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Experimental: Laminar Flow Reactor (FR)

 Quartz reactor to minimize surface reactions
 Steel pressure shell to achieve high pressures
 Temperature: 500–900 K
 Pressure: 100 bar
 Isothermal Zone Length: 42–44 cm
 Residence time: 8—11 s
 Measurement via GC and Gas Analyzer

Chemical Kinetics Model

 H2/CO/HC’s subsets from recent work by Glarborg et al. [1—3].
 C3 subset is reviewed and introduced in p.w.
 Low temperature sequences for propane oxidation is adopted from Goldsmith et al. [4].

Results: Flow Reactor (FR)

Results: Comparing the Model with Literature

Summary & Future Work

Propane oxidation in the flow reactor:
— Onset at 725—750 K (100 bar, Φ=1)
— Accurate model prediction 
— Importance of abstraction reaction C3H8+ HO2

The model prediction of ignition delay times:
— Over-prediction at intermediate T (900—1000 K)
— Inaccuracy in transition from low-T to high-T regimes

Further experiments on propane oxidation at different P and Φ are planned.
Further work is required to improve the model prediction, especially for ignition delays.

Fig 2. Schematic diagram of the high pressure laminar flow reactor
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Fig 3. Experiments in the flow reactor at 100 bar pressure. The initial conditions were 168/ 822 ppm of 
C3H8/O2 in N2 (Φ=1). Residence time varies between 8 and 11 s.
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Fig 1. Temperature profile measured inside the pressure-
shell wall of the reactor 

Fig 4. Left: Reaction pathways of propane oxidation at conditions investigated in the flow reactor (100 bar, 
750 K). Right: Sensitivity of C3H8 and C3H6 prediction under flow-reactor conditions (100 bar, 750 K).
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Fig 5. Left: Ignition delay times of propane. The experiments are from Herzler et al. [5] and Cadman et al. [6] (2.1% 
C3H8 + 20.6% O2 in N2, Φ=0.5),  and Beerer et al. [7] (2.5% C3H8 + 20.5% O2 in N2, Φ=0.6). Right: Sensitivity of ignition 

delay time of propane to reaction rate constants (2.1% C3H8 + 20.6% O2 in N2 , Φ=0.5).

 C
3
H

8
(+M)=C

2
H

5
+CH

3
(+M)

 C
3
H

8
+CH

3
OO=IC

3
H

7
+CH

3
OOH

 NC
3
H

7
+O

2
=C

3
H

6
+HO

2

 C
3
H

8
+CH

3
OO=NC

3
H

7
+CH

3
OOH

 C
3
H

8
+O

2
=IC

3
H

7
+HO

2

 CH
2
O+HO

2
=HCO+H

2
O

2

 C
3
H

6
+OH=CH

2
CHCH

2
+H

2
O

 NC
3
H

7
OO=C

3
H

6
+HO

2

 C
3
H

6
+HO

2
=CH

2
CHCH

2
+H

2
O

2

 CH
3
+O

2
=CH

2
O+OH

 H+O
2
=O+OH

 CH
3
+HO

2
=CH

3
O+OH

 C
3
H

8
+OH=IC

3
H

7
+H

2
O

 C
2
H

4
+CH

3
=NC

3
H

7

 C
3
H

8
+OH=NC

3
H

7
+H

2
O

 CH
4
+O

2
=CH

3
+HO

2

 C
3
H

8
+HO

2
=NC

3
H

7
+H

2
O

2

 HO
2
+HO

2
=H

2
O

2
+O

2

 C
3
H

8
+HO

2
=IC

3
H

7
+H

2
O

2

 H
2
O

2
(+M)=OH+OH(+M)

-0.3 0.0 0.3

Sensitivity of 

 

 (40 bar, =0.5, 900 K)
 (30 bar, =0.5, 1120 K)

800 1000 1200

1

10

100  Cadman et al. (20 bar)
 Herzler et al. (30 bar)
 Cadman et al. (40 bar)

ta
u 

(m
s)

T (K)

800 1000 1200 1400

0.01

0.1

1

10

100

1000  Herzler et al. (10 bar)
 Cadman et al. (10 bar)

 Beerer et al. (9 bar)

ta
u 

(m
s)

T (K)


