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Abstract: 

In this work we consider three representative continuous coarsening processes, namely subgrain growth 

in deformed subgrain structures, triple junction motion in deformed lamellar structures, and grain 

growth in deformed nanocrystalline structures, spanning a large range in structural scale and driving 

force. We propose a unified coarsening model, which is based on recovery kinetics and allows the 

apparent activation energy to change during coarsening. The model is successfully applied to the three 

coarsening processes in different materials of different structural morphology and scale, showing that 

the apparent activation energy increases during coarsening, which is verified by direct calculation. The 

increase in the apparent activation energy dominates the coarsening kinetics and leads to a significant 

decrease in the coarsening rate as coarsening proceeds. This suggests that a conventional grain growth 

model is not applicable in an analysis of coarsening of nanostructured materials. Our analysis also 

shows that an initial low thermal stability of nanostructured materials is inherently related to their large 

boundary area per unit volume and their high content of stored energy, reducing the activation barrier 

for structural coarsening. 
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1. Introduction 

In the design and development of strong metallic materials, plastic deformation to high and ultrahigh 

strains has been under rapid development in the last 20 years [1–6]. The materials owe their high 

strength to a very fine microstructure subdivided by boundaries on the submicrometer and nanometer 

scale. The energy stored in the structure is high, providing a large driving force for recovery and 

boundary migration [7]. These materials therefore lack thermal stability and may easily lose strength 

when applied or even during storage [8]. In design and development it is therefore mandatory to 

understand and model softening processes in these strong materials, and the present study focuses on 

boundary migration. 

Recovery kinetics in deformed metals has been explored extensively in the literature [9–14], 

and recently a thorough study of recovery in Al cold rolled to medium and high strains has been carried 

out[8,15–18]. These studies show that the apparent activation energy increased continuously as 

recovery proceeds towards recrystallization [13,15,18]. Based on these studies, the current work widens 

the scope to model the general coarsening behavior of metallic materials after plastic deformation to 

medium-to-ultrahigh strains, where dislocations are preferentially stored in different types of 

boundaries, whose spacing varies on a length scale from a few micrometers to a few tens of nanometers.  

When metallic materials of medium-to-high stacking fault energy are plastically deformed to 

low-to-medium strains, a cell-block structure typically forms, containing cell-blocks subdivided by cell 

boundaries [4,19]. At this strain range, the majority of deformation induced boundaries are low angle 

boundaries (<15°). During recovery, the boundaries become sharper and the structure may become 

coarser. This structure, especially after recovery to some extent, is conventionally known as a subgrain 

structure, where subgrain growth is an important recovery mechanism [12,20,21]. Deformation, for 

example by cold rolling, accumulative roll bonding and high pressure torsion, to medium-to-high 
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strains typically leads to a finely spaced lamellar structure, containing extended lamellar boundaries 

parallel to each other and interconnecting dislocation boundaries in-between [4,17]. The lamellar 

boundaries are a combination of low angle and high angle boundaries (>15°) and the interconnecting 

boundaries are predominantly low angle boundaries. Further deformation to extreme strains, for 

example by ball milling, leads to an extreme grain refinement and an equiaxed deformed 

nanocrystalline structure, where high angle boundaries dominate. To cover a structural scale from the 

micrometer to the nanometer range, three representative well-characterized microstructures were 

chosen (Fig. 1). 

 (i) A subgrain structure: Al-0.05 wt.% Si single crystal channel die compressed by 70% at 

room temperature [22].  

(ii) A lamellar structure: commercial purity Al with a main chemical composition of 99.5Al-

0.25Fe-0.15Si (wt.%) deformed by cold rolling to a true strain of 5.5 [18,23]; 

(iii) A nanocrystalline structure: high purity W powder ball milled at room temperature in Ar 

atmosphere [24]. 
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Fig. 1. Illustrations of three deformation structures of different length scales. (a) A subgrain structure; 

(b) a lamellar structure; (c) a nanocrystalline structure. White and black lines represent low and high 

angle boundaries, respectively. Different colors represent different grains/subgrains of different 

crystallographic orientations. The stored energy in the three structures spans almost two orders of 

magnitude. 

 

2. Model derivation 

The driving force for recovery and boundary migration results from the stored energy in the deformed 

materials. In our previous analysis of recovery kinetics, the remaining fraction of stored energy during 

annealing was determined by hardness indentation measurements [15,16]. In the present study, we 

estimate the stored energy by exclusively considering the energy stored in deformation induced 

boundaries since other contributions are comparatively small [25,26]. These boundaries have energies 

depending on their misorientation angles, and the boundary energy quickly approaches a constant with 

increasing misorientation angle according to the Read-Shockley equation [27]. During continuous 

coarsening of a deformation structure preceding recrystallization, the average misorientation angle 

typically changes marginally, and in the present work we take the average boundary energy as a 

constant during coarsening. Consequently, the stored energy (J/m3) can be simplified as [20,26] 

VP S     (1) 

where γ is the average boundary energy (J/m2) and SV is the boundary area per unit volume (m-1), which 

can be expressed as 

VS
D


     (2) 
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where α is a geometrical constant depending on the morphology and D is a characteristic size 

parameter: (i) the subgrain size in a subgrain structure,  (ii) the lamellar boundary spacing in a lamellar 

structure, and (iii) the grain size in a nanocrystalline structure. The morphology of a deformation 

structure may change slightly during continuous coarsening, but for simplicity we ignore this small 

change, i.e α is fixed. Therefore as a first approximation, the stored energy P is reciprocally related to 

the characteristic size parameter D. 

In order to account for a near logarithmic dependence of recovery kinetics, Kuhlmann [9] first 

suggested an increasing apparent activation energy during recovery. Later, Borelius and coworkers [10] 

suggested a similar rate equation for recovery, considering the zero recovery rate at the end 

0
0 exp( )

Q PdP
K P

dt RT


     (3) 

where t is the annealing time, T is the annealing temperature, R is the gas constant, Q0 is the activation 

energy at the end of recovery, and the three fitting parameters K0, Q0 and β are associated with the 

operative recovery mechanisms. Eq. (3) may be recognized as a first-order reaction rate equation with 

an apparent activation energy depending linearly on the extent of recovery already occurred. The 

apparent activation energy is a key parameter in our study, and in the following the word apparent will 

be omitted for simplicity. 

 Combining Eqs. (1) to (3) gives the following expression 

2
1 exp( )

kdD
k D

dt DT
     (4) 

where k1 is temperature dependent and k2 is a constant, written as 

0
1 0 exp( )

Q
k K

RT
     (5) 
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2k
R


     (6) 

Eq. (4) can be solved with the aid of exponential integrals, resulting in the following 

relationship (D=D0 at t=0) 

2 2
1

0

( ) ( )
k k

Ei Ei k t
DT D T

       (7) 

where Ei( ) is the exponential integral of the quantity inside the bracket. 

Eq. (7) describes the continuous coarsening of a deformation structure during isothermal 

annealing. At one annealing temperature in order to estimate the model parameters k1 and k2, 

coarsening data, i.e. (t, D) pairs, are inserted into Eq. (7) and a curve of k1 vs k2 is calculated for each (t, 

D) pair. A maximum convergence point (k2, k1) is then determined manually by superimposing k1 vs k2 

curves of all annealing times at that temperature. The model thus gives a fitting of the isothermal 

coarsening kinetics. When such a procedure is carried out for other temperatures, different convergence 

points (k2, k1) can be obtained, but the estimated temperature independent constant k2 may vary. 

Therefore an important subsequent procedure is to use a single average k2 for all temperatures to re-fit 

the coarsening data. Such a collective fitting can reduce the fitting error significantly, especially for 

estimating the activation energy Q0 based on Eq. (5). Subsequently the activation energy at any stage of 

coarsening can be obtained as 

2
0app

k R
Q Q

D
      (8) 

 To ensure a satisfactory accuracy, typically three to four annealing temperatures are required, in 

combination with four to five annealing times at each temperature. 

 

3. Model application 
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3.1. Case I – Coarsening of a subgrain structure 

Huang and Humphreys [22] reported significant subgrain growth in Al-0.05% Si single crystal of 

{110}<001> orientation channel die compressed by 70% at room temperature (D0=0.9 µm). The 

isothermal kinetics of continuous coarsening at five different temperatures measured by electron 

backscatter diffraction (EBSD) is shown in Fig. 2a. Based on Eq. (7), the convergence point (k2, k1) for 

each annealing temperature is determined. Such initial fittings lead to an average value of k2 = 3.3×10-3 

m·K and correspondingly adjusted convergence points (k2, k1) at different temperatures. The coarsening 

curves based on such collective fittings are drawn in Fig. 2a, showing a good agreement with 

experimental data over the whole range. 
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Fig. 2. Coarsening data in the literature fitted by the current model. (a) Isothermal subgrain growth 

kinetics of Al-0.05% Si single crystal channel die compressed by 70% at room temperature [22]. (b) 

EBSD (solid symbols) and ECC (open symbols) data for the average lamellar boundary spacing during 

continuous coarsening in commercial purity Al cold rolled to a true strain of 5.5 [18]. (c) Crystallite 

size evolution during annealing of nanocrystalline high purity W powder produced by ball milling at 

room temperature in Ar atmosphere [24]. 

 

3.2. Case II – Coarsening of a lamellar structure 

During annealing of heavily deformed commercial purity Al of lamellar structure, migration of triple 

junctions, each formed by three lamellar boundaries, led to a significant increase of the lamellar 

boundary spacing prior to nucleation of recrystallization [17,28]. In a recent study [18], the structural 

coarsening by triple junction motion in heavily cold-rolled (99.6% thickness reduction) commercial 

purity aluminum AA1050 (D0 = 0.24 µm) was measured by EBSD and electron channeling contrast 

(ECC) imaging as shown in Fig. 2b. Annealing was carried out at five temperatures covering a time 

span from 4 minutes to 44 days, providing an ideal data set to test the current model. Based on Eq. (7), 

an average value of k2 = 1.87×10-3 m·K can be obtained and the corresponding coarsening curves by 

collective fittings are drawn in Fig. 2b, showing a good agreement with the experimental data over a 

time span over four orders of magnitude. 

 The temperature dependence of k1 determined by collective fitting is shown in Fig. 3a, and it 

follows that Q0 = 214±12 kJ/mol according to Eq. (5). Based on Eq. (8), the dependence of the 

activation energy on the boundary spacing can also be calculated, for example Qapp = 149 kJ/mol at D0 

= 0.24 µm. The activation energy increases rapidly at the beginning but slowly at later stages. By 

combining Eqs. (7) and (8), one can also derive the time dependence of the activation energy during 
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annealing at different temperatures (Fig. 3b). The activation energy increases approximately 

logarithmically with the annealing time, and at a given annealing time the activation energy increases 

with increasing annealing temperature. 

 

 

Fig. 3. Determination of the activation energy for Case II. (a) Temperature dependence of the fitting 

parameter k1. The error in activation energy is calculated based on the standard error of linear least 

squares fitting. (b) Variation of the activation energy during annealing at five different temperatures, 

showing very different activation energies during isochronal annealing. 

 

3.3. Case III – Coarsening of a nanocrystalline structure 
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In a recent work by Hegedus and coworkers [24], high purity W powder (particle size <10 µm) was 

ball milled up to 4.5 h, creating an equiaxed nanoscale structure with an average crystallite size of 

D0=20 nm. The structural coarsening during annealing in vacuum was measured by in situ X-ray 

diffraction, and a number of data points are shown in Fig. 2c. An analysis similar to the above two 

cases leads to k2 = 3.7×10-4 m·K, and the collectively fitted curves are shown in Fig. 2c. The estimated 

activation energy increases from 257 kJ/mol at D0=20 nm to 396 kJ/mol at D=200 nm. The structural 

coarsening is close to logarithmic, and no saturation is observed.  

The fitting is acceptable except for the initial stage, where the crystallite size is less than 50 nm. 

For example at 800 °C, the structure coarsened more in the second hour than in the first hour. Such data 

cannot be fitted together with the normal coarsening behavior at later stages, and this abnormality 

indicates that other factors may influence the coarsening kinetics in the initial stage; in this case it is 

probably due to the remaining C and O, whose concentration decreased during annealing in vacuum 

[24]. Therefore this peculiar coarsening stage cannot be covered by the current model. 

 

4. Discussion 

4.1. Activation energy 

The present coarsening model is based on recovery kinetics of deformed metals, and the key 

assumption is the linear dependence of the activation energy on the stored energy (driving force) [9,10]. 

This assumption appears rational and it gives good fittings with experimental data as shown in Fig. 2. 

In the following, the activation energies obtained from the current model will be compared to those 

from direct calculation based on the experimental data.  

To calculate the activation energy, one has to assume the same coarsening mechanisms at 

different annealing temperatures, i.e. the same activation energy at a given grain size independent of 
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temperature. Moreover, as an approximation, the activation energy is taken to be constant in a small 

coarsening window. These assumptions, together with the Arrhenius equation, enable a stepwise 

analysis of the activation energy as demonstrated recently [18]. As shown in Fig. 2, the structural 

coarsening is close to logarithmic, and therefore each small coarsening window may be extended to the 

beginning of coarsening and such an extension only increases the annealing time slightly. As a result, 

one may draw horizontal lines in Fig. 2, and then calculate the activation energy by comparing the 

annealing times (from interpolation of experimental data) at different temperatures based on the 

following equation  

ln
Q

t c
RT

       (9) 

where both c and activation energy Q are grain size dependent fitting parameters. Such a procedure is 

analogous to that for analyzing recrystallization kinetics [20]. However, the calculated activation 

energy corresponds to the final stage of each coarsening window, instead of the average value for the 

annealing period extended to the beginning of coarsening. 

 Based on Fig. 2 and Eq. (9), the directly calculated activation energies for the three examples 

are shown in Fig. 4 as discrete data points, which agree with the current modelling results shown as 

smooth curves. For coarsening of the Al-0.05% Si subgrain structure, the estimated activation energy is 

consistent with lattice diffusion of Si in Al, whose activation energy is in the range of 129-154 kJ/mol 

[29], indicating that solute drag can be a rate controlling mechanism. For coarsening of the commercial 

purity Al lamellar structure, the activation energies are consistent with diffusion of Fe in the bulk of Al, 

where the activation energy is reported to be in the range of 183 - 259 kJ/mol [30,31], also pointing to 

an important effect of solute drag. Moreover, the increase in the activation energy may be related to the 

removal of dislocations and a large fraction of boundaries during coarsening, which may not only 
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reduce the contribution from short circuit diffusion but also increase the solute concentration in the 

remaining boundaries and thus enhance solute drag [32]. For coarsening of the W nanocrystalline 

structure, the activation energy is close to that for grain boundary diffusion of W, 381 kJ/mol [33], 

suggesting that diffusion of W atoms along the boundary and across the boundary may require similar 

activation energies, and also that solute drag may not be important due to both the low concentration of 

substitutional solutes and the very fine structure. The agreement between the modelled activation 

energies and the directly calculated ones is illustrated in Fig. 4. 

0 1 2 3
100

200

300

400

Q
ap

p (
kJ

/m
ol

)

D (µm)

I. Al-0.05% Si subgrain structure

III. High purity nanocrystalline W

II. Al (99.5%) lamellar structure

 

Fig. 4. Increase of the activation energy during coarsening of three deformation structures. The smooth 

curves obtained from the current model agree with the results (discrete points) directly calculated based 

on Eq. (9). The error bars are estimated according to the standard error of least squares fittings. 

 

 When the activation energy is known, the model is useful in predicting coarsening kinetics at 

other annealing times and temperatures. For example for Case II, the model predicts rapid coarsening 

within the first minute and slow coarsening afterwards during annealing at 300 °C (Fig. 5). The 

lamellar boundary spacing after 1 and 3 minutes are 0.7 and 0.85 µm, respectively, in good agreement 
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with the experimental data reported by Mishin and coworkers [23]. When the boundary spacing is 

correctly predicted, the strength of the material can be subsequently calculated based on the Hall-Petch 

relationship. 

 

 

Fig. 5. Predicted coarsening kinetics of heavily cold-rolled Al during annealing at 300 °C. 

 

An increase in the activation energy during coarsening leads to a significant decrease in the 

coarsening rate, e.g. an increase by 10 kJ/mol can typically reduce the coarsening rate by an order of 

magnitude. Therefore the model is robust and insensitive to other assumptions and simplifications. For 

example, the simplification of a reciprocal dependence between the stored energy P and the size 

parameter D only introduces small errors, typically less than 20%, due to the presence of interior 

dislocations and variations of boundary energy and morphology. However, in some specially designed 

alloys, where the boundary energy changes significantly due to segregation, the variation of the 

boundary energy may have to be considered [34]. 

 

4.2. Scale effect 
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A decrease in the size parameter D leads to an increase in the boundary area per unit volume, which 

provides a higher driving force for coarsening and a larger contribution from boundary diffusion. If 

solutes are present, an increase in the boundary area per unit volume will also reduce the concentration 

of solutes in boundaries. The change in boundary area is small when the grain size is above a couple of 

micrometers but becomes large when the grain size is in the submicrometer to the nanometer regime 

(Fig. 6). Since Qapp = Q0 - βγSV, the dramatic variation of the boundary area per unit volume in the fine-

scale regime (left part of Fig. 6) explains the rapid increase of the activation energy shown in Fig. 4. 

Therefore coarsening of a fine-scale deformation microstructure is significantly different from 

conventional grain growth in a coarse-grained structure. For the latter process, the kinetics is well 

described by the following equation [20,35] 

0 0 exp( )n n Q
D D k t

RT
      (10) 

where n is the growth exponent and k0 is a kinetics constant.  
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Fig. 6. Variation of the boundary area per unit volume SV with the size parameter D (from 20 nm to 100 

µm) in a deformation structure, based on Eq. (2) with α=3. The starting points of the three examples are 

indicated. 

 

In the analyses of coarsening kinetics of fine-scale deformation microstructures, Eq. (10) has 

been frequently applied in the past [36]. When Eq. (10) with an assumption of a constant activation 

energy is used, a good fitting may be obtained at each annealing temperature, but the fitted growth 

exponent n typically varies with temperature, and n is much larger than the ideal number of 2 at low 

annealing temperatures [18,22]. If one disregards the large variation in the growth exponent and assigns 

the ideal growth exponent n=2 for all temperatures, then a good linear fitting may be achieved in a 

ln(D2-D0
2) vs 1/T plot based on isochronal annealing data. However, such a procedure typically leads to 

a very low activation energy, inconsistent with diffusion mechanisms. 

Based on the current work, it is clear from Fig. 3b that during isochronal annealing the 

activation energy is very different at different annealing temperatures. With a higher temperature in a 

given annealing time, coarsening proceeds to a later (slower) stage associated with a higher activation 

energy, and therefore the coarsening rate may appear only weakly dependent on the temperature during 

isochronal annealing. Underestimation of the activation energy (i.e. underestimation of the temperature 

dependence) is therefore expected when Eq. (10) is used, although overestimation is also possible if a 

large growth exponent n is chosen to exaggerate the difference in grain size. Therefore Eq. (7), instead 

of Eq. (10), may be used to better analyze continuous coarsening of fine-scale deformation 

microstructures, not only for the determination of activation energy and understanding of rate 

controlling mechanisms but also for the prediction of coarsening kinetics in materials where the 

parameters k1 and k2 have been determined experimentally. 
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5. Conclusion 

In the current work, the recovery kinetics first suggested by Kuhlmann [9] and later modified by 

Borelius and coworkers [10] has been generalized to a general coarsening description of fine-scale 

deformation structures. The model considers an important feature that the activation energy changes 

during coarsening, and it has been successfully applied to three representative examples, namely 

subgrain growth in a deformed subgrain structure, triple junction motion in a heavily deformed lamellar 

structure and grain growth in a ball-milled nanocrystalline structure. These coarsening processes 

occurred in structures of different morphology and scale, and modelling results show that the activation 

energies increase during coarsening, leading to a significant decrease in the coarsening rate with 

increasing time. The increase in the activation energy is related to the decrease in the boundary area per 

unit volume, which leads to a lower driving force and a smaller contribution from boundary diffusion. 

This coarsening model is essential for the design of nanocrystalline and nanostructured materials 

through thermomechanical processing, and it paves the way for the future development and application 

of these novel ultrastrong materials. 
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