT 

L_XAL_fw AGTGCAGGU AAAACAATGACCCTGACCCCGACCG 

L_XAL_ rv CGTGCGAU TTAGTTAAAGCTGCTAAT 

IlTAL_fw AGTGCAGGU AAAACAATGACCACCTCCATTATTGCATTTGG 

IlTAL_ rv CGTGCGAU TTATGCCGGTTCTTGATA 

HaTAL1_fw AGTGCAGGU AAAACAATGAGCACCACCCTGATTCTG 

HaTAL1_ rv CGTGCGAU TTAGCGAAACAGAATAAT 

FjTAL_fw AGTGCAGGU AAAACAATGAACACCATCAACGAATATCTGAGC 

FjTAL_ rv CGTGCGAU TTAATTGTTAATCAGGTG 

DdPAL_fw AGTGCAGGU AAAACAATGATCGAAACCAACCACAAA 

DdPAL_ rv CGTGCGAU TTACAGGTTCAGGTTAAT 

BlPAL_fw AGTGCAGGU AAAACAATGAGCCAGGTTGCACTGTTTG 

BlPAL_ rv CGTGCGAU TTAATCATTCACATTCTG 

ColPCR_fw CCTGCAGGACTAGTGCTGAG 

XI-5_D_rv CCCAAAAGCAATCCAGGAAAAACC 

Note: Underlined sequences represent overhangs used in USER cloning. 
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The TAL genes were integrated into the XI-5 site of genome of S. 

cerevisiae CEN.PK102-5B (MATa ura3-52 his3Δ1 leu2-3/112 MAL2-8
c
 

SUC2) (Entian and Kötter, 2007b) to generate strains from STC0 to STC14. 

All the yeast strains used in this study are listed in Table 3.4. Yeast cells 

were grown on synthetic complete (SC) dropout media lacking histidine for 

selection of transformants with DNA integrations. The correct integrations 

were checked by colony PCR using primers ColPCR_DW_fw and XI-

5_D_rv.  

Table 3.2. List of biobricks used in the study. 

Biobrick Source Template Forward 

primer 

Reverse 

primer 

BB0369 RmXAL from Rhodotorula 

mucilaginosa (Rhodotorula rubra) 

pCBJ217 RmXAL_fw RmXAL_rv 

BB0370 S-BagA from Streptomyces pCBJ216 S-BagA_fw S-BagA_rv 

BB0371 RsTAL from Rhodobacter 

sphaeroides 

pCBJ215 RsTAL_fw RsTAL_ rv 

BB0372 SeSam8 from Saccharothrix 

espanaensis 

pCBJ218 SeSam8_fw SeSam8_ rv 

BB0373 SrXAL from Salinibacter ruber pCBJ225 SrXAL_fw SrXAL_ rv 

BB0374 R_XAL from Rheinheimera pCBJ220 R_XAL_fw R_XAL_ rv 

BB0375 PpPAL from Physcomitrella patens 
subsp. patens 

pCBJ221 PpPAL_fw PpPAL_ rv 

BB0376 LbTAL from Leptospira biflexa 

serovar patoc 

pCBJ222 LbTAL_fw LbTAL_ rv 

BB0377 L_XAL from Leptolyngbya pCBJ226 L_XAL_fw L_XAL_ rv 

BB0378 IlTAL from Idiomarina loihiensis pCBJ223 IlTAL_fw IlTAL_ rv 

BB0379 HaTAL1 from Herpetosiphon 

aurantiacus 

pCBJ227 HaTAL1_fw HaTAL1_ 

rv 

BB0380 FjTAL from Flavobacterium 
johnsoniae 

pCBJ228 FjTAL_fw FjTAL_ rv 

BB0381 DdPAL from Dictyostelium 
discoideum 

pCBJ224 DdPAL_fw DdPAL_ rv 

BB0382 BlPAL from Brevibacillus 

laterosporus 

pCBJ219 BlPAL_fw BlPAL_ rv 
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Table 3.3. List of plasmids used in the study 

Plasmid Parent 

plasmid 

Properties Reference 

pCDFDuet   Novagen 

pCBJ215 pCDFDuet pCDFDuet MCS2::RsTAL, Sp
r
 (Jendresen et al., 2015) 

pCBJ216 pCDFDuet pCDFDuet MCS2::S_BagA, Sp
r
 (Jendresen et al., 2015) 

pCBJ217 pCDFDuet pCDFDuet MCS2::RmXAL, Sp
r
 (Jendresen et al., 2015) 

pCBJ218 pCDFDuet pCDFDuet MCS2::SeSam8, Sp
r
 (Jendresen et al., 2015) 

pCBJ219 pCDFDuet pCDFDuet MCS2::BlPAL, Sp
r
 (Jendresen et al., 2015) 

pCBJ220 pCDFDuet pCDFDuet MCS2::R_XAL, Sp
r
 (Jendresen et al., 2015) 

pCBJ221 pCDFDuet pCDFDuet MCS2::PpPAL, Sp
r
 (Jendresen et al., 2015) 

pCBJ222 pCDFDuet pCDFDuet MCS2::LbTAL, Sp
r
 (Jendresen et al., 2015) 

pCBJ223 pCDFDuet pCDFDuet MCS2::IlTAL, Sp
r
 (Jendresen et al., 2015) 

pCBJ224 pCDFDuet pCDFDuet MCS2::DdPAL, Sp
r
 (Jendresen et al., 2015) 

pCBJ225 pCDFDuet pCDFDuet MCS2::SrXAL, Sp
r
 (Jendresen et al., 2015) 

pCBJ226 pCDFDuet pCDFDuet MCS2::L_XAL, Sp
r
 (Jendresen et al., 2015) 

pCBJ227 pCDFDuet pCDFDuet MCS2::HaTAL1, Sp
r
 (Jendresen et al., 2015) 

pCBJ228 pCDFDuet pCDFDuet MCS2::FjTAL, Sp
r
 (Jendresen et al., 2015) 

pCfB391  Integrative plasmid, XI-5-LoxP, 

SpHIS5 

(Jensen et al., 2014b) 

 

pCfB860 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB371 

(<-RsTAL), BB008 (pTEF1<-), SpHIS5 
This study 

 

pCfB861 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB370 

(<-S-BagA), BB008 (pTEF1<-), SpHIS5 

This study 

pCfB862 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB369 

(<-RmXAL), BB008 (pTEF1<-), SpHIS5 

This study 

pCfB863 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB372 

(<-SeSam8), BB008 (pTEF1<-), SpHIS5 

This study 

pCfB864 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB382 

(<-BlPAL), BB008 (pTEF1<-), SpHIS5 

This study 

pCfB865 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB374 

(<-R_XAL), BB008 (pTEF1<-), SpHIS5 

This study 

pCfB866 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB375 

(<-PpPAL), BB008 (pTEF1<-), SpHIS5 

This study 

pCfB867 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB376 

(<-LbTAL), BB008 (pTEF1<-), SpHIS5 

This study 

pCfB868 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB378 

(<-IlTAL), BB008 (pTEF1<-), SpHIS5  

This study 

pCfB869 
 

pCfB391 Integrative plasmid, XI-5, LoxP, BB381 
(<-DdPAL), BB008 (pTEF1<-), SpHIS5 

This study 
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pCfB870 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB373 

(<-SrXAL), BB008 (pTEF1<-), SpHIS5 

This study 

pCfB871 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB377 

(<-L_XAL), BB008 (pTEF1<-), SpHIS5 

This study 

pCfB872 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB379 

(<-HaTAL1), BB008 (pTEF1<-), SpHIS5 

This study 

pCfB873 

 

pCfB391 Integrative plasmid, XI-5, LoxP, BB0380 

FjTAL), BB008 (pTEF1<-), SpHIS5 

This study 

Note: Sp
r
, spectinomycin resistance. 

Table 3.4. List of yeast strains used in the study. 

Strain Genotype Reference 

CEN.PK1

02-5B 

MATa ura3-52 his3∆1 leu2-3/112 MAL2-8
c
 SUC2 (Entian and 

Kötter, 2007b) 

STC1 CEN.PK102-5B, XI-5::PTEF1->RsTAL-SpHIS5, leu-, ura- This study 

STC2 CEN.PK102-5B, XI-5::PTEF1->S-BagA-SpHIS5, leu-, ura- This study 

STC3 CEN.PK102-5B, XI-5::PTEF1->RmXAL-SpHIS5, leu-, ura- This study 

STC4 CEN.PK102-5B, XI-5::PTEF1->SeSam8-SpHIS5, leu-, ura- This study 

STC5 CEN.PK102-5B, XI-5::PTEF1->BlPAL-SpHIS5, leu-, ura- This study 

STC6 CEN.PK102-5B, XI-5::PTEF1->R_XAL-SpHIS5, leu-, ura- This study 

STC7 CEN.PK102-5B, XI-5::PTEF1->PpPAL-SpHIS5, leu-, ura- This study 

STC8 CEN.PK102-5B, XI-5::PTEF1->LbTAL-SpHIS5, leu-, ura- This study 

STC9 CEN.PK102-5B, XI-5::PTEF1->IlTAL-SpHIS5, leu-, ura- This study 

STC10 CEN.PK102-5B, XI-5::PTEF1->DdPAL-SpHIS5, leu-, ura- This study 

STC11 CEN.PK102-5B, XI-5::PTEF1->SrXAL-SpHIS5, leu-, ura- This study 

STC12 CEN.PK102-5B, XI-5::PTEF1->L_XAL-SpHIS5, leu-, ura- This study 

STC13 CEN.PK102-5B, XI-5::PTEF1->HaTAL1-SpHIS5, leu-, ura- This study 

STC14 CEN.PK102-5B, XI-5::PTEF1->FjTAL-SpHIS5, leu-, ura- This study 

p-Coumaric acid and cinnamic acid production in yeast strains 

The engineered strains were routinely grown in 0.5 ml SC medium 

lacking histidine at 30°C with 250 rpm agitation for 24 h in 96-deep-well 

plates. Then, 50 μl of the pre-culture was inoculated into 0.5 ml mineral 

medium (Jensen et al., 2014b) with 2% glucose, which was supplemented 

with 76 mg l
-1

 uracil, 380 mg l
-1

 leucine, and with either 10 mM tyrosine or 
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phenylalanine. The mineral medium (pH 6.0) was composed of 20 g l
-1

 

glucose, 5 g l
-1

 (NH4)2SO4, 3 g l
-1

 KH2PO4, 0.5 g l
-1

 MgSO4•7H2O, 2 ml l
-1

 

trace metals solution, and 1 ml l
-1

 vitamin solution (Li et al., 2015). Yeast 

cultures were cultivated at 30°C and 250 rpm for 72 h. For the time course 

experiment, 100 µl of the pre-culture was used to inoculated into 3 ml FIT 

medium with 76 mg l
-1

 uracil, 380 mg l
-1

 leucine, and 10 mM tyrosine in a 

24-deep-well plates and the cultures were grown at 30°C and 250 rpm for 90 

h. Samples for HPLC were taken at the end point for the 96-well-plate 

cultivations and at regular intervals for the time course experiment. The 

samples were mixed with the equal volume of absolute ethanol. After 

centrifugation at 2,272 g for 30 min, the supernatants were collected for 

HPLC analysis. The OD600 of the yeast cultures was measured in a 

microtiter plate reader BioTek Synergy MX (BioTek) after cultures had 

been diluted 2 to 20 times. 

Analytical methods 

The production of p-coumaric acid and cinnamic acid were quantified by 

HPLC (Thermo) equipped with a Discovery HS F5 150 mm 2.1 mm column 

(particle size 3 mm). Two solvents, 10 mM ammonium formate (pH 3.0) 

and acetonitrile, were used as the eluents at a flow rate of 1.5 ml min
-1

 in a 

gradient method to analyse the samples. The absorbance of p-coumaric acid 

at 333 nm and of cinnamic acid at 277 nm was measured by a UV detector. 

Concentrations were calculated from the standard curves, using pure 

standards, that were purchased from Sigma-Aldrich. 

  

57



 

 
 

Results and discussion 

Production of p-coumaric acid in Saccharomyces cerevisiae 

Fourteen TAL genes (Table 2.2) were cloned under control of a strong 

promoter pTEF1 and integrated into the genome of S. cerevisiae. The 

resulting strains were grown in mineral medium with addition of tyrosine to 

analyse the activity of different TALs. Ten out of the fourteen strains 

expressing different TALs lead to p-coumaric acid production within the 

range of 1 to 95 mg l
-1

. The strains carrying RmXAL, HaTAL1 and FjTAL 

gave significantly higher production of p-coumaric acid than the others (Fig. 

2.1). Specifically, RmXAL resulted in 91.14±9.16 mg l
-1

 p-coumaric acid  

 

Fig. 3.1 Production of p-coumaric acid in S. cerevisiae expressing aromatic amino 

acid ammonia-lyases on mineral medium with 2% glucose and 10 mM tyrosine. 

The strains were grown at 30°C in 96-deep-well plates for 72 h. As control we used 

a S. cerevisiae strain with an empty vector. The displayed average values and 

standard deviations were calculated from three biological replicates. 
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and performed better than HaTAL1 and FjTAL, which gave 53.10±3.17 mg 

l
-1 

and 68.03±7.49 mg l
-1 

respectively. Interestingly, production of cinnamic 

acid was observed when RmXAL, BlPAL, and PpPAL were expressed, both 

with supplementation of phenylalanine and without. The strains expressing 

PpPAL and RmXAL could produce up to 14.90±4.71 and 3.48±0.30 mg l
-1

 of 

cinnamic acid respectively, and the strain expressing BlPAL could only give 

trace amounts of cinnamic acid. Cinnamic acid production indicates that 

RmXAL, BlPAL, and DdPAL have PAL activities. 

Specificity of TALs 

Considering that many enzymes were known to have both TAL and 

PAL activities (Parkhurst and Hodgins, 1971; Rosler et al., 1997; Sawada et 

al., 1973; Watanabe et al., 1992) as we observed in some of the selected 

TAL enzymes, we then analysed the specificity of TAL by cultivating the 

fourteen TAL-expressing strains in the presence of phenylalanine. In 

accordance with the results described in the previous section, BlPAL and 

PpPAL showed PAL activity. However, PpPAL resulted in lower cinnamic 

acid production in the presence of phenylalanine than tyrosine. On the other 

hand, RmXAL gave no cinnamic acid production when phenylalanine was 

added to the minimum medium. The phenomena might be explained by the 

inhibition effect of phenylalanine on the PAL activity. In contrast, IlTAL, 

which did not show PAL activity when tyrosine was supplemented, resulted 

in the highest production of cinnamic acid (40.14±7.02 mg l
-1

). Notably, 

even without addition of tyrosine, HaTAL1 and FjTAL could still produce 

24.65±1.25 and 15.50±1.04 mg l
-1 

p-coumaric acid respectively. It indicates 
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that the two enzymes are good candidates for p-coumaric acid production 

from glucose. No p-coumaric acid or cinnamic acid was detected for the 

remaining enzymes in defined medium. Among the TALs, BlPAL and 

PpPAL were the only two enzymes which exclusively had a PAL activity.  

 

Fig. 3.2 Production of p-coumaric acid in S. cerevisiae expressing aromatic amino 

acid ammonia-lyases on minimal medium with 2% glucose and 10 mM 

phenylalanine. The strains were grown at 30°C in 96-deep well plates for 72 h. As 

control we used a S. cerevisiae strain with an empty vector. The displayed average 

values and standard deviations were calculated from three biological replicates. 

Time course of p-coumaric production  

Five strains carrying five TALs, including RsTAL, S_BagA, RmXAL, 

HaTAL1 and FjTAL, were selected for the time course cultivation to 

investigate the dynamic change of p-coumaric acid production with the 

consumption of tyrosine in feed-in-time (FIT) medium. No apparent growth 

differences in the five strains were observed (Fig. 2.3 A). Although p-
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coumaric acid production by the five strains was different, the tyrosine 

consumption rates were similar (Fig. 2.3 B), which indicates that not all 

tyrosine was converted to p-coumaric acid. RmXAL gave the highest 

productivity of p-coumaric acid in the presence of tyrosine and led to 

144.64±4.62 mg l
-1

, but the production stopped after tyrosine was depleted. 

In comparison, the other four TALs continued producing p-coumaric acid 

after tyrosine depletion. Rs_TAL and S_BagA resulted in the final p-

coumaric acid titers of 73-82 mg l
-1

. HaTAL1 and FjTAL gave the highest 

titres of around 270 mg l
-1

.  

 

Fig. 2.3 Time course cultivation of the strains expressing RsTAL, S_BagA, RmXAL, 

HaTAL1 and FjTAL genes on FIT medium with 2% glucose and 10 mM tyrosine. 

(A) Growth measured by OD600. (B) Production of p-coumaric acid. The strains 

were grown at 30°C in 24-deep well plates for 90 h. As control we used a S. 

cerevisiae strain with an empty vector. The displayed average values and standard 

deviations were calculated from three biological replicates.  
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CHAPTER 5 Engineering yeast for high-level production of stilbenoid 

antioxidants 

Mingji Li
1
, Konstantin Schneider

1
, Mette Kristensen

1
, Irina Borodina

1
 & Jens Nielsen

1,2,3*
 

ABSTRACT 

Stilbenoids, including resveratrol and its methylated derivatives, are natural 

potent antioxidants, produced by some plants in trace amounts as defense 

compounds. Extraction of stilbenoids from natural sources is costly due to their 

low abundance and often limited availability of the plant. Here we engineered the 

yeast Saccharomyces cerevisiae for production of stilbenoids on a simple mineral 

medium typically used for industrial production. We applied a pull-push-block 

strain engineering strategy that included overexpression of the resveratrol 

biosynthesis pathway, optimization of the electron transfer to the cytochrome P450 

monooxygenase, increase of the precursors supply, and decrease of the pathway 

intermediates degradation. Fed-batch fermentation of the final strain resulted in a 

final titer of 800 mg l
-1

 resveratrol, which is by far the highest titer reported to date 

for production of resveratrol from glucose. We further integrated heterologous 

methyltransferases into the resveratrol platform strain and hereby demonstrated for 

the first time de novo biosynthesis of pinostilbene and pterostilbene, which have 

better stability and uptake in the human body, from glucose.  

Key words: resveratrol; phenylalanine; metabolic engineering; pinostilbene; 

pterostilbene; Saccharomyces cerevisiae 
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INTRODUCTION 

Resveratrol (3, 5, 4'-trihydroxystilbene) is a natural plant defense compound 

with strong antioxidant activity. The therapeutical effects of resveratrol in humans 

are not documented in terms of mode of action and molecular target, but there are 

several reports on its efficacy for treatment of cardiovascular diseases (Catalgol et 

al., 2012; Kopp, 1998; Vidavalur et al., 2006), cancer (Benitez et al., 2009; Roy et 

al., 2009) and aging (Baur et al., 2006) in mice. This makes resveratrol a promising 

compound for applications as dietary supplement, functional food ingredient, 

cosmetics ingredient, and even as a therapeutic. Several derivatives of resveratrol 

have been created, where the methylated derivatives pinostilbene and pterostilbene 

showed better stability and uptake (Sarpietro et al., 2007). The market for 

resveratrol and its derivatives is expected to grow further in the future. Currently, 

resveratrol is predominantly extracted from Japanese knotweed Polygonum 

cuspidatum; however the process is dependent on the variable harvest, has low 

extraction yield and results in a low-purity product (Palma et al., 2013). Production 

of resveratrol by microbial fermentation presents an alternative process 

circumventing the mentioned disadvantages of extraction from plants. 

Recombinant production of resveratrol was first shown in S. cerevisiae in 2003 

(Becker et al., 2003). Several groups subsequently improved the production of 

resveratrol and its derivatives in yeast and  Escherichia coli. However, all of these 

studies applied feeding of expensive precursors, such as p-coumaric acid 

(Beekwilder et al., 2006; Jeong et al., 2015; Sydor et al., 2010b; Wang et al., 2015; 

Wang and Yu, 2012; Zhang et al., 2006a), tyrosine (Shin et al., 2012; Wang et al., 

2011a; Zhang et al., 2006a) or phenylalanine (Trantas et al., 2009). The highest 

reported titer of resveratrol was 2.3 g l
-1

, when 2.5 g l
-1

 p-coumaric acid was fed to 

engineered E. coli (Lim et al., 2011). We previously described the biosynthesis of 

resveratrol directly from glucose and ethanol, via the tyrosine pathway in yeast, 
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which resulted in production of up to 531 mg l
-1

 resveratrol in fed-batch 

fermentation (Li et al., 2015). Here, we describe the development of a S. cerevisiae 

platform strain for production of resveratrol via phenylalanine pathway. The 

platform strain was obtained through extensive metabolic engineering of both the 

resveratrol pathway and pathways forming precursors for its biosynthesis, and it 

demonstrates clearly that for efficient production of plant chemicals by microbial 

fermentation it is necessary to combine pathway reconstruction with engineering of 

the endogenous metabolism(Nielsen and Keasling, 2016). We evaluated the 

platform strain for high-level production of resveratrol and also demonstrated its 

use for production of resveratrol derivatives.  

RESULTS 

Reconstruction of resveratrol biosynthetic pathway in S. cerevisiae 

The resveratrol biosynthesis pathway (Fig. 1a) was reconstructed in yeast by 

introducing phenylalanine ammonia lyase (AtPAL2), cinnamic acid hydroxylase 

(AtC4H), p-coumaryl-CoA ligase (At4CL2) from Arabidopsis thaliana and 

resveratrol synthase (VvVST1) from Vitis vinifera. Two strong constitute promoters, 

pTEF1 and pPGK1, were employed to control gene expression in different 

combinations. Engineered cells were cultivated on mineral medium supplemented 

with 5 mM phenylalanine for 72 hours to obtain 20-33 mg l
-1

 of resveratrol (Fig. 

1b). No by-products (cinnamic acid or p-coumaric acid) were detected in the 

medium. The highest titer of 32.32±0.37 mg l
-1

 was obtained for the strain ST4978, 

which had AtPAL2 and VvVST1 genes under control of pTEF1 promoter, and the 

other two genes under control of the pPGK1 promoter. Considering that the pTEF1 

promoter is somewhat stronger than pPGK1 (Partow et al., 2010), the results imply 

that AtPAL2 and VvVST1 may be rate limiting. This would also explain the absence 

of accumulation of pathway intermediates. 
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Figure 1 (a) The resveratrol biosynthetic pathway. AtPAL2, phenylalanine ammonia lyase 

from A. thaliana; AtC4H, cinnamic acid hydroxylase from A. thaliana; At4CL2, p-

coumaryl-CoA ligase from A. thaliana; VvVST1, resveratrol synthase from V. vinifera. (b) 

Resveratrol production by engineered strains expressing the four biosynthetic genes from 

different promoters. The resveratrol concentration in the broth was measured after the cells 

were cultivated on mineral medium with 2% glucose and 5 mM phenylalanine for 72 hours 

in 96-deep-well plates. The displayed average values and standard deviations were 

calculated from biological triplicates. 

Enhancement of P450 activity 

Many cytochrome P450 monooxygenases present a challenge, when expressed 

in a heterologous host,  due to their notorious low activity, limited stability, 

NAD(P)H-dependence, and auxiliary of electron carrier proteins (Urlacher et al., 

2004). As C4H used in resveratrol pathway is a membrane-associated plant-derived 

P450 enzyme, which requires an electron carrier for optimal activity, we 

hypothesized that C4H activity may be limiting resveratrol production. Plant-

derived P450s have previously been reported to poorly accept electrons directly 

from yeast endogenous electron carriers (Guengerich et al., 1993). Thus, we 

upgraded the strain ST4978 (basic resveratrol pathway) with overexpression of 

cytochrome P450 reductase (AtATR2) from A. thaliana or cytochrome B5 (CYB5) 
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from S. cerevisiae or both (Fig. 2). Overexpression of CYB5 did not improve 

resveratrol production on mineral medium with 5 mM phenylalanine 

supplementation (Fig. 2b, ST4980), possibly due to inability to directly donate 

electrons to C4H and due to induction of membrane proliferation (Vergeres et al., 

1993). On the other hand, resveratrol titer increased from 32.32±0.37 to 

40.75±1.60 mg l
-1

 when AtATR2 was introduced (Fig. 2b, ST4981), and further 

increased to 77.19±0.84 mg l
-1

 when CYB5 was subsequently overexpressed (Fig. 

2b, ST4982), which corresponds to 26% and 139% improvement in relation to the 

reference strain ST4978. Trace amount of p-coumaric acid was also detected 

during the cultivation process (at 24 h) of the strain ST4982, but not in the other 

strains. Thus, the activity of C4H was clearly enhanced when ATR2 and Cyb5p 

were overexpressed.  

 

Figure 2 (a) Cytochrome P450 reductase (CPR)-mediated electron transfer from NADPH 

to cinnamic acid hydroxylase (AtC4H) and effects of functional expression of CPR 

(AtATR2) and cytochrome B5 (CYB5) on resveratrol production on mineral medium with (b) 

and without (c) 5 mM phenylalanine in 96-deep-well plates. The displayed average values 

and standard deviations were calculated from three biological replicates. 
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We then tested resveratrol production from glucose by the engineered strains 

on mineral medium without supplementation of phenylalanine. Interestingly, 

higher resveratrol production was obtained for all the strains without phenylalanine 

supplementation (Fig. 2c). This shows that resveratrol can be de novo synthesized 

from glucose via the phenylalanine pathway and that adding phenylalanine to the 

medium inhibits resveratrol production. The inhibition effect of phenylalanine was 

more obvious when AtATR2 was expressed (Fig. 2b, c). ST4981 and ST4982 

resulted in 78.30±1.93 mg l
-1

 and 105.31±12.59 mg l
-1 

resveratrol respectively on 

mineral medium without phenylalanine, which was 92% and 36% higher than 

resveratrol production with phenylalanine supplementation. We also observed that, 

with the increase of phenylalanine concentration from 0 to 5 mM, the biomass 

accumulation increased (Supplementary Fig. 1).  

Increasing copy number of the resveratrol pathway genes 

We have previously shown that for tyrosine-mediated resveratrol biosynthesis 

the production of resveratrol could be increased 36-fold by integration of multiple 

copies of the biosynthetic genes (Li et al., 2015). We therefore tested whether the 

same pull-strategy would work for the phenylalanine-mediated pathway. The basic 

resveratrol biosynthesis pathway genes (AtPAL2, AtC4H, At4CL2 and VvVST1) 

were integrated onto Ty-elements in the AtATR2 and CYB5 overexpression strain. 

The weakened URA3 marker ensures multiple integrations of the expression 

cassette (Maury et al., 2016). 12 isolates were screened to identify the highest 

producing strain ST4984, which had 2 copies of the resveratrol pathway genes 

when checked by qPCR. When the strain ST4984 was cultivated on mineral 

medium with 2% glucose in shake flasks, 169.04±2.42 mg l
-1

 resveratrol was 

obtained (Fig. 3a). In contrast, only 108.31±4.68 mg l
-1

 resveratrol was obtained 

with strain ST4982 carrying a single copy of the resveratrol pathway. Resveratrol 
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production was growth associated (Fig. 3b, c). About 17% and 26% of the total 

resveratrol were produced during the growth on glucose for ST4982 and ST4984 

respectively, while the majority of resveratrol was produced during growth on 

ethanol for both strains (Fig. 3a). This is consistent with the results we have 

obtained in our previous study (Li et al., 2015). The effect of the multicopy gene 

integration was however mostly pronounced in the glucose phase, where 2.4-fold 

more resveratrol was produced in ST4984 than in ST4982. For the ethanol phase 

the relative increase was smaller, namely 1.4-fold. Interestingly the multicopy 

strain ST4984 had a lower biomass yield on ethanol than ST4982, while the 

biomass yields on glucose were similar (Fig. 3b). The final OD600 of ST4984 was 

30% lower than that of ST4982 (Fig. 3c) probably due to the metabolic burden 

brought by the high-level expression of the resveratrol pathway enzymes.  

 

Figure 3 (a) Resveratrol production from glucose by strains carrying single and multiple 

copies of resveratrol pathway. Resveratrol titer in relation to substrate consumption in 

glucose phase (b) and ethanol phase (c) by the engineered strains. The strains were 

cultivated on mineral medium with 20 g l
-1

 glucose in shake flasks. The displayed average 

values and standard deviations were calculated from three biological replicates. 

Precursor supply 

To further improve resveratrol production we applied a push-and-block strategy, 

where we overexpressed the upstream pathways and eliminated competing  
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Figure 4 (a) Schematic overview of resveratrol biosynthesis in engineered yeast S. 

cerevisiae and the main engineering targets implemented in this study. Single arrows 

represent single reaction steps, while two arrows represent multiple reaction steps. The 

modified targets are shown in red, while the gene ARO10 subjected to deletion is shown in 

blue. Arrows shown in bold indicate that the genes were overexpressed. GLC, glucose; G6P, 

glucose 6-phosphate; E4P, erythrose 4-phosphate; DAHP,  3-deoxy-D-arabino-heptulosonic 

acid 7-phosphate, SHIK, shikimate; S3P, shikimate 3-phosphate; CHOR, chorismate; 

PREPH, prephenate; TYR, tyrosine; PPY, phenylpyruvate; PAA, phenylacetaldehyde; PHE, 

phenylalanine; CA, cinnamic acid; p-CA, p-coumaric acid; p-C-CoA, p-coumaroyl-CoA; 

RES, resveratrol; M-CoA, malonyl-CoA; Ac-CoA, acetyl-CoA; ACE, acetate; ACD, 

acetaldehyde; ETOH, ethanol; PYR, pyruvate; PEP, phosphoenolpyruvate; ARO4
K229L

, 

feedback-inhibition resistant version of DAHP synthase; ARO7
G141S

, feedback-inhibition 

resistant version of chorismate mutase; EcaroL, E. coli shikimate kinase II; ARO10, 

phenylpyruvate decarboxylase, AtPAL2, phenylalanine ammonia lyase; AtC4H, cinnamate-

4-hydroxylase; At4CL2, 4-coumarate-CoA ligase; VvVST1, resveratrol synthase; 

SeACS
L641P

, post-translationally de-regulated variant of acetyl-CoA synthetase; ACC1
S659A, 

S1157A
, acetyl-CoA carboxylase devoid of SNF1-phosphorylation sites. (b) Microbial 

production of resveratrol from glucose by strains with different genetic modifications. The 

strains were cultivated on mineral medium with 20 g l
-1

 glucose in shake flasks. The 

displayed average values and standard deviations were calculated from three biological 

replicates. 
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pathways for the precursor phenylalanine. To increase precursors supply, the 

feedback-inhibition resistant versions of DAHP synthase (ARO4
K229L

) and 

chorismate mutase (ARO7
G141S

) (Luttik et al., 2008) and a de-regulated variant of 

acetyl-CoA carboxylase (ACC1
S659A, S1157A

) (Shi et al., 2014) were overexpressed in 

ST4984 to generate ST4985. The strain ST4985 resulted in a 19% improvement of 

resveratrol production to 201.72±7.91 mg l
-1

 (Fig. 4b), which is supported by our 

previous study(Li et al., 2015). The strain ST4985 was further modified by the 

following strategies and combinations thereof in order to increase the push by 

overproduction of precursors: (i) deletion of phenylpyruvate decarboxylase  

(ARO10), (ii) overexpression of a heterologous shikimate kinase (aroL) from E. 

coli, (iii) overexpression of a post-translationally non-regulated version of acetyl-

CoA synthase (SeACS
L641P

) from Salmonella enteric (Shiba et al., 2007). While 

each of the tested strategies individually resulted in 26-30% increase of resveratrol 

titer, their effects was not additive upon combination (Fig. 4b). No by-products, 

such as p-coumaric acid or cinnamic acid, were observed at the end of cultivation 

process in any of the strains. The highest production of resveratrol (272.64±1.34 

mg l
-1

) was obtained in strain ST4990, in which ARO10 was deleted and 

SeACS
L641P

 was overexpressed.  

Fed-batch fermentation 

Fed-batch fermentation of the engineered strain ST4990 was performed in 

controlled bioreactors on mineral medium with glucose (Fig. 5a) or ethanol (Fig. 

5b) feed in the feeding phase. The batch phase was on 40 g l
-1

 glucose, once the 

glucose was consumed, the constant feeding of glucose or ethanol was initiated. A 

long lag phase of 40 h was observed followed by a fast growing log phase with the 

rapid consumption of glucose (Fig. 5). Resveratrol accumulation was growth-

associated and reached 268.70 mg l
-1

 with a yield of 11.35 mg g
-1

 glucose when 
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glucose was depleted. A nearly linear increase in OD600 over time was observed 

while glucose or ethanol was being fed. The OD600 increase and resveratrol 

accumulation corresponded well with the substrate consumption (Fig. 5a, b). At 

the end of the glucose fed-batch fermentation, 812 mg l
-1

 resveratrol and 22 g l
-1

 

dry weight (DW) biomass was obtained from feeding 88 g l
-1

 glucose. In the 

ethanol fed-batch fermentation, where 79 g l
-1

 ethanol was fed, the final 

concentrations of DW biomass (19 g l
-1

) and resveratrol (755 mg l
-1

) were similar 

to the reactors with glucose feeding strategy.  

Figure 5 Fed-batch fermentation of the strain ST4990. Aerobic fed-batch fermentations 

were carried out by feeding glucose (a) or ethanol (b) respectively with a constant feeding 

rate of 5 g h
-1

 or 10 g h
-1

.  

Production of resveratrol derivatives 

The instability of resveratrol, which is sensitive to light and oxygen, limits the 

bioavailability and bioactivity of the compound (Walle et al., 2004). The 

bioactivity and bioavailability of resveratrol can be enhanced by substitution of 

hydroxyl groups with methoxy groups (Lee et al., 2003; Remsberg et al., 2008). 

Two resveratrol O-methyltransferases from Sorghum bicolor (SbROMT) and Vitis 

vinifera (VvROMT) were shown to methylate resveratrol to pinostilbene and 

pterostilbene, respectively (Fig. 6a) (Jeong et al., 2015; Wang et al., 2015). We 

expressed the two enzymes in the resveratrol producing strain ST4990 to generate 
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strains ST4993 and ST4994. Growing the strains ST4993 and ST4994 on mineral 

medium with 20 g l
-1

 glucose resulted in 1.38±0.06 mg l
-1

 pinostilbene and 

5.52±2.84 mg l
-1

 pterostilbene, respectively (Fig. 6b). When grown on feed-in-

time (FIT) medium, the strain ST4993 accumulated 5.52±2.84 mg l
-1 

pinostilbene 

and strain ST4994 accumulated 34.93 ±8.53 mg l
-1 

pterostilbene (Fig. 6c). 

Interestingly, 1.96±0.42 mg l
-1

 pinostilbene was also observed in ST4994 culture 

(Fig. 6c), which indicates that the two methylation groups are introduced 

sequentially, as also proposed before by Wang et al (Wang et al., 2015). Although 

only small amounts of resveratrol derivatives were detected, it demonstrates for the 

first time the feasibility of de novo biosynthesis of the two resveratrol derivatives 

from glucose.  

Figure 6 (a) Methylation of resveratrol to produce its derivatives, pinostilbene and 

pterostilbene, by strains ST4993 and ST4994 carrying SbROMT and VvROMT respectively. 

The strains were cultivated on mineral medium with 20 g l
-1

 glucose (b) or on FIT medium 

(c) in shake flasks. The displayed average values and standard deviations were calculated 

from duplicates. 
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DISCUSSION 

We have applied a pull-push-block strategy to improve resveratrol production. 

The “pull” was improved by optimizing the resveratrol pathway expression and 

P450 function, the “push” was achieved by increasing the supply of precursors 

phenylalanine and malonyl-CoA, and finally the “block” was realized by reducing 

the degradation of the pathway intermediates.  

In earlier reports on resveratrol production via phenylalanine, the cultures were 

supplemented with phenylalanine. For example, Trantas et al. have reported a yeast 

strain that produced 0.29 mg l
-1

 resveratrol when 10 mM phenylalanine was fed to 

the medium (Trantas et al., 2009). We found that supplementation of the medium 

with as little as 0.25 mM phenylalanine decreased resveratrol titer. This 

phenomena could be explained by the inhibitory effect of phenylalanine on C4H 

(Ro and Douglas, 2004).  

We previously succeeded in inserting up to 8 copies of the resveratrol pathway 

(TAL) onto yeast genome (Li et al., 2015). However, here where we produce 

resveratrol via phenylalanine we managed to integrate only 2 copies of the genes 

encoding the resveratrol pathway enzymes. The failure to obtain integration of 

more copies of the genes may result from heavy stress response, such as ER 

membrane proliferation (Sandig et al., 1999) or ER morphology variation 

(Trenchard and Smolke, 2015), when the P450 enzyme is highly expressed. 

Another plausible explanation might be that the yeast host would incur too much 

metabolic burden if the copy number of resveratrol pathway integrated onto the 

genome were very high and this causes a major shift in protein allocation, which 

has recently been shown to have significant impact on yeast metabolism (Nilsson 

and Nielsen, 2016). The decreased yield of biomass on glucose that was observed 

in the multicopy strain is consistent with this hypothesis. In addition, we also 
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observed that accumulation of resveratrol was strongly related to growth, which is 

also supported by recently published study on requirement of ATP for resveratrol 

production (Vos et al., 2015).  

Overexpression of feedback-inhibition resistant versions of DAHP synthase 

(ARO4
K229L

) and chorismate mutase (ARO7
G141S

) together with constitutively active 

acetyl-CoA carboxylase (ACC1
S659A, S1157A

) gave a 19% improvement in resveratrol 

titer, which is similar to the increase we observed in the previous study for TAL 

pathway (Li et al., 2015). We further improved phenylalanine supply by 

inactivating phenylpyruvate decarboxylase. Two broad-substrate-specificity 

decarboxylases, Aro10p and Pdc5p, were reported to catalyze decarboxylation of 

phenylpyruvate to phenylacetaldehyde, i.e., the first degradation step (Hazelwood 

et al., 2008). Although a previous study showed that double deletion of ARO10 and 

PDC5 improved p-coumaric acid production (Rodriguez et al., 2015), no further 

improvement of resveratrol production was obtained when PDC5 was knocked out 

in addition to ARO10 (Supplementary Fig. 2). This is consistent with publication 

by Vuralhan et al., who found that Aro10p had higher activity than Pdc5p towards 

phenylpyruvate (Vuralhan et al., 2003). In addition, the supply of malonyl-CoA, 

another key precursor for resveratrol, would be attenuated when PDC5 was 

knocked out as Pdc5p is also responsible for pyruvate decarboxylation. We have 

previously obtained negative results upon combined overexpression of ScACS
L641P

 

and ALD6 (Li et al., 2015). On the other hand, overexpression of ALD6 may lead 

to reduction of phenylalanine supply through the Ehrlich pathway (Hazelwood et 

al., 2008). Consequently, in this study we chose to overexpress SeACS
L641P

 alone, 

which resulted in improvement of resveratrol production. Further strategies for  

increasing malonyl-CoA supply could be envisioned, such as down-regulation of 

the competing pathway towards fatty acid biosynthesis (Lim et al., 2011).  
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While the final strain harbored a dozen of genetic modifications, the resveratrol 

yield (0.007 mol mol
-1

 glucose) was still far lower than the maximum theoretical 

yield of 0.28 mol mol
-1

 glucose (Vos et al., 2015), which shows that there is a lot of 

potential to further improve the strain. One of the strategies that would be 

interesting to test could be optimization of the energetics of cytosolic acetyl-CoA 

generation by overexpression of bacterial pyruvate dehydrogenase complex in the 

cytosol as recently reported by Kozak et al (Kozak et al., 2014). Besides, strong 

correlation between resveratrol biosynthesis and biomass indicates that low 

biomass is another issue to be solved for improving resveratrol production. 

Therefore, decoupling growth and production as illustrated recently using a 

biosensor for malonyl-CoA (David et al., 2016) could possibly further increase the 

production of resveratrol.  
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MATERIALS AND METHODS 

Strains and plasmids 

All the engineered yeast strains (Table 1) were constructed from CEN.PK102-

5B (MATa ura3-52 his3Δ1 leu2-3/112 MAL2-8
c
 SUC2)(Entian and Kötter, 2007a). 

Genetic engineering was carried out using either integrative EasyClone vectors 

with auxotrophic selection markers(Jensen et al., 2014b) or using EasyClone-

MarkerFree vectors with CRISPR/Cas9 system (Jessop-Fabre et al., submitted). 

Details on the cloning and strain construction are provided in Supplementary 

Methods. All the oligos used for genetic modifications are listed in 

Supplementary Table 1. All the biobricks and plasmids used in the study are 

summarized in Supplementary Tables 2 and 3 respectively.   

Media and cultivations  

Seed cultures were prepared by cultivating yeast in SC Drop-out (SD) liquid 

medium without histidine, leucine and uracil at 30°C with 250 rpm agitation for 24 

h. The inoculation size of 10% (v/v) for 96-deep well plate cultivation or initial 

OD600 of 0.02 for shake flask cultivation was used. The mineral medium (pH 6.0) 

with 2% glucose or feed-in-time (FIT) medium (m2p-labs, Inc.) and cultivation 

conditions for resveratrol and its derivatives production was described in(Li et al., 

2015). Samples were taken at regular intervals or at the end of cultivation. OD was 

measured at a wavelength of 600 nm using a Genesys 20 spectrophotometer 

(Thermo Scientific). The dry cell weight was measured by filtrating 3 ml of the 

cultures through membrane filters and drying at 105°C to a constant weight. Part of 

the sample was centrifuged at 12,000 rpm for 2 min and the supernatant was used 

for analysis of general secreted metabolites. Another part of the sample was mixed 

with an equal volume of ethanol (99.9%), centrifuged at 12,000 rpm for 2 min and 

the supernatant was used for resveratrol quantification. 
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HPLC and LC-MS measurements 

Glucose and ethanol concentrations were quantified by HPLC (Thermo Fisher 

Scientific, CA) equipped with an Aminex HPX-87H ion-exchange column (Bio-

Rad, Hercules, CA) and a UV and RI detector. 5 mM H2SO4 was used as the 

mobile phase and the column was kept at 45°C with a flow rate of 0.6 ml min
-1

. 

The HPLC detection was carried out with 10 mM ammonium formate (pH 3.0) and 

acetonitrile as the eluents at a linear gradient flow rate of acetonitrile from 5% to 

60% with a Discovery HS F5 150 mm×2.1 mm column (particle size 3 mm) as 

described in(Li et al., 2015). The analyses of pinostilbene and pterostilbene were 

performed by LC-MS (Thermo Fisher Scientific, CA). Confirmation of the identity 

of pinostilbene and pterostilbene was done by comparing the retention time and 

accurate mass spectrum with the standards purchased from Sigma-Aldrich. The 

details on LC-MS analysis are provided in Supplementary materials and methods.  

Fed-batch fermentation 

Fermentation was carried out in Sartorius bioreactors equipped with an acoustic 

gas analyzer (model number 1311, Bruël & Kjær). An initial OD600 of 0.2 was used 

for inoculation of seed culture into 0.4 l mineral medium containing 4% glucose. 

During the fermentation the temperature was maintained at 30°C, pH at 6.0 with 

NH4·H2O, agitation rate at 800 rpm, and air flow at 1 l min
-1

. The detailed setup for 

batch and fed-batch fermentation is described in Supplementary Methods.  
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Supplementary materials and methods 

Biobricks and plasmids construction 

All the plasmids were constructed by following the described USER cloning 

procedure(Jensen et al., 2014b). All the biobricks (Supplementary Table 2) were 

amplified using corresponding templates and primers, which are summarized in 

Supplementary Table 2 and Table 1, respectively. The PCR reactions were 

performed in PCR instrument (Bio-Rad) using Phu X7 polymerase(Norholm, 2010). 

The generated biobricks were assembled into either EasyClone vectors(Jensen et 

al., 2014b) or EasyClone-MarkerFree vectors (Jessop-Fabre et al. submitted) to 

construct integrative plasmids for gene overexpression. The plasmid pCfB4286 

was generated by assembling BB599 (hphMXsyn) into opened plasmid pCfB2312 

with primers Open_2_fw and Open_2_rv. The constructed plasmids were 

sequenced by Eurofins Scientific to confirm the correct cloning.  

Strain construction 

The resveratrol- and its derivatives-producing strains were engineered by 

transforming corresponding integrative plasmids into the given parent strains 

(Supplementary Table 4). Yeast transformations were performed following 

lithium acetate protocol(Gietz and Woods, 2002). When antibiotic selection was 

used the transformed strains were incubated 30°C for 2 hours prior to plating on 

selective medium. For CRISPR/Cas9 mediated gene insertions/deletions, the 

strains were first transformed with Cas9-expressing plasmid pCfB4286 and 

selected on hygromycin B plates. The resulting Cas9-expressing strains were 

transformed with appropriate DNA target fragments together with the 

corresponding gRNA plasmids. The correct genetic modifications were verified by 

yeast colony PCR using the primers summarized in Supplementary Table 1.  

96



 

 

LC-MS measurements 

LC-MS measurements were carried out on a Dionex UltiMate 3000 UHPLC 

(Thermo Fisher Scientific, San Jose, CA) connected to an Orbitrap Fusion Mass 

Spectrometer (Thermo Fisher Scientific, San Jose, CA). The UHPLC used a 

Hypersil GOLD P P, 15 cm x 2.1 mm, 3 μm column. Temperature was 35°C and 

flow rate was 1 mL/min with a mobile phase of 100% formic acid (0.1%) for 1 min 

followed by a linear gradient of 100% formic acid (0.1%)/0% acetonitrile (0.1%) to 

5% formic acid (0.1%)/95% acetonitrile (0.1%) over 14 minutes. This gradient was 

held for 2 minute after which it was changed immediately to 100% formic acid 

(0.1%) and 0% acetonitrile (0.1%) and held for 4 minutes. The sample was passed 

on to the MS equipped with a heated electrospray ionization source (HESI) in 

positive-ion mode with nitrogen as nebulizer gas (45 a.u.). The cone and probe 

temperature were 342°C and 358°C, respectively. Probe gas flow was 13 a.u. and 

spray voltage was 3500 V. Scan range was 100 to 1000 Da and time between scans 

was 100 ms. 

Fed-batch fermentation of yeast strains in controlled reactors 

Four seed pre-cultures were prepared by inoculating fresh colonies from agar 

plate into 5 ml SC (ura
-
, his

-
, leu

-
) medium and cultivating at 30°C for 24 hours in 

an orbital shaker (250 rpm). The pre-cultures were then inoculated to an initial 

OD600 of 0.02 into 50 ml minimal medium (pH 6.0), as described in(Gietz and 

Woods, 2002) in 250 ml flasks. The start OD600 of 0.2 in bioreactors was prepared 

by inoculating seed culture into 400 ml fermentation medium in four bioreactors. 

The composition of the fermentation medium was as following: 15.0 g l
-

1
 (NH4)2SO4, 6.0 g l

-1 
KH2PO4, 1.0 g l

-1 
MgSO4·7H2O, 2 ml l

-1 
trace metals solution, 

2 ml l
-1

 vitamins solution, 0.5 ml l
-1 

antifoam A (Sigma-Aldrich), and 40 g l
-1

 

glucose, where the composition of trace metal solution and vitamin solution was as 
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described in(Jensen et al., 2014b). The medium without vitamins, trace metals and 

glucose was autoclaved at 121°C for 20 min. Glucose was autoclaved separately 

using the same conditions. Vitamins solution and trace metals solution were added 

to the sterilized medium by filtration. The fermentation was performed at 30°C 

with the agitation rate of 800 rpm and the air flow of 1 l per min. The pH was 

automatically maintained at 6.0 with NH4·H2O. Once the glucose was depleted, 

which was judged by the sharp decline of exhaust CO2, the feed was initialed at a 

constant feeding rate of 5 g h
-1 

or 10 g h
-1

 for ethanol and glucose feeds 

respectively. The feed medium contained 45 g l
-1 

(NH4)2SO4, 18 g l
-1 

KH2PO4, 3 g l
-

1 
MgSO4·7H2O, 12 ml L

-1 
 trace metals solution, 6 ml L

-1 
vitamins solution, 0.6 ml 

L
-1 

antifoam A, and 160 g l
-1 

of glucose or ethanol. Glucose, vitamins, and trace 

metals were added to the feed solution in the same way as to the batch fermentation 

medium. Samples were taken at regular intervals and used for measurements of 

biomass and metabolites concentration.  

Supplementary Figure 1. Final concentrations of resveratrol and OD600 of ST4982, 

cultivated on minimal medium with 2% glucose and 0 to 5 mM phenylalanine. The 

strains were grown in 96-deep well plates for 72 hours. The displayed average 

values and standard deviations were calculated from three biological replicates. 
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Supplementary Figure 2. Resveratrol production by the strains ST4986 and 

ST4995 on minimal medium with 2% glucose in shake flasks. The displayed 

average values and standard deviations were calculated from three biological 

replicates. 
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Supplementary Table 1. List of primers used in the study. 

Name Sequence (5’ to 3’) 

P<-TEF1_fw ACCTGCACU TTGTAATTAAAACTTAG 

P<-TEF1_rv CACGCGAU GCACACACCATAGCTTC 

PPGK1->_rv ATGACAGAU TTGTTTTATATTTGTTG 

P<-PGK1_fw ACCTGCACU TTGTTTTATATTTGTTG 

PTEF1->_fw CGTGCGAU GCACACACCATAGCTTC 

PTEF1->_rv ATGACAGAU TTGTAATTAAAACTTAG 

<-AtPAL2_fw AGTGCAGGU AAAACAATGGATCAAATC 

<-AtPAL2_rv CGTGCGAU TCAGCAGATAGGAATAGG 

AtC4H->_fw ATCTGTCAU AAAACAATGGACTTGTTGTTGTTG 

AtC4H->_rv CACGCGAU TCAACAGTTTCTTGGCTT 

<-CYB5_fw AGTGCAGGU AAAACA ATGCCTAAAGTTTACAGTTACC 

<-CYB5_rv CGTGCGAU TCA TTCGTTCAACAAATAATAAGC 

AtATR2->_fw ATCTGTCAU 

AAAACAATGTCCTCCTCTTCTTCATCATCCACC 

AtATR2->_rv CACGCGAU TCACCAGACATCTCTCAA 

<-At4CL2_fw  AGTGCAGGU AAAACAATGACTACCCAAGATGTTA 

<-At4CL2_rv  CGTGCGAU TCAGTTCATCAAACCGTT 

VvVST1->_fw  ATCTGTCAU AAAACAATGGCTTCCGTTGAAGAA 

VvVST1->_rv CACGCGAU TCAATTGGTAACGGTTGG 

Open_1_fw  AGCTGAAGCU TCGTACGCTG 

Open_1_rv ACGCGATCU TCGAGCGTCC 

<-ACC1_fw CGTGCGAU TCATTTCAAAGTCTTCAACAATTT  

<-ACC1_rv AGTGCAGGU AAAACAATGAGCGAAGAAAGCTTA  

USER_fw  ATTGGGU GCATAGGCCACTAGTGGATCTG 

USER_rv  ATCGCGU CAGCTGAAGCTTCGTACGC 

Open_2_fw ACGCGAU CTCGTGATACGCCTATTTT 

Open_2_rv ACCCAAU ATCAGTTATTACCCTATGCG 

TJOS-62 (P1F) CGTGCGAU AGGGAACAAAAGCTGGAGCT 

TJOS-65 (P1R) CACGCGAU TAACTAATTACATGACTCGA 

TJOS-64 (P3F) ATCTGTCAU AGGGAACAAAAGCTGGAGCT 

TJOS-67(P3F) ATGACAGAU TAACTAATTACATGACTCGA 

PDC5_KO_fw CGTAAACCTGCATTAAG  
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PDC5_KO_rv CTAAGATCATAGCTAAAGG 

ARO10_KO_fw GGATAGCCGTCATTTAC 

ARO10_KO_rv CGATAGGAATGACAGAA 

EcaroL->_fw ATCTGTCAU AAAACAATGACACAACCTCTTTTTCTGA 

EcaroL->_rv CACGCGAU TCAACAATTGATCGTCTGTGC 

<-SeACS_fw AGTGCAGGU AAAACAATGTCACAAACACAC 

<-SeACS_rv CGTGCGAU TCATGATGGCATAGCAATAG  

<-TNAT5_fw ATCGCACGAU TTCTTAACAGATGGCTG 

<-TNAT5_rv AGATCGCGU TCGGGACCATAAAAATTC 

P<-TDH3_fw AGCTTCAGCU ATAAAAAACACGCTTTTTCAG 

P<-TDH3_rv ACCTGCACU TTTGTTTGTTTATGTGTGTTTATTC 

PFBA1->_fw  GCGTGTTU TTTATATAACAATACTGACAGTACT 

PFBA1->_rv ATGACAGAU TTTGAATATGTATTACTTGG 

SbROMT_fw ATCTGTCAU AAAACAATGGTCTTGATCTCCGAAGATTCC 

AGAGAATTATTG 

SbROMT_rv CACGCGAU TCATGGGTATAATTCGATGAT 

VvROMT_fw ATCTGTCAU AAAACAATGGATTTGGCCAAC 

VvROMT_rv CACGCGAU TCATGGGTAAACTTCGATCAA 

ColPCR_DW_fw CCTGCAGGACTAGTGCTGAG 

X-3_DW_rv  CCGTGCAATACCAAAATCG 

X-4_DW_rv  GACGGTACGTTGACCAGAG 

XI-1_DW _rv  GAAGACCCATGGTTCCAAGGA 

XI-2_DW_rv GAGACAAGATGGGGCAAGAC 

XI-5_DW_rv CCCAAAAGCAATCCAGGAAAAACC 

XII-1_DW_rv GGACGACAACTACGGAGGAT 

PDC5_chk_fw AAAGCCTCCATATCCAAAG 

PDC5_chk_rv AGGTATGGTTAAAGATCACAC 

ARO10_chk_fw ACCGAAATTTAAAAAAGCAG 

ARO10_chk_rv GTTTTCGGATAAAACTTCTTC 

Note: Underlined sequences represent overhangs used for USER cloning. 
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Supplementary Table 2. List of biobricks used in the study. 

Biobric

k 

Description Template Forward 

primer 

Reverse 

Primer 

BB008 Promoter, <-PTEF1 pCfB826 P<-TEF1_fw P<-TEF1_rv 

BB301 Promoter, PTEF1-> pCfB826 PTEF1->_fw PTEF1->_rv 

BB010 Bidirectional 

promoter, <-PTEF1-

PPGK1-> 

pCfB826 P<-TEF1_fw PPGK1->_rv 

BB302 Bidirectional 

promoter, <-PPGK1-

PTEF1-> 

pCfB826 P<-PGK1_fw PTEF1->_rv 

BB291  PAL2 from A. thaliana pCfB756  <-AtPAL2_fw <-AtPAL2_rv 

BB292 C4H from A. thaliana pCfB754 AtC4H->_fw AtC4H->_rv 

BB290  CYB5 from S. 

cerevisiae 

gDNA of 

CEN.PK102-5B 

<-CYB5_fw <-CYB5_rv 

BB296  ATR2 from A. thaliana pCfB755  AtATR2->_fw AtATR2->_rv 

BB294 4CL2 from A. thaliana pCfB758  <-At4CL2_fw <-At4CL2_rv 

BB295 VST1 from V. vinifera pCfB759  VvVST1->_fw VvVST1->_rv 

BB580 KanMXpm pCfB2055 USER_fw USER_rv 

BB530 Promoter, <-PTDH3 gDNA of 

CEN.PK102-5B 

P<-TDH3_fw P<-TDH3_rv 

BB705 Promoter, PFBA1-> gDNA of 

CEN.PK102-5B 

PFBA1->_fw PFBA1->_rv 

BB713 Promoter, <-PTDH3-

PFBA1-> 

BB530 + 

BB705 

P<-TDH3_fw PFBA1->_rv 

BB429 Terminator, T<-NAT5 gDNA of 

CEN.PK102-5B 

T<-NAT5_fw T<-NAT5_rv 

BB1655 Linearized pCfB1178 pCfB1178 Open_1_fw Open_1_rv 

BB599 hphMXsyn pCfB2513 USER_fw USER_rv 

BB364 ARO4
K229L

 from S. 

cerevisiae 

pCfB826 ScARO4->_fw ScARO4->_rv 

BB361 ARO7
G141S

 from S. 

cerevisiae 

pCfB826 <-ScARO7_fw <-ScARO7_rv 

BB012  ACC1
S659A, S1157A

 from 

S. cerevisiae 

pCfB1175 <-ACC1_fw <-ACC1_rv 

BB1268 gBlock of PDC5  TJOS-62 TJOS-67  

BB1269 gBlock of ARO10  TJOS-64 TJOS-65  

BB1623 Knockout fragment of 

ARO10 

gDNA of 

ST691 

ARO10KO_fw ARO10KO_rv 
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BB1644 Knockout fragment 

of PDC5 

gDNA of ST691 PDC5_KO_fw PDC5_KO_rv 

BB501  aroL from E. coli pCfB2747 EcaroL->_fw EcaroL->_rv 

BB119  ACS
L641P 

from S. 

enterica 

pCfB324 <-SeACS_fw  <-SeACS_rv  

BB1309 ROMT from S. bicolor pCfB4659 SbROMT-

>_fw 

SbROMT->_rv 

BB1310 ROMT from V. 

vinifera 

pCfB4660 VvROMT-

>_fw 

VvROMT->_rv 

Supplementary Table 3. List of plasmids used in the study. 

Name Parent 

plasmid 

Biobric

ks 

Properties Reference 

pCfB756
 
   AtPAL2

a
, KanMX This study 

pCfB754   AtC4H
a
, KanMX This study  

pCfB755
 
   AtATR2

a
, KanMX This study 

pCfB758    At4CL2
a
, KanMX (Li et al., 2015) 

pCfB759    VvVST1
a
, KanMX (Li et al., 2015) 

pCfB4659   SbROMT
 a
, KanMX This study 

pCfB4660   VvROMT
 a
, KanMX This study 

pCfB388   Integrative plasmid, XI-1-LoxP, 

KlLEU2 

(Jensen et 

al., 2014b) 

pCfB389   Integrative plasmid, XI-2-LoxP, 

KlURA3 

(Jensen et 

al., 2014b) 

pCfB391   Integrative plasmid, XI-5-LoxP, 

SpHIS5 

(Jensen et 

al., 2014b) 

pCfB844 pCfB391 BB291, 

BB302, 

BB292 

Integrative plasmid, XI-5, LoxP, 

PPGK1-AtPAL2, PTEF1-AtC4H, 

SpHIS5 

This study 

pCfB855 

 

pCfB388 BB294, 

BB302, 

BB295 

Integrative plasmid, XI-1, LoxP, 

PPGK1-At4CL2, PTEF1-VvVST1, 

KlLEU2 

This study 

pCfB846 pCfB389 BB290, 

BB008,  

Integrative plasmid, XI-2, LoxP, 

PTEF1-CYB5, KlURA3 

This study 

pCfB847 pCfB389 IBB301, 

BB296 

Integrative plasmid, XI-2, LoxP, 

PTEF1-AtATR2, KlURA3 

This study 

pCfB848 pCfB389 BB290, 

BB302, 

Integrative plasmid, XI-2, LoxP, 

PPGK1-CYB5, PTEF1-AtATR2, 

This study 
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BB296 KlURA3 

pCfB1018 

 

pCfB391 BB291, 

BB010, 

BB292 

Integrative plasmid, XI-5, LoxP, 

PTEF1-AtPAL2, PPGK1-AtC4H, 

SpHIS5 

This study 

pCfB1021 

 

pCfB388 BB294, 

BB010, 

BB295 

Integrative plasmid, XI-1, LoxP, 

PTEF1-At4CL2, PPGK1-VvVST1, 

KlLEU2 

This study 

pCfB2224   Integrative plasmid, XI-2, LoxP, 

KanMX 

(Stovicek et 

al., 2015b) 

pCfB2767 pCfB2224 BB290, 

BB302, 

BB296  

Integrative plasmid, XI-2, LoxP, 

PPGK1-CYB5, PTEF1-AtATR2, 

KanMX 

This study 

pCfB826   Integrative plasmid, X-4,LoxP, 

PTEF1-ScARO7
G141S

, PPGK1-

ScARO4
K229 L

, SpHIS5 

(Rodriguez 

et al., 2015) 

pCfB257   Integrative plasmid, X-3, LoxP, 

KlLEU2 

(Jensen et 

al., 2014b) 

pCfB2582 pCfB257 BB012, 

BB008 

Integrative plasmid, X-3, LoxP, 

PTEF1-ScACC1
S659A,

 
S1157A

, KlLEU2 

This study 

pCfB322   Multiple integrative plasmid, Ty4, 

KlURA3 

(Maury et 

al., 2016) 

pCfB1178 pCfB322 BB294, 

BB302, 

BB295 

Multiple integrative plasmid, Ty4, 

PPGK1-At4CL2,  PTEF1-VvVST1, 

KlURA3 

This study 

pCfB2584 pCfB1178 BB429, 

BB291, 

BB713, 

BB292 

Multiple integrative plasmid, Ty4, 

PTDH3-AtPAL2, P FBA1-AtC4H, 

PPGK1-At4CL2, PTEF1-VvVST1, 

KlURA3 

This study 

pCfB2312   Centromeric plasmid, PTEF1-CAS9, 

KanMX. 

(Stovicek et 

al., 2015b) 

pCfB4286 pCfB2312 BB599 Centromeric plasmid, PTEF1-CAS9, 

hphMXsyn 

This study 

pTAJAK-

71 

  2 μ plasmid, NatMX (Ronda et 

al., 2015) 

pCfB4156 pCfB2926 BB1268

, 

BB1269  

2 μ plasmid, PSNR52-

gBlock_PDC5-gBlock_ARO10-

TSUP, NatMX 

This study 

pCfB3041 pCfB2926 BB1324 2 μ plasmid, PSNR52-

gBlock_X-3-TSUP, NatMX 

(Jessop-Fabre et 

al., submitted) 
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pCfB3034    Integrative plasmid, X-3, 

MarkerFree 

(Jessop-Fabre et 

al., submitted) 

pCfB2747 pCfB3034  Integrative plasmid, X-3, PPGK1-

EcaroL, KlLEU2 

(Rodriguez 

et al., 2015) 

pCfB4289 pCfB3034 BB301, 

BB501 

Integrative plasmid, X-3, PTEF1-

EcaroL, MarkerFree 

This study 

pCfB3047 pCfB2926  2 μ plasmid, PSNR52-

gBlock_XII-1-TSUP, NatMX 

(Jessop-Fabre et 

al., submitted) 

pCfB3038   Integrative plasmid, XII-1, 

MarkerFree 

(Jessop-Fabre et 

al., submitted) 

pCfB4655 pCfB3048 BB704, 

BB119 

Integrative plasmid, XII-1, PTDH3-

SeACS
L641P

, MarkerFree 

This study 

   Integrative plasmid, XII-2, 

MarkerFree 

(Jessop-Fabre et 

al., submitted) 

pCfB4290  BB704, 

BB1309 

Integrative plasmid, XII-2, PTDH3-

SbROMT, MarkerFree 

This study 

pCfB4292  BB704, 

BB1310 

Integrative plasmid, XII-2, PTDH3-

VvROMT, MarkerFree 

This study 

a
 The genes were codon-optimized for S.cerevisiae and synthesized by GeneArt 

(Life Technologies). The DNA sequences are provided at the end of the 

Supplementary materials and methods. 
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Supplementary Table 4. The strains engineered in this study. 

Strains Parent strain Transformed integrative plasmids 

ST4976 CEN.PK102-5B pCfB844, pCfB855, pCfB389 

ST4977 CEN.PK102-5B pCfB844, pCfB1021, pCfB389 

ST4978 CEN.PK102-5B pCfB1018, pCfB855, pCfB389 

ST4979 CEN.PK102-5B pCfB1018, pCfB1021, pCfB389 

ST4980 CEN.PK102-5B pCfB1018, pCfB855, pCfB846 

ST4981 CEN.PK102-5B pCfB1018, pCfB855, pCfB847 

ST4982 CEN.PK102-5B pCfB1018, pCfB855, pCfB848 

ST4984 CEN.PK102-5B pCfB2767, pCfB2584, pCfB257, pCfB258 

ST4985 CEN.PK102-5B pCfB2767, pCfB2584, pCfB826, pCfB2582 

ST4986 ST4985 ΔARO10 

ST4987 ST4985  pCfB4289 

ST4988 ST4985  pCfB4655 

ST4989 ST4986  pCfB4289 

ST4990 ST4986  pCfB4655 

ST4991 ST4985  pCfB4289, pCfB4655 

ST4992 ST4986  pCfB4289, pCfB4655 

ST4993 ST4990  pCfB4290 

ST4994 ST4990  pCfB4292 

ST4995 ST4985 ΔARO10, ΔPDC5 
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DNA sequence of AtPAL2 codon-optimized for S. cerevisiae by GeneArt (Life 

Technologies) 

ATGGATCAAATCGAAGCTATGTTGTGTGGTGGTGGTGAAAAAACAAAA

GTTGCTGTTACTACTAAGACCTTGGCCGATCCATTGAATTGGGGTTTGG

CTGCTGATCAAATGAAGGGTTCTCATTTGGATGAAGTCAAGAAGATGGT

CGAAGAATACAGAAGACCAGTTGTTAATTTGGGTGGTGAAACTTTGACT

ATTGGTCAAGTTGCTGCTATTTCTACTGTTGGTGGTTCTGTTAAGGTTGA

ATTGGCTGAAACTTCTAGAGCTGGTGTTAAGGCTTCTTCTGATTGGGTT

ATGGAATCTATGAACAAGGGTACTGATTCTTACGGTGTTACTACAGGTT

TTGGTGCTACTTCTCATAGAAGAACTAAGAATGGTACTGCCTTGCAAAC

CGAATTGATCAGATTTTTGAACGCCGGTATTTTCGGTAACACCAAAGAA

ACTTGTCATACCTTGCCACAATCTGCTACTAGAGCTGCTATGTTGGTTA

GAGTTAACACTTTGTTGCAAGGTTACTCCGGTATCAGATTCGAAATTTT

GGAAGCTATCACCTCCTTGTTGAACCATAACATTTCTCCATCTTTGCCAT

TGAGAGGTACTATTACTGCTTCTGGTGATTTGGTTCCATTGTCTTATATT

GCTGGTTTGTTGACTGGTAGACCAAACTCTAAAGCTACTGGTCCAGATG

GTGAATCATTGACTGCTAAAGAAGCTTTTGAAAAGGCTGGTATCTCTAC

TGGTTTTTTCGACTTGCAACCTAAAGAAGGTTTGGCTTTGGTTAATGGT

ACAGCTGTTGGTTCTGGTATGGCTTCTATGGTTTTGTTTGAAGCTAACGT

TCAAGCTGTTTTGGCCGAAGTTTTGTCTGCTATTTTTGCTGAAGTTATGT

CCGGTAAGCCAGAATTCACTGATCATTTGACCCATAGATTGAAACATCA

CCCAGGTCAAATTGAAGCTGCTGCAATTATGGAACATATCTTGGATGGT

TCCTCTTACATGAAGTTGGCTCAAAAAGTTCACGAAATGGACCCATTGC

AAAAGCCAAAACAAGATAGATACGCTTTGAGAACTTCTCCACAATGGT

TGGGTCCACAAATAGAAGTTATTAGACAAGCCACCAAGTCCATCGAAA

GAGAAATCAATTCTGTTAACGACAACCCATTGATCGACGTCAGTAGAA

ACAAAGCTATTCATGGTGGTAACTTCCAAGGTACTCCAATTGGTGTTTC

TATGGACAACACTAGATTGGCTATTGCTGCCATTGGTAAATTGATGTTC

GCTCAATTCTCCGAATTGGTCAACGATTTTTACAACAACGGTTTGCCTTC

TAACTTGACCGCTTCTTCTAATCCATCATTGGATTACGGTTTTAAGGGTG

CTGAAATTGCTATGGCTTCATACTGTTCTGAATTGCAATACTTGGCTAA

CCCAGTTACCTCTCATGTTCAATCTGCTGAACAACACAATCAAGACGTT

AACTCCTTGGGTTTGATCTCTTCTAGAAAGACTTCTGAAGCCGTTGACA

TCTTGAAGTTGATGTCTACTACATTCTTGGTCGGTATTTGCCAAGCTGTT

GATTTGAGACATTTGGAAGAAAACTTGAGACAAACCGTCAAGAACACC

GTTTCACAAGTTGCTAAGAAAGTTTTGACCACCGGTATTAACGGTGAAT

TGCATCCATCTAGATTCTGCGAAAAGGATTTGTTGAAGGTCGTTGATAG

AGAACAAGTTTTCACCTACGTTGATGATCCATGTTCTGCTACTTATCCAT

TGATGCAAAGATTGAGACAAGTCATCGTTGATCATGCTTTGTCTAATGG
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TGAAACCGAAAAGAACGCTGTTACCTCCATTTTCCAAAAGATTGGTGCT

TTCGAAGAAGAATTGAAGGCCGTTTTGCCAAAAGAAGTTGAAGCAGCT

AGAGCAGCTTACGGTAACGGTACTGCTCCAATTCCAAATAGAATCAAA

GAATGCAGATCCTACCCATTATACAGATTCGTTAGAGAAGAATTAGGTA

CTAAGTTGTTGACCGGTGAAAAGGTTGTTTCTCCAGGTGAAGAATTCGA

TAAGGTTTTCACTGCTATGTGCGAAGGTAAATTGATCGATCCATTGATG

GACTGCTTGAAAGAATGGAATGGTGCTCCTATTCCTATCTGCTGA 

DNA sequence of AtC4H codon-optimized for S. cerevisiae by GeneArt (Life 

Technologies) 

ATGGACTTGTTGTTGTTGGAAAAGTCCTTGATTGCTGTTTTCGTTGCTGT

TATTTTGGCCACCGTTATCTCTAAATTGAGAGGTAAGAAATTGAAGTTG

CCACCAGGTCCAATTCCAATCCCAATTTTTGGTAATTGGTTGCAAGTTG

GTGATGACTTGAACCACAGAAACTTGGTTGATTACGCTAAAAAGTTCGG

TGATTTGTTCTTGTTGAGAATGGGTCAAAGAAATTTGGTCGTTGTTTCCT

CACCAGACTTGACCAAAGAAGTTTTGTTGACTCAAGGTGTCGAATTCGG

TTCCAGAACTAGAAATGTTGTTTTCGATATCTTCACCGGTAAGGGTCAA

GATATGGTTTTTACTGTTTACGGTGAACATTGGAGAAAGATGAGAAGA

ATTATGACCGTTCCATTCTTCACCAACAAGGTTGTCCAACAAAACAGAG

AAGGTTGGGAATTTGAAGCTGCTTCTGTTGTTGAAGATGTCAAGAAGAA

TCCAGATTCTGCTACTAAGGGTATCGTTTTGAGAAAAAGATTGCAATTG

ATGATGTACAACAACATGTTCAGAATCATGTTCGACAGAAGATTTGAAT

CCGAAGATGACCCTTTGTTTTTGAGATTGAAGGCTTTGAACGGTGAAAG

ATCTAGATTGGCTCAATCCTTCGAATACAACTACGGTGATTTCATCCCA

ATCTTAAGACCATTCTTGAGAGGTTACTTGAAGATCTGCCAAGATGTTA

AGGATAGAAGAATCGCCTTGTTCAAAAAGTACTTCGTTGACGAAAGAA

AGCAAATCGCTTCTTCTAAACCTACTGGTTCTGAAGGTTTGAAGTGCGC

CATTGATCATATTTTGGAAGCTGAACAAAAGGGTGAAATCAACGAAGA

TAACGTCTTGTACATCGTCGAAAACATTAACGTTGCTGCTATTGAAACT

ACCTTGTGGTCTATTGAATGGGGTATTGCTGAATTGGTTAATCACCCAG

AAATCCAATCCAAGTTGAGAAACGAATTGGATACTGTTTTGGGTCCAGG

TGTTCAAGTTACTGAACCTGACTTGCATAAGTTGCCATACTTGCAAGCT

GTTGTAAAAGAAACCTTGAGATTAAGAATGGCCATCCCTTTGTTGGTTC

CACATATGAACTTGCATGATGCTAAATTGGCCGGTTATGATATTCCAGC

CGAATCCAAGATTTTGGTTAATGCTTGGTGGTTGGCTAACAATCCAAAT

TCTTGGAAAAAGCCAGAAGAATTCAGACCAGAAAGATTTTTCGAAGAA

GAAAGTCACGTTGAAGCCAACGGTAATGATTTTAGATACGTTCCATTTG

GTGTTGGTAGAAGATCTTGTCCAGGTATTATCTTGGCTTTGCCAATTTTG

GGTATTACCATCGGTAGAATGGTCCAAAACTTCGAATTATTGCCACCAC
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CTGGTCAATCTAAGGTTGATACTTCTGAAAAGGGTGGTCAATTCTCCTT

GCATATTTTGAACCACTCCATCATCGTTATGAAGCCAAGAAACTGTTGA 

DNA sequence of AtATR2 codon-optimized for S. cerevisiae by GeneArt (Life 

Technologies) 

ATGTCCTCCTCTTCTTCATCATCCACCTCTATGATTGATTTGATGGCCGC

TATTATCAAGGGTGAACCAGTTATAGTTTCTGATCCAGCTAATGCTTCT

GCCTATGAATCTGTTGCTGCTGAATTATCCTCCATGTTGATCGAAAACA

GACAATTCGCTATGATCGTCACTACCTCTATTGCTGTTTTGATTGGTTGC

ATCGTTATGTTGGTTTGGAGAAGATCTGGTTCTGGTAACTCTAAAAGAG

TCGAACCATTGAAGCCATTGGTTATCAAACCTAGAGAAGAAGAAATTG

ACGACGGTAGAAAGAAGGTTACCATTTTCTTTGGTACTCAAACCGGTAC

TGCTGAAGGTTTTGCTAAAGCTTTGGGTGAAGAAGCTAAAGCCAGATA

CGAAAAGACTAGATTCAAGATCGTTGACTTGGATGATTACGCTGCAGAT

GATGATGAATACGAAGAAAAGTTGAAGAAAGAAGATGTCGCCTTTTTC

TTCTTGGCTACTTATGGTGATGGTGAACCTACTGATAATGCTGCTAGAT

TTTACAAGTGGTTCACCGAAGGTAATGATAGAGGTGAATGGTTGAAAA

ACTTGAAGTACGGTGTTTTCGGTTTGGGTAATAGACAATACGAACACTT

CAACAAGGTTGCCAAGGTTGTTGATGATATCTTGGTTGAACAAGGTGCC

CAAAGATTGGTTCAAGTTGGTTTAGGTGATGATGACCAATGCATCGAAG

ATGATTTTACTGCTTGGAGAGAAGCTTTGTGGCCAGAATTGGATACAAT

CTTGAGAGAAGAAGGTGATACTGCTGTTGCTACTCCATATACTGCTGCT

GTTTTAGAATACAGAGTTTCCATCCACGATTCCGAAGATGCTAAGTTCA

ACGATATTAACATGGCTAACGGTAACGGTTACACCGTTTTTGATGCTCA

ACATCCATACAAGGCTAACGTTGCTGTTAAGAGAGAATTGCATACTCCA

GAATCTGACAGATCCTGCATTCATTTGGAATTCGATATTGCTGGTTCCG

GTTTGACTTACGAAACTGGTGATCATGTTGGTGTTTTGTGCGATAACTT

GTCTGAAACTGTTGATGAAGCCTTGAGATTATTGGATATGTCTCCAGAT

ACCTACTTCTCCTTGCATGCCGAAAAAGAAGATGGTACTCCAATCTCTT

CATCTTTGCCACCACCATTTCCACCATGTAATTTGAGAACTGCTTTGACC

AGATACGCTTGCTTGTTGTCATCTCCAAAAAAGTCTGCTTTGGTTGCTTT

GGCTGCTCATGCTTCAGATCCAACTGAAGCTGAAAGATTGAAACATTTG

GCTTCTCCAGCTGGTAAGGATGAATATTCTAAATGGGTTGTTGAATCCC

AAAGATCCTTGTTGGAAGTTATGGCTGAATTTCCATCTGCTAAACCACC

ATTGGGTGTTTTTTTTGCTGGTGTTGCTCCAAGATTGCAACCTAGATTCT

ACTCTATTTCCTCCTCCCCAAAAATTGCCGAAACCAGAATTCATGTTAC

TTGCGCTTTGGTCTACGAAAAAATGCCAACTGGTAGAATCCATAAGGGT

GTTTGTTCTACCTGGATGAAGAATGCTGTTCCTTACGAAAAGTCCGAAA

ACTGTTCTTCTGCTCCAATCTTCGTTAGACAATCCAATTTCAAGTTGCCA
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TCCGATTCTAAGGTTCCAATTATCATGATTGGTCCAGGTACTGGTTTGG

CTCCTTTTAGAGGTTTTTTACAAGAAAGATTGGCCTTGGTCGAATCCGG

TGTTGAATTGGGTCCATCTGTTTTGTTTTTCGGTTGCAGAAACAGAAGA

ATGGACTTCATCTACGAAGAAGAATTACAAAGATTCGTCGAATCAGGT

GCTTTGGCAGAATTGTCAGTTGCTTTTTCTAGAGAAGGTCCAACAAAAG

AATACGTCCAACACAAGATGATGGATAAGGCTTCTGATATCTGGAACA

TGATTTCTCAAGGTGCCTACTTGTATGTTTGTGGTGATGCTAAAGGTAT

GGCCAGAGATGTTCATAGATCCTTGCATACAATTGCCCAAGAACAAGG

TTCTATGGACTCTACAAAAGCAGAAGGTTTCGTCAAGAACTTGCAAACT

TCTGGTAGATACTTGAGAGATGTCTGGTGA 

DNA sequence of At4CL2 codon-optimized for S. cerevisiae by GeneArt (Life 

Technologies) 

ATGACTACCCAAGATGTTATCGTCAACGATCAAAACGACCAAAAGCAA

TGTTCCAACGATGTCATCTTCAGATCTAGATTGCCAGATATCTACATCC

CAAACCATTTGCCATTGCACGATTACATCTTCGAAAACATTTCTGAATT

CGCTGCTAAGCCATGCTTGATTAACGGTCCAACTGGTGAAGTTTACACT

TACGCTGATGTTCATGTTACCTCTAGAAAATTGGCTGCTGGTTTACACA

ATTTGGGTGTTAAGCAACACGATGTCGTTATGATTTTGTTGCCAAACTC

TCCAGAAGTTGTCTTGACTTTTTTGGCTGCTTCTTTCATTGGTGCTATTA

CTACTTCTGCTAACCCATTTTTTACCCCAGCCGAAATTTCTAAACAAGCT

AAAGCTTCTGCTGCCAAGTTGATCGTTACTCAATCAAGATACGTTGACA

AGATCAAGAACTTGCAAAACGATGGTGTTTTGATTGTCACCACTGATTC

TGATGCTATTCCAGAAAACTGCTTGAGATTCTCTGAATTGACCCAATCT

GAAGAACCTAGAGTTGATTCCATCCCAGAAAAGATTTCACCAGAAGAT

GTTGTTGCTTTGCCATTCTCTTCAGGTACTACTGGTTTGCCAAAAGGTGT

TATGTTGACTCATAAGGGTTTGGTTACATCCGTTGCTCAACAAGTTGAT

GGTGAAAATCCAAACTTGTACTTCAACAGAGATGACGTTATCTTGTGCG

TTTTGCCAATGTTTCATATCTACGCCTTGAACTCCATCATGTTGTGTTCT

TTGAGAGTTGGTGCCACCATTTTGATTATGCCAAAGTTCGAAATCACCT

TGTTGTTGGAACAAATCCAAAGATGCAAGGTTACCGTTGCTATGGTTGT

TCCACCAATAGTTTTGGCTATTGCTAAGTCTCCAGAAACCGAAAAGTAC

GATTTGTCCTCTGTTAGAATGGTTAAGTCTGGTGCTGCTCCATTGGGTA

AAGAATTGGAAGATGCTATTTCTGCTAAGTTCCCAAATGCTAAGTTGGG

TCAAGGTTATGGTATGACTGAAGCTGGTCCAGTTTTAGCTATGTCTTTG

GGTTTTGCTAAAGAACCATTCCCAGTAAAATCTGGTGCTTGTGGTACTG

TTGTTAGAAACGCTGAAATGAAGATTTTGGACCCAGATACTGGTGATTC

TTTGCCAAGAAACAAACCAGGTGAAATATGCATCAGAGGTAATCAAAT

CATGAAGGGTTACTTGAACGATCCATTGGCTACTGCTTCTACCATTGAT
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AAGGATGGTTGGTTGCATACAGGTGATGTTGGTTTCATAGATGATGACG

ACGAATTATTCATCGTTGATAGATTGAAAGAATTGATCAAGTACAAGG

GTTTCCAAGTTGCTCCAGCTGAATTGGAATCTTTGTTGATTGGTCATCCA

GAAATCAACGACGTTGCTGTTGTTGCAATGAAGGAAGAAGATGCCGGT

GAAGTTCCAGTTGCTTTCGTTGTTAGATCCAAGGATTCTAACATCTCCG

AAGACGAAATCAAGCAATTCGTTTCTAAGCAAGTCGTTTTCTACAAGAG

AATCAACAAGGTTTTCTTCACCGACTCTATTCCAAAAGCTCCATCTGGT

AAGATCTTGAGAAAGGATTTGAGAGCTAGATTGGCTAACGGTTTGATG

AACTGA 

DNA sequence of VvVST1 codon-optimized for S. cerevisiae by GeneArt (Life 

Technologies) 

ATGGCTTCCGTTGAAGAATTCAGAAACGCTCAAAGAGCTAAAGGTCCA

GCTACTATTTTGGCTATTGGTACTGCTACTCCAGATCATTGTGTTTACCA

ATCTGATTACGCCGACTACTACTTCAGAGTTACTAAGTCTGAACACATG

ACCGAATTGAAGAAAAAGTTCAACAGAATCTGCGACAAGTCCATGATC

AAGAAGAGATATATCCACTTGACCGAAGAAATGTTGGAAGAACATCCA

AACATTGGTGCTTATATGGCTCCATCCTTGAACATCAGACAAGAAATTA

TCACTGCCGAAGTTCCAAGATTGGGTAGAGATGCTGCTTTGAAGGCTTT

GAAAGAATGGGGTCAACCTAAGTCTAAGATCACCCATTTGGTTTTCTGT

ACTACCTCTGGTGTTGAAATGCCAGGTGCTGATTACAAATTGGCTAACT

TGTTGGGTTTGGAAACCTCCGTTAGAAGAGTTATGTTGTACCATCAAGG

TTGTTATGCTGGTGGTACTGTTTTGAGAACTGCTAAAGATTTGGCTGAA

AACAATGCTGGTGCTAGAGTTTTGGTTGTTTGCTCTGAAATTACCGTTGT

TACTTTCAGAGGTCCATCTGAAGATGCTTTGGATTCTTTGGTTGGTCAA

GCTTTGTTTGGTGATGGTTCTTCTGCTGTTATAGTTGGTTCTGATCCAGA

TGTCTCTATCGAAAGACCTTTGTTCCAATTGGTTTCTGCTGCTCAAACTT

TCATTCCAAATTCTGCTGGTGCAATTGCTGGTAACTTGAGAGAAGTTGG

TTTGACTTTTCATTTGTGGCCAAACGTTCCAACTTTGATCTCCGAAAACA

TTGAAAAGTGTTTGACCCAAGCTTTCGATCCATTGGGTATTTCTGATTG

GAATTCCTTGTTCTGGATTGCTCATCCAGGTGGTCCAGCAATTTTGGAT

GCTGTTGAAGCTAAATTGAACTTGGAAAAGAAGAAGTTGGAAGCCACC

AGACATGTTTTGTCTGAATACGGTAATATGTCCTCTGCTTGCGTTTTGTT

CATTTTGGACGAAATGAGAAAAAAGTCCTTGAAGGGTGAAAAGGCTAC

TACTGGTGAAGGTTTGGATTGGGGTGTTTTGTTCGGTTTTGGTCCAGGTT

TGACTATTGAAACTGTTGTCTTGCATTCTGTTCCAACCGTTACCAATTGA 
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DNA sequence of SbROMT codon-optimized for S. cerevisiae by GeneArt (Life 

Technologies) 

ATGGTCTTGATCTCCGAAGATTCCAGAGAATTATTGCAAGCCCATGTCG

AATTGTGGAATCAAACTTACTCTTTCATGAAGTCCGTTGCTTTGGCTGTT

GCTTTAGACTTGCATATTGCTGATGCCATTCATAGAAGAGGTGGTGCTG

CTACTTTGTCTCAAATTTTGGGTGAAATTGGTGTCAGACCATGTAAATT

GCCAGGTTTACACAGAATCATGAGAGTCTTGACTGTTTCTGGTACTTTC

ACTATCGTTCAACCATCTGCTGAAACCATGTCATCTGAATCTGATGGTA

GAGAACCAGTTTACAAGTTGACTACTGCTTCCTCTTTGTTGGTTTCCTCT

GAATCTTCTGCTACAGCTTCTTTGTCTCCAATGTTGAACCATGTTTTGTC

CCCATTCAGAGATTCTCCATTGTCTATGGGTTTGACTGCTTGGTTTAGAC

ACGATGAAGATGAACAAGCTCCAGGTATGTGTCCTTTTACTTTGATGTA

TGGTACTACCTTGTGGGAAGTCTGTAGAAGAGATGATGCTATTAACGCC

TTGTTCAACAATGCTATGGCTGCTGATTCTAACTTCTTGATGCAAATCTT

GTTGAAAGAATTCTCCGAAGTTTTCTTGGGTATCGACTCTTTGGTTGATG

TTGCTGGTGGTGTTGGTGGTGCTACTATGGCTATTGCTGCTGCTTTTCCA

TGTTTGAAGTGTACCGTTTTGGATTTGCCACATGTTGTTGCTAAAGCTCC

ATCTTCTTCTATCGGTAACGTTCAATTTGTCGGTGGTGATATGTTCGAAT

CTATTCCACCAGCTAACGTCGTTTTGTTGAAATGGATTTTACACGACTG

GTCCAACGATGAATGCATTAAGATTTTGAAGAACTGCAAGCAAGCCAT

CCCATCTAGAGATGCCGGTGGTAAGATTATTATCATCGATGTTGTTGTC

GGTTCCGATTCTTCTGATACAAAGTTGTTGGAAACCCAAGTCATCTACG

ACTTGCATTTGATGAAGATTGGTGGTGTCGAAAGAGATGAACAAGAAT

GGAAGAAGATTTTCTTGGAAGCCGGTTTCAAGGACTACAAGATTATGCC

AATTTTAGGTTTGAGATCCATCATCGAATTATACCCATGA 

DNA sequence of VvROMT codon-optimized for S. cerevisiae by GeneArt (Life 

Technologies) 

ATGGATTTGGCCAACGGTGTTATTTCCGCTGAATTATTGCATGCTCAAG

CTCATGTTTGGAACCACATTTTCAACTTCATCAAGTCCATGTCTTTGAAG

TGCGCTATTCAATTGGGTATCCCAGATATCATTCATAACCATGGTAAGC

CAATGACCTTGCCAGAATTGGTTGCTAAATTGCCAGTTCACCCAAAAAG

ATCTCAATGCGTTTACAGATTGATGAGAATCTTGGTCCATTCTGGTTTTT

TGGCTGCTCAAAGAGTTCAACAAGGTAAAGAAGAAGAAGGTTACGTTT

TGACCGATGCCTCTAGATTGTTGTTGATGGATGATTCCTTGTCCATCAG

ACCATTGGTTTTGGCTATGTTGGATCCTATTTTGACTAAGCCATGGCATT

ATTTGTCCGCCTGGTTTCAAAATGATGACCCAACTCCATTTCATACCGCT

CACGAAAGATCATTTTGGGATTATGCTGGTCATGAACCACAATTGAACA
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ACTCATTCAATGAAGCTATGGCTTCCGATGCTAGATTATTGACTTCCGT

CTTGTTGAAAGAAGGTCAAGGTGTTTTTGCTGGTTTGAACTCATTGGTT

GATGTTGGTGGTGGTACTGGTAAAGTTGCTAAAGCTATTGCTAATGCCT

TCCCACATTTGAACTGTACCGTTTTGGATTTGCCACATGTTGTTGCAGGT

TTACAAGGTTCTAAGAACTTGAATTACTTCGCCGGTGATATGTTCGAAG

CTATTCCACCAGCTGATGCTATTTTGTTGAAATGGATATTGCACGACTG

GTCCGATGAAGAATGTGTTAAGATTTTGAAGAGATGCAGAGAAGCCAT

CCCATCTAAAGAAAATGGTGGTAAGGTTATCATCATCGACATGATTATG

ATGAAGAATCAAGGTGACTACAAGTCCACTGAAACCCAATTATTCTTCG

ACATGACCATGATGATTTTCGCTCCAGGTAGAGAAAGAGATGAAAACG

AATGGGAAAAGTTGTTCTTGGATGCTGGTTTCTCCCATTACAAGATTAC

TCCAATTTTGGGTTTGAGATCCTTGATCGAAGTTTACCCATGA 
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CHAPTER 6 Conclusions and perspective 

The work presented in this thesis describes effords of engineering S. 

cerevisiae for production of resveratrol and its derivatives. The detailed 

strategies used in this study to explore resveratrol biosynthesis in yeast 

include screening for enzymes with highest activity and specificity, 

enhancement of P450 enzymatic activity, overexpression of resveratrol 

pathway genes, improvement of precursors supply and elimination of 

precursors degradation.  

Taken together, the presented work shows the great potential of 

industrial application of the engineered yeast for resveratrol production. On 

the other hand, the obtained yield of resveratrol is still far lower than the 

maximum theoretical yield of 0.28 mol mol
-1

 glucose (Vos et al., 2015), 

which indicates that there is a lot of potential to further optimize the strains. 

Based on the above summarised results and findings, we have advanced 

understanding of resveratrol biosynthesis in S. cerevisiae, and therefore 

propose the following strategies to further improve resveratrol production. 

1. Decouple resveratrol production from growth  

Resveratrol biosynthesis is a growth-dependent process, which means 

that high accumulation of biomass is required to obtain high resveratrol 

production. However, slow growth rate was observed in engineered strains 

producing high amounts of resveratrol, which indicates a metabolic burden. 

A feasible solution to the problem could be decoupling resveratrol 

accumulation from the growth by designing switches to dynamically control 
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resveratrol synthesis. As example, first gene encoding TAL/PAL, which is 

the first step of the resveratrol pathway, could be controlled by a glucose-

repressed pHXT7 promoter, so that resveratrol biosynthesis is first triggered 

in the glucose-limited fed-batch phase after sufficient biomass has been 

accumulated in the batch phase. 

2. Ethanol fed-batch  

Resveratrol was observed to be primarily accumulated in the ethanol 

phase of batch fermentation, but yeast grows faster in the glucose phase. A 

suggestion for fermentation process optimization could be mixed feed 

strategy, where a mix of glucose and ethanol is used, or ethanol pulse feed 

strategy, which had been successfully applied previously for amorphadiene 

production (Westfall et al., 2012).  

3. Increase cytosolic acetyl-CoA supply 

As malonyl-CoA is a key precursor for resveratrol biosynthesis as well 

as for fatty acids biosynthesis, Lim et al. obtained 2-fold improvement of 

resveratrol titre when they added cerulenin to the medium to limit the 

carbon flux to fatty acids synthesis from malonyl-CoA in E. coli (Lim et al., 

2011). Significant improvements of different flavanones production were 

also obtained in E. coli in the same way (Leonard et al., 2008). An 

alternative strategy would be down-regulating the promoter of FAS1, which 

is the first gene for fatty acids synthesis. As malonyl-CoA is generated from 

cytosolic acetyl-CoA, a possible solution to improve malonyl-CoA supply 

may be optimizing the acetyl-CoA supply in the cytosol. Kozak et al. 

proved that the cytosolic acetyl-CoA can be generated by ATP-independent 
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pyruvate dehydrogenase (PDH) from Enterococcus faecalis instead of the 

native ACS-dependent pathway in S. cerevisiae without affecting the cellular 

physiology (Kozak et al., 2014).  

4. Compartmentalisation of resveratrol biosynthetic genes 

C4H is attached to the endoplasmic reticulum with its N-terminal, while 

PAL2 is generally recognised as a cytosolic enzyme (Achnine et al., 2004; 

Rasmussen and Dixon, 1999). The C4H in tobacco, Nicotiana tabacum, can 

mediate the movement of PAL2 from cytosol to endoplasmic reticulum, 

thus forming a complex of PAL2 and C4H to channel cinnamic acid 

(Achnine et al., 2004) probably due to some specific mechanism existing in 

plants. This strategy may reduce the losses in the transportation due to 

diffusion, degradation and competing pathways (Li and Borodina, 2014). 

Therefore, compartmentalisation of the two enzymes, PAL and C4H, in the 

form of fusion protein or scaffold might be a way to improve resveratrol 

production.  
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