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Abstract 

 

Aromatic secondary metabolites are compounds mainly synthesized by 

plants and fungi as a response to predators and environmental stresses. 

These compounds have a broad range of natural properties such as 

reduction of oxidative damage in cells, antibacterial effects and UV 

protection. Many of these properties can be useful for the treatment of 

different diseases and development of pharmaceutical products. 

The low abundance of these compounds in natural sources together with 

technical challenges for the extraction of these compounds from plants, 

open up the possibility for synthesizing aromatic secondary metabolites in 

cell factories. In this research project, we developed a yeast platform strain 

for the production of p-coumaric acid an intermediate compound for the 

synthesis of aromatic secondary metabolites. Subsequently, we performed a 

systems biology analysis of the strain and finally we developed an array of 

yeast strains expressing flavonoid metabolic pathways containing up to ten 

heterologous genes. 

The platform strain was capable of producing 1.93 ± 0.26 g L-1 of p-coumaric 

acid in fed-batch fermentation, which is the highest titer that has been 

reported for a yeast cell factory so far. 

The systems biology analysis of the platform strain suggests that the strain 

has transcriptional downregulations in genes involved in the transport of 

amino acids and sugars, which could be a response to the stress triggered 

by the production of p-coumaric acid.  

The platform strain was capable of synthesizing six different types of 

flavonoids, and some of the engineered strains produced significant titers of 

flavonoid compounds such as kaempferol and quercetin. Moreover, for the 

first time, we synthesized the flavonoids liquiritigenin, resokaempferol and 

fisetin in yeast. 
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Resume (Danish abstract) 

 

Aromatiske sekundære metabolitter er forbindelser, der hovedsageligt 

syntetiseres af planter og svampe som en reaktion på prædation og 

miljømæssige stressorer. Disse forbindelser har en bred vifte af naturlige 

egenskaber såsom reduktion af oxidativt stress i celler, antibakterielle 

virkninger og UV-beskyttelse. Mange af disse egenskaber kan være nyttige 

til behandling af forskellige sygdomme og udvikling af farmaceutiske 

produkter. 

Den begrænsede mængde af disse forbindelser i naturlige kilder kombineret 

med de tekniske udfordringer for udvinding af disse forbindelser fra planter, 

åbner for muligheden for at syntetisere aromatiske sekundære metabolitter i 

cellefabrikker. I dette forskningsprojekt udviklede vi en gær platform-stamme 

til fremstilling af p-coumarinsyre, et mellemprodukt til syntese af aromatiske 

sekundære metabolitter. Efterfølgende har vi udført en systembiologisk 

analyse af stammen og endelig har vi udviklet en vifte af gærstammer, der 

udtrykker flavonoid stofskifteveje, der indeholder op til ti heterologe gener. 

Platform stammen var i stand til at producere 1.93 ± 0.26 g L-1 af p-

coumarinsyre i fed-batch fermentering, hvilket er den højeste titer, der er 

blev rapporteret for en gærcelle fabrik hidtil. 

Den systembiologiske analyse af platformstammen tyder på, at stammen har 

transkriptionelle nedreguleringer i gener involveret i transporten af 

aminosyrer og sukkerarter, som kunne være en reaktion på stress udløst af 

produktionen af p-coumarinsyre. 

Platformstammen var i stand til at syntetisere seks forskellige typer 

flavonoider, og nogle af de genmodificerede stammer producerede 

betydelige koncentrationer af flavonoidforbindelser, som kaempferol og 

quercetin. Desuden syntetiserede vi for første gang flavonoiderne 

liquiritigenin, resokaempferol og fisetin i gær. 
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Overview 

 

Microbial cell factories are applied in industrial biotechnology for production 

of biofuels, chemicals, pharmaceutical and cosmetic ingredients, etc. There 

is a great potential in developing novel cell factories, capable of making new 

classes of chemical compounds and utilizing a broad range of renewable 

carbon feedstocks, to replace some of the traditional petrochemical routes or 

extraction from natural sources. 

In the last decade, many S. cerevisiae cell factories have been developed 

for the production of various chemicals. The development of genome editing 

and systems biology techniques have especially contributed to the advance 

in the development of cell factories. However, further work is required to 

decrease the time frame for the development of a cell factory and reach 

competitive prices for scaling the production of these compounds to 

industrial levels. 

Systems biology studies are crucial for the development of cell factories. In 

other disciplines such as oncology and drug discovery, systems biology 

approaches have contributed to a better understanding and development of 

improved therapeutic products.  

The aim of this thesis was the development of a yeast cell factory for the 

production of aromatic secondary metabolites. Beyond the development of a 

cell factory for producing a specific compound, this thesis is part of a general 

effort by the Novo Nordisk Center for Biosustainability for the development of 

knowledge and techniques to create cell factories for the production of 

chemicals and protein-based compounds. 

In Chapter 1, I review the state-of-the-art in the topic of my thesis. Chapter 

2 describes my published study on rational metabolic engineering of S. 

cerevisiae platform strain with optimized production of p-coumaric acid 

(Rodriguez et al., Metab Eng. 31, 181-188). In Chapter 3, I studied the p-

coumaric acid cell factory through systems biology to gain more knowledge 

about the metabolic and physiological changes that yeast cells undergo 

when they are producing aromatic secondary metabolites. Finally, I applied 
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this platform strain for production of various flavonoids (Chapter 4). Chapter 

5 contains the conclusions and perspectives based on the results obtained 

through the research project.  
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1. Introduction 

 

1.1 Aromatic amino acids biosynthesis in yeast 

Aromatic amino acids (AAAs) are fundamental for the synthesis of proteins 

in all cells. In plants, they are also the precursors of compounds involved in 

defense, growth and development. Since the production of AAAs requires  

high amounts of energy, this biosynthetic pathway is tightly regulated so the 

cells produce just the necessary quantities of these amino acids. 

In S. cerevisiae, specific research about the AAAs pathway is limited, a 

complete characterization of the AAAs pathway was made by Braus (1991). 

Since this publication, there are some other studies related to specific 

enzymes of the pathway or applications for the synthesis of aromatic 

secondary metabolites (Duncan et al., 1988; Kunzler et al., 1992; 

Heimstaedt et al., 2005). 

An appropriate understanding of the AAAs biosynthesis in yeast and other 

organisms may help to design strategies for the development of cell 

factories. In this section, I will give an overview of the AAAs biosynthetic 

pathway in S. cerevisiae, its regulations and I will highlight its difference 

compared to the AAAs pathway in E. coli and plants. 

 

Aromatic amino acids pathway overview 

AAAs are synthesized trough the shikimate pathway. In microorganisms, 

AAAs are used exclusively for protein synthesis, whereas in plants AAAs are 

the precursors of a broad range of aromatic secondary metabolites. Since 

plants need an almost permanent synthesis of some aromatic secondary 

metabolites, the differences in the shikimate pathway between yeast and 

plants are relevant to the development of cell factories.  

Although bacteria, fungi and plants have similar AAAs biosynthetic 

pathways, there are some fundamental differences related to the pathway 
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regulation and enzymes fusion arrangements (Richards et al., 2006; 

Hermann et al., 1999).  

In S. cerevisiae the AAAs, L-tyrosine, L-phenylalanine and L-tryptophan are 

synthesized from erytrose 4-phosphate (E4P) and phosphoenolpyruvate 

(PEP). The pathway has 7 common enzymatic steps for the three amino 

acids, after that the pathway is branched to L-tryptophan, L-tyrosine and L-

phenylalanine; interestingly L-phenylalanine and L-tyrosine share the last 

enzymatic step catalyzed by the aminotransferases ARO8 and ARO9 

(Figure 1).  

The aromatic amino acids pathway is coupled to the central metabolism by 

the enzymes E4H and PEP. One of the more remarkable differences 

between the AAAs pathway in microorganisms and plants is the post-

translational regulation: in plants it has not been reported allosteric 

regulation for the first enzymes of the pathway, whereas in microorganisms 

the allosteric feedback inhibition on DAHP synthase and chorismate mutase 

is well known. 

DAHP synthases ARO4 and ARO3 are responsible for the aldol 

condensation of E4P and PEP for the production of 3-Deoxy-D-arabino-

heptulosonate7-phosphate (DAHP). In yeast these enzymes are subject to 

allosteric regulation by L-tyrosine (ARO4) and L-phenylalanine (ARO3), in 

plants and other microorganisms DAHP synthases are not feedback 

regulated and are activated by L-tryptophan (Silakowski et al., 2000; Maeda 

and Dudareva, 2012).  

In S. cerevisiae, the penta functional enzyme ARO1 covers five of the seven 

common enzymatic steps from the shikimate pathway, whereas in E. coli we 

have monofunctional enzymes and in plants, the second and third steps in 

the reaction are synthesized by a bifunctional enzyme (Maeda and 

Dudareva et al., 2012).  
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Figure 1. Schematic representation of the aromatic amino acids pathway in 

S.cerevisiae, E. coli and A. thaliana. E4P: erythrose 4-phosphate, PEP: 

phosphoenolpyruvate, DAHP: 3-deoxy-D-arabino-heptulosonic acid 7-

phosphate, DHQ: 3-dehydroquinate, DHS: 3-dehydro-shikimate, SHIK: 

shikimate, SHP: shikimate-3-phosphate, EP3P: 5-enolpyruvylshikimate-3-

phosphate, PPA: prephenate, PPY: phenylpyruvate, HPP: para-hydroxy-

phenylpyruvate, PAC: phenylacetaldehyde, pPAC: para-hydroxy-

acetaldehyde, L-PHE: L-phenylalanine, L-TYR: L-tyrosine, The superscript 1 

indicates enzymes involved in the synthesis of L-phenylalanine and the 

superscript 2 indicates enzymes involved in the synthesis of L-tyrosine. 

 
 
In S. cerevisiae, at this enzymatic step DAHP is converted in 3-

dehydroquinate by five chemical reactions (alcohol oxidation, β-elimination 

of inorganic phosphate, carbonyl reduction, ring opening, and intramolecular 

aldol condensation). After that, 3-dehydroquinate is dehydrated to 3-

dehydroshikimate, and reduced to shikimate. Subsequently, shikimate is 

phosphorylated to shikimate 3-phosphate and finally the enol-pyruvyl moiety 

from PEP is transferred to shikimate 3-phosphate to get the final compound 

synthesized by the pentafunctional enzyme: 5-enolpyruvylshikimate 3-

phosphate (EPSP). 

From the metabolic point of view, it is considered that a pentafunctional 

enzyme has advantages related to the channelling of intermediate 

compounds and equalized regulation of the enzymatic activity (Zhang, 2011; 

Proschell et al., 2015). Considering that AAAs synthesis is highly regulated 

in S. cerevisiae, it may be an advantage for the cell but not for the 

development of a cell factory as the synthesis of the intermediate 

compounds may be controlled to produce just the necessary amounts of 

AAAs. 

The chorismate synthase ARO2, catalyze the last common enzymatic step 

between L-tryptophan, L-tyrosine and L-phenylalanine, at this point 

chorismate is synthesized by the elimination of the 3-phosphate and C6-pro-

R hydrogen from EPSP. The cofactor for this reaction is flavin 

mononucleotide.  
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The protein sequence of chorismate synthase has been conserved in many 

organisms. There are two types of chorismate synthases according to their 

capacity to regenerate the reduced form of flavin mononucleotide. In plants 

and some bacteria, the reduction of flavonoid mononucleotides is performed 

by an external system whereas yeast has a bifunctional chorismate synthase 

with an additional oxidoreductase activity (Quevillon-Cheruel et al., 2004).  

ARO7 chorismate mutase performs the last common enzymatic step 

between L-tyrosine and L-phenylalanine, at this enzymatic step chorismate 

is converted in prephenate through a pericyclic Claisen rearrangement.  

Chorismate mutases from S. cerevisiae and E. coli have significant 

differences: yeast has a monofunctional enzyme, whereas E. coli has a 

bifunctional enzyme combining the functions of chorismate mutase- 

prephenate dehydrogenase (Synthesis of L-tyrosine) or chorismate mutase-

prephenate hydrolase (of L-phenylalanine). 

Chorismate synthase is subject to allosteric regulation; its activity is 

stimulated by L-tryptophan and inhibited by L-tyrosine, this regulation allows 

the cell to control the flux of chorismic acid either to L-tryptophan 

biosynthesis or the synthesis of L-phenylalanine and L-tyrosine. The 

substitution of threonine by isoleucine at the position 226 in the C-terminal 

part of the protein increases the activity of the enzyme and removes the 

inhibitory response to L-tyrosine (Schmidheini et al., 1989).  

PHA2 prephenate dehydratase catalyzes the conversion of prephenate to 

phenylpyruvate; yeast has a monofunctional enzyme whereas E. coli has a 

bifunctional enzyme as was mentioned in the previous paragraph. The 

protein sequence of prephenate dehydratase from yeast and arogenate 

dehydratase, its equivalent in plants have significant differences, despite the 

differences, arogenate dehydratases from Arabidopsis thaliana ADT1 and 

ADT2 can use prephenate for the synthesize phenylpyruvate (Bross et al., 

2011). 

TYR1 prephenate dehydrogenase catalyzes the oxidative carboxylation and 

dehydration of prephenate to p-hydroxyphenylpyruvate. This enzyme is 

transcriptionally regulated by amino acids, mostly L-phenylalanine. 

Mannhaupt et al. (1989) found that TYR1 expression is affected by aromatic 
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amino acids: medium containing L-tyrosine or L-tryptophan decreased the 

expression of TYR1 in 20% and the combination of L-tyrosine or L.-

tryptophan with L-phenylalanine dropped the expression levels arround 50%.  

ARO8 and ARO9 aminotransferases I and II are involved in the 

transamination of phenylpyruvate and p-hydroxyphenylpyruvate into L-

phenylalanine and L-tyrosine. ARO8 is mainly involved in L-tyrosine and L-

phenylalanine biosynthesis whereas ARO9 takes part in the degradation of 

L-tryptophan. Interestingly in strains with ARO8 deletion ARO9 performs the 

biosynthetic functions of ARO8. The broad range of amino donors substrate 

of ARO8 and ARO9 suggest that the aminotransferases may also be 

involved in the metabolism of other amino acids such as leucine, lysine, and 

methionine (Urrestarazu et al., 1998). 

 

Regulation of aromatic amino acids biosynthesis 

The synthesis of aromatic amino acids is regulated at the transcriptional and 

post-translational level. Since the genes involved in the synthesis of 

aromatic amino acids are located on different chromosomes, the 

transcription is initiated by different promoters; also S. cerevisiae has a high 

level of transcription of genes involved in the synthesis of AAAs, even when 

the intracellular concentration of AAAs is high. Another important 

characteristic is that the synthesis of AAAs is part of an intricate regulatory 

network, interestingly when the cells face a deficit of a specific amino acid, 

the transcription of genes involved in the synthesis of other amino acids is 

triggered (Braus., 1991). 

Amino acids biosynthetic promoters can be regulated by the GCN4 

dependent system and the basal system. The GCN4 dependent system is 

activated when the cells are facing amino acids deficiencies, whereas the 

basal system is not activated by amino acids deficiencies and is in charge of 

the high basal level of transcription of genes involved in amino acids 

biosynthesis (Braus., 1991). 

GCN4 is a transcriptional activator of the biosynthesis of more than 30 

amino acids and its expression is regulated at the transcriptional and 
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translational level. The translation of GCN4 is induced when cells are 

deprived of amino acids triggering a transcriptional induction of genes 

involved in the synthesis of enzymes. The regulatory response of GCN4 

enables cells to limit their consumption of amino acids in environments with 

a low concentration of nutrients. Also, the response of GCN4 is caused by 

the amino acids starvation occasioned by the feedback inhibition in medium 

with imbalanced concentrations of amino acids. (Braus., 1991; Hinnebusch., 

2005). 

The post-transcriptional regulation of AAAs biosynthesis is controlled at two 

enzymatic steps: at the beginning of the pathway where E4P and PEP are 

condensed to DAHP by DAHP synthase and at the eighth enzymatic step 

where chorismate is converted to prephenate. Subsequently prephenate can 

be directed either to the biosynthesis of L-tryptophan or the biosynthesis of 

L-tyrosine and L-phenylalanine. High concentrations of L-phenylalanine 

regulate the DAHP synthase ARO3. ARO4 is regulated by L-tyrosine and 

chorismate mutase ARO7 is inhibited by L-tyrosine.  

The identification and subsequent elimination of the feedback regulation of 

DAHP synthase and chorismate mutase have contributed to the 

improvement of production of aromatic secondary metabolites (Luttik et al., 

2008; Koopman et al., 2012). Besides to the allosteric regulation of some 

enzymes of the pathway, many other factors can affect the activity of the 

enzymes such as pH, substrate concentrations and inhibitors (Sauro et al., 

2011). 

In plants, the flux of aromatic amino acids to aromatic secondary metabolites 

is higher since different metabolites are necessary depending on the growth 

stage and stress conditions of the organism. The knowledge of the 

mechanisms and genes that are upregulated or downregulated under 

specific stress conditions is relevant for the development of microbial cell 

factories; this information can be used for the development of metabolic 

engineering strategies. Plants are present in different habitats and 

subsequently facing a different type of stress, their patterns of synthesis of 

aromatic secondary metabolites can be a valuable source of information for 

the development of yeast cell factories. Tzin et al. (2010) give some 
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examples of transcription factors whose high expression trigger elevated 

expression of genes from the shikimate pathway and aromatic amino acids 

metabolism. For example, DAHP synthase from Solanum tuberose is 

strongly expressed under pathogen stress conditions.  
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1.2 Cell factory development 

The development of a cell factory is a process with a time frame of around 3-

5 years and investment of hundreds of millions of dollars (Becker et al., 

2012; Nielsen et al., 2014). It is expected that in the following years the cost 

and the time required for the development of a cell factory can decrease due 

to the development of new technologies. Also, the information that has been 

obtained in the last years allow us to have a better understanding of the 

biological process that regulates the synthesis of the production of a specific 

compound. 

At the moment the best way for developing cell factories is through the use 

of the traditional platform strains such as S. cerevisiae and E. coli. However 

the steady development of technologies and knowledge may change this 

situation and in the future, we may have more flexibility and tools for the 

development of cell factories in other microorganisms. This section is a 

review of the cell factories that have been developed in the last years for the 

synthesis of aromatic secondary metabolites in S. cerevisiae, E. coli and 

other organisms.  

S. cerevisiae and E. coli have been used as cell factories for diverse 

compounds. In comparison with other organisms extensive research in 

areas such as physiology and systems biology originated a broad knowledge 

of the organisms and their biological characteristics. The information 

gathered in the last years and the development of new techniques allowed 

the development and implementation of an extensive range of genome 

engineering tools in comparison to other organisms where many of their 

biological characteristics are still unknown making the development of tools 

for genome engineering more complex.  

The production of aromatic secondary metabolites has been explored in 

different organisms. By the use of different techniques, such as codon 

optimization, protein engineering and enzyme tuning strategies it has been 

possible to produce diverse compounds such as flavonoids, stilbenes and 

alkaloids (Chemler et al., 2006; Hawkins et al., 2008; Li et al., 2015). In this 
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section, we review some of the cell factories developed for the synthesis of 

aromatic secondary metabolites in the last years. 

 

Escherichia coli 

E. coli is a widely used cell factory. The use of this organism has many 

advantages such as tolerance to organic acids, ability to metabolize 5 and 6 

carbon sugars, fast growth and the availability of a broad range of 

established genome editing techniques. As E. coli has been a key model 

bacterium, a considerable amount of research on genetics, metabolism and 

physiology of E. coli has been performed. (Clomburg et al., 2010; Yu et al., 

2011). 

E. coli has been used for the synthesis of different aromatic secondary 

metabolites, however, many of these strains have to be feed with 

intermediate compounds such as L-phenylalanine or L-tyrosine. The feeding 

strategy is useful for testing heterologous pathways, however for the 

development of cell factories with potential industrial use, it is necessary to 

engineer organisms for the synthesis of secondary metabolites using 

glucose or another not expensive carbon source.  

On this respect, Santos et al. (2011) developed a strain for overproduction of 

L-tyrosine, the pathway was optimized through the balance of gene 

expression, improvement of malonyl-CoA supply and identification of optimal 

variants of enzymes and promoters. Ssubsequently they assembled a 

heterologous pathway for naringenin synthesis, this strain was able to 

produce 29 mg L-1 of naringenin from glucose in minimal medium. 

Leonard et al. (2006) developed a platform strain for production of 

flavonoids. Initially, they fused a P450 flavonoid 3′, 5′-hydroxylase with a 

P450 reductase; then they combined the fusion protein together with a 

biosynthetic pathway for production of kaempferol and quercetin in an E. coli 

strain. The engineered strain was able to produce 140 and 20 µg L-1 in 

cultures with minimal medium supplemented with p-coumaric acid.  
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Further work to improve the synthesis of flavonoids has been performed in 

E. coli, by improving the supply of malonyl-CoA and UDP-glucose through 

re-engineering some pathways from the central metabolism (Leonard et at., 

2007; Leonard et al., 2008). Interestingly, they found that carbon channeling 

towards fatty acids is a competitive step for the synthesis of flavonoids and 

malonyl-CoA should be adjusted to the optimal level for the cells, since high 

amounts of malonyl-CoA are negative for the synthesis of flavonoids. The 

engineered strains obtained in the previous research produced 480 mg L-1 of 

pinocembrin, 155 mg L-1 of naringenin and 50 mg L-1 eridoctyol.  

Recently different secondary metabolites have been synthesized by the use 

of co-cultures, this type of culture is particularly useful for the synthesis of 

molecules with complex biosynthetic pathways. By the use of co-cultures, it 

is possible to decrease the metabolic burden caused by the expression of 

long heterologous pathways; by the adjustment of the ratios of the strains in 

the culture it is possible to reach an optimal synthesis of the target 

compound and engineer the strain for production of specific substrates and 

co-factors (Zhou et al., 2014, Zhang et al., 2016).  

Co-cultures have been used for the synthesis of flavonoids by Jones et al. 

(2016); they co-cultured a strain expressing the upstream part of the 

pathway (Malonyl-CoA dependent) and another strain expressing the 

downstream part (NADPH-dependent), they managed to get an 

improvement of 970-fold in the production of flavon-3-ols. 

 

Yeast 

Yeast is an ideal host strain for production of flavonoids. Due to its 

eukaryotic nature, the expression of plants heterologous pathways is less 

complicated in comparison to other organisms; for example prokaryotes 

cannot perform post-translational modifications and incorrect protein folding 

and membrane translation can be a drawback. (Chemler et al., 2008; 

Koopman et al., 2012). Spite of the advantages of yeast as a cell factory, 

around 85% of the flavonoids cell factories have been developed in E. coli 

(Pandey et al., 2016). 
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Jiang et al. (2015) conducted one of the first studies on production of 

flavonoids in S. cerevisiae. They assembled heterologous genes from 

different plant species for the synthesis of naringenin and pinocembrin, 

reaching 7 mg L-1 and 0.8 mg L-1 respectively. Also, they found that the pool 

of L-tyrosine was limiting the synthesis of p-coumaric acid, the precursor of 

naringenin. 

Other flavonoids such as chrysin, apigenin and luteolin have been 

synthesized in S. cerevisiae using p-coumaric acid as a precursor. Leonard 

et al. (2005) tested the expression of a soluble flavonoid synthase (FSI) and 

a membrane-bound flavone synthase (FSII). They found that the  expression 

of FSI had a positive effect on the production of flavonoids on this strain. 

Recently other approaches have been used for the synthesis of flavonoids. 

For example, flavonoids pathways for the synthesis of naringenin and 

kaempferol have been assembled in an artificial chromosome and 

expressed in S. cerevisiae (Naesby et al., 2009). 

Koopman et al. (2012) engineered yeast strain for production of naringenin. 

They targeted the feedback regulation of the shikimate pathway enzymes 

DAHP synthase and chorismate mutase (ARO4 and ARO7). Also, they 

eliminated the synthesis of by-products by the elimination of phenylpyruvate 

decarboxylase. Finally, they optimized the heterologous pathway for 

naringenin synthesis by improving the gene expression in important 

heterologous genes; they produced 109 mg L-1 in aerobic batch 

fermentations. 

 

Other cell factories 

Streptomyces has been used as a cell factory for different secondary 

metabolites. The use of this organism as a cell factory has many advantages 

such as rapid growth, availability of many genome editing tools. Also, 

Streptomyces is a natural producer of many secondary metabolites, 

guarantying the supply of secondary metabolites precursors (Kim et al., 

2015). Streptomyces venezuelae have been used as host strain for the 

production of flavonoids; the strain was optimized for the synthesis of 
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flavonoids by the assembly of a heterologous malonate assimilation pathway 

from Streptomyces coelicolor. This strain expressed heterologous genes 

involved in the synthesis of flavones and flavonones and it was possible to 

synthesize naringenin, pinocembrin apigenin and chrysin (Park et al., 2011). 

The bacteria Pseudomonas putida is an attractive organism for the 

development of cell factories. Some of the advantages are its low nutritional 

needs and tolerance to extreme environmental conditions such as high 

temperature, drastic changes in the pH and high tolerance to toxins in the 

culture (Poblete-Castro et al., 2012). P. putida has also been engineered for 

production of the flavonoids precursor p-coumaric acid. Calero et al. (2016) 

developed a set of vectors for this species and increased the L-tyrosine 

availability in the strain, leading to the production of 197 mg L-1 of p-

coumaric acid.  

For many years it was thought that flavonoids synthesis was an evolutionary 

characteristic of terrestrial plants and that synthesis of these compounds 

allowed them to adapt to the UV radiation. Recent research demonstrated 

that many microalgae are natural synthesizers of flavonoids (Kovacik et al., 

2010; Goiris et al., 2014). Since microalgae can produce these compounds, 

the opportunity of using these organisms for the synthesis of flavonoids can 

be explored.  

Natural synthesis of flavonoids synthesis has been reported in the 

photosynthetic evolutionary lineages Ochrophyta, Haptophyta, Rhodophyta, 

Chlorophyta and Cyanophyta. From these lineages, Cyanophyta and 

Chlorophyta have been already explored as platforms for the production of 

biofuels (Larkum et al., 2011; Savakis et al., 2015). The disadvantage of 

using of microalgae or cyanobacteria for the synthesis of flavonoids is that 

only a few genome editing tools are developed and little information of their 

genotype is available. The development of some genome editing tools and 

systems biology studies in recent years, make it feasible to use microalgae 

as platforms for the production of flavonoids in the future (Daboussi et al., 

2013; Gimpel et al., 2013). 
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1.3 Aromatic secondary metabolites  

Plants produce a diverse range of secondary metabolites. Some of them are 

phenolic compounds that originate in the shikimate pathway or the acetate-

mevalonate pathway. The phenolic secondary metabolites derived from the 

shikimate pathway cover a broad range of compounds such as flavonoids, 

alkaloids and coumarins (Figure 2). 

The production of phenolic secondary metabolites has played a key role in 

the adaptation of higher plants to different environments, and their 

pharmaceutical properties have been the subject of recent research with 

promising results (Woelfle et al., 2010; Khoo et al., 2010; Bulzomi et al., 

2009). 

Terrestrial and aquatic plants have followed different evolutionary tracks and 

adapted to different types of environments, and secondary metabolites have 

played a key role in this process (Buchanan et al., 2000). This section 

explores the chemistry of flavonoids, their natural properties and the 

potential use of these compounds in the industry.  

 

Chemistry 

Phenolic secondary metabolites derived from the shikimate pathway are 

characterized by the presence of at least one aromatic ring with one or more 

hydroxyl groups attached. Phenolic secondary metabolites cover 

compounds with simple structures with low molecular weight and 

compounds with multiple aromatic rings and more complex structures. These 

compounds can be classified according to the number and disposition of 

their carbon atoms, also some compounds conjugated to sugars and organic 

acids (Crozier et al., 2007). 

The most studied secondary metabolites derived from aromatic amino acids 

are alkaloids and phenylpropanoids. Alkaloids can be synthesized from L-

phenylalanine, L-tyrosine and other amino acids; these compounds are 

characterized by the presence of one or more nitrogen atoms in their 

structures. As an example, benzylisoquinoline alkaloids are synthesized 



26 
 

from L-tyrosine through series of decarboxylations, ortho-hydroxilations and 

deaminations giving as a result, the synthesis of the intermediates dopamine 

and 4-hydroxyphenylacetaldehyde. Subsequently, these compounds are 

condensed into (S)-norcoclaurine, the precursor of a broad range of 

benzylisoquinoline alkaloids (Crozier et al., 2007). 

 

 

Figure 2. Examples of the aromatic secondary metabolites synthesized from 

L-phenylalanine and L-tyrosine: flavonoids, alkaloids, stilbenes, condensed 

tannins, betalains, quinones and coumarins.  

Phenolic compounds cover a broad range of secondary metabolites such as 

flavonoids, lignins, coumarins and stilbenes. Aromatic secondary 

metabolites are mainly synthesized from L-phenylalanine. Flavonoids have 

in common the first biosynthetic steps catalyzed by chalcone synthase and 

chalcone isomerase, resulting in the formation of 2S-flavanones, naringenin 

and liquiritigenin. From this enzymatic step different reactions are catalyzed 
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giving origin to various subgroups of flavonoids such as isoflavonoids, 

flavones and flavonols. 

Lignins are synthesized from coniferyl alcohol and p-coumaryl alcohol and 

the synthesis of coumarins requires hydroxylation, glycolysis and cyclization 

of cinnamic acid obtaining as a product p-coumaric acid that can be further 

hydroxylated and give origin to other coumarins.  

 

Natural properties 

Secondary metabolites have a fundamental role in plants evolution since the 

synthesis of these compounds allowed plants to conquer different 

environments and survived diverse types of stresses. Interestingly, some 

secondary metabolites had been found in unrelated plant families; this can 

be linked either to convergent evolution or differential expression of genes 

(Wink et al., 2014). 

One of the best-known functions of aromatic secondary metabolites is their 

role in the multicomponent defense mechanism in plants; this mechanism 

includes signaling molecules, constitutive defenses and phytoalexins 

(Naoumkina et al., 2010). A wide range of studies have shown that 

secondary metabolites such as coumarins, flavonoids and lignings, can 

inhibit the growth of pathogens. Also, it was found that plants with higher 

concentrations of flavonoids were less susceptible to pathogens attacks 

(Shimizu et al., 2005; Bhuiyan et al., 2009; Ortuno et al., 2011). 

Ultraviolet (UV) radiation may generate damage in DNA and accumulation of 

reactive oxygen species. Many studies have reported an increment in the 

accumulation of flavonoids such as quercetin and kaempferol in tissues 

under different grades of UV radiation (Winkel et al., 2002; Warren et al., 

2003). A different study showed that plants with non-functional chalcone 

synthase (CHS) or chalcone isomerase (CHI) were less tolerant to UV 

radiation (Landry et al., 1995). 

Secondary metabolites are also essential for the establishment of symbiosis 

with other organisms. Secretion of various compounds, including secondary 
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metabolites, by vascular plants contributes to the modification of the 

properties of the soil that surround the roots. Secondary metabolites act as 

chemotactic agents to establish mutualistic relations with specific 

microorganisms (Cheynier et al., 2013; Bertin et al., 2003). For example, 

Medicago sativa has been shown to excrete some flavonoids that induce 

transcription of genes related to fixation of nitrogen in its symbiotic species 

(Hartwig et al., 1990). 

Pigments play a fundamental role in the attraction of pollinators and 

propagation of seeds. Aromatic secondary metabolites are precursors for the 

synthesis of some of these pigments. The most common pigments derived 

from aromatic amino acids are anthocyanins and betalains. Anthocyanins 

are flavonoids responsible for orange to blue pigmentation in different 

tissues of plants, and their color greatly depends on the number of hydroxyl 

groups in the second ring. Betalains are synthesized from L-tyrosine, and 

they are linked to colorations from yellow to red. Betalains are defined as 

condensation products of betalamic acid with amines and amino acids; the 

relation between the structure and properties of these compounds is still 

under investigation (Gandia-Herrero et al., 2010). 

The production of phenolic secondary metabolites in plants has been 

documented as an adaptive response to oxidative stress. For example, the 

transport of flavonoids to zones of generation of reactive oxygen species has 

been reported as a measure to diminish the effect of the oxidative stress by 

reducing diverse forms of reactive oxigen (Agati et al., 2012). 

 

Industrial applications 

The health properties of aromatic secondary metabolites derived from L-

phenylalanine and L-tyrosine has been widely studied. Many flavonoids have 

been attributed anti-bacterial, anti-ageing, anti-cancer and anti-Alzheimer 

properties (Choi et al., 2012; Wedick et al., 2012; Liu et al., 2012; Raza et 

al., 2015; Hamalainen et al., 2015). 

One of the most promising uses of aromatic secondary metabolites is their 

application as anticancer agents, which has been shown in many recent 



29 
 

publications using human cells or animals as models. For example, 

coumarin-chalcones has been tested in four lines of human cancer cells and 

some of them showed high cytotoxicity and selectivity for this type of cells. 

Other compounds that have shown positive results are myricetin and 

luteonin, these compounds inhibit proliferation and viability of human cancer 

cells. Other studies using animal models have shown that quercetin, fisetin 

and ampelopsin caused apoptosis and decreased the proliferation of cancer 

cells both in vivo and in vitro (Sashidhara et al; 2010; Angst et al., 2013; Sun 

et al., 2012; Ni et al., 2012). 

Another interesting property of aromatic secondary metabolites is their anti-

aging effects. One of the principal causes of skin aging is the presence of 

free radicals. Since many aromatic secondary metabolites are antioxidants, 

they are ideal additives for anti-aging products (Chuarienthong et al., 2010; 

Baxter et al., 2008; Jung et al., 2010). Cosmetics companies such as 

L’oreal, Estee Lauder and Procter and Gamble have integrated flavonoids in 

some of their anti-aging products. Patents from these companies related to 

anti-aging formulations where flavonoids are part of the components have 

been registered (N’guyen et al., 1994; Chen et al., 2006; Declerq et al., 

2014). 

Other studies have shown that flavonoids such as baicalein, baicalin 

scutellarin, hibifolin, and quercetin attenuated neuronal cell damage and 

induction of cell death and other negative effects of oxidative stress in 

neuronal cells cultured in medium containing reactive oxygen species (Gao 

et al., 2001; Zhu et al., 2007). Recent studies on cardiovascular diseases 

and chronical inflammations have shown that consumption of aromatic 

secondary metabolites have positive effects on people with high risk of 

cardiovascular disease or chronicle inflammation (Bisht et al., 2010; 

Macready et al., 2014). 

The pigments betalains and anthocyanins have been used permanently in 

the food industry. Due to the possible side effects of synthetic dyes, it is 

expected that the market for natural pigments will continue to grow in the 

following years. Companies such as DDW color, Chr Hansen and Sensient 

are working on the development and production of natural dyes. Recent 
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research in pigments biotechnology has been focused on stability 

enhancement (Cavalcanti et al., 2011). 

The pigments anthocyanins and betalains have been used as synthesizers 

in solar cells for conversion of visible light into electricity; experimental 

results have shown that it is possible to convert approximately 2% of a unit 

of sun light power into electricity (Calogero et al., 2012). The development of 

dye-sensitized solar cells needs further improvement to reach large-scale 

production of electricity; this is an innovative alternative for energy 

generation.  
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1.4 Systems biology and development of cell factories 

Systems biology can be defined as the analysis of the cell interactions at 

different levels and the subsequent integration of this information for a better 

understanding of organisms. Systems biology analysis of cell factories is 

fundamental for the optimization of platform strains. Different omics 

techniques such as transcriptomics, proteomics and metabolomics allow 

collecting information at different levels and integrating it through 

computational methods. 

For the third paper, we did an omics analysis of our p-coumaric acid 

producer strain and we got information about the metabolic changes that the 

yeast cells faced when they were producing aromatic compounds. In this 

section, we show the utility of the omics techniques that we used in our 

project, and we make an overview of other techniques that we did not use 

and that should be considered when engineering cell factories. 

 

Omics techniques for the development of cell factories 

For the development of efficient cell factories, it is necessary to overcome 

the limitations inherent to the chosen organism, as metabolic regulations, 

generation of by-products, toxicity, cofactor imbalance. (Kim et al., 2012). 

These limitations used to be approached through rational metabolic 

engineering and adaptive evolution.  

Techniques such as genomics, transcriptomics, proteomics, metabolomics, 

lipidomics and localizomics, combined with appropriate tools for data 

integration may have a significant repercussion on the development of cell 

factories.  

The quantification of intracellular and extracellular metabolites has 

contributed to the identification of regulated steps in the pathways of interest 

and enzymatic specificity in different platform strains. Metabolic profiling of 

intermediate compounds or metabolites with known physiological relevance 

also has been useful for to the improvement of cell factories (Harrison et al., 

2013; Toya and Shimizu, 2013). For example, metabolomics analysis has 
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been used for the improvement of the resistance of a S. cerevisiae xylose-

fermenting strains to weak acids: Hasunuma et al. (2011) found that yeast 

cells accumulated compounds involved in the non-oxidative pentose 

phosphate pathway when weak acids were added to the medium. 

Interestingly the overexpression of enzymes involved in the pentose 

phosphate pathway TAL and TKL improved the production of ethanol when 

weak acids were added to the medium.  

Comparative genomics has been used for studying the genome of xylose-

fermenting fungi. By comparing the genome of 5 fungi species with different 

xylose consumption phenotypes; they identified a considerable number of 

genes related to carbohydrate transport and metabolism involved in xylose 

assimilation, the subsequent expression of these genes in Sacharomyces 

cerevisiae had a positive effect on growth and assimilation of xylose 

(Wohlbach et al., 2011). 

The use of transcriptomics analysis and in silico knockout simulations led to 

the improvement of the synthesis of L-valine in E. coli. The transcriptome 

analysis allowed them to identify downregulated genes such as lrp, encoding 

the global regulator Lrp and the L-valine exporter ygaZH. Subsequently, 

these genes were expressed in the strain and led the improvement of L-

valine biosynthesis. The implementation of in silico knockout targets from a 

model improved the flux through the pentose phosphate pathway arising an 

increase in the synthesis of NADPH, a cofactor needed for L-valine 

biosynthesis. The final strain had an outstanding yield of 0.378 g of L-valine 

per gram of glucose (Park et al., 2007).  

Lactococcus lactis is an organism widely used for the production of 

fermented dairy products. Comparative and functional genomics have been 

used to identify differences between industrial and non-industrial subspecies 

of L. lactis. Through the use of genomics, transcriptomics and proteomics it 

has been possible to determine biological traits relevant for the production 

and development of flavour, texture and stability of dairy products. This 

information has been used for subsequent strain development, for example, 

proteolysis plays a key role in flavour development of cheese, subsequently 
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many of the genes and enzymes involved in this process have been 

sequenced and widely studied (Kok et al., 2005, van Hylckama et al., 2006). 

The development and improvement of omics techniques allow getting 

information at different biological levels such as DNA, proteins, metabolites 

and the combined used of this information allowed getting a better 

understanding of cells and organisms not only in metabolic engineering but 

also in human biology and diseases treatment. 

 

Genome-scale models 

One of the most important aims of systems biology is the development of 

accurate mathematical models representing metabolic interactions. In this 

regard, the development of omics techniques have contributed to gathering 

more information about metabolic processes at different levels. 

Many genome-scale models have been developed in the last years for 

different platform strains such as E. coli, S. cerevisiae and Clostridium 

thermocellum. These models have been very useful for the improvement of 

the strains for biotechnological applications and in the long term all the 

information will contribute to a better understanding of the physiology of the 

organisms. 

Mathematical models can contribute to the development of cell factories at 

different stages of the process. By the use of models, it is possible to get 

information about the optimal host strain, identification of targets that may 

contribute to the improvement of production yield and titer of the desired 

compound and optimization of the fermentation process (Almquist et al., 

2014). 

Genome-scale models have been used to improve the production of ethanol 

in yeast. Dikicioglu et al. (2008) predicted the production of ethanol by flux 

balance analysis for mutants with deletions of a subunit of the respiratory 

chain complex III; interestingly after the deletion of the subunits the strains 

reduced biomass yields and increased ethanol yields. 
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Vanillin production also has been improved through genome-scale 

stoichiometric modeling using MOMA as the biological objective function. 

Brochado et al. (2010) identified GDH1, an enzyme involved in ammonium 

metabolism and PDC1, an enzyme involved in the carboxyl reaction of 

pyruvate to acetaldehyde and other intermediate compounds involved in 

ethanol synthesis as targets for the improvement of vanillin production. 

Interestingly, the strains with the deletion of these genes improved the 

synthesis of p-CA around 2-folds in comparison to the control strain. 

Another interesting example is the biosynthesis of succinic acid. By the use 

of a genome-scale model Agren et al. (2013) identified that the deletion of 

dic1 improved the synthesis of succinic acid to 0.02 C-mol/C-mol, further 

analysis of the dic1 deletion strain showed its relation with gene ontology 

processes involved in inter-compartmental transports and redox balance. 
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1.5 Strategies for strain engineering 

Through the research projects, we developed and characterized a platform 

strain for the synthesis of aromatic secondary metabolites. This platform was 

used for the synthesis of flavonoids but since we observe accumulation of 

intermediate compounds in the engineered strains, further engineering 

strategies are necessary for improving the synthesis of aromatic secondary 

metabolites in yeast. In this section, we present an overview of several 

techniques and strategies that can be used for the improvement of the 

aromatic secondary metabolites cell factories. 

 

Multivariate modular metabolic engineering 

Multivariate modular metabolic engineering (MMME) is an approach 

developed by Ajkumar et al. (2010). Different promoters, homologous 

enzymes, enzyme localization and copy numbers are combined in different 

modules; these modules are defined according to the enzyme turnover and 

chemistry. Finally the optimal expression level for the synthesis of the target 

compound is identified using multivariate statistics. With this approach, it is 

possible to find limiting steps in the pathway, since multiple combinations of 

promoters, enzymes and copy numbers are tested. This method also allows 

identifying toxicity of intermediate compounds and unknown pathways 

competing for any of the intermediate compounds.  

MMME and similar approaches have been used for development of cell 

factories both in E. coli and S. cerevisiae. The use of this method in E. coli 

cell factories made it possible to overcome the toxicity of cinnamoyl-CoA for 

the production of (2S)-pinocembrin and the increment of the central 

metabolites precursors for the production of β- carotene resveratrol (Wu et 

al., 2013a; 2013b). In S. cerevisiae this approach was used to improve the 

production of the terpenoids intermediate compound miltiradiene (Dai et al., 

2012; Zhou et al., 2012; Wu et al., 2014).  

To summarize this approach can also be very useful for the development of 

a flavonoids cell factory. On this pathway, we already have a limiting step for 

the conversion of p-coumaric acid to naringenin or liquiritigenin and after 
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overcoming this limiting step, the tuning of the enzymatic steps downstream 

can probably contribute to improvement of performance of the flavonoids cell 

factory. 

 

Genome editing 

The development of yeast cell factories involves engineering of the host 

strain metabolism together with the expression of heterologous pathways. 

The development of a platform strain can involve deletion, overexpression, 

down-regulation and up-regulation of genes. A critical part of the engineering 

process is the implementation of techniques that allow engineering multiple 

metabolic targets in a short period of time with a reasonable cost.  

The efficient endogenous homologous recombination mechanism of S. 

cerevisiae had played a fundamental role in yeast strains development; this 

organism shows a high frequency of homologous recombination, which 

allowed development of different methods for genome editing (Srikrishnan., 

2011; Jensen et al., 2013; Jakociunas et al., 2016). 

The use of yeast-oligo mediated genome engineering YOGE has shown 

practical advantages for genome editing in S. cerevisiae, since single strand 

oligos have a reasonable price, and it is not necessary to perform a PCR 

amplification and subsequent purification. The efficiency of oligo-mediated 

recombination combined with a selection of desired phenotypes had shown 

positive results for the development of deletions and overexpressions in 

yeast (DiCarlo et al., 2013). 

Partially synthetic chromosomes also had been developed for S. cerevisiae; 

this chromosome had the phenotype and fitness of a wild-type chromosome, 

lacking destabilizing elements and genetic flexibility. By the use of this 

technique, it is possible to perform combinatorial mutagenesis generating a 

broad range of phenotypes (Dymond et al., 2011; Shen et al., 2016).  

In recent years, we have also seen a rapid advance in genome engineering 

techniques due to the emergence of new tools based on the CRISPR/Cas9 

technology. These tools are very useful for selective targeting of DNA to 
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create double strand breaks. CRISPR/Cas9 successfully had been used for 

development of several different genome engineering strategies in S. 

cerevisiae. These techniques made it possible to generate simultaneous 

gene deletions, multigene chromosomal integration and single directed 

mutagenesis (Bao et al., 2014; Mans et al., 2015; Jakociunas et al., 2015a).  

The CRÍSPR/Cas9 technology allows performing multiple deletion and 

integration of genes in a shorter period in comparison with other methods. 

For example, it is possible to perform single and multiple deletions of genes 

with efficiencies of 100% and up to 43% respectively (Ryan et al., 2014. 

Also, it is possible to do multi-loci integrations of up to six genes with 

efficiencies between 75 to 100%, and combined integration and deletion of 

genes with efficiencies of 58% (Mans et al., 2015; Jakociunas et al., 2015a). 

The availability of selection markers limits the amount of genetic 

modifications that can be performed in a strain. Since the use of 

CRISPR/Cas9 for genome editing doesn’t need selection markers, the use 

of this technique open new possibilities for the expression of long 

heterologous pathways in yeast (Jakociunas et al., 2015b; Solis-Escalante et 

al., 2013). 

As the use of multivariate combinatorial strategies such as MMME for 

pathways with many enzymatic steps relies on the practical issues related to 

strains construction, the use of CRISPR/Cas9 technology for genome 

engineering is an excellent option for facilitating the development and 

improvement of cell factories. 

 

Enzyme co-localization 

Strategies such as the development of fusion proteins by the fusion of genes 

with a linker sequence can contribute to the improvement of yeast cell 

factories. The fusion has to be designed according to the sequential order of 

the enzymes in the pathway. With this approach, it is possible to increase 

the local concentration of intermediate compounds and improve their flux to 

subsequent enzymatic steps, and even decrease the flux of intermediate 
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compounds to unwanted metabolic pathways (Li et al., 2010; Wang et al., 

2012). 

Other options for enzyme co-localization are synthetic enzymes scaffold and 

compartmentalization. While synthetic enzyme scaffolds allows the binding 

of more than two enzymes and controlling the enzymes’ stoichiometry. 

Further, compartmentalization allows localizing, even more, enzymes than 

the synthetic scaffold and also permits the control of some chemical 

characteristics of the compartment, such as pH and redox state. 

Compartmentalization has already been used as a strategy for the 

production of terpenoids and branched chain alcohols (Dueber et al., 2009; 

Farhi et al., 2013; Avalos et al., 2013; Woolston., 2013). 

 

Protein Engineering 

Many factors can affect the optimal performance of an enzyme such as 

allosteric regulation, enzyme specificity, cofactor imbalance or optimal 

temperature and pH (Sauro., 2011). The use of computational tools 

combined with specific knowledge about the protein sequence and structure 

contribute to the improvement of the enzyme performance through protein 

engineering (Chen et al., 2013). 

Protein engineering allows identifying and targeting residues associated with 

inhibitory binding, designing strategies to modify the electrostatic 

conformation of the cofactor binding sites and designing of libraries with 

targets for improving enzyme specificity. Protein engineering is a permanent 

practice for the development of protein therapeutics and development of 

tailored enzymes in the biotechnology industry; however, it is not a 

permanent practice for metabolic engineering and strain development 

(Carter et al., 2011; Bommarius et al., 2013). 

Protein engineering had been used in combination with metabolic 

engineering for production of diterpenoids as a strategy to overcome the 

insufficient downstream capacity. By the generation of a library of 

combinatorial mutations for the rate-limiting enzymes, a 2600 fold 

improvement in the production of levopimaradiene in E. coli was reached. In 
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S. cerevisiae, it was possible to improve the catalytic activity of the glucose 

regulator Hexokinase 2 in the presence of xylose (Leonard et al., 2010; 

Bergdahl et al., 2013).  
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a b s t r a c t

Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological
functions. Many of these secondary metabolites are already being used as active pharmaceutical or
nutraceutical ingredients, and there are numerous exploratory studies of other compounds with
promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a
valuable chemical building block, it serves as precursor for biosynthesis of many secondary metabolites,
such as polyphenols, flavonoids, and some polyketides.

Here we developed a p-coumaric acid-overproducing Saccharomyces cerevisiae platform strain. First,
we reduced by-product formation by knocking out phenylpyruvate decarboxylase ARO10 and pyruvate
decarboxylase PDC5. Second, different versions of feedback-resistant DAHP synthase and chorismate
mutase were overexpressed. Finally, we identified shikimate kinase as another important flux-
controlling step in the aromatic amino acid pathway by overexpressing enzymes from Escherichia coli,
homologous to the pentafunctional enzyme Aro1p and to the bifunctional chorismate synthase-flavin
reductase Aro2p. The highest titer of p-coumaric acid of 1.9370.26 g L�1 was obtained, when
overexpressing tyrosine ammonia-lyase TAL from Flavobacterium johnsoniaeu, DAHP synthase ARO4K229L,
chorismate mutase ARO7G141S and E. coli shikimate kinase II (aroL) in Δpdc5Δaro10 strain background. To
our knowledge this is the highest reported titer of an aromatic compound produced by yeast.

The developed S. cerevisiae strain represents an attractive platform host for production of p-
coumaric-acid derived secondary metabolites, such as flavonoids, polyphenols, and polyketides.

& 2015 International Metabolic Engineering Society Published by Elsevier Inc. On behalf of International
Metabolic Engineering Society. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Aromatic amino acids are precursors of many secondary
metabolites produced in plants, where they have a key role in
the plant development, adaptation and defense mechanisms
(Maeda and Dudareva, 2012; Perez-Gregorio et al., 2014). Among
the plant secondary metabolites many alkaloids, flavonoids, tan-
nins and lignins find applications as nutraceutical and pharma-
ceutical ingredients (Scotti, 2012). Exploratory research of this
type of compounds shows promising results (Winkel-Shirley,

2001; Hawkins and Smolke, 2008; Bhan et al., 2013; Leonard
et al., 2009), but the limiting factor for a wider use of these
secondary metabolites is the lack of efficient extraction systems
from plants, or a competent microbial biosynthetic alternative that
can produce these compounds in high yields (Santos et al., 2011).
There is therefore much interest in developing a microbial cell
factory platform that can be used for production of secondary
metabolites derived from aromatic amino acids. As the biosynth-
esis of many plant secondary metabolites involves P450 enzymes,
which are often difficult to express in bacteria, the yeast Sacchar-
omyces cerevisiae is well suited as a cell factory platform for
production of these products. Since many of the flavonoids are
intended for nutraceutical applications, using S. cerevisiae as the
host may be a further advantage due to the long history of its
application in food and beverage production (Krivoruchko et al.,
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2011; Siddiqui et al., 2012) Furthermore, S. cerevisiae has proven
well amenable for genetic engineering and industrial-scale fer-
mentation and is currently used for production of active pharma-
ceutical ingredients, dietary supplements, chemicals and fuels
(Hong and Nielsen, 2012; Nielsen et al., 2013; Borodina and
Nielsen, 2014; Li and Borodina, 2015; Borodina et al., 2015).

In order to enable efficient production of secondary metabolites
derived from aromatic amino acids it is necessary to optimize
aromatic amino acid biosynthesis. S. cerevisiae has been metabolically
engineered for improved production of aromatic amino acids through
the elimination of feedback inhibition of key enzymes and elimination
of by-product formation. Luttik et al. (2008) explored the use of
mutated DAHP synthase ARO4 and chorismate mutase ARO7 to avoid
feedback inhibition and got an increment of 200-fold of aromatic
compounds in comparison to the reference strain. Furthermore,
through expression of heterologous pathways, it has been possible
to produce secondary metabolites derived from aromatic amino acids.
Thus, Koopman et al. (2012) produced the flavonoid naringenin from
glucose using a background strain with a triple knockout of the most
active phenylpyruvate decarboxylases, which prevented formation of
the by-product phenylethanol, and overexpressing feedback-resistant
DAHP synthase and chorismate mutase.

Escherichia coli and S. cerevisiae have been extensively engineered
in order to obtain flavonoid-producing cell factories. Among the
flavonoids produced in E. coli from glucose are naringenin, pinocem-
brin, and kaempferol 3‑O‑rhamnoside, with titers of 84 mg L�1,
40 mg L�1, and 57 mg L�1, respectively (Santos et al., 2011; Wu et
al., 2014; Yang et al., 2014). Several other flavonoids were produced
by supplementing the broth with intermediate compounds, e.g.,
pinocembrin (429 mg L�1), naringenin (119 mg L�1), eriodictyol
(52 mg L�1), quercetin (23.78 mg L�1), and resveratrol (2.3 g L�1)
(Leonard et al., 2007; Pandey and Sohng, 2013; Lim et al., 2011).
Flavonoids, such as resveratrol (0.31 mg L�1), genistein (7.7 mg L�1),
kaempferol (4.6 mg L�1), and quercetin (0.38 mg L�1), have been
produced by engineered S. cerevisiae, when supplemented with
naringenin (Trantas et al., 2009). Using glucose as carbon source,
Koopman et al. (2012) produced 102 mg L�1 of naringenin. Jendresen
et al. (2015) has reported several novel highly active tyrosine
ammonia-lyases and shown their activity in E. coli, Lactococcus lactis
and S. cerevisiae. These examples prove the potential of E. coli and
S. cerevisiae for flavonoids production, but also evidence the need
for development of a platform strain capable of high-level production
of aromatic metabolites, e.g. p-Coumaric acid from which
many secondary metabolites are derived (Santos et al., 2011). We
therefore here developed a S. cerevisiae strain that overproduces
p-coumaric acid, and besides representing a starting point for
further development of a process for commercial p-coumaric
acid, we believe this strain can be used as a platform strain for
production of flavonoids and other coumaric-acid derived secondary
metabolites.

2. Materials and methods

2.1. Plasmids and strains construction

The background strain for this research was S. cerevisiae CEN.
PK102-5B. Cloning was carried out using E. coli strain DH5α. All
the fragments used for overexpression of genes were amplified by
PCR using primers and templates as described in Supplementary
Tables 1 and 2. The fragment encoding chorismate mutase from C.
guilliermondii was identified through BLAST search, by comparing
the full amino acids sequence of Aro7p from S. cerevisiae against C.
guilliermondii protein sequences in GenBank. Homology of 60%
was found between Aro7p from S. cerevisiae and the hypothetical

protein PGUG_00476 from C. guilliermondii (Genbank accession
number: XM_001487049.1).

Tyrosine ammonia-lyase TAL from F. johnsoniaeu was as
described before (Jendresen et al., 2015). The amplified products
were cloned along with strong constitutive promoters into Easy-
Clone integrative plasmids by USER cloning (Jensen et al., 2014).
The clones with correct inserts were confirmed by sequencing. The
list of the constructed vectors can be found in Table 1 and the
details on the cloning are given in Supplementary Table 3.

Transformation of yeast cells was carried out by the lithium
acetate method (Gietz et al., 2002). The strains were selected on
synthetic drop-out medium (Sigma-Aldrich), selecting for URA, HIS
and LEU markers. The yeast strains constructed in this study are
listed in Table 1.

The mutant genes, scARO4fbr (K229L), scARO7fbr (G141S), ecar-
oGfbr1 (L175D) and ecaroGfbr2 (S180F), were constructed by site-
directed mutagenesis method (Zheng et al., 2004), using primers
and templates described in Supplementary Tables 1 and 3. The
ARO4, ARO7 and aroG wild-type genes were amplified from the
genomic DNA of S. cerevisiae and E. coli NST 74. The DNA fragments
were gel-purified and cloned into vector pESC-URA-ccdB-USER or
pESC-HIS-ccdB-USER, the derived plasmids pCfB761, pCfB775,
pCfB1075 and pCfB1076 were confirmed by DNA sequencing.
These plasmids were used as the templates for site-directed
mutagenesis reactions. The complementary primers with nucleo-
tide substitutions for mutagenesis were designed for each muta-
tion according to the guidelines stated by Zheng et al., 2004. The
reactions were incubated with DpnI for 1 h before transformation
into competent DH5α E. coli cells, the strains were grown over-
night on LB agar (Amp) plates at 37 1C. Colonies were then
selected, and plasmid DNA was extracted and sequenced over
the region of the mutation. Successful mutants were verified by
DNA sequencing and then re-cloned into the integrative expres-
sion vectors (Supplementary Tables 2 and 3).

2.2. Deletions of ARO10 and PDC5

The double knockout strain Δaro10Δpdc5 was constructed by
an iterative replacement of the targeted genes with the URA3
cassette in the strain CEN.PK102-5B by bi-partite method (Erdeniz
et al., 1997). The knockout fragments were transformed into S.
cerevisiae and transformants were selected on SC-Ura yeast syn-
thetic drop-out media. The knockouts were confirmed by PCR on
genomic DNA preparations. The URA3 marker was looped-out via
direct repeats by growing the yeast on 5-fluoroorotic acid (5-FOA)
plates, and the second gene was knocked-out in the same way and
the URA3 marker was removed again.

For the single knockout strains (Δaro10 and Δpdc5), the target
genes were replaced by a LEU2 cassette in the strain CEN.PK102-
5B. The knockout fragments were transformed into S. cerevisiae
and transformants were selected on SC-Leu yeast synthetic drop-
out media. The knockouts were confirmed by PCR on genomic
DNA preparations.

The gene fragments, carrying the upstream and downstream
fragments of the marker cassettes URA3 and LEU2 and of the
targeted genes ARO10 and PDC5, were generated by PCR amplifica-
tion using the method developed by Reid et al. (2002). Primers and
templates used for targeting the genes are indicated in Supple-
mentary Tables 1 and 2. The upstream fragments of the targeted
genes (PDC5_UP or ARO10_UP), the downstream fragments of the
targeted genes (PDC5_DOWN or ARO10_DOWN), the upstream
and downstream fragment of the markers (2/3_URA3_UP,
2/3_URA3_DOWN, for the double knockout strain and
2/3_LEU2_UP and 2/3_LEU2_DOWN for the single knockout strain
construction) from Kluyveromyces lactis were amplified using
primers described in Supplementary Table 1. To generate a
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Table 1
Plasmids and strains used in this study.

Plasmid ID Genotype Source

Parental plasmids
pCfB0054 Episomal replication vector, pESC, HIS, PTEF1-TADH1, PPGK1-TCYC1 Jensen et al.

(2014)
pCfB0055 Episomal replication vector, pESC, HIS, PTEF1-TADH1, PPGK1-TCYC1 Jensen et al.

(2014)
pCfB255 Integrative plasmid, pX-2-loxP, klURA3, PTEF1-TADH1, PPGK1-TCYC1 Jensen et al.

(2014)
pCfB257 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1-TADH1, PPGK1-PPGK1 Jensen et al.

(2014)
pCfB258 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-TADH1, PPGK1-TCYC1 Jensen et al.

(2014)
Plasmids used for directed mutagenesis
pCfB744 Episomal replication vector, pESC, URA, PTEF1-scARO7-TADH1 This study
pCfB745 Episomal replication vector, pESC, HIS, PTEF1-scARO4-TADH1 This study
pCfB761 Episomal replication vector, pESC, URA, PTEF1-scARO7fbr-TADH1 This study
pCfB775 Episomal replication vector, pESC, HIS, PTEF1-scARO4fbr-TADH1 This study
PCfB1074 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1-ecAroG-TADH1 This study
PCfB1075 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1- ecaroGfbr1-TADH1 This study
PCfB1076 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1- ecaroGfbr2-TADH1 This study

Integrative plasmids
pCfB826 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-scARO7fbr-TADH1, PPGK1-

scARO4fbr-TCYC1
This study

pCfB827 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-scARO7fbr-TADH1, PPGK1-
ecaroFfbr-TCYC1

This study

pCfB830 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-cgARO7-TADH1, PPGK1-scARO4fbr-
TCYC1

This study

pCfB831 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-cgARO7-TADH1, PPGK1-ecaroFfbr-
TCYC1

This study

pCfB1077 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-scARO7fbr-TADH1, PPGK1-
ecaroGfbr1-TCYC1

This study

pCfB1078 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-cgARO7-TADH1, PPGK1-ecaroGfbr1-
TCYC1

This study

pCfB1080 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-scARO7fbr-TADH1, PPGK1-
ecaroGfbr2-TCYC1

This study

pCfB1081 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-cgARO7-TADH1, PPGK1-ecaroGfbr2-
TCYC1

This study

pCfB1221 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1-scTYR1-TADH1 This study
pCfB1226 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-ectyrAfbr-TADH1, PPGK1-

scARO4fbr-TCYC1
This study

pCfB1227 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-ectyrAfbr-TADH1, PPGK1- ecaroFfbr-
TCYC1

This study

pCfB1228 Integrative plasmid, pX-4-loxP, spHIS5, PTEF1-ectyrAfbr-TADH1, PPGK1-
ecaroGfbr1-TCYC1

This study

pCfB1964 Integrative plasmid, pX-2-loxP, KlURA3, PTEF1-fjTAL-TADH1 This study
pCfB2733 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1- scARO1-TADH1, PPGK1- scARO2-

TCYC1
This study

pCfB2739 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1-ecaroB-TADH1 This study
pCfB2741 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1-ecaroE-TADH1 This study
pCfB2742 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1-ecydiB-TADH1 This study
pCfB2743 Integrative plasmid, pX-3-loxP, klLEU2, PPGK1-ecaroK-TCYC1 This study
pCfB2745 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1-ecaroA-TADH1 This study
pCfB2746 Integrative plasmid, pX-3-loxP, klLEU2, PPGK1-ecaroD-TCYC1 This study
pCfB2747 Integrative plasmid, pX-3-loxP, klLEU2, PPGK1-ecaroL-TCYC1 This study
pCfB2749 Integrative plasmid, pX-3-loxP, klLEU2, PPGK1-ecaroC-TCYC1 This study
pCfB2740 Integrative plasmid, pX-3-loxP, klLEU2, PTEF1-scARO1-TADH1 This study
pCfB2748 Integrative plasmid, pX-3-loxP, klLEU2, PPGK1-scARO2-TCYC1 This study

Parent and template strains
Strain ID Strain Source
ST10 S. cerevisiae CEN.PK102-5B (MATa ura3-52 his3 Δ 1 leu2-3/112 MAL2-8c

SUC2)
Peter Kötter

ST700 E. coli NST 74 (ATCC 31884) ATCC
ST679 C. guilliermondii (ATCC 6260) ATCC

Knockout strains
Strain ID Parent strain Characteristics Source
ST4034 ST10 MATa aro10Δ: LEU2 This study
ST3532 ST10 MATa pdc5Δ: LEU2 This study
ST691 ST10 MATa aro10Δ pdc5Δ This study

Strains transformed with integrative
plasmids

Strain ID Parent strain Integrated plasmids Source
ST4068 ST10 pCfB1964, pCfB257,

pCfB258
This study

ST4069 ST10 pCfB255, pCfB257, pCfB258 This study
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complete gene targeting substrate, the upstream fragments
(PDC5_UP or ARO10_UP), were fused to the 2/3 upstream fragment
of the markers (2/3_URA3_UP for the double knockout and
2/3_LEU2_UP for the single knockout), in the same way, the
downstream fragments were fused to the downstream fragment
of the markers (2/3_URA3_DOWN for the double knockout and
2/3_LEU2_DOWN for the single knockout). The two fusion PCR
fragments per targeted gene were transformed simultaneously
into the S. cerevisiae strain and selected in SC-Ura or Sc-Leu
medium according to the selection marker. The correct transfor-
mants were confirmed by PCR, using primers described in
Supplementary Table 1.

2.3. Media and cultivations

Synthetic complete (SC) medium as well as drop-out media
(SC-Ura, SC-Leu, SC-His) and agar plates were prepared using pre-
mixed drop-out powders from Sigma-Aldrich. Synthetic fed-batch
medium for S. cerevisiae M-Sc.syn-1000 (FIT) was purchased from
M2P labs GmbH (Germany). The medium was supplemented with
the supplied vitamins solution (final 1% v/v) and the enzyme mix
(final concentration 0.5% v/v) immediately prior to use.

At least six single colonies originating from independent
transformants were inoculated in 0.5 ml drop-out SC liquid med-
ium without uracil, histidine, and/or leucine in 96-deep well

Table 1 (continued )

Plasmid ID Genotype Source

ST4072 ST4034 pCfB1964, pCfB258 This study
ST4073 ST4034 pCfB255, pCfB258 This study
ST4070 ST3532 pCfB1964 This study
ST4071 ST3532 pCfB255 This study
ST4048 ST691 pCfB1964, pCfB257,

pCfB258
This study

ST4050 ST691 pCfB255, pCfB257, pCfB258 This study
ST2645 ST691 pCfB1964, pCfB257,

pCfB826
This study

ST4040 ST691 pCfB1964, pCfB1221,
pCfB826

This study

ST4049 ST691 pCfB1964, pCfB257,
pCfB830

This study

ST4044 ST691 pCfB1964, pCfB1221,
pCfB830

This study

ST4038 ST691 pCfB1964, pCfB257,
pCfB1226

This study

ST4041 ST691 pCfB1964, pCfB1221,
pCfB827

This study

ST4051 ST691 pCfB1964, pCfB257,
pCfB827

This study

ST4045 ST691 pCfB1964, pCfB1221,
pCfB831

This study

ST4052 ST691 pCfB1964, pCfB257, pCfB831 This study
ST4037 ST691 pCfB1964, pCfB257,

pCfB1227
This study

ST4053 ST691 pCfB1964, pCfB257,
pCfB1077

This study

ST4042 ST691 pCfB1964, pCfB1221,
pCfB1077

This study

ST4054 ST691 pCfB1964, pCfB257,
pCfB1078

This study

ST4046 ST691 pCfB1964, pCfB1221,
pCfB1078

This study

ST4039 ST691 pCfB1964, pCfB257,
pCfB1228

This study

ST4055 ST691 pCfB1964, pCfB257,
pCfB1080

This study

ST4043 ST691 pCfB1964, pCfB1221,
pCfB1080

This study

ST4056 ST691 pCfB1964, pCfB257,
pCfB1081

This study

ST4047 ST691 pCfB1964, pCfB1221,
pCfB1081

This study

ST3213 ST691 pCfB1964, pCfB826 This study
ST4057 ST3213 pCfB2739 This study
ST4065 ST3213 pCfB2746 This study
ST4062 ST3213 pCfB2741 This study
ST4063 ST3213 pCfB2742 This study
ST4066 ST3213 pCfB2743 This study
ST4058 ST3213 pCfB2747 This study
ST4064 ST3213 pCfB2745 This study
ST4060 ST3213 pCfB2749 This study
ST4067 ST3213 pCfB2733 This study
ST4061 ST3213 pCfB2740 This study
ST4059 ST3213 pCfB2748 This study
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microtiter plates with air-penetrable lid (EnzyScreen, NL). The
plates were incubated at 30 1C with 250 rpm agitation at 5 cm
orbit cast overnight. 50 ml of the overnight cultures were used to
inoculate 0.5 ml synthetic fed-batch medium in a 96-deep well
plate. Fermentation was carried out for 72 h at the same condi-
tions as above.

At the end of the cultivation OD600 was measured as following:
10 ml of the sample was mixed with 190 ml water and absorbance was
measured at 600 nmwavelength in microplate reader BioTek Synergy
MX (BioTek). The culture broth was spun down and the supernatant
was analyzed for p-coumaric acid concentration using HPLC.

2.4. Quantification of p-coumaric acid

Quantification of p-coumaric acid was performed on HPLC
(Thermo), equipped with a Discovery HS F5 150 mm�2.1 mm
column (particle size 3 mm). Samples were analyzed using a
gradient method with two solvents: 10 mM ammonium formate
pH 3.0 (A) and acetonitrile (B) at 1.5 ml min�1. The program

started with 5% of solvent B (0–0.5 min), after which its fraction
was increased linearly from 5% to 60% (0.5–7.0 min) and main-
tained at 60% for 2.5 min (7.0–9.5 min). Then the fraction of
solvent B was decreased back to 5% (9.5–9.6 min) and remained
at 5% until the end (9.6–12 min). p-Coumaric acid was detected by
absorbance at 277 nm and the peak (retention time 4.7 min) area
was integrated with Chromeleon 7 and used for quantification by
fitting with a standard curve. For all the strains at least three
biological replicates were analyzed.

3. Results

3.1. Deletion of phenylpyruvate and pyruvate decarboxylases

In order to avoid production of aromatic alcohols and direct the
pathway flux to aromatic amino acids, we performed single
knockouts of ARO10 (phenylpyruvate decarboxylase), PDC5 (pyr-
uvate decarboxylase), and a double knock out of ARO10 and PDC5.

Fig. 1. Schematic representation of the engineered p-coumaric acid production pathway in S. cerevisiae. E4P: erythrose 4-phosphate, PEP: phosphoenolpyruvate, DAHP:
3-deoxy-D-arabino-heptulosonic acid 7-phosphate, DHQ: 3-dehydroquinate, DHS: 3-dehydro-shikimate, SHIK: shikimate, SHP: shikimate-3-phosphate, EP3P: 5-enolpyr-
uvylshikimate-3-phosphate, PPA: prephenate, PPY: phenylpyruvate, HPP: para-hydroxy-phenylpyruvate, PAC: phenylacetaldehyde, pPAC: para-hydroxy-acetaldehyde,
L-PHE: L-phenylalanine, L-TYR: L-tyrosine, p-CA: p-coumaric acid, TAL: tyrosine ammonia-lyase. The star key indicates overexpressed enzymes; enzymes in gray boxes
represent knockouts, “fbr” indicates feedback-resistant.
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Furthermore, a tyrosine ammonia-lyase TAL from F. johnsoniae was
overexpressed in these strains in order to produce p-coumaric acid
(Jensen et al., 2014) (Fig. 1).

The reference strain without deletions was able to produce
0.2470.03 g L�1 of p-coumaric acid (Fig. 2). The strain with the
single deletion of PDC5 produced 0.3070.09 g L�1 of p-coumaric
acid, while the strain carrying the knockout of ARO10 produced
0.2970.04 g L�1. The highest production (0.5570.13 g L�1) was
obtained in the strain with the double knockout of ARO10 and
PDC5.

3.2. Effect of the elimination of the feedback inhibition of DAHP
synthase and chorismate mutase on p-coumaric acid production

The enzymes DAHP synthase and chorismate mutase from
the aromatic amino acids pathway are feedback-inhibited by
L-tyrosine and L-phenylalanine (Hartmann et al., 2003; Luttik
et al., 2008). In order to enhance the activity of these enzymes,
we overexpressed feedback-resistant variants of DAHP synthase
and chorismate mutase in the Δaro10Δpdc5 strain. For this we
selected 4 variants of DAHP synthase, a mutated feedback-
resistant ARO4K229L from S. cerevisiae, an aroF from E. coli NST 74
(ATCC 31884) and two mutant variants of aroG, also from E. coli,
which were constructed through replacement of the residues
L175D and S180F of the hydrophobic domain. For chorismate
mutase, there were selected a mutated feedback-resistant
ARO7G141S from S. cerevisiae, a naturally feedback-resistant chor-
ismate mutase from C. guilliermonii and tyrA from the E. coli strain
NST 74 (ATCC 31884) (Tribe, 1987). The chorismate mutase from C.

guilliernondii had been reported as non-feedback inhibited (Bode
and Birnbaum, 1991). The variants of chorismate mutase from S.
cerevisiae and C. guilliermondii were complemented with prephe-
nate dehydrogenase TYR1 from S. cerevisiae in order to get
equivalent overexpressions to the bifunctional chorismate
mutase-prephenate dehydrogenase TyrA from E. coli NST 74 (ATCC
31884). The mutations were selected from previous studies, where
they had been reported as feedback-insensitive mutations: the
mutations in ARO4 and ARO7 were reported by Luttik et al. (2008),
the mutation of aroG (L175D) was reported by Hu et al. (2003) and
the mutation of aroG (S180F) was reported by Ger et al. (1994).

All the strains overexpressing DAHP synthase and chorismate
mutase were evaluated for their ability to produce p-coumaric acid
and a two-way ANOVA was conducted to analyze the effect of DAHP
synthases and chorismate mutases. The p-coumaric acid production
was normally distributed for all the combinations of DAHP synthases
and chorismate mutases as assessed by a Shapiro–Wilk's test (p-
Value40.05). The results showed that the overexpression of chor-
ismate mutase alone did not have a significant effect on the
production of p-coumaric acid (p-Value 0.399), while the overexpres-
sion of DAHP synthase and the combined overexpression of DAHP
synthase and chorismate mutase had a significant effect on the
production of the compound (p-Values 0.010 and 0.0005 correspond-
ingly) (Supplementary Tables 4 and 5).

From the strains overexpressing scARO4fbr, the best combina-
tion was obtained, when overexpressing at the same time scAR-
O7fbr, for the strains overexpressing ecaroF the best producer was
obtained in combination with cgARO7fbr. Although the two resi-
dues replaced in the aroG strains are located in the same region,
the p-coumaric acid production after the overexpression of the
mutated AroG enzymes was different. The replacement L175D
seems to generate a more active AroG, since two of the strains
carrying this mutation (ecaroGfbr1-ectyrA and ecaroGfbr1-cgARO7)
had production of over 0.9 g L�1 in contrast to the strains with the
replacement S180F, where the titer did not exceed 0.8 g L�1. It was
not possible to see a general trend of the effect of Tyr1p in the
production of p-coumaric acid, but in 4 of the 8 strains over-
expressing this enzyme a negative effect was observed (Fig. 3).

The overexpression of DAHP synthase and chorismate mutase
mostly had a positive effect on production of p-coumaric acid,
however there were some exceptions: scARO4-cgARO7, scARO4-
ectyrA, ecaroG-ARO7 and ecaroG-scARO7-scTYR1 all resulted in the
same or lower titer than in the reference strain.

3.3. p-Coumaric acid production after overexpression of ARO1 and
ARO2 from S. cerevisiae and their analogous from E. coli

In S. cerevisiae, the five steps to synthetize the aromatic
intermediate compound 5-enolpyruvylshikimate-3-phosphate
(EPSP) from DAHP are catalyzed by the pentafunctional enzyme
Aro1p, while in other organisms such as plants and bacteria each
step is performed by monofunctional enzymes (Fig. 1). In order to
find flux-controlling steps in this common branch of the aromatic
amino acid pathway, analogous enzymes to Aro1p and Aro2p from
E. coli were overexpressed in S. cerevisiae. Strains overexpressing
ARO1 and ARO2 from S. cerevisiae were also constructed with the
purpose of making a comparative analysis between the strains
overexpressing enzymes from E. coli and S. cerevisiae. The back-
ground strain for this experiment was the strain ST3213
(aro10Δpdc5Δ ARO4K229L ARO7G141S). The control strain for this
experiment was the strain ST3213 transformed with the empty
integrative plasmid pCfB257 instead of plasmids carrying over-
expression cassettes for ARO1, ARO2 or their analogous.

The overexpression of the monofunctional enzymes from E. coli
had a positive effect on the p-coumaric acid production; the only
exception was the overexpression of shikimate kinase AroK (Fig. 4A).

Fig. 3. Production of p-coumaric acid upon overexpression of feedback inhibition-
resistant DAHP synthase and chorismate mutase in strains with overexpression of
FjTAL and deletion of PDC5 and ARO10.

Fig. 2. Effect of knockouts of ARO10 and PDC5 on p-coumaric acid production in
strains overexpressing tyrosine-ammonia lyase FjTAL from F. johnsoniaeu.
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The strains overexpressing dehydroquinate synthase (AroB), shiki-
mate dehydrogenase (YdiB), EPSP synthase (AroA) or shikimate
kinase (AroL) produced more than 1.6 g L�1 of p-coumaric acid.
The strain with the highest improvement was the strain overexpres-
sing the isoenzyme of shikimate kinase AroL, producing
1.9370.26 g L�1 of p-coumaric acid.

Overexpression of the pentafunctional enzyme Aro1p and the
bifunctional chorismate synthase-flavin reductase Aro2p from
S. cerevisiae had a positive effect in the p-coumaric acid production.
The strain overexpressing Aro1p produced 1.6870.19 g L�1 of
p-coumaric acid, the strain overexpressing Aro2p produced
1.4070.12 g L�1, and the simultaneous overexpression of Aro1p
and Aro2p increased the production of p-coumaric acid to
1.7170.12 g L�1. The production of p-coumaric acid was very similar
between the strain overexpressing Aro1p and the strain overexpres-
sing Aro1p and Aro2p simultaneously. None of the strains expressing
native versions of Aro1p and Aro2p produced more p-coumaric acid
than the strain overexpressing AroL from E. coli (Fig. 4B).

4. Discussion

This study describes engineering of S. cerevisiae for production
of p-coumaric acid from glucose, leading to a final production titer
of 1.9370.26 g L�1 on feed-in-time medium in deep-well plates,
which represents a 7.9-fold improvement in comparison to the
non-optimized strain. The optimized strain also produced
1.89 g L�1 p-coumaric acid in controlled fed-batch fermentation
on mineral medium (Supplementary Fig. 1). To the best of our
knowledge, this is the highest titer of de novo production of an
aromatic compound reported for S. cerevisiae. There are studies of
flavonoids production from glucose in E. coli and S. cerevisiae;

however none of them has p-coumaric acid as the final product.
Some studies reported the accumulation of p-coumaric acid in
parallel to the production of other aromatic compounds. In E. coli,
Santos et al. (2011) and Wu et al. (2014) reported accumulation of
p-coumaric acid to 79 and 70 mg L�1, respectively, when they
were producing 84 and 101 mg L�1 of naringenin. In S. cerevisiae,
Koopman et al. (2012) reported around 61 mg L�1 of accumulated
p-coumaric acid, when they were producing 65 mg L�1 of narin-
genin in bioreactors.

The single knockouts of PDC5 and ARO10 had a positive effect
on the production p-coumaric acid. The PDC5 strain was auxo-
trophic for histidine, and the effect of the PDC5 knockout in
comparison to ARO10 may be different in a prototrophic strain.
The simultaneous deletions lead a 2-folds improvement in com-
parison to the reference strain (Fig. 2).This was expected as
deletion of the two genes had been previously reported to improve
production of some other tyrosine- and phenylalanine-derived
compounds, i.e., naringenin (Koopman et al., 2012)

The results obtained from the 2-factor Anova showed that
overexpression of chorismate mutase alone did not have a statis-
tically significant effect on production of p-coumaric acid. This is
consistent with results obtained by Luttik et al. (2008), where
overexpression of a native or a feedback resistant Aro7 did not
have significant impact on the production of the aromatic fusel
alcohols, unless Aro4 was overexpressed as well.

Besides Aro4p and Aro7p that have been widely reported as
feedback controlled enzymes, there must be other enzymes limit-
ing the production of aromatic amino acids. To this end, we
showed that the activity of the pentafunctional enzyme Aro1p in
S. cerevisiae is also limiting for the biosynthesis of chorismate.
With exception of the strain overexpressing AroK, all the strains
overexpressing the Aro1p and Aro2p analogous enzymes from E.
coli had a higher production of p-coumaric acid (Fig. 4A). These
results show that these enzymes also exhibit flux control and
further improvements can be obtained through the overexpres-
sion of heterologous enzymes with higher activity than Aro1p and
Aro2p from S. cerevisiae.

The strain overexpressing AroL from E. coli had the highest
production of p-coumaric acid, indicating that conversion of shiki-
mate to shikimate-3-phosphate has the highest flux control of these
five steps. These results are supported by the observation from Luttik
et al. (2008), where they reported accumulation of shikimate in the
culture supernatants after overexpression of scAro4fbr in S. cerevisiae.
Previous studies in E. coli also reported increased flux of intermediate
compounds to L-tyrosine, when shikimate kinase II was overex-
pressed (Takai et al., 2005; Juminaga et al., 2012).

The overexpression of AroK did not increase the production of
p-coumaric acid in the constructed strain. This may be due to the
low affinity of AroK to shikimate, i.e. the Km for shikimate of AroK
is more than 20 mM whereas the Km of AroL is only 0.2 mM
(DeFeyter and Pittard, 1986). The contribution of AroK to the
shikimate kinase activity in E. coli is therefore minimal (DeFeyter
and Pittard, 1986) and its overexpression did not have a significant
effect in p-coumaric acid production in E. coli. Previously there was
not detected any feedback inhibition of AroL or AroK by aromatic
amino acids, chorismic acid or prephenic acid (DeFeyter and
Pittard, 1986). Overexpression of the pentafunctional protein
(Aro1p) and the bifunctional chorismate synthase-flavin reductase
(Aro2p) from S. cerevisiae had a positive effect on the production of
p-coumaric acid, though the titer was still lower than of the strain
overexpressing AroL alone.

The p-coumaric acid overproducing strain that we describe can
be further engineered to include overproduction of malonyl-CoA, a
common precursor for biosynthesis of polyphenols and flavonoids.
It has been previously shown that increasing malonyl-CoA supply
improves production of naringenin (Koopman et al., 2012),

Fig. 4. Production of p-coumaric acid upon overexpression of ARO1 and ARO2 from
S. cerevisiae and their analogous from E. coli along with overexpression of
ARO4K229L, ARO7G141S, FjTAL and knockouts of ARO10 and PDC5. (A) Genes from E.
coli; aroB: 3-dehydroquinate synthase, aroD: 3-dehydroquinate dehydratase, aroE:
shikimate dehydrogenase, ydiB: shikimate dehydrogenase – quinate dehydrogen-
ase, arok: shikimate kinase I, aroL: shikimate kinase II, aroA: EPSP synthase, aroC:
chorismate synthase. (B) Genes from S. cerevisiae; ARO1: pentafunctional enzyme,
ARO2: bifunctional chorismate synthase and flavin reductase. Control strain ST2645
(FjTAL, aro10Δpdc5Δ, ARO4K229L, ARO7G141S).
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flavonone (Leonard et al., 2007), and 7-O-methyl aromadendrin
(Malla et al., 2012). Increased flux towards malonyl-CoA can be
achieved by overexpression of deregulated acetyl-CoA carboxylase
(Shi et al., 2014) and by further increase of acetyl-CoA biosynthesis
as described previously (Krivoruchko et al., 2015).

In conclusion, we describe metabolic engineering strategies that
lead towards a platform yeast strain, producing high levels of
p-coumaric acid, which besides being a product of commercial
interest by itself, also serves as an intermediate compound for
aromatic secondary metabolites. We also demonstrate that hetero-
logous expression of tyrosine-ammonia lyase TAL is well suitable for
evaluation of metabolic engineering targets for improving the flux
through the aromatic amino acid biosynthetic pathway. Through
combination of several different strategies we improved the pro-
duction of p-coumaric acid 7.9-fold, and we are therefore confident
that our strain represents a good platform stain for production of
p-coumaric acid derived secondary metabolites by S. cerevisiae.
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Supplementary material 

Supplementary Table 1. Primers used in this study. 

 
USER cloning 

ID Name Sequence (5'-3') 

1396 Sc_ARO4_2_fw ATCTGTCAUAAAACAATGAGTGAATCTCCAATGTTCG 

1397 Sc_ARO4_2_rv CACGCGAUTCATTTCTTGTTAACTTCTCTTCTTTG 

1398 Sc_ARO7_1_fw AGTGCAGGUAAAACAATGGATTTCACAAAACCAGAAAC 

1399 Sc_ARO7_1_rv CGTGCGAUTCACTCTTCCAACCTTCTTAGCAAG 

1468 Cg_ARO7_1_fw AGTGCAGGUAAAACAATGGACTTCACTAAACCAGAAACTG 

1469 Cg_ARO7_1_rv CGTGCGAUTCACTTGTATTTTGCAACCACCG 

1642 Ec_aroG_fw AGTGCAGGUAAAACAATGAATTATCAGAACGACGATTTACGC
ATCA 

1644 Ec_aroF_2_fw ATCTGTCAUAAAACAATGCAAAAAGACGCGCTGAATAACG 

1645 Ec_aroG_2_fw ATCTGTCAUAAAACAATGAATTATCAGAACGACGATTTACGCA
TCA 

1650 Ec_aroG_rv CGTGCGAUTTACCCGCGACGCGCTTTTAC 

1652 Ec_aroF_2_rv CACGCGAUTTAAGCCACGCGAGCCGT 

1653 Ec_aroG_2_rv CACGCGAUTTACCCGCGACGCGCTTTTAC 

1691 Fj_TAL_1_fw AGTGCAGGUAAAACAATGAACACCATCAACGAATATCTGAGC 

1692 Fj_TAL_1_rv CGTGCGAUTTAATTGTTAATCAGGTG 

2173 Sc_ARO1_1_fw AGTGCAGGUAAAACAATGGTGCAGTTAGCCAAAG 

2174 Sc_ARO1_1_rv CGTGCGAUCTACTCTTTCGTAACGGCATC 

2179 Sc_ARO2_2_fw ATCTGTCAUAAAACAATGTCAACGTTTGGGAAACTG 

2180 Sc_ARO2_2_rv CACGCGAUTTAATGAACCACGGATCTGGA 

2241 Sc_TYR1_1_fw AGTGCAGGUAAAACAATGGTATCAGAGGATAAGATTGAG 

2242 Sc_TYR1_1_rv CGTGCGAUTTATGTATTTCTTTTTTCAGCGGC 

3087 Ec_tyrA_1_fw AGTGCAGGUAAAACAATGGTTGCTGAATTGACCG 

3088 Ec_tyrA_1_rv CGTGCGAUTCATTGTCTGTTATCGTTGGCT 

6777 Ec_aroB_1_fw AGTGCAGGUAAAACAATGGAGAGGATTGTCGTTACT 

6778 Ec_aroB_1_rv CGTGCGAUTTACGCTGATTGACAATCGG 

6779 Ec_aroD_2_fw ATCTGTCAUAAAACAATGAAAACCGTAACTGTAAAAGATC 

6780 Ec_aroD_2_rv CACGCGAUTTATGCCTGGTGTAAAATAGTTAAT 

6781 Ec_aroE_1_fw AGTGCAGGUAAAACAATGGAAACCTATGCTGTTTTTGG 

6782 Ec_aroE_1_rv CGTGCGAUTCACGCGGACAATTCCTC 

6783 Ec_ydiB_1_fw AGTGCAGGUAAAACAATGGATGTTACCGCAAAATACG 
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ID Name Sequence (5'-3') 

6784 Ec_ydiB_1_rv CGTGCGAUTCAGGCACCGAACCC 

6785 Ec_aroL_2_fw ATCTGTCAUAAAACAATGACACAACCTCTTTTTCTGA 

6786 Ec_aroL_2_rv CACGCGAUTCAACAATTGATCGTCTGTGC 

6787 Ec_aroK_2_fw ATCTGTCAUAAAACAATGGCAGAGAAACGCAATAT 

6788 Ec_aroK_2_rv CACGCGAUTTAGTTGCTTTCCAGCATGT 

6789 Ec_aroA_1_fw AGTGCAGGUAAAACAATGGAATCCCTGACGTTACAAC 

6790 Ec_aroA_1_rv CGTGCGAUTCAGGCTGCCTGGCTAAT 

6791 Ec_aroC_2_fw ATCTGTCAUAAAACAATGGCTGGAAACACAATTGG 

6792 Ec_aroC_2_rv CACGCGAUTTACCAGCGTGGAATATCAGT 

Knockouts 

ID Name Sequence (5'-3') 

91 Kl_URA3_Start_fw TGGCAATTCCCGGGGATC 

92 Kl_URA3_Start_rv CGCTTCCCATCCAGCATTTC 

93 Kl_URA3_End_fw CTGTCGTTCCATTGAAAGC 

94 Kl_URA3_End_rv TAGGGCGAATTGGGTACC 

150 Kl_LEU2_Start_rv CAGAAGCATAACTACCCATTCC 

151 Kl_LEU2_End_fw TGGAAGAGGCAAGCACGTTAGC 

476 Kl_LEU2_Start_fw TGGCAATTCCCGGGGATCACGCTGCAGGTCGACAAC 

479 Kl_LEU2_End_rv TAGGGCGAATTGGGTACCGCCACTAGTGGATCTGATATCAC 

1368 Sc_PDC5_Start_fw CGTAAACCTGCATTAAG 

1369 Sc_PDC5_Start_rv GATCCCCGGGAATTGCCATTGTGTTGTTCTCTTTG 

1370 Sc_PDC5_End_fw GGTACCCAATTCGCCCTAGATTCAACGTTTGTGTA 

1371 Sc_PDC5_End_rv CTAAGATCATAGCTAAAGG 

1372 Sc_ARO10_Start_fw GGATAGCCGTCATTTAC 

1373 Sc_ARO10_Start_rv GATCCCCGGGAATTGCCAGAGGGTTGATCAGTTAAA 

1374 Sc_ARO10_End_fw GGTACCCAATTCGCCCTACTACCAATTGTTCGTTT 

1375 Sc_ARO10_End_rv CGATAGGAATGACAGAA 

Point-directed mutagenesis 

ID Name Sequence (5'-3') 

1404 Sc_ARO4_K229L_fw CATTTCATGGGTGTTACTTTGCATGGTGTTGCTGCTATC 

1405 Sc_ARO4_K229L_rv GATAGCAGCAACACCATGCAAAGTAACACCCATGAAATG 

1406 Sc_ARO7_G141S_fw GATAAGAATAACTTCAGTTCTGTTGCCACTAG 

1407 Sc_ARO7_G141S_rv CTAGTGGCAACAGAACTGAAGTTATTCTTATC 
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ID Name Sequence (5'-3') 

2070 Ec_aroG_L175D_fw GGTGCACCGCGAAGATGCATCAGGGCTTTC 

2071 Ec_aroG_L175D_rv GAAAGCCCTGATGCATCTTCGCGGTGCACC 

2102 Ec_aroG_S180F_fw CATCAGGGCTTTTTTGTCCGGTCGG 

2103 Ec_aroG_s180F_rv CCGACCGGACAAAAAAGCCCTGATG 

Verification 

ID Name Sequence (5'-3') 

902 Sc_X-2-out-seq_rv GAGAACGAGAGGACCCAACAT 

904 Sc_X-3-out-seq_rv CCGTGCAATACCAAAATCG 

906 Sc_X-4-out-seq_rv GACGGTACGTTGACCAGAG 

1384 Sc_PDC5_Start_fw AAAGCCTCCATATCCAAAG 

1385 Sc_PDC5_End_rv AGGTATGGTTAAAGATCACAC 

1386 Sc_ARO10_Start_fw ACCGAAATTTAAAAAAGCAG 

1387 Sc_ARO10_End_rv GTTTTCGGATAAAACTTCTTC 

2220 Sc_ColoPCR_fw CCTGCAGGACTAGTGCTGAG 
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Supplementary Table 2. List of Biobricks generated by PCR amplification. 

NAME TEMPLATE_FOR_PCR FW_PRIMER_FOR_PCR RV_PRIMER_FOR_PCR 

BB0101 (URA3_2/3_START) p0047 (pX-3-ccdB) URA3_2/3_START_fw (ID91) URA3_2/3_START_rv (ID92) 

BB0102 (URA3_2/3_END) p0047 (pX-3-ccdB) URA3_2/3_END_fw (ID93) URA3_2/3_END_rv (ID94) 

BB0261 (Sc_Aro4->) CEN.PK113-5D gDNA  Sc_aro4_U2_fw (ID1396)  Sc_aro4_U2_rv (ID1397)  

BB0262 (Sc_Aro7<-) CEN.PK113-5D gDNA Sc_aro7_U1_fw (ID1398)  Sc_aro7_U1_rv (ID1399)  

BB0299 (Cg_Aro7<-) C. guilliermondii ATCC 6260 gDNA  Cg_Aro7_fw (ID1468) Cg_Aro7_rv (ID1469) 

BB0355 (Ec31884_AroG<-) EcoMG1655 ATCC 31884 gDNA AroG_1 Ec31884 Fw (1642) AroG_1 Ec31884 Rv (1650), 

BB0361 (Sc_Aro7_G141S<-) p0761(pESC-URA-ARO7pm)  Sc_aro7_U1_fw (ID1398)  Sc_aro7_U1_rv (ID1399)  

BB0364 (Sc_Aro4_K229L->) p0775 (pESC-HIS-ARO4pm)  Sc_aro4_U2_fw (ID1396)  Sc_aro4_U2_rv (ID1397)  

BB0380 (Fj_tal<-) 
F. johnsoniaeu codon-optimized 
synthetic gene Fj_Tal_U1_fw (ID1691)  Fj_TalU1_rv (ID1692) 

BB0420 (Ec_AroG_L175D->) EcoMG1655 ATCC 31884 gDNA Ec_AroG_24 fw (ID1645)  Ec_AroG_2  rv (ID1653)  

BB0421 (Ec_AroG_S180F->) EcoMG1655 ATCC 31884 gDNA Ec_AroG_2  fw (ID1645)  Ec_AroG_2  rv (ID1653)  

BB0443 (ScAro1<-) CEN.PK113-5D gDNA  Sc_Aro1 1-fw (ID2173)  Sc_Aro1 1-rv (ID2174)  

BB0444 (ScAro2->) CEN.PK113-5D gDNA Sc_Aro2 2-fw (ID2179)  Sc_Aro2 2-rv (ID2180)  

BB0447(Ec_TyrA_F1_1<- Ec) EcoMG1655 ATCC 31884 gDNA Ec_TyrA_1-fw (ID3087) Ec_TyrA_1-rv (ID3088) 

BB0453 (ScTyr1<-) CEN.PK113-5D gDNA  Sc_Tyr1_1-fw (ID2241)  Sc_Tyr1_1-rv (ID2242)  

BB0456 (Ec_AroF_2mt->) EcoMG1655 ATCC 31884 gDNA  Ec_AroF_2 fw (ID1644)  Ec_AroF_2 rv (ID1652)  

BB0497 (Ec_AroB<-) EcoMG1655 ATCC 31884 gDNA Ec_AroB_U1_fw (ID6777) Ec_AroB_U1_rv (ID6778) 

BB0498 (Ec_AroD->) EcoMG1655 ATCC 31884 gDNA  Ec_AroD_U2_fw (ID6779) Ec_AroD_U2_rv (ID6780) 

BB0499 (Ec_AroE<-) EcoMG1655 ATCC 31884 gDNA Ec_AroE_U1_fw (ID6781) Ec_AroE_U1_rv (ID6782) 

BB0500 (Ec_Ydib<-) EcoMG1655 ATCC 31884 gDNA Ec_Ydib_U1_fw (ID6783)   Ec_Ydib_U1_rv (ID6784) 

BB0501 (Ec_AroL->) EcoMG1655 ATCC 31884 gDNA  Ec_AroL_U2_fw (ID6785) Ec_AroL_U2_rv (ID6786) 
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NAME TEMPLATE_FOR_PCR FW_PRIMER_FOR_PCR RV_PRIMER_FOR_PCR 

BB0502 (Ec_aroK->) EcoMG1655 ATCC 31884 gDNA  Ec_aroK_U2_fw (ID6787) Ec_aroK_U2_rv (ID6788) 

BB0503 (Ec_AroA<-) EcoMG1655 ATCC 31884 gDNA Ec_AroA_U1_fw (ID6789) Ec_AroA_U1_rv (ID6790) 

BB0504 (Ec_AroC->) EcoMG1655 ATCC 31884 gDNA Ec_AroC_U2_fw (ID6791) Ec_AroC_U2_rv (ID6792) 

BB245 (KlLEU2_2/3_START) p0019 (pUG73) LEU2_2/3_START_fw (ID476) LEU2_2/3_START_rv (ID150) 

BB249 (Sc_PDC5_UP) CEN.PK113-7D gDNA Sc_PDC5_UP_fw (ID1368) Sc_PDC5_UP_rv (ID1369) 

BB250 (Sc_PDC5_DOWN) CEN.PK113-7D gDNA Sc_PDC5_END_fw (ID1370) Sc_PDC5_END_rv (ID1371) 

BB251 (Sc_ARO10_UP) CEN.PK113-7D gDNA Sc_ARO10_UP_fw (ID1372) Sc_ARO10_UP_rv (ID1373) 

BB252 (Sc_ARO10_DOWN) CEN.PK113-7D gDNA Sc_ARO10_END_fw (ID1374) Sc_ARO10_END_rv (ID1375) 

BB253 (Sc_PDC5_UP_URA3_2/3_START) BB249, BB0101 Sc_PDC5_UP_fw (ID1368) URA3_2/3_START_rv (ID92) 

BB254(URA3_2/3_END_Sc_PDC5_DOWN) BB250, BB0102 URA3_2/3_END_fw (ID94) Sc_PDC5_END_rv (ID1371) 

BB255(Sc_ARO10_UP_URA3_2/3_START BB251, BB0101 Sc_ARO10_UP_fw (ID1372)  URA3_2/3_END_rv (ID94) 

BB256(URA3_2/3_ENDSc_ARO10_DOWN BB0102, BB252 URA3_2/3_END_fw (ID94) Sc_ARO10_END_rv (ID1375) 

BB681 (LEU2_2/3_END) p0019 (pUG73) LEU2_2/3_END_fw (ID151) KlLEU2_2/3START_rv (ID479) 

BB826 (Sc_PDC5_UP_LEU2_2/3_START) BB249, BB245 Sc_PDC5_UP_fw (ID1368) LEU2_2/3_START_rv (ID150) 

BB827(LEU2_2/3_END_Sc_PDC5_DOWN) BB681, BB250 LEU2_2/3_END_fw (ID151) Sc_PDC5_END_rv (ID1371) 

BB828(Sc_ARO10_UP_LEU2_2/3_START BB251, BB245 Sc_ARO10_UP_fw (ID1372) LEU2_2/3_START_rv (ID150) 

BB829(LEU2_2/3_ENDSc_ARO10_DOWN) BB681, BB252 LEU2_2/3_END_fw (ID151) Sc_ARO10_END_rv (ID1375) 
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Supplementary Table 3. Plasmids construction.  

 

Plasmid construction for site-directed mutagenesis 

Plasmid Parent plasmid (template for PCR) FW_PRIMER_FOR_PCR RV_PRIMER_FOR_PCR 

pCfB761 p0744 (pESC-URA-ARO7_G141S) ID1406:aro7_15T_fw ID1407:aro7_15T_rv 

pCfB775 p0745 (pESC-HIS-ARO4_K229L) ID1404:aro4_TT18AA_fw ID1405:aro4_TT18AA_rv 

pCfB1075 p01074 (pX-4-LoxP-SpHiS5 EcAroG) AroG L175D _EC Fw (2070) AroG L175D _EC RV (2071) 

pCfB1076 p01074 (pX-4-LoxP-SpHiS5 EcAroG) AroG S180F_EC Fw (2102) AroG S180F_EC Rv (2103) 

Plasmid construction by USER cloning 

Plasmid Parent plasmid Biobrick 1 Biobrick 2 Promoter 

pCfB744 p0054 (pESC-URA-ccdB-USER) BB0262 (ScAro7<-)  BB0008 (PTEF1<-) 

pCfB745 p0055(pESC-HIS-ccdB-USER)  BB0261 (ScAro4->) BB0009 (PPGK1->) 

pCfB826 pCfB258 (pX-4-loxP-SpHiS5) BB0361 (ScAro7_G141S<-) BB0364 (ScAro4_K229L->) BB0010 (<-PTEF1-PPGK1->) 

pCfB827 pCfB258 (pX-4-loxP-SpHiS5) BB0361 (ScAro7_G141S<-) BB0456 (Ec31884_AroF_2mt->) BB0010 (<-PTEF1-PPGK1->) 

pCfB830 pCfB258 (pX-4-loxP-SpHiS5) BB0299 (CgAro7<-) BB0364 (ScAro4_K229L->) BB0010 (<-PTEF1-PPGK1->) 

pCfB831 pCfB258 (pX-4-loxP-SpHiS5) BB0299 (CgAro7<-) BB0456 (Ec31884_AroF_2mt->) BB0010 (<-PTEF1-PPGK1->) 

pCfB1074 pCfB258 (pX-4-loxP-SpHiS5) BB0355 (Ec31884_AroG<-)  BB0008 (PTEF1<-) 

pCfB1077 pCfB255 (pX-2-loxP-KlURA3) BB0361 (ScAro7_G141S<-) BB0420 (Ec31884_AroG_L175D->) BB0010 (<-PTEF1-PPGK1->) 

pCfB1078 pCfB255 (pX-2-loxP-KlURA3) 
BB0420 
(Ec31884_AroG_L175D->) BB0420 (Ec31884_AroG_L175D->) BB0010 (<-PTEF1-PPGK1->) 

pCfB1080 pCfB255 (pX-2-loxP-KlURA3) BB0361 (ScAro7_G141S<-) BB0421 (Ec31884_AroG_S180F->) BB0010 (<-PTEF1-PPGK1->) 

pCfB1081 pCfB255 (pX-2-loxP-KlURA3) BB0299 (CgAro7<-) BB0421 (Ec31884_AroG_S180F->) BB0010 (<-PTEF1-PPGK1->) 

pCfB1221 pCfB257 (pX-3-loxP-KlLEU2) BB0453 (ScTyr1<-) 
 

BB0008 (PTEF1<-) 

pCfB1226 pCfB255 (pX-2-loxP-KlURA3) BB0447(TyrA_F1_1<- Ec) BB0364 (ScAro4_K229L->) BB0010 (<-PTEF1-PPGK1->) 
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Plasmid Parent plasmid Biobrick 1 Biobrick 2 Promoter 

pCfB1227 pCfB255 (pX-2-loxP-KlURA3) BB0447(TyrA_F1_1<- Ec) BB0456 (Ec31884_AroF_2mt->) BB0010 (<-PTEF1-PPGK1->) 

pCfB1228 pCfB255 (pX-2-loxP-KlURA3) BB0447(TyrA_F1_1<- Ec) BB0420 (Ec31884_AroG_L175D->) BB0010 (<-PTEF1-PPGK1->) 

pCfB1964 pCfB255 (pX-2-loxP-KlURA3) BB0380 (Flavobacterium<-) 
 

BB0008 (PTEF1<-) 

pCfB2733 pCfB257 (pX-3-loxP-KlLEU2) BB0443 (ScAro1<-)  BB0444 (ScAro2->) BB0010 (<-PTEF1-PPGK1->) 

pCfB2739 pCfB257 (pX-3-loxP-KlLEU2) BB0497 (Ec_AroB<-) 
 

BB0008 (PTEF1<-) 

pCfB2741 pCfB257 (pX-3-loxP-KlLEU2) BB0499 (Ec_AroE<-) 
 

BB0008 (PTEF1<-) 

pCfB2742 pCfB257 (pX-3-loxP-KlLEU2) BB0500 (Ec_Ydib<-) 
 

BB0008 (PTEF1<-) 

pCfB2743 pCfB257 (pX-3-loxP-KlLEU2) BB0502 (Ec_aroK->) 
 

BB0009 (PPGK1->) 

pCfB2745 pCfB257 (pX-3-loxP-KlLEU2) BB0503 (Ec_AroA<-) 
 

BB0008 (PTEF1<-) 

pCfB2746 pCfB257 (pX-3-loxP-KlLEU2) BB0498 (Ec_AroD->) 
 

BB0009 (PPGK1->) 

pCfB2747 pCfB257 (pX-3-loxP-KlLEU2) BB0501 (Ec_AroL->) 
 

BB0009 (PPGK1->) 

pCfB2749 pCfB257 (pX-3-loxP-KlLEU2) BB0504 (Ec_AroC->) 
 

BB0009 (PPGK1->) 

pCfB2373 pCfB257 (pX-3-loxP-KlLEU2) BB0443 (ScAro1<-)  
 

BB0008 (PTEF1<-) 

pCfB2748 pCfB257 (pX-3-loxP-KlLEU2) BB0444 (ScAro2->)   BB0009 (PPGK1->) 
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Supplementary Table 4.  Two-factor ANOVA analysis of influence of DAHP 

synthase and chorismate mutase overexpression on production of p-

coumaric acid. 

Dependent Variable:   gL_CA   

Source 

Type III Sum 

of Squares 

Freedom 

degree 

Mean 

Square F p-value 

Corrected Model 2.949a 18 .164 9.885 .000 

Intercept 45.229 1 45.229 2729.472 .000 

DAHPsyn .203 3 .068 4.078 .010 

CHORmut .068 4 .017 1.028 .399 

DAHPsyn * 

CHORmut 
2.529 11 .230 13.874 .000 

Error 1.210 73 .017   

Total 57.530 92    

Corrected Total 4.158 91    
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Supplementary Table 5.  Production of p-coumaric upon overexpression of 
different variants of DAHP synthase and chorismate mutase.  
 

DAHP 
synthase 

Chorismate  
mutase 

p-Coumaric 
acid  

(g L-1) 

ScARO4fbr ScARO7fbr 
 

ScARO4fbr ScARO7fbr 1.16 

ScARO4fbr ScARO7fbr 1.14 

ScARO4fbr ScARO7fbr 0.97 

ScARO4fbr ScARO7fbr 1.03 

ScARO4fbr ScARO7fbr 0.96 

ScARO4fbr ScARO7fbr 1.11 

ScARO4fbr ScARO7fbr 0.97 

ScARO4fbr ScARO7fbrTyr1 0.99 

ScARO4fbr ScARO7fbrTyr1 1.08 

ScARO4fbr ScARO7fbrTyr1 0.76 

ScARO4fbr ScARO7fbrTyr1 1.05 

ScARO4fbr CgARO7 0.59 

ScARO4fbr CgARO7 0.57 

ScARO4fbr CgARO7 0.45 

ScARO4fbr CgARO7 0.55 

ScARO4fbr CgARO7 0.48 

ScARO4fbr CgARO7Tyr1 0.48 

ScARO4fbr CgARO7Tyr1 0.64 

ScARO4fbr CgARO7Tyr1 0.69 

ScARO4fbr CgARO7Tyr1 0.67 

ScARO4fbr EcTyrA 0.52 

ScARO4fbr EcTyrA 0.64 

ScARO4fbr EcTyrA 0.57 

ScARO4fbr EcTyrA 0.62 

ScARO4fbr EcTyrA 0.49 

EcAroFfbr ScARO7fbr 0.75 

EcAroFfbr ScARO7fbr 0.88 

EcAroFfbr ScARO7fbr 0.73 

DAHP 
synthase 

Chorismate  
mutase 

p-Coumaric 
acid 

(g L-1) 

EcAroFfbr ScARO7fbr 0.74 

EcAroFfbr ScARO7fbr 0.93 

EcAroFfbr ScARO7fbrTyr1 0.82 

EcAroFfbr ScARO7fbrTyr1 0.83 

EcAroFfbr ScARO7fbrTyr1 0.72 

EcAroFfbr ScARO7fbrTyr1 0.79 

EcAroFfbr CgARO7 0.67 

EcAroFfbr CgARO7 1.17 

EcAroFfbr CgARO7 1.15 

EcAroFfbr CgARO7 0.9 

EcAroFfbr CgARO7 1.1 

EcAroFfbr CgARO7 0.97 

EcAroFfbr CgARO7Tyr1 0.7 

EcAroFfbr CgARO7Tyr1 0.86 

EcAroFfbr CgARO7Tyr1 0.71 

EcAroFfbr CgARO7Tyr1 0.67 

EcAroFfbr CgARO7Tyr1 0.96 

EcAroFfbr CgARO7Tyr1 0.53 

EcAroFfbr CgARO7Tyr1 0.61 

EcAroFfbr CgARO7Tyr1 0.69 

EcAroFfbr EcTyrA 0.88 

EcAroFfbr EcTyrA 0.6 

EcAroFfbr EcTyrA 0.69 

EcAroFfbr EcTyrA 0.84 

EcAroFfbr EcTyrA 0.84 

EcAroFfbr EcTyrA 0.67 

EcAroGfbr1 ScARO7fbr 0.37 

EcAroGfbr1 ScARO7fbr 0.34 

EcAroGfbr1 ScARO7fbr 0.44 
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DAHP 
synthase 

Chorismate  
mutase 

p-Coumaric 
acid 

(g L-1) 

EcAroGfbr1 ScARO7fbrTyr1 0.55 

EcAroGfbr1 ScARO7fbrTyr1 0.38 

EcAroGfbr1 ScARO7fbrTyr1 0.69 

EcAroGfbr1 CgARO7 0.82 

EcAroGfbr1 CgARO7 0.99 

EcAroGfbr1 CgARO7 1.03 

EcAroGfbr1 CgARO7 0.78 

EcAroGfbr1 CgARO7 1.09 

EcAroGfbr1 CgARO7 0.73 

EcAroGfbr1 CgARO7Tyr1 0.8 

EcAroGfbr1 CgARO7Tyr1 0.58 

EcAroGfbr1 CgARO7Tyr1 0.74 

EcAroGfbr1 CgARO7Tyr1 0.87 

EcAroGfbr1 CgARO7Tyr1 0.53 

EcAroGfbr1 EcTyrA 1.01 

EcAroGfbr1 EcTyrA 1 

EcAroGfbr1 EcTyrA 1.04 

EcAroGfbr2 ScARO7fbr 0.67 

EcAroGfbr2 ScARO7fbr 0.58 

EcAroGfbr2 ScARO7fbr 0.57 

EcAroGfbr2 ScARO7fbr 0.78 

EcAroGfbr2 ScARO7fbr 1 

EcAroGfbr2 ScARO7fbrTyr1 0.66 

EcAroGfbr2 ScARO7fbrTyr1 0.51 

EcAroGfbr2 ScARO7fbrTyr1 0.91 

EcAroGfbr2 ScARO7fbrTyr1 0.99 

EcAroGfbr2 CgARO7 0.63 

EcAroGfbr2 CgARO7 0.39 

EcAroGfbr2 CgARO7 0.38 

EcAroGfbr2 CgARO7 0.67 

EcAroGfbr2 CgARO7Tyr1 0.69 

DAHP 
synthase 

Chorismate 
mutase 

p-Coumaric 
acid 

(g L-1) 

EcAroGfbr2 CgARO7Tyr1 0.72 

EcAroGfbr2 CgARO7Tyr1 0.61 

EcAroGfbr2 CgARO7Tyr1 0.83 
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Supplementary Materials and Methods  

Controlled fed-batch cultivations 

Glycerol stocks of strains ST4069 and ST4058 were inoculated into 50 ml 

synthetic drop-out medium in a 250-ml shake flasks (SC ura-his-leu-) and 

incubated at 30 °C in an orbital shaker (200 rpm) for 24 hours. The cell 

suspension was up concentrated to 5 ml by centrifugation and used to 

inoculate 0.5 L fermentation medium in Sartorius bioreactors with a maximal 

working volume of 1 L. The fermentation medium contained per litter: 

15.0 g (NH4)2SO4, 6.0 g KH2PO4, 1.0 g MgSO4·7H2O, 4 ml trace metal 

solution, 2 ml vitamins solution, 0.4 ml antifoam A (Sigma-Aldrich), and 40g 

dextrose. Dextrose was autoclaved separately. Vitamins solution was added 

to the autoclaved medium by sterile filtration. The fermentation was carried 

out at 30 °C with agitation rate at 800 rpm. The pH was maintained at 5.0 by 

automatic addition of 2 N NaOH. Carbon dioxide concentration in the off-gas 

was monitored by an acoustic gas analyser (model number 1311, 

Bruël&Kjær). Once the glucose was exhausted, which was observed from 

the decline in CO2 production and was also confirmed by residual glucose 

detection using glucose strips Glucose MQuant™ (MerckMillipore), the feed 

was started at 5 g h-1. Constraint feed rate was maintained throughout the 

fed-batch phase. The total volume of feed solution used per reactor was 0.5 

L. The feed solution contained per litter: 45 g (NH4)2SO4, 18 g KH2PO4, 3 g 

MgSO4·7H2O, 12 ml trace metals solution, 6 ml vitamins solution, and 0.6 ml 

antifoam A. Dextrose and vitamins were added to feed solution in the same 

way as to batch fermentation medium. 

The reactors were sampled twice a day to measure OD600 and metabolites. 

For metabolites analysis the sample was centrifuged and the supernatant 

was stored at −20°C until HPLC analysis. 
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Supplementary Figure 1. Fed-batch cultivation of non-optimized control 

strain ST4069 (A) and of the optimized p-coumaric acid-overproducing strain 

ST4058 (B). 
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3. Systems biology analysis of the p-coumaric acid 

platform strain  

 

Metabolic response of Saccharomyces cerevisiae to the over-

production of p–coumaric acid  

Angelica Rodriguez1, Yun Chen2, Sakda Khoomrung2, Emre Özdemir1, Irina 

Borodina1, Jens Nielsen1,2 

1The Novo Nordisk Foundation Center for Biosustainability, Technical 
University of Denmark, Kogle allé 6, 2970 Hørsholm, Denmark 

2Department of Biology and Biological Engineering, Chalmers University of 
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Abstract 

The development of robust and efficient cell factories requires understanding 

of the metabolic changes triggered by the production of the targeted 

compound. Here we aimed to understand how production of p-coumaric 

acid, a precursor of multiple secondary aromatic metabolites, influences S. 

cerevisiae. We evaluated the growth and p-coumaric acid production in 

batch and chemostat cultivations and analyzed the transcriptome and 

intracellular metabolome during steady state in low- and high-producers of p-

coumaric acid in two strain backgrounds, S288c or CEN.PK.  

We found that the same genetic modifications resulted in higher production 

of p-coumaric acid in the CEN.PK background than in the S288c 

background. Moreover, the CEN.PK strain was less affected by the genetic 

engineering as was evident from fewer changes in the transcription profile 

and intracellular metabolites concentrations. Surprisingly, for both strains we 

found the largest transcriptional changes in genes involved in transport of 
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amino acids and sugars, which were downregulated. Additionally, in S288c 

amino acid and protein biosynthesis processes were also affected. 

Based on these results, we propose several potential metabolic engineering 

strategies for further improvement of p-coumaric acid production by yeast. 

Introduction 

Plants produce a wide range of secondary metabolites as a protective 

mechanism to stresses caused by bacterial or viral infections, ultraviolet 

radiation, wounds, and other biotic and abiotic factors. Nearly 15% of these 

metabolites are phenolic compounds derived from the aromatic amino acids 

L-tyrosine, L-phenylalanine or L-tryptophan (Wink et al., 2010). Numerous 

aromatic secondary metabolites are available on the market as therapeutic 

agents, dyes, fragrances, and flavors. The majority of these compounds are 

currently synthesized chemically or isolated from plants (Bourgaud et al., 

2001), however recently there have been significant advances in 

engineering industrial microbes, e.g., Escherichia coli and S. cerevisiae, for 

production of aromatic secondary metabolites by fermentation. A few 

biotech-derived aromatics are already on the market, such as phenylalanine, 

resveratrol, vanillin, steviol glucoside and others. Additionally, many 

aromatic metabolites have been produced in microbial cell factories at proof-

of-concept levels, i.e., the strains, fermentation and downstream processes 

need further development before the production becomes economically 

feasible. These compounds include naringenin, genistein, kaempferol, 

fisetin, melatonin, resveratrol, and many others (Koopmann et al., 2012; 

Trantas et al., 2009; Santos et al., 2011; Leonard et al., 2006; Stahlhut et al., 

2015; Krivoruchko and Nielsen, 2015; Li et al., 2016; Germann et al., 2016). 

An important step towards improved microbial cell factories is a better 

understanding of how the engineered cells respond to production of target 

compounds (Nielsen and Keasling, 2016). For this purpose, ‘omic-level 
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characterization of the strains is useful since the organism can be studied at 

different levels and the information can be assessed in the context of cellular 

metabolism (Kim et al., 2012 and Curran et al., 2012). There are a few 

successful examples of applying systems biology for guiding metabolic 

engineering strategies. Otero et al. (2013) obtained a 30-fold improvement in 

succinic acid production in S. cerevisiae based on the integrative analysis of 

physiology and transcriptome data. Park et al. (2012) engineered an efficient 

L-valine-producing E. coli by using transcriptomic analysis together with in 

silico models (Park et al., 2007). A multi-omic analysis of two different E. coli 

strains allowed Yoon et al. (2012) to identify an optimal strain for production 

of recombinant proteins. This study is one of the few that considered the 

differences between strains of the same species, when selecting the suitable 

host organism. In S. cerevisiae, a considerable number of differences have 

been found in the genomes of two widely used strains, CEN.PK and S288c. 

These differences are mainly related to the presence of 13,787 single 

nucleotide polymorphisms, 939 of them related to 158 genes involved in 

metabolic functions with enrichment in the galactose uptake and ergosterol 

biosynthetic pathways. Moreover, 83 genes, mainly located in sub-telomeric 

regions of S288c, are absent in the CEN.PK strain (Otero et al., 2010 and 

Nijkamp et al., 2012). 

The strain CEN.PK is widely used for industrial biotechnology research and 

applications, whereas the strain S288c is widely used in genetic studies. 

Recently the strain S288c has also been used for the production of some 

metabolites, such as vanillin-β-glucoside, 2-phenylethanol and methionol 

(Strucko et al., 2012; Yin et al., 2015a and Yin et al., 2015b). In the particular 

case of vanillin-β-glucoside, the engineered S288c strain produced 10-fold 

more product than the CEN.PK strain engineered in the same way and this 

effect was associated with several single nucleotide polymorphisms in the 

shikimate pathway genes. 
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In this study we aimed to investigate firstly how the production of p-coumaric 

acid (p-CA) influences the host and secondly whether these effects depend 

on the strain background. To answer these two questions, we performed 

transcriptome and intracellular metabolome analysis on S288c and CEN.PK 

strains, which either only expressed an enzyme for making the product (low-

producers) or were additionally optimized towards production of aromatic 

products (high-producers).  

Methods 

Plasmids and strains 

E. coli DH5α was used for cloning procedures. The fragments used for 

overexpression of genes were amplified by PCR using primers and 

templates as described in the Supplementary Table 1. The fragments were 

amplified from the genomic DNA of S. cerevisiae CEN.PK102-5B (MATa 

ura3-52 his3Δ1 leu2-3/112 MAL2-8c SUC2) and E. coli NST 74. The gene 

encoding tyrosine ammonia-lyase from Flavobacterium johnsoniae (FjTAL) 

was as in (Rodriguez et al., 2015). The amplified gene-encoding fragments 

were cloned together with strong constitutive promoters into EasyClone 

integrative plasmids by USER cloning (Jensen et al., 2014). The clones were 

tested for correct insertion of gene/promoter fragments by colony PCR using 

the primers summarized in Supplementary Table 1 and the resulting 

plasmids were verified by sequencing. The list of the constructed vectors 

can be found in Table 1. 

S. cerevisiae CEN.PK113-7D was obtained from Peter Kötter (Johann 

Wolfgang Goethe-University Frankfurt, Germany). The strain BY4741, a 

derivative of strain S288c, was obtained from EUROSCARF. Transformation 

of yeast cells was performed using the lithium acetate method (Gietz and 

Woods, 2002). The strains were selected on synthetic drop-out medium 



 
 

78 
 

(Sigma-Aldrich) and the genetic modifications were confirmed by colony 

PCR. The yeast strains used in this study are listed in Table 1. 

Media and cultivations 

We prepared a mineral medium for the batch fermentation according to 

Verduyn et al. (1992). Glucose concentration in batch medium was 20 g l−1 

glucose. The feed medium for chemostats was prepared in the same way, 

but the amount of glucose was reduced to 10 g l−1 and the medium was 

supplemented with 0.2 mL L-1 of 2M KOH and one drop of antifoam 204 

(Sigma A-8311) per 20 L of medium. The pre-culture was done by 

inoculating a yeast colony into 50 ml of mineral medium in a 250-ml baffled 

shake flask and incubating the culture with shaking at 200 rpm at 30°C for 

around 12 hours. When the pre-culture reached OD600 of ca. 2, it was used 

to inoculate a bioreactor to a starting optical density of 0.05. 

The fermentations were performed in DasGip 1-L stirrer-pro vessels 

(Eppendorf, Jülich, Germany), using the working volume of 500 ml. The 

temperature was 30°C, agitation was at 600 rpm and aeration at 1 vvm. pH 

was monitored with a pH sensor (Mettler Toledo, Switzerland) and pH was 

maintained at 5.0 ± 0.05 by automatic addition of 2M KOH. Dissolved 

oxygen was above 30% throughout the fermentation as measured by the 

polarographic oxygen sensor (Mettler Toledo, Greifensee, Switzerland). The 

completion of the batch phase was determined by monitoring CO2 in the 

exhaust gas, when the 2nd CO2 peak, corresponding to ethanol consumption 

phase, declined. We then initiated constant feed to obtain glucose-limited 

steady-state with dilution rate of 0.100±0.005 h-1. The volume was kept 

constant using an overflow pump. The samples for transcriptome and 

metabolome analysis were taken after 3 residence times of steady-state 

growth. Four technical replicates were taken from each reactor for 

transcriptome and metabolome analyses. Each strain was fermented twice 

to obtain 2 biological replicates.  
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Table 1. Plasmids and strains used in this study. 

Strains 

Strain 

 ID 

Parent 

strain 

Genotype Plasmids Source 

ST10 - CEN.PK102.5B MATa ura3-52his3 Δ 1leu2-3/112 MAL2-8c SUC2  Entian and Kötter, 2007 

ST144 - S288c MATa his3Δ0 leu2Δ0 met15Δ0 ura3Δ0  Brachnan et al., 1998 

ST691 ST10 CEN.PK MATa aro10Δ pdc5Δ ura3-52his3 Δ 1leu2-3/112 MAL2-8c SUC2  Rodriguez et al., 2015 

ST4360 ST144 S288c MATa his3Δ0 leu2Δ0 ura3Δ0  This study 

ST4195 ST144 S288c MATa aro10Δ pdc5Δ ura3Δ0 his3Δ0 leu2Δ0  This study 

ST4408 ST10 PTEF1->Fj_TAL pCfB257, pCfB258, p03523 This study 

ST4288 ST691 PTEF1->Fj_TAL, PPGK1->Ec_aroL, PTEF1->Sc_ARO7G141s, PPGK1->Sc_ARO4K229L pCfB257, pCfB826, p03524 This study 

ST4353 ST4360 PTEF1->Fj_TAL, PPGK1->Ec_aroL, PTEF1->Sc_ARO7G141S, PPGK1->Sc_ARO4K229L pCfB257, pCfB258, p03523 This study 

ST4397 ST4195 PTEF1->Fj_TAL pCfB257, pCfB826, p03524 This study 

Integrative plasmids 

Name 

Parent 

 plasmid Properties 

Reference 

pCfB257    X-3, loxP, KlLEU2 Jensen et al., 2014 

pCfB258    X-4, loxP, SpHIS5 Jensen et al., 2014 

pCfB390    XI-3-loxP-KlURA3 Jensen et al., 2014 

pCfB0826 pCfB258   X-4, loxP, SpHIS5, BB0361(ScARO7G141S<-), BB0010(<-PTEF1-PPGK1->), BB0364(ScARO4K229L->) Rodriguez et al., 2015 

pCfB03523 pCfB390  XI-3-loxP, KlURA3, BB0380(Fj_TAL<-), BB0008(PTEF1<-),  This study 

pCfB03524 pCfB390  XI-3-loxP, KlURA3, BB0380 (Fj_TAL<-), BB0010(<-PTEF1-PPGK1->), BB0501(EcaroL->) This study  
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Analytical methods 

For analysis of extracellular metabolites and the biomass, we withdrew ca. 

3-ml samples from the reactor. 1 ml of the sample was centrifuged at 11,000 

x g for 5 min and stored at -20ºC until HPLC analysis for glucose and 

organic acids. For p-CA analysis in the optimized strains (ST4288 and 

ST4353) we mixed 1 volume of sample with 9 volumes of 50% ethanol, 

whereas for the non-optimized strains (ST4408 and ST4397) we mixed 1 

volume of sample with 1 volume of 50% ethanol. This was done to dissolve 

the p-CA that may have precipitated from the broth due to poor solubility in 

water. These samples were also centrifuged at 11,000 g for 5 min and 

stored at -20ºC until further analysis.  

The analysis of glucose, glycerol, ethanol, and organic acids was performed 

on Dionex Ultimate 3000 high-performance liquid chromatography (HPLC) 

system (Dionex Softron GmbH, Germany), with an Aminex HPX-87H 

column (Bio-Rad) at 65°C, using 5 mM H2SO4 as the mobile phase with a 

flow rate of 0.6 ml/min. 

Quantification of p-CA was performed as described in Rodriguez et al. 

(2015) using a HPLC (Thermo Fisher Scientific), with a Discovery HS F5 

150mm X 2.1mm column (particle size 3µm). The samples were analyzed 

using a gradient method with two solvents: (A) 10 mM ammonium formate 

pH 3.0 and (B) acetonitrile at 1.5 ml min1. The p-CA was detected by 

absorbance at 277 nm and the retention time was 4.7 min. The area under 

the curve was integrated with Chromeleon software 7. The quantification of 

p-CA was performed based on 5 points calibration curve in the range of 0.1 

mM to 1 mM. For the dry cell weight measurement 5 mL of culture broth was 

filtered through a 0.45 μm filter membrane, after that the membrane was 

dried at 95°C for 24 hours and cooled down in a desiccator. The dry cell 

weight was calculated by measuring the weight increment of the dried filter.  
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Transcriptome analysis 

Samples for RNA extraction were taken after four retention times of steady-

state fermentation by rapidly withdrawing 5 ml of culture and injecting it into 

a 50 ml falcon tube with ca. 30 ml of crushed ice, the samples were 

immediately centrifuged at 4,000 rpm for 5 minutes at -20°C. The 

supernatant was discarded, the pellet was frozen in liquid nitrogen and 

stored at -80°C until further analysis. The RNA extraction was performed 

using the RNeasy Mini Kit (QIAGEN). The DNA was removed from the 

sample using Turbo DNA-free Kit (Ambion). The purified RNA samples were 

analyzed with a 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, 

CA) and stored at -80°C until further analysis. 

The sequencing libraries were prepared in four replicates using a TruSeq® 

Stranded mRNA sample preparation kit LT (Illumina Inc.). The final 

concentration of each cDNA library was measured by Qubit® 2.0 

Fluorimeter and Qubit dsDNA Broad Range assay (Life Technologies). 

Average dsDNA library size was determined by using the Agilent DNA 1000 

kit on an Agilent 2100 Bioanalyzer (Agilent Technologies). Libraries were 

normalized and pooled in 10 mM Tris-Cl, pH 8.0, plus 0.05% Tween 20 to 

the final concentration of 10 nM. Denaturated in 0.2N NaOH, 1.2 pm pool of 

16 libraries in 1300 µl ice-cold HT1 buffer was loaded into the flow cell 

provided in the NextSeq 500/550 Mid Output v2 Reagent kit (150 cycles, 

Illumina Inc.). Libraries were sequenced on the NextSeq (Illumina Inc.) 

platform with a paired end protocol and read lengths of 75 nt. 

Metabolomics analysis 

Sampling, quenching and washing of the intracellular metabolites was 

performed as described by Canelas et al. (2009). The analysis of amino 

acids and other organic acids was performed according to Khoomrung et al. 

(2015). The analysis of the derivatized metabolites was performed using a 

Focus GC ISQ-LT single quadrupole GC-MS (Thermo Fisher Scientific, 

USA). The column was a Zebron ZB-1701 GC column (30 m 0.25 mm I.D., 
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0.25-mm film thickness, Phenomenex, Macclesfield, UK). The metabolites 

were identified by comparing their retention times and mass spectrum 

profiles with the authentic standards or the mass spectra from the National 

Institute of Standards and Technology (NIST), USA library. The data was 

processed using the Quan browser function in the Xcalibur software version 

2.2 (Thermo Fisher Scientific). 

Data analysis 

The alignment of sequencing reads to the reference genome was performed 

using TopHat, the assembly and quantification of the expression levels was 

developed with Cufflinks and a preliminary analysis of the data was 

performed with CummeRbund, the tree methods were used as described by 

Trapnell et al. (2012). Paired comparisons were performed between 

optimized and non-optimized strains on each background: the strain 

ST4288 was compared with the strain ST4408 and the strain ST4397 was 

compared with the strain ST4353. 

The gene set analysis was performed using the R package Piano (Väremo 

et al., 2013), a platform for integrative analysis of omics data. The p-values 

and the fold changes were used as input data and two types of analysis 

were performed with this program: first a gene-set analysis with the reporter 

algorithm for gene ontology (GO) and second a gene set analysis using the 

reporter metabolites. The gene-metabolite network was obtained from the S. 

cerevisiae metabolic model iTO977 (Osterlund et al., 2013). The gene sets 

and reporter metabolites with a distinct directional p-value < 0.05 were 

chosen for the analysis. 

The network topology analysis was performed using Kiwi a tool for 

visualization and interpretation of gene sets analysis (Väremo et al., 2014). 

This tool allows integrating the results of the gene set analysis with a gene 

set interaction network. The input for this analysis was a gene set 
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interaction network obtained from the S. cerevisiae metabolic model iTO977 

and the results from the gene set analysis using reporter metabolites. 

For the metabolomics data, we did a PCA analysis in MATLAB to identify 

the differences between the four strains object of this research and to 

establish the differences between the engineered and non-engineered strain 

we did volcano plots based on the results of a t-test comparison between 

optimized and non-optimized strains on each background. 

 

Results 

Physiological characterization of low and high producers of p-

coumaric acid 

To understand the fundamental metabolic changes triggered by the 

overproduction of p-CA, and the response of different background strains to 

these changes, we constructed two strains in each of the genetic 

backgrounds (CEN.PK and S288c). The “low-producers” were generated by 

overexpressing tyrosine ammonia lyase from Flavobacterium johnsoniae 

under control of the PTEF1 promoter. The “high-producers” were created by 

additional overexpression of aroL from Escherichia coli under control of the 

PTEF1 promoter, ARO7G141S and ARO4K229L from S. cerevisiae under control of 

the promoters PTEF1 and PPGK1 respectively and deletion of ARO10 and 

PDC5. The resulting 4 strains were analyzed in batch and glucose-limited 

chemostat cultivations.  

The concentrations of p-CA in batch and continuous cultivations were higher 

in the CEN.PK strains in comparison to the S288c strains with the same 

genetic modifications (Table 2). Glycerol yield was higher in the S288c 

strains in comparison to the CEN.PK strains. In batch fermentations, the 

optimized strains had lower biomass yield and accumulated more acetate 

than the non-optimized ones. 
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Table 2. Physiological data of the strains grown in batch and chemostat 

cultivations.  

Background strain CEN.PK S288c 

Strain ID ST4408 ST4288 ST4397 ST4353 

Optimized for p-CA production No Yes No Yes 

Maximum specific growth rate µmax (h-1)  0.334 ± 0.006  0.294 ± 0.006  0.292 ± 0.005  0.271 ± 0.009 

Final titer of p-CA (g L-1)  0.202 ± 0.005  2.405 ± 0.054  0.081 ± 0.005  2.018 ± 0.000 

Biomass yield on glucose (g glucose-1)  0.477 ± 0.044  0.268 ± 0.093  0.422 ± 0.005  0.352 ± 0.053 

p-CA yield on glucose (g glucose-1)  0.001 + 0.000  0.013 + 0.000  0.000 ± 0.000  0.012 ± 0.000 

Glycerol yield on glucose (g glucose-1)  0.019 ± 0.001  0.018 ± 0.002  0.048 ± 0.000  0.053 ± 0.001 

Acetate yield on glucose (g glucose-1)  0.010 ± 0.003  0.014 ± 0.002  0.006 ± 0.002  0.011 ± 0.001 

Ethanol yield on glucose (g glucose-1)  0.309 ± 0.001  0.293 ± 0.004  0.289 ± 0.013  0.297 ± 0.013 

Final biomass dry weight (g glucose-1) 13.198 ± 0.279 12.566 ± 0.056 11.481 ± 0.131 10.401 ± 0.785 

Chemostat (steady-state data)         

Titer of p-CA (g L-1) 0.117 ± 0.000 0.507 ± 0.013 0.081 ± 0.005 0.410 ± 0.024 

Biomass dry weight (g CDW L-1) 6.197 ± 0.207 6.226 ± 0.242 6.167 ± 0.220 6.159 ± 0.125 

Glucose (g L-1) ND ND ND ND 

Glycerol (g L-1) ND 0.021 ± 0.004 ND 0.013 ± 0.001 

Acetate (g L-1) ND ND ND ND 

Ethanol (g L-1) ND ND ND ND 

ND – not detected. 

Transcriptional response of the strains to the synthesis of p-coumaric 

acid 

For analysis of the differential gene expression, we did pairwise 

comparisons between the optimized and non-optimized strains for p-CA 

production: CEN.PK strains (ST4288 and ST4408) and the S288c strains 

(ST4353 and ST4397).  

Significantly up and down-regulated gene sets were identified through a 

gene set analysis using GO terms (p adjusted value < 0.05). The 

engineered high-producing CEN.PK strain did not have any gene sets that 
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were significantly upregulated in comparison to the low-producing CEN.PK 

strain. For S288c strain, however, gene sets related to DNA helicase 

activity, telomere maintenance and ribonuclease activity were upregulated 

(Figure 1). Among the down-regulated gene sets were transport functions 

and iron metabolism, which was observed for both strain backgrounds. 

Additionally, S288c strain had remarkable downregulations in gene sets 

related to the synthesis of amino acids and proteins (Figure 1). 

 

Figure 1. Gene sets with significant differences in the optimized strains for 

p-CA production in comparison to the non-optimized strains. 

 

To elucidate the biological connections between the gene sets, we did a 

network analysis of the gene sets using metabolite reporters and used the 

network visualization tool Kiwi for visualizing the results (Väremo et al., 

2014). The network analysis allows integrating the information from the 

gene set analysis with the metabolites interactions from a metabolic model.  

For the CEN.PK strain we can see significant downregulations correlated to 

eight amino acids, hydron H(+) and galactose. All the amino acids mapped 

in the network have in common upregulations in AGP1 and GAP1 together 
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with downregulations in BAP3 and BAP2 and TAT1, all of them are involved 

in the transport of amino acids (Figure 2A, Supplementary Figure 1). 

One of the metabolites correlated to downregulations is L-tyrosine, the 

precursor of p-CA, the network analysis shows that on top of the correlation 

to transport downregulation, this metabolite is related to a strong 

upregulation in the aromatic aminotransferase II ARO9 involved in the 

conversion of p-hydroxyphenylpyruvate into L-tyrosine. Finally, the 

metabolite Hydron is mainly correlated to downregulations in genes involved 

in transport functions (BAP2, TAT1, ALP1, TPO1, BIO5, VHT1) and D-

galactose is mainly correlated to downregulation of hexose transport 

(HXT10, HXT14). 

The strain S288c had downregulations correlated to 5 amino acids (L-

Methionine, L-tyrosine, L-tryptophan, L-glutamate and L-ornithine), three 

sugars (D-fructose, alpha-D-glucose and alpha-D-mannose), acetaldehyde 

and 2-oxoglutarate (Figure 2B, Supplementary Figure 2). 

The amino acids reported in the network analysis had in common the 

downregulation of BAP2, TAT1 and the upregulation of AGP1. These genes 

are correlated to amino acid transmembrane transporter activity. We found 

two aromatic amino acids in the network L-tyrosine and L-tryptophan, they 

share downregulations in genes related to amino acids transport (BAP2 and 

TAT1), and they differ in the upregulations when L-tyrosine has a strong 

upregulation in ARO9 and ALD3. L-tryptophan has a strong upregulation in 

MSY1 (Figure 2B, Supplementary Figure 2). 

Finally, the metabolites 2-oxoglutarate, L-glutamate and L-ornithine are 

correlated to downregulations in genes involved in the synthesis and 

transport of amino acids. L-glutamate has a central role in the metabolic 

network and it is correlated to downregulation of ASN1, ADE4, CAR2 and 

TRP2, genes involved in the synthesis of amino acids. The three sugars 
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reported in the network are correlated to downregulations in genes involved 

in the transport of sugars (HXT2 and HXT16). 

 

Figure 2. Network topology analysis identified metabolites with significant 

differences in the optimized strains in comparison to the non-optimized 

strains. The nodes are resized according to the gene-set significance, the 

colors reflect the direction of change of the gene-set, the edges between 

two metabolites symbolized how close they are in the metabolite-metabolite 

network and the thickest edges link the metabolites that are in close 

proximity to each other. A. comparison between CEN.PK strains; B. 

Comparison between S288c strains. 

 

Changes of intracellular metabolome in response to the synthesis of p-

coumaric acid 

To identify the differences in the metabolome caused by overproduction of 

p-CA and by different genetic backgrounds, we did a PCA analysis. The first 

component of the PCA accounted for 82% of the variability and showed 

significant differences between the background strains CEN.PK and S288c, 

the metabolites with higher contributions to this component are phosphoric 

acid, disilaheptane, L-ornithine, glutamic acid, lysine and citrate, all of them 

related to higher concentration of the metabolites in the CEN.PK 

background whereas the strain S288c is related to higher values of cis-9-

hexadecanoic acid (Figure 3). 
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The second component explains 8% of the variability and establishes the 

differences between optimized and non-optimized strains for the two 

backgrounds tested, the metabolites with higher contributions to this 

component are glutamine and L-tyrosine with higher concentrations for the 

engineered strains whereas the non-optimized strains are related to higher 

concentrations of malic acid. 

 

Figure 3. Score and loading plot from the principal component analysis 

based on the metabolome data of optimized and non-optimized strains in 

the S. cerevisiae backgrounds CEN.PK and S288c.  

 

A t-test was performed comparing the non-optimized and optimized strain of 

each background, aiming to identify which metabolites has significant 

differences when the cells are producing p-CA,. The significant differences 

for both of the background strains tested are mainly related to the low 
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concentration of metabolites in the optimized strains. For the CEN.PK 

strains, we found significant differences in four metabolites: two amino acids 

(L-valine and L-threonine), malic and citric an acid. For the S288c strain, we 

found significant differences in 5 amino acids, phosphoric acid, malic acid, 

citric acid and cis-9 hexadecanoic acid (Figure 4). There is bigger variance 

between the low and high-producing S288c strains than CEN.PK strains.  
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Figure 4. Volcano plot based on the statistical significance of the t-test and 

fold change from the comparison of the reporter metabolites between 

optimized and non-optimized strain on each background. A. CEN.PK 

strains, B. S288c strains. 

Discussion 

In our study, engineered high-producer strain with CEN.PK background 

gave 20-25% higher p-CA titers in batch and continuous cultivations in 

comparison with S288c strain engineered identically. Moreover, the 

CEN.PK-producer had a 25% higher max than S288c-producer. 

Transcriptome analysis showed that the CEN.PK strain was less affected by 

engineering towards higher p-CA production than the S288c strain, as the 

number of significantly up/down-regulated genes was correspondingly 652 

and 1927 amongst others, strain S288c had downregulations in gene sets 

involved in amino acid and protein biosynthesis. This suggests that CEN.PK 

may be a better platform strain for production of aromatic compounds than 

S288c strain.  

The transcriptome analysis also revealed downregulations in transport 

functions in the engineered strains of both backgrounds, which could be a 

response to the stress triggered by production of p-CA. Previous studies on 

plasma membrane integrity and ethanol stress in S. cerevisiae have 

reported that yeast cells react to chemical stress by downregulating the 

transport of some metabolites and by decreasing gene expression in 

energy-demanding processes (Stanley et al., 2010, Madeira et al., 2009 and 

Leao & Van uden, 1984). 

For the engineered S288c strain, metabolomics analysis revealed lower 

concentrations of phosphoric acid, L-ornithine and glutamic acid, which 

correlates with downregulation of the gene sets involved in the synthesis of 

proteins and amino acids. Interestingly previous research on S. cerevisiae 

stress responses to oxidative stress had shown diminution in the synthesis 
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of proteins as a prevention mechanism under potentially error-prone 

conditions (Shenton et al., 2003). 

 

We observed higher accumulation of glycerol by the engineered strains than 

in non-optimized strains. Synthesis of glycerol is known as an important 

factor in the control of osmoregulation and of redox balance (Hohmann et 

al., 2007; Muzzei et al., 2009). Another interesting metabolite is cis-9-

hexadecanoic acid; this metabolite had higher concentrations in the S288c 

strain in comparison to CEN.PK strain; we propose that the stress 

originating from the production of p-CA may trigger the synthesis of this fatty 

acid in the S288c strains. It had been previously reported that genetically 

engineered strains with a higher concentration of cis-9-hexadecanoic acid 

were more tolerant to temperature and oxidative stress (Steels et al., 1994; 

Jamieson et al., 1998). 

In the particular case of the reporter metabolite L-tyrosine, the 

downregulation of the transport activity is accompanied by the upregulation 

of ARO9. The upregulation of ARO9 can be a response to the increment of 

the flux of intermediate aromatic compounds toward L-tyrosine production 

and can be positive for the production of p-CA. The downregulation in 

transport functions can be a response to the high concentration of aromatic 

compounds, for example, Hueso et al. (2012) reported downregulation in 

the transport of leucine under intracellular acidification and a subsequent 

improvement in acid growth after overexpression of the transporter 

gene BAP2.  

In conclusion, we found that the transport of amino acids and sugars were 

highly downregulated probably as a response to the stress produced by the 

secreted aromatic compounds. Both the transcriptome and metabolomics 

analysis showed that strain CEN.PK was less affected than S288c by 

increased p-CA production and hence suits better as a cell factory for 

production of this compound.  
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As a strategy for further improvement of p-CA cell factory, we suggest 

making a combinatorial evaluation of the effect of the upregulation and 

downregulation of the genes that we found were significantly affected in 

their expression levels, such as aminotransferases ARO9 and ARO8 and 

transport genes AGP1, GAP1, BAP3, BAP2 and TAT1. This approach will 

allow identifying if the downregulations and upregulations of these genes 

are a response to stress with a negative effect on the production of aromatic 

secondary metabolites or if it was a physiological adjustment to the flux of 

intermediate compounds toward L-tyrosine with a positive effect on the 

production of aromatic secondary metabolites. 

 

Acknowledgements 

This work was financed by the Novo Nordisk Foundation. We thank Anna 

Koza for performing the RNA sequencing, Leif Väremo for his advice for the 

use of the packages Piano and Kiwi, Eduard Kerkoven for his suggestions 

on the transcriptome data analysis. Also we thank Klara Bojanovic, 

Kanchana R Kildegaard and Arun Rajkumar for their advice on RNA 

isolation. 

 

Contributions 

AR, IB and JN conceived and designed the study and analyzed the results. 

AR, YC and SK did the experimental work. AR, YC, EO and SK processed 

and analyzed the data. AR and IB drafted the manuscript and all authors 

read, edited and approved the final manuscript. 

 

 

 

 

 



 
 

93 
 

Supplementary material 

Supplementary Table 1. Primers and Biobricks used in this study.  

 
BIOBRICKS 
 

Name Template for PCR FW  
primer 

RV 
Primer 

BB0380 (Fj_tal<-) Flavobacterium johnsoniae codon-
optimized synthetic gene 

ID1691 ID1692 

BB0501 (Ec_AroL->) Genomic DNA of EcoMG1655 ATCC 
31884 

ID6785 ID6786 

BB0361 (Sc_Aro7_G141S<-) p0761(pESC-URA-ARO7pm)  ID1398 ID1399 

BB0364 (Sc_Aro4_K229L->) p0775 (pESC-HIS-ARO4pm)  ID1396 ID1397 

BB1163(Sc_MET15_2/3_Up) Genomic DNA of CEN.PK102.5B  ID11784 ID11785 

BB1164(Sc_MET15_2/3_Down) Genomic DNA of CEN.PK102.5B  ID11786 ID11787 

 

 

 
PRIMERS 

For BioBricks construction 

ID Name Sequence (5'-3') 

1691 Fj_TAL_1_fw AGTGCAGGUAAAACAATGAACACCATCAACGAATATCTGAGC 

1692 Fj_TAL_1_rv CGTGCGAUTTAATTGTTAATCAGGTG 

6785 Ec_aroL_2_fw ATCTGTCAUAAAACAATGACACAACCTCTTTTTCTGA 

6786 Ec_aroL_2_rv CACGCGAUTCAACAATTGATCGTCTGTGC 

1398 Sc_ARO7_1_fw AGTGCAGGUAAAACAATGGATTTCACAAAACCAGAAAC 

1399 Sc_ARO7_1_rv CGTGCGAUTCACTCTTCCAACCTTCTTAGCAAG 

1396 Sc_ARO4_2_fw ATCTGTCAUAAAACAATGAGTGAATCTCCAATGTTCG 

1397 Sc_ARO4_2_rv CACGCGAUTCATTTCTTGTTAACTTCTCTTCTTTG 

11784 Sc_Met15_U1_Fw GTTCTCGTCGAATGCTAGGTC 

11785 Sc_Met15_U1_Rv TTCACCGTGTCTTTCAGCTC 

11786 Sc_Met15_U2_Fw TCGAGGCTAGATTTGTTGAAGG 

11787 Sc_Met15_U2_Rv TTAATGACGTTCGGCTGGAG 

For verification of correct insertion in the chromosomes 

ID Name Sequence (5'-3') 

904 Sc_X-3-out-seq_rv CCGTGCAATACCAAAATCG 

906 Sc_X-4-out-seq_rv GACGGTACGTTGACCAGAG 

912 XI-3- down-out-sqID912 CACATTGAGCGAATGAAACG 

2220 Sc_ColoPCR_fw CCTGCAGGACTAGTGCTGAG 
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Supplementary Figure 1. Heat map from the network analysis for the CEN.PK 
strains. 
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Supplementary Figure 2. Heat map from the network analysis for the S288c 

strains. 
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Abstract 

Flavonoids, secondary metabolites produced in plants and fungi, offer 

numerous health benefits owing to their antioxidant, anti-inflammatory, anti-

carcinogenic and other biological activities. Because of the low abundance 

of these compounds in natural sources and challenges with extraction from 

plant material, there is a lot of interest in producing flavonoids by 

fermentation using cell factories. Here we engineered Saccharomyces 

cerevisiae to produce a range of flavonoids: naringenin, liquiritigenin, 

kaempferol, resokaempferol, quercetin and fisetin in defined medium with 

glucose as the sole carbon source. Up to eight heterologous genes from 

plants were overexpressed in a yeast platform strain, previously optimized 

for production of the flavonoid precursor p-coumaric acid. For the first time 

resokaempferol and fisetin were produced by yeast. The concentration of 

most of the compounds reached 1-5 mg L-1 in the medium, but kaempferol 
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and quercetin were secreted at higher titers of about 20 mg L-1. The 

engineered strains simultaneously accumulated 10-15 mg L-1 of p-coumaric 

acid, suggesting that the p-coumaroyl-CoA ligase 4CL and possibly 

chalcone synthase CHS were limiting the carbon flux into flavonoids. 

Overexpression of an additional copy of CHS and CHR genes indeed 

increased the titer of fisetin from 1.65 ± 0.10 mg L-1 to 2.28 ± 0.07 mg L-1.  

This work demonstrates the potential of flavonoid-producing yeast cell 

factories. 

Key Words 

Flavonoids, naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, 

fisetin, Saccharomyces cerevisiae. 

Introduction 

Flavonoids are aromatic secondary metabolites naturally synthesized by 

plants and fungi from aromatic amino acids L-phenylalanine and L-tyrosine. 

The structure of flavonoids is characterized by two phenolic rings and one 

heterocyclic ring. The main differences between flavonoids are related to the 

hydroxylation patterns, the position of the second aromatic ring and the 

saturation of the heterocyclic ring (Grotewold et al., 2008). Flavonoids play a 

fundamental role in the physiology of plants; their natural functions include 

UV protection, reduction of oxidative damage in cells, and antibacterial 

effects (Cushnie and Lamb 2011; Roberts and Paul 2006; Agati et al., 2011).  

Research on human cells showed positive properties of flavonoids as 

reducing agents and protectors of oxidative reactions in age-related 

diseases, cancer and cardiovascular diseases (Woelfle et al., 2010; Khoo et 

al., 2010; Bulzomi et al., 2012). Moreover, some flavonoids, e.g., naringenin, 

have neuroprotective and antioxidant properties. Liquiritigenin has been 

reported as a protective agent against oxidative stress in osteoblasts, and 
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some liquiritigenin derivatives show antitumor and antidiabetic activity (Choi 

et al., 2012; Wedick et al., 2012; Liu et al., 2012; Raza et al., 2015; 

Hamalainen et al., 2015). Kaempferol, quercetin and fisetin showed anti-

cancer, cardio-protective and anti-inflammatory effects (Hamalainen et al., 

2015; Chen and Chen, 2013; Nabavi et al., 2012). Experiments with rats 

showed that doses of 50 mg kg-1 of quercetin inhibit the migration of 

melanoma cells. Other experiments with humans showed that doses of 150 

mg day-1 of quercetin had positive effects on the health of people with high 

risk of cardiovascular disease (Caltagirone et al., 2000; Khan et al., 2008; 

Mukhtar et al., 2015). Fisetin has neuroprotective, neurotrophic and anti-

amyloid properties, which makes it a promising therapeutic agent for 

neurodegenerative disorders such as Huntington and Alzheimer diseases 

(Maher et al., 2011; Currais et al., 2014). 

The main obstacles for large-scale production of flavonoids in plants are the 

long culture periods, requirements for specific cultivation conditions and low 

abundance. Additionally, extraction and purification processes add cost and 

result in product loss and degradation (Wang et al., 2011; Routray and 

Orsat, 2012). The concentration of flavonoids in different varieties and 

sources of fruits oscillate between 30-4000 mg Kg-1 of dry weight (Hertog et 

al., 1992; Paganga et al., 1999; Miean and Suhaila, 2001; Crozier et al., 

1997). This means that for the production of 1 kg of flavonoids, it is required 

to process 250-1000 Kg of dry weight of fruits or vegetables. 

For a sustainable supply of flavonoids, it can be an advantage to engage 

genetically engineered microbial cell factories, e.g., E. coli or S. cerevisiae. 

Koopmann et al. (2012) reported the production of 108.90 mg L-1 of 

naringenin from glucose using an engineered yeast strain. Furthermore, 

feeding naringenin to engineered cells allowed production of other 

flavonoids, such as genistein, kaempferol and quercetin (Trantas et al., 

2009). Production of naringenin in E. coli reached 29 mg L-1 using glucose 
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as carbon source, while kaempferol and quercetin have been produced 

using p-coumaric acid as precursor and fisetin using L-tyrosine as a 

precursor (Santos et al., 2011; Leonard et al., 2006; Stahlhut et al., 2015). 

Here we established a yeast cell factory for de novo production of flavonoids 

from glucose. The target flavonoids included: naringenin, liquiritigenin, 

kaempferol, resokaempferol, quercetin, and fisetin. Intermediate compounds 

and by-products were quantified to characterize regulated steps in the 

pathways and to identify targets for future improvements of the flavonoid-

producing yeast cell factories.  

Methods 

Plasmid construction 

The plasmids with the biosynthetic pathways for flavonoids production were 

constructed using EasyClone 2.0 integrative plasmids with auxotrophic and 

dominant selection markers (Stovicek et al., 2015) that are targeting well-

defined integration sites previously described by (Mikkelsen et al. 2012). 

The genes used for flavonoids production were: 4-coumaroyl-CoA ligase 

from Petroselinum crispum (4CL), chalcone synthase from Petunia hybrida 

(CHS), chalcone reductase from Astragalus mongholicus (CHR), chalcone 

isomerase from Medicago sativa (CHI), flavanone 3-hydroxylase from 

Astragalus mongholicus (F3H), flavonol synthase from Arabidopsis thaliana 

(FLS), cytochrome P450 reductase from Catharanthus roseus (CPR), a 

cytochrome P450 flavonoid monooxygenases from Fragaria ananassa and 

from Petunia hybrida (FMO) (Figure 2). All the genes were synthesized by 

GeneArt (LifeTechnologies) in codon-optimized versions for E. coli as stated 

in Stahlhut et al., (2015). 

DNA fragments (BioBricks), encoding genes or promoters, were amplified by 

PCR using primers and templates as described in Supplementary Tables 1 
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and 2. Individual BioBricks were assembled into the integrative plasmids by 

USER cloning as described previously (Stovicek et al., 2015). Finally, the 

resulting vectors (Table 1) were verified by sequencing.  

Table 1. Plasmids used in this study 

Parental Plasmids 

Plasmid ID Genotype Source 

pCfB2399 pXI-5-lox P-amdSYMsyn, PTEF1-TADH1, PPGK1-TCYC1 Stovicek et al., 2015 

pCfB2197 pXII-1-lox P-NatMXsyn3, PTEF1-TADH1, PPGK1-TCYC1 Stovicek et al., 2015 

pCfB2225 pXII-2-lox P-KanMXsyn, PTEF1-TADH1, PPGK1-TCYC1 Stovicek et al., 2015 

pCfB2337 pXII-5-lox P-HPHMXsyn, PTEF1-TADH1, PPGK1-TCYC1 Stovicek et al., 2015 

pCfB2224  pXI-2-lox P-KanMXsyn, PTEF1-TADH1, PPGK1-TCYC1 Stovicek et al., 2015 

pCfB2855  pXII-2-lox P-amdSYM, PTEF1-TADH1, PPGK1-TCYC1 Stovicek et al., 2015 

Integrative plasmids for pathway expression 

Plasmid ID Genotype Source 

pCfB0848  pXI-2-loxP-URA3, PTEF1-CYB5 TADH1, PPGK1-ATR2- TCYC1 Li et al., 2016 

pCfB1018 pXI-5-loxP-HIS5, PTEF1-PAL2-TADH1, PPGK1-C4H TCYC1 Li et al., 2016 

pCfB3437 pXI-5-lox P-amdSYMsyn, PTEF1-Ph_CHS-TADH1, PPGK1-Pc_4CL-TCYC1 This study 

pCfB2879 pXII-1-lox P-NatMXsyn3, PTEF1-Ms_CHI-TADH1, PPGK1-Am_CHR-TCYC1 This study 

pCfB2893 pXII-1-lox P-NatMXsyn3, PTEF1-Ms_CHI-TADH1 This study 

pCfB3643 pXII-2-lox P-KanMXsyn, PTEF1-At_FLS-TADH1, PPGK1-At_F3H-TCYC1 This study 

pCfB3654 pXII-5-lox P-HPHMXsyn, PTEF1-Ph_FMO- Cr_CPR-TADH1 This study 

pCfB3655 pXII-5-lox P-HPHMXsyn, PTEF1-Fa_FMO-Cr_CPR-TADH1 This study 

pCfB4753 pXII-2-lox P-amdSYM, PTEF1-Ph_CHS-TADH1, PPGK1-Pc_4CL-TCYC1  This study 

pCfB4754 pXI-2-lox P-KanMXsyn, PTEF1-At_FLS-TADH1, PPGK1-At_F3H-TCYC1 This study 

pCfB4856 pXII-4-lox P-BleSyn, PTEF1-Ph_CHS-Am_CHR- TADH1 This study 

pCfB4857 pXII-4-lox P-BleSyn, PTEF1-Ph_CHS-TADH1, PPGK1- Am_CHR -TCYC1 This study 

 

Strains construction 

The background strains for this research were three engineered S. 

cerevisiae strains (Table 2). The ST4757 strain was engineered to produce 

p-coumaric acid using the phenylalanine ammonia-lyase (PAL) pathway and 
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the strains ST4069 and ST2645 produced p-coumaric acid via the tyrosine 

ammonia-lyase (TAL) pathway. The background strains were transformed 

with NotI-linearized integrative vectors using lithium acetate protocol (Gietz 

and Woods, 2002). The transformants were selected on synthetic drop-out 

medium (Sigma-Aldrich), selecting for URA3, HIS5 and LEU2 markers. For 

selection on acetamide, the media contained 0.17 % yeast nitrogen base 

without amino acids and ammonium sulfate and 6.6 g L-1 of potassium 

sulfate and 0.6 g L-1 acetamide. For selection of dominant markers NatMX, 

KanMX, BleMX or HphMX, the medium was supplemented with 100 mg L-1 

nourseothricin, 200 mg L-1 G418 disulfate salt, 10 mg L-1 phleomycin or 200 

mg L-1 hygromycin B respectively. Correct integration of the vectors was 

verified by yeast colony PCR. The yeast strains used in this study are listed 

in Table 2. 

Media and cultivations 

For selection of yeast transformants and for routine cultivations we prepared 

synthetic complete (SC) medium as well as drop-out media (SC-Ura, SC-

Leu, SC-His) and agar plates using pre-mixed drop-out powders from 

Sigma-Aldrich. Synthetic fed-batch medium for S. cerevisiae M-Sc.syn-1000 

(FIT) was purchased from M2P Labs GmbH (Germany). The medium was 

supplemented with vitamins solution (final 1% v/v) and the enzyme mix (final 

concentration 0.5% v/v) immediately before use. 

For the quantification of production of flavonoids for each strain, we tested 

five single colonies originating from independent transformants. The colonies 

were inoculated in 0.5 ml drop-out SC liquid medium without uracil, histidine, 

and/or leucine in 96-deep well microtiter plates with air-penetrable lid 

(EnzyScreen, The Netherlands). The plates were incubated at 30°C with 250 

rpm agitation at 5 cm orbit cast overnight. 50 µl of the overnight cultures 

were used to inoculate 0.5 ml synthetic fed-batch medium in a 96-deep well 

plate. Fermentation was carried out for 72 hours at the same conditions as 

http://www.sciencedirect.com/science/article/pii/S1096717614001189#bib15
http://www.sciencedirect.com/science/article/pii/S1096717614001189#bib15
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before. At the end of cultivation, samples for metabolite analysis and optical 

density (OD) were taken. OD600 was estimated as follows: 10 µl of 

fermentation broth was mixed with 190 µl water in a 96 well microtiter plate 

and absorbance was measured at 600 nm wavelength in microplate reader 

BioTek Synergy MX (BioTek). 200 µl of the culture were mixed with 200 µl of 

absolute ethanol, the mixture was centrifuged at 2,272 g for 15 minutes and 

250 µl of supernatant were analyzed for flavonoids concentration by HPLC. 

Table 2. Strains used in this study 

Parent strains 

Strain 
ID Genotype Source 

ST406
9 

Mata PTEF1->Fj_TAL Rodriguez et al., 2015 

ST264
5 

Mata PTEF1->Fj_TAL, PTEF1->Sc_ARO7G141s, PPGK1->Sc_ARO4K229L, Δaro10 
Δpdc5 

Rodriguez et al., 2015 

ST475
7  

Matα PTEF1->PAL2, PPGK1->C4H, PPGK1->CYB5, PTEF1->ATR2 This study 

Strains transformed with integrative plasmids 

Strain 
ID 

Parent  
strain 

Integrated  
Plasmids Integrated flavonoid pathway genes Source 

ST5066 ST4069 
pCfB3437, 
pCfB2893 PPGK1->4CL, PTEF1->CHS,  PTEF1->CHI  This study 

ST5067 ST4069 
PCFB3437, 
pCfB2879 PPGK1->4CL, PTEF1->CHS,  PTEF1->CHI, PPGK1->CHR  This study 

ST5068 ST2645 
PCfB3437, 
pCfB2893 PPGK1->4CL, PTEF1->CHS,  PTEF1->CHI  This study 

ST5069 ST2645 
PCfB3437, 
pCfB2879 PPGK1->4CL, PTEF1->CHS,  PTEF1->CHI, PPGK1->CHR  This study 

ST5070 ST5068 pCfB3643 PPGK1->4CL, PPGK1->CHS,  PTEF1->CHI, PPGK1->F3H, PTEF1->FLS This study 

ST5071 ST5069 pCfB3643 PPGK1->4CL, PTEF1->CHS, PTEF1->CHI, PPGK1->F3H, PTEF1->FLS This study 

ST5072 ST5070 pCfB3654 
PPGK1->4CL, PTEF1->CHS, PTEF1->CHI, PPGK1->F3H, PTEF1->FLS, 
PTEF1->Fa_FMO CPR This study 

ST5073 ST5070 pCfB3655 PTEF1->4CL, PTEF1->CHS, PTEF1->CHI, PPGK1->F3H, PTEF1->FLS, 
PTEF1->Ph_FMO-CPR 

This study 

ST5074 ST5071 pCfB3654 PPGK1->4CL, PTEF1->CHS, PTEF1->CHI, PPGK1->CHR, PPGK1->F3H, 
PTEF1->FLS, PTEF1->Fa_FMO-CPR 

This study 

ST5075 ST5071 pCfB3655 PPGK1->4CL, PTEF1->CHS, PTEF1->CHI, PPGK1->CHR, PPGK1->F3H, 
PTEF1->FLS, PTEF1->Ph_FMO-CPR 

This study 

ST4972 
 

ST4757 
 

PCfB4753, 
PCfB4754, 
PCfB2879, 
PCfB3654 

PPGK1->4CL, PTEF1->CHS, PTEF1->CHI, PPGK1->CHR, PPGK1->F3H, 
PTEF1->FLS, PTEF1->Ph_FMO-CPR 

This study 
 

ST5401 ST5074 pCfB4856 PTEF1->CHS:CHR (fusion) This study 

ST5402 ST5074 pCfB4587 PTEF1->CHS, PPGK1->CHR This study 
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Quantification and identification of flavonoids 

Quantification of flavonoids was performed on a Dionex Ultimate 3000 HPLC 

equipped with a Discovery HS F5 150mm X 4.6 mm column (particle size 

5µm) connected to a UV detector (277, 290, 333 and 370nm). Samples were 

analyzed using a gradient method with two solvents: 10 mM ammonium 

formate pH 3.0 (A) and acetonitrile (B). For p-coumaric acid, naringenin and 

liquiritigenin detection, a flow rate of 1.5 ml min-1 was used. The program 

started with 5% of solvent B (0-0.5 min), after which its fraction was 

increased linearly from 5% to 60% (0.5-7 min), then the fraction was 

maintained at 60% (7-9.5 min), after that the fraction was decreased from 

60% to 5% (9.5-9.6 min), finally, the fraction was maintained at 5% (9.6 to 12 

min). p-Coumaric acid was detected at 5.6 min (333), liquiritigenin at 6.8 

(277) and naringenin at 7.5 min (290 nm). For kaempferol, resokaempferol, 

quercetin and fisetin detection, a flow rate of 1.5 ml min-1 was used. The 

program started with 20% of solvent B (0-2 min), after which its fraction was 

increased linearly from 20% to 45% (2-20 min), then the fraction was 

decreased from 45% to 20% (20-22 min) and maintained at 20% for 2 

minutes (22-24 min). Fisetin was detected at 10.3 min (333 nm), liquiritigenin 

at 12.8 min (277 nm), resokaempferol at 13.3 min (370 nm) and quercetin at 

13.9 min (370 nm). 

The pure compounds p-coumaric acid, naringenin, kaempferol, quercetin 

and fisetin were purchased from Sigma Aldrich Co. (Denmark); liquiritigenin 

was purchased from Tocris Bioscience (United Kingdom) and and 

resokaempferol was purchased from Extrasynthese (France). The 

compounds were used to generate calibration curves; the areas were 

integrated with Chromeleon 7 and used for quantification. The flavonoids 

were identified by comparing the retention times and UV absorbance spectra 

of the samples with authentic compounds. For all the strains five biological 

replicates were analyzed. 
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Identification of fisetin 

For fisetin identification, the samples were dried at room temperature under 

reduced pressure using a Centrifugal Vacuum Concentrator (Savant Speed 

Vacs Concentrator, Thermofisher Scientific, Waltham Ma), followed by 

reconstitution using a 0.1% solution of formic acid in LC-MS grade 

acetonitrile. 20 µl of each sample were then injected and analyzed on a 

Dionex UltiMate 3000 UHPLC (Thermo Fisher Scientific, San Jose, CA) 

connected to an Orbitrap Fusion Mass Spectrometer (Thermo Fisher 

Scientific, San Jose, CA). The UHPLC used a Supelco Discovery HS F5-3, 

15cm x 2.1mm, 3 μm column. Temperature was 30°C and flow rate was 0.6 

mL/min with a mobile phase of 95% 0.1 % formic acid (mobile phase A) and 

5% acetonitrile with 0.1% formic acid (mobile phase B) for 2 min followed by 

a linear gradient to 95% mobile phase B over 12 minutes. This gradient was 

held for 2 min after which it was changed immediately to 95% mobile phase 

A and 5% mobile phase B and held for 6 min. The sample was passed on to 

the MS equipped with a heated electrospray ionization source (HESI) in a 

positive-ion mode with nitrogen as nebulizer gas (52 a.u.). The cone and 

probe temperatures were 356°C and 420°C, respectively. Probe gas flow 

was 16 a.u. and spray voltage was 3500 V. Scan range was 150 to 1000 Da 

and time between scans was 100 ms. 

Fisetin was detected when expressing both the FMO from F. ananassa and 

P. hybrida. The observed ion 287 in positive mode is congruent with the ions 

recognized in the fisetin standard (Figure 1). The spectra for the infusion of 

the fisetin standard gave an ion with m/z 287.0549, which corresponds to 

0.35 ppm of ion with the ionic formula of C15H11O6 in positive ion mode; this 

is indicative of a compound with a molecular formula of C15H10O6.  
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Figure 1. Spectra of infused isolated peaks of fisetin, positive spectrum. A. 

Fisetin standard, B. Fisetin synthesized using a FMO from P. hybrida, C. 

Fisetin synthesized using a FMO from F. ananassa. 
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Results 

Flavonoids pathway design 

Previously, we constructed a novel biosynthetic pathway for the production 

of fisetin starting from L-tyrosine in E. coli (Fig. 2) (Stahlhut et al. 2015). In 

this work, we set out to develop a fermentation process for de novo 

production of a portfolio of related flavonoids from a cheap carbon source 

and using yeast S. cerevisiae as the host. The biosynthetic pathway towards 

flavonoids is depicted in Fig. 2. First, p-coumaric acid must be activated by a 

4-coumaroyl-CoA ligase 4CL, and for this we used a variant from P. crispum. 

Next, we used chalcone synthase CHS from P. hybrida and chalcone 

isomerase CHI from M. sativa to convert the resulting p-coumaroyl-CoA and 

three molecules of malonyl-CoA into naringenin. To obtain isoliquiritigenin, 

we additionally overexpressed chalcone reductase CHR from A. 

mongholicus, the resulting naringenin and isoliquiritigenin producing strains 

were further engineered towards production of respectively kaempferol and 

resokaempferol by overexpression of flavanone 3-hydroxylase F3H from A. 

mongholicus and flavonol synthase FLS from A. thaliana. Lastly, to enable 

production of quercetin and fisetin, we tested two different cytochrome P450 

flavonoid monooxygenases FMOs, one from F. ananassa and another from 

P. hybrida, which were overexpressed in the kaempferol producing strain to 

obtain quercetin and in the resokaempferol producing strain to obtain fisetin, 

respectively. Each of the tested FMO was fused in-frame with cytochrome 

P450 reductase CPR from C. roseus. Moreover, fisetin was synthesized 

either from L-tyrosine or L-phenylalanine by the use of tyrosine ammonia-

lyase (TAL) or phenylalanine ammonia-lyase (PAL).  
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Figure 2. Flavonoid biosynthetic pathways engineered into yeast S. 
cerevisiae. PAL2: phenylalanine ammonia-lyase; C4H: cinnamate 4-
hydroxylyase; ATR2 cytochrome p450 reductase; CYB5: cytochrome b5 
electron carrier; TAL: tyrosine ammonia-lyase; 4CL: 4-coumaroyl-CoA 
ligase; CHS: chalcone synthase; CHR: chalcone reductase; CHI: chalcone 
isomerase; F3H: flavanone 3-hydroxylase; FLS: flavonol synthase; FMO: 
flavonoid 3’-monooxygenase; CPR: cytochrome P450 reductase. 

 

Biosynthesis of naringenin and liquiritigenin 

For production of naringenin and liquiritigenin we explored a low-producer 

(ST4069) and a high-producer (ST2645) strain of p-coumaric acid as the 

starting platforms. As the low-producer we employed strain ST4069, which 

produced 0.24 ± 0.03 g L-1 of p-coumaric acid in our previous study; as the 

high-producer we used strain ST2645, which reached a titer of 1.93 ± 0 .26 g 

L-1 (Rodriguez et al., 2015). Strain ST4069 has overexpression of a TAL 

gene, while strain ST2645 has additional modifications increasing the flux 

towards aromatic amino acids: knock-outs of ARO10 and PDC5 genes and 

over-expressions of ARO4fbr and ARO7fbr. To obtain naringenin production, 

we overexpressed 4-coumaroyl-CoA ligase 4CL, chalcone synthase CHS 

and chalcone isomerase CHI. For liquiritigenin production we additionally 

overexpressed chalcone reductase CHR. The titers of naringenin and 

liquiritigenin were 3-fold higher in the strain background with optimized p-

coumaric acid production: 1.55 ± 0 .13 mg L-1 of naringenin and 5.31 ± 0.48 

mg L-1 of liquiritigenin. We also observed accumulation of p-coumaric acid in 

the medium, particularly in the optimized strains up to 8 mg L-1 of p-coumaric 

acid were measured. We also noted accumulation of naringenin (~1 mg L-1) 

alongside liquiritigenin, indicating incomplete reduction by CHR. 
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Figure 3. Strains engineered for biosynthesis of naringenin and liquiritigenin. 
A. Naringenin pathway was integrated into a low-level p-CA strain ST4069; 
B. Naringenin pathway was integrated into a high-level p-CA strain ST2645; 
C. Liquiritigenin pathway was integrated into a low-level p-CA strain ST4069; 
D. Liquiritigenin pathway was integrated into a high-level p-CA strain 
ST2645. The strains were cultivated in FIT medium for 72 hours, the mean 
value of extracellular concentration of compounds was calculated from five 
biological replicates.   

Biosynthesis of kaempferol and resokaempferol 

The naringenin- (strain ST5068) and liquiritigenin- (strain ST5069) producing 

strains were further engineered for production of respectively kaempferol 

and resokaempferol by overexpressing the genes encoding flavanone 3-

hydroxylase F3H and flavonol synthase FLS. As a result, we obtained two 

new strains, the strain ST5070 for the production of kaempferol and the 

strain ST5071 for the production of resokaempferol. Strain ST5070 produced 
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26.57 ± 2.66 mg L-1 of kaempferol as well as two pathway intermediates: 

10.75 ± 0.87 mg L-1 of p-coumaric acid and 0.83 ± 0.05 of naringenin (Figure 

4A). The high titer of kaempferol was surprising, considering that the parent 

strain produced less than 2 mg L-1 of kaempferol precursor, naringenin. The 

depletion of naringenin and higher capacity to produce kaempferol imply that 

the conversion steps of naringenin into kaempferol are very efficient. The 

resokaempferol producing strain (ST5071) accumulated 0.51 ± 0.03 mg L-1 

of resokaempferol, 14.54 ± 1.96 mg L-1 of p-coumaric acid, 11.39 ± 0.33 mg 

L-1 of kaempferol, and less than 1 mg L-1 of naringenin and liquiritigenin 

(Figure 4B).  In the resokaempferol strain, we observed by-product 

kaempferol, which results from incomplete reduction of p-coumaroyl-CoA by 

CHR.  

 

Figure 4. Strains engineered for biosynthesis of kaempferol and 

resokaempferol. A. Kaempferol producing strain. B. Resokaempferol 

producing strain. The strains were cultivated in FIT medium for 72 hours, the 

mean value of extracellular concentration of compounds was calculated from 

five biological replicates. 
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Biosynthesis of fisetin and quercetin 

For the production of quercetin and fisetin, it is necessary to overexpress 

cytochrome P450 flavonoid monooxygenase (FMO) and cytochrome P450 

reductase (CPR). In this study, we evaluated two FMO variants, one from F. 

ananassa and one from P. hybrida, that were fused in-frame to the CPR 

from C. roseus by a flexible glycine-serine linker (5’-GGGTCGAC-3’).  

 

Figure 5. Strains engineered for biosynthesis of quercetin. The strains were 

cultivated in FIT medium for 72 hours, the mean value of extracellular 

concentration of compounds was calculated from five biological replicates. 

 

The genes were overexpressed in the kaempferol producing strain (ST5068) 

to obtain 20.38 ± 2.57 mg L-1 and 16.04 ± 0.37 of quercetin in the strains with 

FMO from P. hybrida and F. ananassa, respectively (Figure 5). For fisetin 

biosynthesis, the host strain was the strain engineered for resokaempferol 

production (ST5069). Upon overexpression of FMO-CPR fusions, we 

obtained 1.65 ± 0.10 and 1.20 ± 0.19 mg L-1 of fisetin, respectively (Figure 

6A). The strains overexpressing the FMO of F. ananassa additionally 

accumulated kaempferol and naringenin, while the strains with FMO from P. 
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hybrida did not secrete these intermediates, we therefore continued working 

with this strain (ST5074). 

 

Figure 6. Strains engineered for biosynthesis of fisetin. A. Fisetin producer 

strains expressing FMOs from P. hybrida and F. ananassa. The background 

strain for these strains was the strain ST5071. B. Fisetin producer strain with 

an additional copy of fussed CHS and CHR. C. Fisetin producer strain with 

an additional copy of CHS and CHR. The background strain from the strains 

ST5401 and ST5402 was the strain ST5074. The strains were cultivated in 

FIT medium for 72 hours, the mean value of extracellular concentration of 

compounds was calculated from five biological replicates. 

Improving fisetin production via heterologous pathway optimization  

The strains designed to produce fisetin, accumulated significant amounts of 

quercetin. We attempted to direct more flux into fisetin by exploiting the 

metabolic channeling effect, which had proven effective in other studies 

(Albertsen et al., 2011; Stahlhut et al., 2015). We overexpressed a fusion of 

CHS and CHR proteins in the fisetin-producing strain ST5074, resulting in 

ST5401. A control strain, ST5402, expressing an additional copy of non-
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fused CHS and CHR was constructed as well. We hereby obtained a 

significant improvement in production of fisetin, and the strains ST5401 and 

ST5402 produced 2.11 ± 0.26 mg L-1 and 2.29 ± 0.07 mg L-1 respectively in 

comparison to 1.65 ± 0.01 mg L-1 for the control strain ST5074 (Figure 6B 

and 6C). Interestingly, the final product (quercetin) of the competing 

metabolic pathway accumulated to similar concentrations. This result 

strongly indicates that protein fusion did not improve carbon flux toward 

fisetin production using this particular setup. Lastly, the precursor (p-

coumaric acid) was the most abundant metabolite (approx. 12 mg L-1) 

detected in both the CHS-CHR fusion and control strains.  

Biosynthesis of flavonoid via phenylalanine  

Several studies have previously demonstrated that p-coumaric acid, the first 

intermediate of the de novo flavonoid pathway, can be synthesized in S. 

cerevisiae via two routes: through tyrosine ammonia-lyase TAL or 

phenylalanine ammonia-lyase PAL (Koopmann et al., 2012; Li et al., 2015). 

We, therefore, set out to test whether supplying the metabolic precursor via 

the PAL route would be beneficial for flavonoid production as compared to 

the TAL route. Analysis of the basic strain (ST4757) revealed significant 

accumulation of p-coumaric acid, setting out the stage for construction of a 

flavonoid-producing cell factory. The remaining parts of the de novo pathway 

were reengineered in a similar manner as in the TAL strains, however, for 

the last biosynthetic step only the FMO from P. hybrida was tested as it 

showed better performance as described above. Interestingly, HPLC 

analysis of the final PAL-based strain (ST4972) revealed a different 

metabolic profile (Figure 7) as compared to the corresponding TAL-based 

strain. More specifically, we observed a 5.7-fold higher accumulation of p-

coumaric acid (70 mg L-1), while fisetin was only found in trace amounts and 

therefore could not be quantified. 
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Figure 7. Strain engineered for biosynthesis of fisetin using the PAL 

pathway. The background strain for the strains ST4972 was the strain 

ST4757. The strains were cultivated in FIT medium for 72 hours, the mean 

value of extracellular concentration of compounds was calculated from five 

biological replicates. 

Discussion  

This work represents a proof-of-concept study for biosynthesis of flavonoids 

in engineered yeast cell factories. Here, we have successfully developed an 

array of yeast strains expressing heterologous flavonoid metabolic pathways 

containing up to ten genes, where some of the strains produced significant 

flavonoid titers in double-digit mg L-1 range. Moreover, we have successfully 

demonstrated that flavonoids can be synthesized via two different precursor-

supplying routes. Metabolic engineering strategies applied in this study 

resulted in significantly improved titers for several metabolites of potential 
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commercial interest. The compounds quercetin and kaempferol were the 

ones with the highest extracellular concentrations detected in this study. 

When assembling novel heterologous pathways for production of the 

complex metabolites it is important to engineer (or isolate a microbial host) 

with a sufficient pools of precursor metabolites for a given product; and to 

ensure the balanced enzymatic activities of the multistep metabolic 

pathways in order to avoid accumulation of intermediates and by-products. 

Therefore, we tested several engineered platform strains with different 

production capacities of the first intermediate p-coumaric acid. In all cases, 

when the strains with improved flux towards p-coumaric acid via TAL route 

were implemented an improvement in production of the downstream 

flavonoids was observed. However, this also resulted in high amounts of 

non-metabolized p-coumaric acid indicating existing metabolic regulated 

steps in the downstream flavonoid pathway. The existence of the limiting 

steps is clearly seen in the first examples, i.e. naringenin and liquiritigenin 

production. The low concentration of the compounds can be related to the 

low activity of CHS or CHI. Another explanation for low titers of naringenin 

and liquiritigenin could be a spontaneous chemical reaction into other not 

measured metabolites as well as instability of naringenin in an aqueous 

medium. 

Although the precursors naringenin and liquiritigenin were secreted at 

amounts below 9 mg L-1, it was possible to obtain the flavonoids kaempferol 

and resokaempferol using these strains as hosts. The overexpression of 

F3H and FLS did not decrease the levels of p-coumaric acid as its titers 

were comparable to the ones of the naringenin and liquiritigenin strains ~10 

mg L-1. The strain engineered for kaempferol production (strain ST5070) 

produced 26.57 ± 2.66 mg L-1 of kaempferol despite the fact that the host 

strain produced 1.55 ± 0.13 mg L-1 of the precursor naringenin. The strains 

engineered for liquiritigenin, resokaempferol and fisetin production (ST5069, 
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ST5071, ST5074 and ST5075) accumulated significant amounts of by-

products; to optimize the conversion of p-coumaroyl-CoA into liquiritigenin, it 

is necessary to overcome the flux of the precursors to the production of 

naringenin chalcone and its derivate compounds. 

For the final metabolic steps of the flavonoid pathway two different FMOs 

were tested for quercetin and fisetin production, where the FMO from P. 

hybrida displayed better enzymatic activities towards production of the final 

metabolites. The quercetin and fisetin strain expressing the FMO from P. 

hybrida did not accumulate the by-products naringenin and kaempferol, 

whereas the strains expressing the FMO from F. ananassa accumulated 

more than 2 mg L-1 of kaempferol and around 0.5 mg L-1 of naringenin. 

Surprisingly, the production of the downstream flavonoids using the PAL 

pathway was much worse as compared to the similar strains using TAL 

route. In addition, the distribution of intermediates of the two competing 

pathways (quercetin and fisetin) was different too. Despite the fact that PAL 

strains accumulated 5.7-fold more coumaric acid as compared to the TAL 

strains, significantly lower amounts of quercetin and only trace levels of 

fisetin were observed. We speculate, that such a change in metabolic profile 

could be due to possible inhibitory effects of high levels of p-coumaric acid 

or negative interactions between the different P450s of the PAL and 

flavonoid pathways.  

The accumulation of p-coumaric acid was common for all the engineered 

strains. The accumulation of this precursor indicates a limiting step for the 

conversion of p-coumaric acid into p-coumaroyl-CoA. Previous research 

reported the same limiting step in E. coli and yeast; they associated the 

accumulation of p-coumaric acid to the lack of malonyl-coA or low activity of 

the 4CL for conversion of p-coumaric acid into p-coumaroyl-CoA (Stahlhut et 

al., 2015, Koopman et al., 2012). A first step to overcoming the limitation on 
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these enzymatic steps can be the combinatorial screening of other versions 

of the enzymes. Also, the over-expression on the limiting steps of the 

pathways can be explored (Yamada et al., 2010; Zhou et al., 2012; Zhang et 

al., 2012). Indeed, an improvement by 28% was observed after an additional 

copy of CHS and CHR was introduced. Heterologous co-expression of 

genes originating from the same species has shown positive effects in the 

specificity and kinetic in the pathway for naringenin production (Koopman et 

al., 2012). We think that this can be useful to test if the expression of genes 

from the same species has a positive effect on fisetin production in yeast. 

Another possibility for improvements could be testing several different S. 

cerevisiae strain backgrounds, as miniature genetic and phenotypic 

differences might result in significant differences of the final yields of a given 

metabolite (Strucko et al., 2015). 

In higher plants, flavonoid biosynthetic enzymes are co-localized and 

assembled in protein complexes, the successive channeling of the 

intermediate compounds decreased the formation of by-products. In our 

study, however, the engineered fusion CHS-CHR protein did not result in the 

increased carbon flux towards fisetin biosynthesis branch. On the other 

hand, the increase of both quercetin and fisetin was observed proving the 

fact that these two enzymes are limiting steps for synthesis of flavonoids.  

In summary, to our knowledge this is the first example where flavoinoids, 

resokaempferol and fisetin have been synthetized in yeast. Additionally, we 

found low enzymatic activity in two key steps: first, the conversion of p-

coumaric acid into the first scaffolds in the flavonoids pathway (4CL, CHS, 

and CHI) and second the reduction of p-coumaroyl CoA into isoliquiritigenin 

(CHR).  
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Supplementary material 

Supplementary Table 1. Primers used in this study. 

USER cloning 

ID Name Sequence (5'-3') 

7628 (Pc_4Cl_U2_fw) ATCTGTCAUAAAACAATGGGAGACTGTGTAGCAC 

7629 (Pc_4Cl_U2_rv),  CACGCGAUTCATTATTTGGGAAGATCACCGGATG 

7632 (Ph_CHS_U1_fw) AGTGCAGGUAAAACAATGACCATGGTTACCGTTGAAG 

7633 (Ph_CHS_U1_rv) CGTGCGAUTCATTAGGTTGCAACGCTATGCAG 

7636  (Ms_CHI_U1_fw) AGTGCAGGUAAAACAATGACCATGGCAGCAAGC 

7637 (Ms_CHI_U1_rv) CGTGCGAUTCATTAGTTGCCGATTTTAAAGGCACC 

7640  (Ms_CHR_U2_fw) ATCTGTCAUAAAACAATGACCATGGGTAGCGTTG 

7641  (Ms_CHR_U2_rv) CACGCGAUTCATTAGTCATCATACAGATCATTCAGACC 

7644  (At_F3H_U2_fw) ATCTGTCAUAAAACAATGGCTCCAGGAACTTTGAC 

7645  (At_F3H_U2_rv) CACGCGAUTCACTAAGCGAAGATTTGGTCGACAG 

7648 (At_FLS_U1_fw)  AGTGCAGGUAAAACAATGGAGGTCGAAAGAGTCC 

7649  (At_FLS_U1_rv) CGTGCGAUTCATCAATCCAGAGGAAGTTTATTGAGC 

7654 (Fa_FMO-Cr_CPR_U1_fw) AGTGCAGGUAAAACAATGGCGATTACCCTGCTG 

7655  (Fa_FMO-Cr_CPR_U1_rv) CGTGCGAUTCATTACCAAACGTCACGCAGATAAC 

7658 (Ph_FMO-Cr_CPR_U1_fw) AGTGCAGGUAAAACAATGGCGATTCTGTATACCGTG 

7659  (Ph_FMO-Cr_CPR_U1_rv) CGTGCGAUTCATTACCAAACGTCACGCAGATAAC 

Verification     

ID Name Sequence (5'-3') 

892 Sc_XII-1-down-out-sq GGACGACAACTACGGAGGAT 

894 Sc_XII-2-down-out-sq GGCCCTGATAAGGTTGTTG 

900 Sc_XII-5-down-out-sq GTGGGAGTAAGGGATCCTGT 

2220 Sc_Colo_pcr_fw CCTGCAGGACTAGTGCTGAG 

8419 Sc_XI-5_down-out-sq GCATGGTCACCGCTATCAGC 
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Supplementary Table 2. List of Biobricks generated by PCR amplification, 

description of the templates can be found in Stahlhut et al., (2015). 

 

NAME TEMPLATE_FOR_PCR FW_PRIMER_FOR_PCR RV_PRIMER_FOR_PCR 

BB0653 (Pc_4Cl->) pCDF-4cl-2Pc ID7628 (Pc_4Cl_U2_fw) ID7629 (Pc_4Cl_U2_rv) 

BB0655(Ph_CHS<-) pET-chsPh-chiMs ID7632 (Ph_CHS_U1_fw) ID7633 (Ph_CHS_U1_rv) 

BB0656 (Ms_CHI<-) pET-chsPh-chiMs ID7636 (Ms_CHI_U1_fw) ID7637 (Ms_CHI_U1_rv) 

BB0658 (Am_CHR->) pRSF-chrAm ID7642 (Am_CHR_U2_fw) ID7643 (Am_CHR_U2_rv) 

BB0659 (At_F3H->) pCDFf3hAt-fls-1At ID7644 (At_F3H_U2_fw) ID7645 (At_F3H_U2_rv) 

BB0660 (At_FLS <-) pCDFf3hAt-fls-1At ID7648 (At_FLS_U1_fw)  ID7649 (At_FLS_U1_rv) 

BB0661 (Fa_FMO-Cr_CPR<-) pACYCf30hFxa2-cprCr 
ID7654 (Fa_F3H-
Cr_CPR_U1_fw) 

ID7655 (Fa_F3H-
Cr_CPR_U1_rv) 

BB0680 (Ph_FMO-Cr_CPR<-) pACYCf30hPh-cprCr 
ID7658 (Ph_F3H-
Cr_CPR_U1_fw) 

ID7659 (Ph_F3H-
Cr_CPR_U1_rv) 
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5. Conclusions and perspectives 

 

There is a permanent interest in the development of a yeast cell factory for 

the synthesis of aromatic secondary metabolites since many of these 

metabolites have a broad range of pharmaceutical and nutraceutical 

properties. This thesis contributed to a better understanding of the aromatic 

amino acids pathway in yeast and the physiological challenges that the cell 

faces after being engineered for the synthesis of p-coumaric acid (p-CA), a 

building block for the synthesis of many secondary metabolites. The p-CA 

platform strain was successfully employed for the synthesis of aromatic 

secondary metabolites using as a test case the synthesis of flavonoids. 

 

Metabolic engineering for the synthesis of aromatic secondary 

metabolites in yeast. 

Through the combination of several different strategies we improved the 

production of p-CA in yeast: reduction of by-product formation, followed by 

the elimination of the allosteric regulation of enzymes of the shikimate 

pathway and finally identification of flux-limiting steps in the shikimate 

pathway.  

E. coli and S. cerevisiae had been engineered in previous research for the 

production of different aromatic secondary metabolites, however still is 

necessary further work for the development of a platform strain capable of 

high-level production of aromatic metabolites. Our platform strain reached a 

titer of 1.93 ± 0.26 g L -1 of p-CA; besides representing a starting point for 

further development of a process for commercial p-CA production, we 

believe this strain can be used as a platform strain for production of 

flavonoids and other p-CA derived secondary metabolites. 

 

Systems biology and development of cell factories 

Through the use of transcriptomics, metabolomics and physiological analysis 

we investigated how the production of p-CA influences the host and whether 
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these effects depend on the strain background. We found that the transport 

of amino acids and sugars were highly downregulated in the engineered 

strains of both backgrounds(CEN.PK and S288c); probably, as a response 

to the stress produced by the secreted p-CA.  

Since the CEN.PK strain was less affected than S288c strain by increased 

p-CA production as was evident from fewer changes in the transcription 

profile, intracellular metabolites concentrations, and high p-CA titers; we 

consider that CEN.PK strain suits better as a cell factory for the production 

of p-CA.  

Further improvement of the p-CA cell factory can be reached by the use of a 

combinatorial evaluation of the upregulation and downregulation of the 

genes that were significantly affected in their expression levels, 

(Aminotransferases, amino acids permeases and transporters). This 

approach will allow identifying if the downregulations and upregulations of 

these genes are a response to stress with a negative effect on the 

production of p-CA, or physiological adjustment to the flux of intermediate 

compounds toward L-tyrosine with a positive effect on the platform strain. 

 

Cell factories for the synthesis of flavonoids 

We successfully expressed heterologous flavonoid metabolic pathways in 

the previously engineered p-CA platform strain: we developed a set of 

strains for the synthesis of the flavonoids naringenin, liquiritigenin, 

kaempferol, resokaempferol, quercetin and fisetin and for the first time 

liquiritigenin, resokaempferol and fisetin were synthesized in yeast.  

The compounds quercetin and kaempferol were the ones with the highest 

extracellular concentrations detected in this study; these strains secreted 

20.38 ± 2.57 mg L-1 and 26.57 ± 2.66 mg L-1respectivelly. We demonstrated 

that flavonoids can be synthesized via two different precursor supplying 

routes: PAL and TAL pathways, interestingly we found that the production of 

flavonoids was better in the strains engineered with the TAL pathway. The 

differences between the PAL and TAL pathway could be due to possible 
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inhibitory effects of high levels of p-CA or negative interactions between the 

different P450s of the PAL and flavonoid pathways. 

By the use of strains with improved flux towards p-CA via TAL route, the 

synthesis of the downstream flavonoids was improved; however, the 

engineered strains accumulated significant amounts of p-CA, which 

suggested that the p-coumaroyl-CoA ligase 4CL and possibly chalcone 

synthase CHS were limiting the carbon flux into flavonoids. Overexpression 

of an additional copy of CHS and CHR genes indeed increased the titer of 

fisetin from 1.65 ± 0.101 mg L-1 to 2.28 ± 0.073 mg L-1. 

Since we observed accumulation of intermediate compounds in the strains 

engineered for flavonoids synthesis, indicating that some enzymes are 

limiting the flux of intermediate compounds. Further improvement of the 

strains can be reached by the expression of extra copies of the enzymes 

involved in the limiting steps. At this respect approaches such as multivariate 

metabolic engineering can be useful since it is possible to test different 

promoters, heterologous genes and copy numbers aiming to reach optimal 

expression levels of the enzymes involved in the synthesis of flavonoids. 

Traditional cell factories such as E. coli and S. Cerevisiae have been used 

for the development of a broad range of platform strains for production of a 

diverse range of biological and pharmaceutical products. In the particular 

case of aromatic secondary metabolites, it can be useful to explore 

alternative cell factories: aromatic secondary metabolites are produced in 

higher plants and they share an evolutionary trait with microalgae. Since it 

has been proved that that microalgae are also natural producers of aromatic 

secondary metabolites; it will be feasible to adapt this organism for the 

production of aromatic compounds.  
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