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Running title: Integrin targeting of peptide modified liposomes 

 

Abstract: Utilisation of functionalized liposomes as the means of targeted delivery of 

therapeutics may enhance specific transport of biologically active drugs to target tissues, 

while avoiding or reducing undesired side effects. In the present investigation, peptide-

conjugated cationic liposomes were constructed with the aim of targeting integrins (i.e. 

vitronectin and/or fibronectin receptors) on activated endothelial cells. The peptide-

conjugated liposomes induced only cytotoxicity at the highest concentration in non-activated 

or activated endothelial cells, as well as in co-culture of endothelial cells and macrophages. 

There was unaltered secretion of cytokines following exposure of peptide-conjugated 

liposomes to endothelial cells, indicating that the materials were not inflammogenic. 

Liposomes with a peptide targeting the fibronectin receptor (integrin α5β1) were more 

effective in targeting of activated endothelial cells, as compared to a liposome with a peptide 

that targeted both the fibronectin and vitronectin receptors, as well as liposomes with a 

control peptide. The liposome targeted to the fibronectin receptor also displayed uptake in 

endothelial cells in co-culture with activated macrophages. Therefore, this study demonstrates 

the feasibility of constructing a peptide-conjugated cationic liposome, which displays 

targeting to activated endothelial cells at concentrations that are not cytotoxic or 

inflammogenic to the cells.  

 

Liposomes are artificial vesicles made of an aqueous core surrounded by a lipid bilayer [1]. 

These vesicles have been designed and utilised as delivery vehicles for drugs, genetic 

material and imaging agents for parental administration [2]. The encapsulation of the cargo 

into the liposomes can protect the drug against metabolic transformation, enable transport 

across biological barriers, and control the release in target tissues – hence, the subsequent 

alleviation of side effects associated with drugs. Due to their small size, charge and the 

possibility for modification and inclusion of targeting moieties, liposomes can be ideal 

candidates for improved targeting and delivery to the target tissue [3]. Indeed, liposomes can 

accommodate a wide range of specific adhesion molecules and polymers on their surface, 

which can aid adhesion to vascular cells [4-8]. Furthermore, it has been demonstrated that 

liposomes exhibit enhanced permeability and retention in certain areas of the vasculature, 

which suggests that it is possible to influence the distribution of liposomes in the 

cardiovascular system [9].  

Endothelial cells line all blood vessels and regulate the flow of nutrients, biologically active 

molecules and an array of leukocytes. This role of the endothelium is governed through 

membrane-bound receptors, lipid transporting particles, hormones and proteins that govern 

cell-cell and cell-matrix interactions [10]. Integrins (i.e. αv integrins) on the endothelial cells 

bind to extracellular matrix proteins and other adhesion receptors on neighbouring cells. The 
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integrins on the surface of a cell will determine whether it can adhere to and/or survive in a 

particular microenvironment; therefore, the matching of integrins and ligands plays a key role 

in the regulation of the sprouting ability of endothelial cells during angiogenesis and 

localization of leukocytes to sites of tissue inflammation. The peptide sequences arginine-

glycine-aspartic acid (RGD) and C16Y (DFKLFAVYIKYR) have been identified as ligands 

for interaction and binding of integrins αvβ3, αvβ5 and α5β1. The usefulness of these 

sequences has been exploited as drug-delivering systems to target specific cell types [11-14]. 

The challenge is to attach a short peptide to liposomes that specifically target the cell type in 

question for therapy. The integrin α5β1 (fibronectin receptor) and αvβ3 (vitronectin receptor) 

are typically expressed on endothelial cells, although the number of receptors depends on the 

type of endothelial cells. For instance, the fibronectin receptor is much more abundant on 

primary human umbilical vein endothelial cells (HUVECs) than the vitronectin receptor [15, 

16]. The vitronectin receptor is abundantly expressed on angiogenic endothelial cells in 

remodelling and pathological tissues as compared to the expression in normal quiescent 

endothelial cells [17]. The vitronectin and fibronectin receptors are ubiquitous integrins, 

playing an important role in a diverse range of biological processes including cell migration, 

tumour invasion, angiogenesis and immune responsiveness [18-21]. 

To date, very few studies have designed stable, novel peptide-conjugated liposomes for 

potential cardiovascular disease therapy (with negligible adverse immunogenic capacity as 

well as enhanced targeting ability). In the present investigation, we investigated the targeting 

and toxicity of cationic liposomes with functionalization to target integrins on activated 

endothelial cells. We assessed differences in targeting and toxicity in endothelial cells that 

were in normal state and after insults such as local inflammation and early atherosclerotic 

lesions: 1) quiescent endothelial cells, 2) endothelial cells activated by lipopolysaccharide 

(LPS), 3) activated cells with presence of immune cells (e.g. activated macrophages or foam 
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cells). The co-culture model was utilized to mimic the inflammatory response when 

phagocytes (predominantly macrophages) increase adhesiveness to the endothelium, secrete 

inflammatory soluble proteins and produce reactive oxygen species. Activated macrophages 

engulf materials through binding to scavenger receptors. Thus, they may compete with 

endothelial cells with regard to uptake of peptide-modified liposomes. 

 

Materials and methods 

Synthesis of unconjugated liposomes 

The lipids 1,2-dioleoyl-sn-glycero-3-phoshocholine (DOPC) (Avanti Polar Lipids Inc., 

Alabaster, AL, USA) and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-

sulfate (DOTAP) (Avanti Polar Lipids Inc., Alabaster, AL, USA) (molar ratio - 9:1) were 

dissolved in chloroform and thoroughly mixed in a glass vial. The solution was allowed to 

dry under vacuum for 2 hr in order for a lipid film to form on the glass and to ensure the 

complete removal of chloroform. The unconjugated liposomes were rehydrated carefully by 

the addition of phosphate-buffered saline (PBS), for a final lipid concentration of 1 mg/ml. 

The mixture was incubated unstirred overnight at room temperature. The following day, the 

unconjugated liposomes were subjected to ten freeze-thaw cycles to minimize multi-

lamellarity by immersion in liquid nitrogen, followed by thawing in 40ºC water bath. The 

liposomes were sequentially extruded through two stacked polycarbonate filters with pore 

sizes of 50 nm (Mini-extruder - Avanti Polar Lipids Inc., Alabaster, AL, USA), before being 

stored at 4ºC until use. 
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Peptide design and synthesis 

The lipidated peptides for targeting integrins were assembled by solid-phase peptide 

synthesis (SPPS) using amino acids carrying an N-9-fluorenylmethyloxy carbonyl (Fmoc) 

protecting group (see Supplementary Information). The lipid chain was introduced by on-

resin modification of a C-terminal Lys (fig. 1). This Lys residue was incorporated with a 

allyloxycarbonyl (Alloc) side-chain protecting group, as Fmoc-Lys(Alloc)-OH. After 

assembly of the linear sequence, the Alloc-protecting group was selectively removed, while 

the other protecting groups remained intact. The free Lys side-chain amine was acylated with 

palmitic acid to ensure optimal anchoring to the liposome surface. Next, the N-terminal 

Fmoc-protecting group was removed and the N-terminal amine tagged by amide bond 

formation with an ATTO465 fluorophore for in vitro fluorescent detection. Finally, the 

peptides were deprotected and released from the support.  

Peptides 2 and 3 were designed to target integrins αvβ3, αvβ5 and/or α5β1 on endothelial 

cells while peptide 1 was designed as randomized control sequence of amino acids (fig. 2). 

 

Preparation of the peptide-conjugated liposomes 

The three different peptides were added to the liposomes (1:5 weight ratio) in PBS and 

incubated unstirred overnight at room temperature in containers that were wrapped in tinfoil 

to avoid contact with light. Peptide-conjugated liposomes were then separated from unbound 

peptides using a PD-10 desalting column according to manufacturer’s instructions (GE 

Healthcare, Brøndby, Denmark).  

Characterisation of unconjugated liposomes 

The hydrodynamic size distributions of the unconjugated liposomes dispersed in filtered 

water, PBS or complete cell culture medium was determined in the 10-50 µg/ml 

concentration range by Nanoparticle Tracking Analysis (Nanosight LM20, UK). The zeta 
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potential of the liposomes in PBS were measured in a standard Malvern disposable folded 

capillary cells in a Zetasizer nano ZS with Malvern version 6.20 Software. A limulus 

amebocyte lysate (LAL) Pyrogent™ Plus assay (Lonza, Basel, Switzerland) was utilised to 

test for possible endotoxin contaminations of the liposomes. The kit was used according to 

the manufacturer’s guidelines. 

 

Cell culture and liposome treatment 

Primary HUVECs (Cell Applications, San Diego, CA, USA) were cultured in T75 flasks in 

endothelial cell growth medium (Cell Applications, San Diego, CA, USA). All incubations 

were carried out at 37°C and 5% CO2. The cells were utilised between passages 2-10 as they 

retain morphologic and phenotypic characteristics of endothelial cells. THP-1 monocytes 

(American Type Culture Collection, Manassas, VA, USA) were cultured in Roswell Part 

Memorial Institute (RPMI) medium (Gibco, The Netherlands) supplemented with 10% foetal 

bovine serum (FBS) (Gibco, The Netherlands), 2 mM L-glutamine and 100 U/ml 

Penicillin/Streptomycin (Sigma, UK).  

The HUVECs were activated utilising 2 µg/ml of Escherichia coli LPS for 2 hr (serotype 

O26:B26, Sigma, UK). In the co-culture model, the HUVECs and THP-1 cells (4:1 ratio) 

were cultured in complete HUVEC medium supplemented with 10 ng/ml of phorbol 12-

myristate 13-acetate (PMA) (Sigma, UK) 24 hr before the addition of LPS for 2 hr [22]. The 

cells were rinsed in PBS and subsequently treated with liposomes.  

The cell cultures were exposed to liposomes in a concentration range between 0.61 and 312.5 

µg/cm
2
 (equivalent to 2-1000 µg/ml).  
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WST-1 cell viability assay 

The cells (all three different cultures - non-activated HUVECs, activated HUVECs and 

HUVECs/macrophage co-culture) were seeded in 96-well plates (10
4
 cells per well in 100 µl 

of the cell culture medium) and incubated for 24 hr before they were exposed to the 

liposomes for 24 hr. The first 24-hr incubation period was used to avoid a seeding effect in 

the cells and the subsequent 24-hr period is a standardized incubation for measurement of 

cytotoxicity with the WST-1 assay.  Subsequent to treatment with peptide-conjugated 

liposomes, cell supernatants were collected and frozen at -80ºC and later used for soluble 

protein measurements. The plates were incubated with 10 μl of the WST-1 cell proliferation 

reagent (Roche, USA) and 90 μl of fresh medium for 1 hr at 37ºC and 5% CO2. The 

supernatant was transferred to a fresh plate and the absorbance was measured by 

spectrophotometry at 450 nm (transfer of the supernatant into fresh plates was carried out to 

reduce the potential interference with materials during the measurements).  

 

Peptide-conjugated liposome-induced inflammatory response 

After exposure, the cell culture supernatants were collected and stored at -80ºC. The 

concentrations of interleukin (IL) 1β, IL6, intercellular adhesion molecule-1 (ICAM-1), 

vascular cell adhesion molecule-1 (VCAM-1), macrophage inflammatory protein-1α (MIP-

1α), tumour necrosis factor-α (TNF-α) and granulocyte-colony stimulating factor (G-CSF) 

supernatants were determined with BD
TM

 Cytometric Bead Array cytokine flex sets (bead-

based immunoassay; BD Biosciences, USA). 
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Flow cytometry was utilised to discriminate between different bead populations based on size 

and fluorescence, according to the manufacturer’s instructions. The flex sets employ 

microparticles with distinct fluorescence intensities to detect soluble analytes (in this case 

cytokines/chemokines). 

In these experiments, no positive control was included as we do not have a compound that 

increases the entire set of markers in both THP-1 cells and HUVECs. LPS exposure only 

increases the secretion of some cytokines, and it is not the same concentration that produces a 

maximal response of different cytokines (unpublished observations). We have regarded the 

substantial difference in cytokine release between the non-activated HUVECs, activated 

HUVECs and co-culture as sufficient evidence of ability of the flex sets to determine 

concentration-response relationships in cultured cells.  

 

Liposome uptake - fluorescent microscopy 

The cells were seeded in 8-well microscopy chambers (Ibidi, Germany) (10
4
 cells per well in 

200 µl of the cell culture medium) and incubated for 24 hr at 37ºC and 5% CO2. The cells 

were exposed to PMA and/or LPS as previously described. The cells were exposed to the 

different peptide-conjugated liposomes for 2 hr (7.8, 15.6 and 31.25 µg/cm
2
). Following 

liposome exposure, the cells were washed thoroughly with PBS and observed under a Leica 

AF6000 inverted wide-field fluorescence microscope (Leica, Germany). The 2-hr exposure 

period for the microscopic uptake studies was based on preliminary data from time-course 

experiments utilising liposomes with similar physico-chemical characteristics (unpublished 

data) and previously published work with gold nanoparticles [23, 24]. The experiments were 

carried out on three different days; only representative images of 15.6 µg/cm
2
 are shown in 

the paper. 
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Flow cytometric analysis of cell-associated fluorescence 

Following a 2-hr peptide-conjugated liposome treatment (15.6 µg/cm
2
), cell cultures (as 

described above) (10
6 
cells per well) were washed three times and detached using 

trypsin/EDTA. The cells were centrifuged and re-suspended in 200 µl of PBS and analysed 

by flow cytometry using an Accuri C6 flow cytometer (Becton Dickinson, USA). The results 

are reported as the mean fluorescence from 10
4
 cells, which were analysed in each flow 

cytometry analysis.  

 

Semi-quantification of cellular uptake 

The cells (all three different cultures) were seeded in 96-well plates (10
4
 cells per well in 100 

µl of the cell culture medium) and incubated for 24 hr at 37ºC and 5% CO2. The following 

day, the cells were exposed to the different peptide-conjugated liposomes (15.6 µg/cm
2
) for 2 

or 6 hr at 37ºC and 5% CO2. The supernatant from each well was transferred to opaque plates 

and the fluorescence was measured (Fluoroskan Ascent FL Microplate Fluorometer and 

Luminometer, Thermo Scientific, USA).  

 

Statistical analysis 

All data are expressed as mean ± standard error of the mean (SEM). For statistical analysis, 

the experimental results were compared to their corresponding control values using full-

factorial ANOVA with Tukey’s multiple comparison. All statistical analysis was carried out 

utilizing Minitab 17. All experiments were repeated independently on at least three separate 

occasions. 
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Results 

Liposome characterisation 

The particle sizes of the unconjugated liposomes were determined in filtered water, PBS and 

the HUVEC complete medium (table 1). Representative examples of the particle size 

distribution are provided in supplementary fig. 1. The data demonstrated that there was only a 

slight tendency for the unconjugated liposomes to agglomerate over a 3-month period. In 

keeping with previous observations on other types of particles [25, 26], particle sizes were 

larger in HUVEC medium as compared to water or PBS. The HUVEC medium contains 

serum proteins of different sizes, which may cause agglomeration of liposomes or affect the 

readings in the Nanosight analysis.  

No endotoxin contamination (≤ 0.25 EU/ml) was detected for the peptide-conjugated 

liposomes.  

 

Cytotoxicity  

The peptide-conjugated liposomes induced cytotoxicity in a log-linear manner (fig. 3). The 

activated HUVECs displayed the lowest level of cytotoxicity, followed by non-activated 

HUVECs and co-cultures of HUVECs and macrophages. Nevertheless, there was no 

difference in the cytotoxicity profile between the different peptide-conjugated liposomes in 

any of the cell culture models at the concentrations investigated. For all other experiments 

than the WST-1 assay, we used a maximal concentration close to cytotoxicity (cytokine 

secretion; 40 µg/cm
2
) or a sub-cytotoxic concentration (attachment/uptake; 15.6 µg/cm

2
)  
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Inflammatory response 

The concentration of MIP-1α, TNF-α, IL6, ICAM-1, VCAM-1, G-CSF and IL1-β were 

measured in the supernatants of cell cultures after 24-hr exposure to the liposomes (figs. 4 

and 5). A 24-hr exposure for assessment of the inflammation response was used as earlier 

time points, i.e. 2 and 6 hr, might be too early for production and detection of cytokine and 

cell adhesion molecule secretion in the cell culture supernatant. In general, the secretion of 

inflammatory cytokines by non-activated HUVECs was relatively low. These cytokines were 

slightly increased in the supernatant of activated HUVECs (3-4 fold as compared to non-

activated HUVECs). The co-cultures of HUVECs and macrophages had substantially higher 

concentrations of cytokines in the supernatants (up to 100-fold), which are most likely 

originating from the macrophages. Importantly, the exposure to peptide-conjugated 

liposomes did not affect the secretion of cytokines in any of the cell culture models. 

 

Targeting and uptake of liposomes by HUVECs  

The targeting and internalization of the peptide-conjugated liposomes were assessed by 

combination of flow cytometry, fluorescent microscopy and fluorometric determination of 

the concentration of peptide-liposome conjugates in the supernatant in the three cell cultures. 

Fig. 6 depicts a semi-quantitative analysis of the concentration of conjugates that remained in 

the supernatant of the cell cultures after 2- or 6-hr exposure. This particular experimental 

setup cannot distinguish between peptide-conjugated liposomes that have been internalized or 

merely attached to the cell membrane. Nevertheless, there was higher attachment or uptake of 

peptide-conjugated liposomes at 6 hr as compared to 2 hr. Liposomes with peptide 2 

displayed the highest level of attachment or uptake in activated HUVECs. Liposomes with 

peptide 2 or 3 also displayed higher attachment or uptake in the co-culture as compared to 

liposomes with peptide 1.  
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In an attempt to distinguish between attachment and uptake of liposomes in HUVECs and 

macrophages, we used fluorescence microscopy (fig. 7). However, it was inherently difficult 

to obtain clear two-dimensional images of co-cultures because HUVECs are flat on the 

surface of the microscope slide, whereas macrophages are round cells that attach on top of the 

endothelial cells. The fluorescent microscopy showed presence of liposomes (red colour in 

the images) in the perinuclear area of HUVECs after 2-hr exposure, indicating internalization 

of all types of peptide-conjugated liposomes. Due to the quality of the images it was not 

possible to quantitatively assess the uptake of peptide-conjugated liposomes. In the co-

cultures, both HUVECs and macrophages displayed uptake of peptide-conjugated liposomes, 

but it was not possible to measure differences in the uptake of liposomes with different 

peptides or cell types.  

A direct quantitative comparison of differences in the adhesion/uptake of peptide-conjugated 

liposomes was carried out by flow cytometry (fig. 8). This showed that the liposome with 

peptide 2 had higher fluorescent signal after 2-hr exposure as compared to liposomes with 

peptide 1 or 3. It should be noted that the flow cytometry method in this study cannot 

distinguish between fluorescence signals from outside and inside cells. However, the 

collective experimental evidence from the fluorometric determination of peptide-liposome 

conjugates in the supernatant (fig. 6), fluorescence microscopy (fig. 7) and flow cytometry 

(fig. 8) indicates uptake of peptide-conjugated liposomes in activated HUVECs and THP-1 

cells. 

 

Discussion 

The results from this study show that HUVECs had either a higher uptake of liposomes with 

peptide 2 as compared to liposomes with peptide 1 and 3, or a faster uptake within the 

exposure period. Moreover, the targeting of peptide 2 was also observed in co-cultures of 
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HUVECs and macrophages, indicating a somewhat robust delivery of the peptide-conjugated 

liposomes to HUVECs in a pro-inflammatory environment where scavenging by activated 

macrophages may lead to inefficient targeting. The targeting of HUVECs with these peptide-

conjugated cationic liposomes did not cause cytotoxicity or inflammation. 

The present study allows for a direct comparison between two peptide-conjugated liposomes 

for targeting integrins under the exact same experimental conditions. It has been shown that 

HUVECs have a higher expression of integrin α5β1 than αvβ3 and αvβ5, whereas other types 

of endothelial cells have a different expression of integrins [15, 16]. Both peptide 2 and 3 

target the integrin αvβ5, indicating the difference between these peptides is mainly that 

peptide 3 has a competing binding to integrin αvβ3 (i.e. vitronectin receptor) and α5β1 (i.e. 

fibronectin receptor). The difference between peptide 2 and 3 suggests that the 

internationalization of peptide-conjugated liposomes via binding to the fibronectin receptor 

could be more effective than the vitronectin receptor. It is also possible that the affinity for 

binding to the specific receptors is higher for peptide 2 in comparison to peptide 3. It should 

be noted that the peptides were lipidated for anchorage to liposomes. This type of 

hydrophobic association is less strong or stable than covalent bonding. However, detachment 

of the lipidated peptides from liposomes is chemically unfavourable in the aqueous 

environment of cell cultures.   

During an inflammatory response, circulating human leukocytes are able to leave the blood 

and enter the site of injury by migration through endothelial and sub-endothelial matrices. 

The integrins on endothelial cells are heavily involved in this migration process together with 

cell adhesion molecules PECAM (CD31), ICAM-1, VCAM-1 and selectins [27]. Our results 

indicated enhanced binding/uptake of peptide-conjugated liposomes in activated HUVECs. It 

has been described that TNF-α activated HUVECs had increased uptake of anti-VCAM-Fab’-

conjugated liposomes as compared to non-activated cells [28]. Other studies on IL-1α 
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activated HUVECs also showed enhanced uptake of liposomes that were coupled with 

antibodies against cell adhesion molecules on endothelial cells [29, 30]. Activated 

macrophages engulf materials through binding to scavenger receptors. Thus, activated 

macrophages may compete with endothelial cells with regard to uptake of peptide-modified 

liposomes. In addition, there was uptake of liposomes with peptide 2 in HUVECs in the co-

culture with activated macrophages. Liposomes with peptide 3 only showed uptake in the co-

culture, indicating that it was mainly engulfment by macrophages. These reflections stem 

from observations in cultured cells, which is the test system utilised in this study. One of the 

on-going issues in nanomedicine is the effect of protein corona [31]. In this study, the cell 

culture medium contains serum, which is required for cell survival and growth. Thus, the 

peptide-conjugated liposomes were most likely coated with a protein corona. Interestingly, it 

has been shown that a protein corona favours the internalization of liposomes by 

macrophages and tumour cells. [32]. Circulating nanoparticles in the blood stream are most 

likely coated with a protein corona, but selective targeting has been shown for cell adhesion 

molecule-conjugated liposomes that accumulated in the target tissue in a rat experimental 

model of myocardial infarction [33].        

It has been previously demonstrated that administration of cationic liposomes may lead to 

activation of the innate immune system typified by the instigation of the complement system 

and strong myeloid inflammatory cell response [34, 35]. Moreover, at high dosage in vivo, 

cationic micelles have been demonstrated to cause inflammatory gene expression in lung, 

spleen and liver, although there was no sign of toxicity with respect to routine pathology, 

histology and clinical chemistry end-points [36]. This cationic charge has also been shown to 

be associated with increased cellular toxicity [37, 38]. There is strong evidence that exposure 

to some types of carbon-based and metaloxide nanomaterials can increase the expression of 

ICAM-1 and VCAM-1 on the cell membrane of HUVECs [39-41]. This activation can lead to 
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attachment between HUVECs and macrophages; the latter can be stimulated to accumulate 

lipids in the presence of carbon-based nanomaterials [42-44]. In this study, a comprehensive 

investigation of potential adverse effects following exposure of HUVECs and macrophages 

showed that the peptide-conjugated liposomes did not induce secretion of cell adhesion 

proteins (i.e. ICAM-1 and VCAM-1) or inflammatory response after 24-hr exposure at 

concentrations where adhesion/uptake to HUVECs were observed after 2 and 6 hr. However, 

it should also be emphasized that endothelial cells may not receive the highest exposure in 

vivo because large quantities of intravenously administered particles accumulate in the liver 

[45].  

In summary, the data here demonstrated liposomes modified with peptide 2 to be a promising 

targeting candidate for improved specific delivery to activated endothelial cells on the lumen-

side of atherosclerotic plaques in the arterial tree. Liposomes with peptide 2 have potential 

for delivery of a payload of therapeutic and/or imaging agents to application site while 

sparing or at least minimising exposure of normal healthy tissues. 

Despite being positively charged, the peptide-conjugated liposomes had negligible adverse 

immunogenic capacity and low-level of cytotoxicity to activated HUVECs and macrophages. 
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Legends to figures 

 

Fig 1. Schematic representation of the applied synthesis strategy for the selected peptides: 1. 

Fmoc deprotection of the resin followed by SPPS. 2. Selective Alloc deprotection. 3. 

Lipidation of the Lys residue via amide coupling 4. Fmoc deprotection of the N-terminal. 5. 

Fluorescent tagging of the N-terminal by amide coupling of ATTO465. 6. Deprotection and 

release of the final peptide product. 

 

Fig 2. The peptides utilised for targeting of activated endothelial cells. The regions important 

for the targeting and recognition of receptors on the cells are highlighted in red 

(DFKLFAVYIKYR for peptide 2 and RGD for peptide 3). Peptide 1 contains a scrambled 

sequence of amino acids without specific targeting to receptors on endothelial cells. 

 

Fig 3. Cytotoxicity of peptide-conjugated liposomes in non-activated HUVECs (a), activated 

HUVECs (b) or co-cultures of HUVECs and macrophages (c). The cells were exposed to cell 

medium (C) or peptide-conjugated liposomes for 24 hr. The graphs show results of liposomes 

with peptide 1 (blue, diamonds), 2 (red, squares) or 3 (green, triangles). The cytotoxicity 

measured via WST-1 assay. The values depict the mean ± SEM (n=3). 
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Fig 4. Cytokine secretion following exposure to peptide-conjugated liposomes. The cells 

were exposed to cell medium as the negative control (Cont) or increasing concentrations of 

the peptide-conjugated liposomes for 24 hr. The bars show results of liposomes with peptide 

1 (blue), 2 (red) or 3 (green). Missing bars are due to undetectable concentrations of 

cytokines. The values represent the mean ± SEM (n=3).  

 

Fig 5. Secretion of ICAM-1 and VCAM-1 following exposure to peptide-conjugated 

liposomes. The cells were exposed to cell medium as the negative control (Cont) or 

increasing concentrations of the peptide-conjugated liposomes for 24 hr. The bars show 

results of liposomes with peptide 1 (blue), 2 (red) or 3 (green). Missing bars are due to 

undetectable concentrations of cell adhesion molecules. The values represent the mean ± 

SEM (n=3). 

 

Fig 6. Uptake of peptide-conjugated liposomes by non-activated HUVECs, activated 

HUVECs and a co-culture of macrophages and HUVECs. The cells were exposed to (15.6 

µg/cm
2
) of the peptide-modified liposomes for 2 and 6 hr before the supernatant was 

removed, transferred to a fresh plate and fluorescence measured. For the control, the peptide-

conjugated liposomes were incubated in empty wells before the above procedure was 

repeated. The percentage is the ration between  fluorescence in the cell culture supernatant 

and fluorescence in the same volume of peptide-conjugated liposome suspension without 

cells. The values represent the mean ± SEM (n=3) with significance indicated by *P<0.05 

and **P<0.005 as compared to the liposomes modified with peptide 1 at the particular time-

point. 
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Fig 7. Fluorescent microscopy images of liposome uptake following 2-hr exposure to 

liposomes with peptide 1 (a, b), 2 (c, d) or 3 (e, f) (15.6 µg/cm
2
) to activated HUVECs (a, c, 

e) or co-culture of macrophages and HUVECs (b, d, f) (scale bar - 25 µm). Red spots (i.e. 

liposomes) can be seen in the perinuclear region of HUVECs, whereas it is not possible to 

discern differences in the uptake of different liposomes. Macrophages are visible on top of 

the HUVECs. Uptake of peptide-conjugated liposomes in macrophages is difficult to see in 

these images because they are focussed on HUVECs, which gives the round macrophages a 

bright light from the curved cell membrane. 

 

Fig 8. Flow cytometric analysis of cell-associated fluorescence. Activated HUVECs were 

incubated with 15.6 µg/cm
2
 of liposomes with peptide 1 (black), 2 (red) or 3 (blue) for 2 hr. 

The values represent mean fluorescence from 10000 cells per treatment ± SEM (n=3), 

significance indicated by * = p<0.05 as compared to the liposomes modified with peptide 1. 

The insert shows an example of the flow cytometry analysis with the number of cells (y-axis) 

as the function of fluorescence in the cell (x-axis). A total of 10
4
 cells have been analysed for 

each peptide-conjugated liposome. 
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Table 1. Particle size of unconjugated liposomes freshly prepared (measured within 2 hr of 

extrusion) or after 3 months’ incubation at 4°C after the extrusion step.  

 

 Liposome size of fresh samples Liposome size after 3 months 

Mean (nm) Mode (nm) Zeta 

potential 

(mV) 

Mean (nm) Mode (nm) 

Filtered 

water 

73.7 ± 11.4 

(3) 

55.7 ± 7 (3) ND 95.6 ± 20.7 

(3) 

74.6 ± 18.6 (3) 

PBS 117.3 ± 

16.7 (6) 

107.1 ± 21.8 

(6) 

21.9 (1) 133.7 ± 31.4 

(3) 

128.4 ± 21.7 

(3) 

Complete 

HUVEC 

medium 

204.6 ± 

37.4 (6) 

203 ± 41.2 

(6) 

ND 254.1 ± 

59.1(3) 

216.6 ± 23.5 

(3) 

  

The Nanosight analysis measured particle sizes in suspensions in the range between 10 and 

1000 nm. The “mean” is the average particle size of the suspension, whereas the “mode” is 

the size of the most abundant particle size. The results are mean and SEM (number of 

independent experiments). The Zeta potential is the charge of the particles. ND: not 

determined. 
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Fig.1. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6.  

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Fig. 7. 
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Fig. 8.  

 

 

 

 

 


