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Abstract

This review article discusses the current and future possibilities for the application of in situ 
transmission electron microscopy to reveal synthesis pathways and functional mechanisms in 

complex and nanoscale materials. The findings of a group of scientists, representing academia, 

government labs and private sector entities (predominantly commercial vendors) during a 

workshop, held at the Center for Nanoscale Science and Technology- National Institute of Science 

and Technology (CNST-NIST), are discussed. We provide a comprehensive review of the scientific 

needs and future instrument and technique developments required to meet them.
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1. Introduction

Over the past decades, the applications of transmission electron microscopy (TEM) have 

shifted from post mortem characterization to live or in situ measurements of structure, 

chemistry and properties of nanomaterials. The speed of this paradigm shift has recently 

accelerated due to adoption of novel technologies, such as aberration correction and micro-

electro-mechanical system (MEMS) device integration. The motivation for in situ TEM is to 

meet the scientific challenges such as elucidating synthesis routes, determining chemical 

activity of nanoparticles, nanoscale property measurement, and atomic scale failure 

mechanisms, leading to the establishment of more productive synthesis/fabrication-structure-

property relationships (Figure 1a). Research interest in this area is reflected in (a) an 

exponential growth in number of publications over last 3 years (Figure 1b),1 (b) the fact that 

each major materials related conference has at least one session related to in situ TEM, (c) 

an increase in the number of workshops on this subject organized by academia and funding 

agencies. This topic was also covered in a recent workshop organized by Department of 

Energy-Basic Energy Sciences (DOE-BES) on “Future of Electron Scattering and 

Diffraction”.2 Although there have been several other workshops held with the general 

theme of in situ TEM related techniques that covered current science enabled by recent 

technical developments during 2013 and thereafter, the motivation of the workshop at NIST 

was to go beyond current capabilities. Here we discuss the scientific questions, identified by 

the workshop participants, that cannot be addressed by instrumentation the currently 

available, and what future advancements direction are needed to address them to further the 

of growth of the field.

For successful in situ measurements we need a base instrument, transmission electron 

microscope/scanning transmission electron microscope (TEM/STEM), which combines high 

spatial and spectral resolution, and can be interfaced with peripheral equipment for in situ 
experiments. Peripherals include, but are not limited to, sample holders capable of applying 

external stimuli such as straining, heating, cooling, electrical biasing, reactive environments 

(liquid or gas reaction cells), and photons. In addition, there is need for data acquisition and 

processing systems that can improve temporal resolution and are capable of handling the 

large data sets generated. The proposed improvements in instrumentation, as identified by 

international group of participants representing viewpoints from academia, government labs 

and equipment manufacturers, may create large amounts of imaging and spectroscopic data 

which require high data acquisition and transfer rates. Extracting scientific knowledge from 

this amount of data can only be done efficiently with proper data mining and evaluation 

procedures.
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1. CURRENT STATUS

It is imperative to review both the available instrumentation and their capabilities/

applications before discussing the future development ideas. Currently a number of modified 

instruments are available, either commercially or custom designed by research groups 

(Figure 1a). In the following section we review the three instrumentation areas.

1.1. Specialty Holders

Apart from the heating and cooling, holders with a diverse range of functionalities are now 

available; examples include, but are not limited to, mechanical, electrical, and optical 

property measurements.3–4 The design of in situ TEM holders have now progressed to the 

level that both strength and ductility can be quantified through compression, tension or 

bending experiments at low (−140 °C) or high (400 °C) temperatures.5 It is now possible to 

make high resolution force measurement and control system. These, combined with improve 

sample geometries lead to new loading mechanisms, and new methods to measure stress and 

strain locally.6–8 Figure 2 shows a direct relationship between change in defect density and 

strength.9 Mechanical strain has been shown to reduce the dislocation density in single-

crystal metals with face centered cubic structure.6

Appreciable progress has also been made for the development of windowed cell holders to 

observe solid/liquid and solid/gas interaction at elevated temperatures.10–11 Windowed 

liquid cells have become popular to study the nucleation of nanoparticles from salt solutions, 

and for electrochemistry, including charging and discharging battery materials (Figure 

3).12–15

Also, photons as a stimulant for photocatalysis and phase transformations have been used by 

several groups. Currently, photons are introduced either via a modified sample holder16–17 

or an independent port using optical fiber.18 A laser source can also be used for local heating 

and collecting Raman signal through using appropriate spectrometer.19 The independent port 

option has an advantage as it can be incorporated in any microscope with minor 

modifications and does not require a dedicated holder and sample geometry.18–19

1.2. Modified TEM Column

1.2.1. Ultra-high vacuum TEM—Ultra-high vacuum TEM is capable of achieving a 

vacuum level of 10−8 Pa in the sample chamber by incorporating extra pumps and is 

designed to study clean surfaces. Some researchers have fitted the sample chamber of these 

microscopes with gas leak system to synthesize nanostructures on clean surfaces.20–21

1.2.2. Environmental TEM (ETEM)—A TEM with a modified sample area that can 

accommodate gas pressures up to 2000 Pa without any obstruction of the electron beam or 

compromising its performance is generally known as environmental TEM. They differ from 

the gas-cell holders as the gases introduced are not contained by any membrane but fill the 

entire sample stage region.23 The total gas flow from the sample region to rest of the column 

is restricted by sets of apertures placed in the upper and lower polepieces and the region 

between apertures is pumped using turbo molecular pumps.24–25 These microscopes are now 

commercially available and are being extensively used for understanding and measuring gas-
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solid interactions at elevated temperatures. Further information can be found in recently 

published review articles and book chapters.26–27

1.2.3. Ultrafast TEM—Conventional in situ TEM is limited by the read out frequency of 

the charge-coupled device (CCD) camera. Direct CCD technology has pushed the limit up to 

≈ kHz.28 Further improvement in time resolution by even faster cameras is possible but will 

be ultimately (see discussion in 2.1.4) limited by the electron beam current of the electron 

sources. In recent years the development of time resolved experimental techniques, based on 

pulsed electron sources which can deliver higher electron currents, has received much 

attention. There are two methods currently being employed to obtain TEM images with fast 

time resolution. The first approach, pioneered by Zewail et al., uses a femtosecond laser 

source synchronized with a laser beam at the sample to achieve high temporal resolution.29 

The key to the method is to keep only a single electron in the column at any one time to 

reduce space-charge effects. Images are built up from ≈107 of these single electron shots 

that have been precisely correlated with the specimen drive laser. The single electron per 

pulse method means temporal and spatial resolution can be maintained at the optimum 

levels, but the fact that the specimen must be pumped ≈107 times by the laser means that the 

process being studied must be perfectly reversible, i.e. the sample must heal between pulses. 

This means that the highest time and spatial resolution can only be obtained for the study of 

such reversible effects as molecular interactions, atomic motions, and electronic phase 

transitions.

The second approach, pioneered by Bostanjoglo and coworkers, aims to generate pulses with 

enough electrons to form images from a single shot.30 The single-shot approach means that 

the process being studied does not need to be perfectly reversible as all the information is 

obtained from a single specimen drive event. However, the limitation to this method is that 

space-charge effects in the beam can lead to degradation of resolution, and, even with an 

optimized microscope source, column, and detector the high current will limit the overall 

temporal and spatial resolution of the instrument. The key to using this single shot approach 

is therefore to optimize the components in the microscope to define the space-charge limited 

resolution of the instrument. This second approach has been developed further at Lawrence 

Livermore National Laboratory (LLNL) using a modified JEOL 2000FX* for dynamic 

transmission electron microscopy (DTEM), that now achieves approximately < 5 nm spatial 

resolution at a time resolution of ≈ 15 ns.31–34 While all of the existing projects on the 

LLNL-DTEM are aimed at nanosecond resolution, the microscope itself is capable (with 

minor modifications) of obtaining in situ analysis on timescales from 10−6 to 10−15 s in 

single shot (ms to ns) and stroboscopic (ns to fs) modes.35 The DTEM has been successfully 

applied to various projects, including crystallization of amorphous semiconducting 

materials.31–32, 34, 36–37 Ideally the DTEM platform can be developed to be used in regular 

TEM mode without the pulsing mode, and it can be easily switched to fast or ultrafast mode.

*DISCLAIMER: Certain commercial equipment, instruments, or materials (or suppliers, or software, etc.) are identified in this paper 
to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose
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1.3. Data Collection (Recording media)

While TEM provides an unparalleled platform for atomic scale imaging and spectroscopy 

for in situ observation of dynamic process under external stimuli, its temporal resolution is 

limited by the data collection or recording media. Most TEM/STEM instruments are 

equipped with a CCD and/or digital camera. The recording rate for images is dependent on 

the electron dose, detection quantum efficiency (DQE) of the camera, memory and processer 

speed of the computer. The Rose criterion for signal to noise ratio (SNR) defines how many 

electrons are needed for a given resolution, e.g. SNR =5 is needed to achieve 0.2 nm 

resolution. Therefore, higher frame rate will reduce the SNR and thereby spatial resolution. 

With a high brightness gun, and using all electrons (DQE =1), we can achieve a frame rate 

of 1000 s−1 as predicted by a back of the envelope calculation. In the last few years, direct 

detection cameras, capable of high speed (up to a rate of 1600 s−1) have become available.

For imaging in gaseous environment, the situation is further deteriorated due to the coupling 

of gas ionization to local charge-induced specimen vibration through a capacitive effect. 

Also at phonon lifetimes of 10 ps, vibration can smear out the electrostatic potential between 

consecutively delivered electrons.38 At 50 Pa pressure Si dumbbells can be resolved. 

Comparable resolution can be achieved under low dose conditions (105 e nm−2s−1) but at 

higher pressures: at 1920 Pa the atomic resolution is quite impossible.38

Nanomegas* has a lens-coupled system that uses an off-the-shelf system capable of up to a 

frame rate of 200 s−1, but diffraction pattern collection rate is different; due to precession, 

the collection rate will be smaller. Recently, direct detection cameras have become 

commercially available. The higher DQE (0.4 to 0.7) of these cameras makes it possible to 

reduce image collection time, i.e. recording at frame rates of 40 s−1 to 1600 s−1 with 

reasonable SNR.39–40 Although they have been successfully employed for low dose imaging 

of biological samples, their applications for in situ TEM studies are still in the early 

stages. 41–42

2. FUTURE DEVELOPMENT NEEDS

Scientific questions that cannot be addressed using currently available instruments form the 

basis of future development needs. Results from the discussion groups that included 

representatives from major manufactures of specimen holders, microscope column and data 

collection system are given below. It is interesting to note that both academia and vendors 

have made progress in meeting some of the challenges outlined during the workshop and are 

included in this section.

Existing challenges can be divided in two broad categories: (a) applicable to all in situ 
experiments (collective challenges) and (b) specific to relevant research field as described 

below.

2.1. Collective Challenges

2.1.1. Identification/measurement of electron beam effects and their mitigation
—The possibility of constructive or destructive interactions of high energy electron beam 

with the sample material can be an issue for relating transmission electron microscopy 
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results with real-life experiments. It becomes especially crucial for understanding chemical 

reaction mechanisms, where local surface structure and mobility of nanoparticles studied in 

reactive environments has to be linked to the entire sample in evaluating the process. Not all 

reactions and/or materials will be affected by electron irradiation. However, the rule of 

thumb is ‘if not proven otherwise, the electron beam affects the samples under observation’. 

When we observe phenomena in a material using in situ TEM and if we intend to correlate 

the phenomena to the intrinsic characteristics of the material (i.e. those which are not 

affected by electron irradiation), then it is vital to determine how much of our observation is 

driven by the electron beam as opposed to the intended stimuli (temperature, gas, stress, 

etc.). Electron beam effects can be divided in to two broad categories: (1) ionization (that 

increases with decreasing electron energy); (2) knock-on damage (that increases with 

increasing electron energy). Damage for materials is expected to be at electron dose rate of 

105 nm−2 s−1 to 106 nm−2 s−1 and for biological samples at 102 nm−2 s−1 to 1036 nm−2 s−1. 

General procedures to evaluate electron beam effects are difficult to establish as they depend 

on:

a. Nature of material.

b. Thickness and orientation of the sample with respect to the electron beam.

c. Energy of electrons.

d. Electron current density.

e. Electron dose (=electron current density * irradiation time).

f. Specimen temperature.

g. Vacuum conditions.

As mentioned earlier, it has become more important to understand the electron beam effects 

as we move away from imaging in vacuum towards gas and liquid environments at various 

temperatures. Moreover, electron dose becomes an important factor when combining high 

resolution with high temporal resolution as the resolution of the TEM images is dependent 

on SNR given by Rose criteria:

Where ds is lattice resolution, di is the instrumental resolution, S/N is SNR, C is image 

contrast and D is electron dose. Therefore it will be impossible to remove the effect of the 

electron beam completely but there are some ways to reduce and mitigate it as much as 

possible. These are summarized from the group discussion as:

• An accurate measure of electron dose must be obtained for every 

experiment. There is currently no standard way to perform this in the 

electron microscope, unless the user specifically purchases separate 

equipment. The microscope manufacturers have been asked to provide 

Faraday cups as standard for future microscopes, and to be able to retrofit 
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existing microscopes with a Faraday cup in the selected area diffraction 

aperture location.

• A systematic study of varying dose and primary electron energy should be 

performed by the user for each new material system that is to be studied to 

find the regime that balances resolution against materials change. For 

example, systematic study of effect of incident electron energy, electron 

dose, and irradiation temperature was used to characterize the atomic 

structure, the electronic structure and thermal stability of Si to conclude 

that electron beam induced amorphization of Si occurred not by 

accumulation of point defects but by a cascade of small changes (Figure 

4).43 While it is hard to define one standard of the “beam damage” 

condition for all materials, the user will get a good understanding of which 

dose to work with if this systematic variation is performed. It will be 

beneficial to check these doses at the temperatures, pressures, and in 

liquids that are desired for an experiment, as these can quite often be 

different than for vacuum conditions.

• We must begin to communicate the total electron dose used for all 

experiments in publications and presentations.

• As leaders in the field of electron microscopy, it is our responsibility first 

and foremost to teach new users (students and new users in the field) about 

the possible adverse effects of the electron beam.

• We recommend that we consider creating a database for the best electron 

dose that a user has found for a particular material, support, temperature, 

pressure, type of camera (detection system) etc. It is a daunting task as 

there are so many variables but if the community starts to report the 

conditions used for each experiment, we can start building it. We suggest 

applying for funding to start the database for some standard samples, and 

once established, continue to grow it with input from users around the 

world. In this way, a new electron microscopy user can immediately gain 

perspective on the dose ranges to be used for specific experiments. It will 

also speed up experiments for experienced microscopists performing work 

on a new material system for the first time.

2.1.2. Drift-correction—Drift is major issue for all in situ experiments, especially during 

heating. Although new MEMS based heating holders have minimal drift (< 1 nm min−1, at 

best), it is still enough to make continuous acquisition of high resolution images during 

heating difficult. Both hardware and software development are needed. Currently some 

individual labs have addressed this issue, e.g., there is one system developed in in Graz, 

Austria, another in Australia and National Center for Electron Microscopy (NCEM), 

Berkeley has a lot of great links for drift correctors, but it needs to be universally available. 

TEM manufactures should consider incorporating drift correctors, similar to the one for 

tomography on all TEM platforms.
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2.1.3. Temperature measurement—Temperature measurement continues to be one of 

the challenging problems that has kept us from obtaining thermodynamic and kinetic 

information. The actual temperature of the sample under TEM observation has been a big 

question over the years. The ambiguity for furnace heaters with thermocouples arises from 

the nature of thermal contact between TEM grid and furnace, and the thermal conductivity 

of grid material and sample. For ETEM experiments the problem becomes more severe as 

temperature gradients and rates are also dependent on gas composition and pressure.

Again, there are some efforts directed to mitigate this problem but a universally available 

solution is still to be realized. For example, the Delft group has used electron energy-loss 

spectroscopy (EELS) to measure local temperature, using change of gas density with 

temperature in windowed holder filled with 1.25 Pa of H2.44 Resistivity measurements as 

implemented in the Delft-MEMS based holders seem to work quite well. Since the 

workshop, measurement of the Ag expansion coefficient45 and the incorporation of Raman 

spectroscopy (correlative microscopy, see section 3.1.6) has been used for in situ 
temperature measurement in vacuum and gas environments.19 Our wish list for future is:

• In situ temperature readout available for heating and cooling holders (has 

been addressed by recent heating chip devices).

• Accuracy of temperature measurement to be within ± 5 °C.

• Accessible temperature range of −170 °C to 1500 °C.

• Spatial resolution: even if homogenous temperature within the sample area 

is guaranteed, local temperature can be used for nanocalorimeter and for 

that micrometer scale can be a good start.

• Accurate measurement of low temperatures (Liquid He to liquid N2 

temperature). For low temperature, the accuracy of measurement is vital as 

a difference between 4 K and 10 K may have significant consequences.

2.1.4. High temporal resolution for recording media—High spatial resolution 

combined with high temporal resolution is required to identify transient reaction products, 

understand catalytic reaction mechanisms, etc. Currently available image acquisition 

systems allow us routinely to acquire high-resolution (< 0.1 nm) images with low temporal 

resolution (0.033 s to 0.2 s range) or low resolution (a few nanometer in single shot mode) 

with high temporal resolution. However, a number of in situ measurements such as catalysis, 

nucleation, etc. not only require high spatial and temporal resolution but also a large field of 

view for better statistics. As mentioned earlier, the current limitation for collecting images 

with low exposure time (high speed) is due to poor DQE of the CCD cameras that require a 

high electron dose to meet the Rose criteria. But high electron dose can alter the reaction 

process due to heating or knock-out damage. Direct electron detection camera based on 

complementary metal-oxide semiconductor, (CMOS) technology can improve temporal 

resolution without compromising the spatial resolution. With a DQE of 0.3 to 0.7 (compared 

to < 0.1 for CCD), frame acquisition rates of 200 s−1 to 1600 s−1 have been demonstrated 

and can be improved to a rate of 3000 s−1 in 5 years to 10 years. Moreover, data transfer and 

data handling speed make usage laborious, and the cost of these cameras is too high, making 
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widespread application difficult. Also, there is still space for improving the DQE and 

thereby improving temporal resolution for dynamic imaging. Following are suggested ways 

to achieve high temporal resolution to acquire atomic scale images and spectra:

• Detectors for readout between 10−6 s to 10−3 s

• Gated stroboscopic mode for sources – run as continuous source or as 

pulsed source.

• Brighter electron source to improve SNR for fast acquisition.

• EELS detector: the same detector can be used for EELS, but it is desirable 

to revert to the older Quantum model, * which permits spectra collection 

rate of 1000 s−1.

• For energy-dispersive x-ray spectroscopy (EDX), both FEI* and JEOL* 

have 1 sr. collection angle systems available. FEI* has a 4 detector system 

called ChemiSTEM/Talos, * and JEOL* has 1 detector system. Both will 

negate the need for tilting samples for best signal collection, making it 

possible to collect data in combination with windowed liquid and heating 

holders.

2.1.5. Data acquisition and processing—We anticipate that the desired high spatial 

and high temporal resolution will come with a problem of data transfer, storage and 

processing. For example, (1024 x 1024) pixel images collected at a frame rate of 400 s−1, 

will generate approximately 4 Terabytes (TB) s−1. This data needs to be transferred to a 

storage device quickly and each frame needs to be processed to follow the atomic scale 

changes occurring with high temporal resolution. In other words, data acquisition, storage, 

data mining and processing needs to be developed by engaging interdisciplinary community 

(including software engineers). The following actions should be taken to address this issue:

• Fast data transfer platform (some progress has been made by Gatatn K-2 

camera* users).

• Fast processor (64 bit)

• Develop loss-less compression techniques.

• Linking stimuli (temperature, gas pressure, etc.) to the data set.

• Integration of data and automated analysis of crystallographic orientation 

mapping for images and diffraction – generate a list of possible phases – 

elements present.

• Batch processing of images from movies in 2 GB sections.

• Need intelligent principle component analysis (PCA) for image analysis.

• Crowd Sourcing for Intelligent Processing of Large Data Sets.

• Artificial intelligence with manual input from user –machine intelligence

• Need some crowd sourcing – community to share data – identify ways to 

set it up?
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Some of these issues are currently being addressed by the groups who are using direct 

detectioncameras, such as Gatan’s K2.*

2.1.1. Concurrent Microscopy and Spectroscopy (lab in the polepiece gap)—In 
situ observations of the effects of external stimuli on the morphology, structure, chemistry 

have enabled us to elucidate a number of atomic scale reaction mechanisms. However the 

information obtained is limited to the nanoscale, and in order to relate the local behavior (in 

the electron beam) to the average behavior of the sample, simultaneous acquisition of 

complementary integrated measurements are needed. The trend anticipated for in situ TEM 

for the next decades is that the complexity of experiments performed in a TEM will increase 

to achieve realistic conditions.

The incorporation of other complimentary stimuli and detectors for in situ experiments on 

present transmission electron microscopes is limited by the polepiece gap of the objective 

lens where the sample is located. For uncorrected or spherical aberration corrected objective 

lenses, a compromise between spatial resolution and the width of this gap has to be made. 

Sub 0.1 nm resolution can be achieved without aberration correction only for lenses with a 

gap width of about 2 mm to 3 mm which is too small for many in situ experiments. 

Spherical aberration correction with monochromation or chromatic aberration correction 

removes these restrictions as has been proven by the TEAM I instrument* at Lawrence 

Berkeley National Laboratory (LBNL) that achieves 0.05 nm resolution with a 5 mm pole 

piece gap. More experimental parameters have to be controlled and measured (multimodal/

multiscale measurements) that could be in the form of a built-in Raman spectrometer, 

secondary ion mass spectroscopy (SIMS) or other types of (optical) spectroscopy.19, 46 

Opening up the polepiece gap will leave more room near the sample to include additional 

probes and detectors, e.g. tomography plus one or more of the following capabilities: (a) 

Environmental cell ( with windows); (b) Heating, cooling, (c) Nano-biasing, and (d) Cryo 

box for frozen samples.

Tomography alone can be done with a gap of 5 mm or less. If combined with one or more of 

the other functions mentioned above, we will require a wider and thicker sample holder tip 

which then needs a wider pole piece gap to achieve high tilt angles. We can further envision 

incorporating other probes such as optical, x-ray, etc. to make micron-scale measurements 

combined with atomic scale imaging and spectroscopy. This type of stage is important for 

scientific challenges in catalysis and electrochemistry (and others). On the other hand, an 

objective polepiece with a 10 mm gap results in about eight times the volume available for 

in-situ instrumentation (depending on the area in the xy-plane usable for a certain 

experiments) and contrast transfer calculations for this lens in combination with a Cc-

corrector show that a spatial resolution of better than 0.07 nm can be expected (Figure 5).47 

An alternative approach to Cc correction is the combination of spherical aberration 

correction with a monochromator. This concept allows similar resolution at the cost of a 

strongly deformed beam.

Aberration correction is undoubtedly helpful in improving the contrast transfer behavior at 

high spatial frequencies but it degrades contrast transfer at low spatial frequencies (> 0.05 

nm). The combination of chromatic aberration correction and phase plate imaging can 
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mitigate this issue.48 A typical Lorentz lens has much higher aberration coefficients than 

even the wide gap objective lens discussed above, which limits the resolution to about 2 nm. 

Chromatic and spherical aberration correction enables atomic level resolution even for a 

Lorentz lens but the contrast for spatial frequencies relevant for imaging e.g. magnetic 

vortices is very small. Phase contrast promises optimum contrast on this size scale while 

maintaining high contrast transfer for high-resolution TEM. As a consequence, the atomic 

and the magnetic structure of a sample can be imaged at the same time.

2.1.2. Simultaneous Acquisition of images and diffraction patterns—Combining 

diffraction and imaging information would be a valuable tool for many applications: e.g. 

catalytic particles. At present, parallel detection of both signals is not possible and requires a 

different TEM design. Modification of current instrumentation will allow switching between 

diffraction and imaging mode with sufficient speed. This can be done with software but 

requires two detectors.

Recording diffraction patterns with CCD cameras is still not satisfactory. Present CCD 

cameras have a depth of 16 bit which is not sufficient for the dynamic range for diffraction 

patterns. Detecting image and diffraction pattern have completely different dynamic ranges; 

necessitating 24 bit dynamic range capable of in situ acquisition. We expect that 

development of detectors with readouts 10−6 s to 10−3 s in 5 to 10 years from now is 

feasible.

2.2. Challenges relevant to Specific Research field

2.2.1. Scientific challenge in catalysis—TEM is ideally suited to characterize catalyst 

nanoparticles before and after reactions. Recent advances in TEM column modification and 

holder design has now made it possible to observe dynamic processes under near-reactor 

(ETEM) or reactor (using windowed holder) conditions. Atomic-scale imaging and 

spectroscopic analysis can now be performed under operando conditions. 49–51 In order to 

understand the catalytic process we need to (a) follow the structural and compositional 

changes and their relationship to the activity of individual nanoparticles and (b) identify the 

reactive sites/surfaces. However, the image intensity and thereby resolution deteriorates 

severely as a function of pressure when using high atomic number gasses such as oxygen or 

nitrogen (Figure 6).52

In order to effectively investigate catalytic processes, this we need:

1. Instrumentation capable of providing high resolution imaging and 

spectroscopy data under reactor conditions (atmospheric pressure or 

above).

2. High temporal resolution to reveal instantaneously events occurring during 

catalysis.

3. The ability to observe 3-D structure evolution instead of 2-D images in 

projection to understand substrate-particle interaction and dynamic shape 

changes during reaction.
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4. Measurements of the change in gas composition during reaction (in 

operando condition).

5. Incorporation of aberration-correctors for the probe-forming optics, in 

order to enhance high angle annular dark field (HAADF) STEM resolution 

to the sub-0.1 nm level. This is critical for imaging the small clusters 

(single atom or several atoms) that often control catalysis.

In summary, a combination of high pressure cells, high spatial and temporal resolution, 

high-tilt holder (or large pole-piece gap) are required. When these requirements are met, 

tomography can be performed intermittently for reactions that take more than an hour. 

During dynamic imaging, the state of the sample could be stabilized by lowering the 

temperature while the gaseous environment is still maintained.

2.2.2. Scientific challenges in electrochemistry—The first electrochemical cell was 

fabricated and successfully used to observe electrochemical deposition of Cu on gold surface 

in 2003.12 Although liquid cell holders are now routinely used for in situ observation of 

electrochemical processes resulting in nucleation and growth of nanostructures, very little 

progress has been made towards developing a robust and versatile electrochemical cell until 

recently.53 Such a cell is essential for understanding the factors controlling to the lifetime 

and energy density of batteries. A controlled electrochemical experiment needs three 

electrodes with electrical connections, temperature control a windowed cell, and two 

reservoirs if the electrolyte is liquid. Electrochemical reaction rates depend strongly on 

temperature. Temperature control with a stability of a few degrees is therefore required. This 

will likely add to the bulk of the stage and depends on accurate temperature measurement). 

Electrochemical reactions which are limited by diffusion of ions to and from the electrode 

surface require control of the thickness of the diffusion layer in the electrolyte. This can be 

achieved by controlling the flow rate of the electrolyte (difficult in present liquid cells) or by 

rotating electrodes. Both methods will increase the bulk of the stage. Future developments in 

cells are required to:

• Understand the nature of the over potential.

• Understand the structural and chemical changes in electrodes during 

charging and discharging.

• Characterize nanostructured electrolytes and electrodes.

• Measure diffusion in electrodes and electrolyte,

• Identify growth mechanisms during electro-deposition.

• Understand microstructural changes in complex electrodes during 

charging/discharging (3D structure is important for all these experiments).

Temporal resolution can be increased using pulsed electron sources that will naturally lead it 

electrochemistry to be one of the DTEM applications.
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2.2.3. Scientific challenges for Phase transformations—Ultrafast TEM or DTEM 

(section 1.2.3) is currently being used to capture phase transformation mechanisms. The 

following scientific challenges were identified:

1. Verification of predicted intermediate states in liquid before solidification.

2. Identification of transient reaction products.

3. Determination of catalytic reaction mechanisms.

Neither the stroboscopic nor single shot approach, currently used, is capable of meeting 

these challenges and requires further development. There is a gray area in correlating the 

interval between the laser pulse and acquisition time with high precision. Moreover, no 

spectroscopy option is currently available on the DTEM platform. The Boersch effect leads 

to an incident beam with large energy spread. It has been proposed that by lengthening the 

pulse so that electron-electron interactions are minimized, 1 eV energy resolution could be 

achieved in μs, but this has not been verified. In a 10 ns pulse billions of electrons can be 

generated, but the beam is not very coherent or bright (10 A sr−1). In addition, for events 

having periods between 10−3 s to 10−6 s, there is no chance of acquisition as the pulse 

duration in current DTEM cannot be longer than 1 μs. In any case, for current systems 

higher electron doses will be required to combine high spatial resolution with high temporal 

resolution. But the beam damage will be a major concern under such conditions.

4. CONCLUSIONS

Most of the participants were currently employing one of the nine instrumentation platform 

identified during the workshop (Figure 7a), with heating holders being most popular. 

Workshop participants identified scientific challenges that need to be addressed in the future 

in the area of catalysis, electrochemistry, phase transformation and mechanical property 

measurements. The following instrument/software developments are required to meet these 

challenges:

1. High spatial and temporal resolution combined on the same platform.

2. Automatic drift correction

3. Temperature measurement at the microscale.

4. Simultaneous acquisition of bright-field/dark-field/selected area 

diffraction pattern (BF/DF/SAEDP).

5. Combinatorial holders to measure the mechanical properties of aligned 

crystals (double-tilt) as a function of temperature (heating), biasing 

(electrical/magnetic)

It is interesting to note that most of the participants identified data acquisition and 

processing were to be the area where future developments are needed (Figure 7b). A 

summary of these findings is given in Table 1.
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Figure 1. 
(a) External stimulii currently used for in situ observations on a TEM platform, (b) growth in 

number of publication during 1970 and 2012 (Sinclair, MRS Bull. (2013)) .1
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Figure 2. 
True stress versus true strain data for repeated loadings of an initially 133 nm diameter 

tensile sample in (100) orientation. The specimen yields at 636 MPa and shows significant 

hardening during elongation to 65 % true strain. Simultaneously, the dislocation density 

(defects can be seen as bright features in the upper row of dark field images) as denoted by 

the white diamond symbols and the right-hand axis of the graph is reduced by an order of 

magnitude. Correspondingly the deformation characteristics becomes more stochastic as the 

defect density decreases (Kiener et al., Nano Lett. (2011).9
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Figure 3. 
Dendrite growth and collapse during voltage cycle from lead nitride solution in a liquid cell 

(White et al., ACS Nano (2012).22
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Figure 4. 
An in situ TEM analysis of the amorphization of crystalline silicon triggered by electron 

irradiation. Systematic and quantitative data acquisition as a function of electron energy, 

dose and sample temperature (a) and (b) combined with a theoretical model predicting the 

volume of amorphous embryo that is created by the impact of an energetic electrons (c) and 

(d.
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Figure 5. 
Contrast transfer functions for a 300 kV instrument with an objective lens gap width of 10 

mm.
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Figure 6. 
Loss of information limit can be estimated using fast Fourier transform (FFT) of amorphous 

carbon film (a) in vacuum and (b) in 1700 Pa of Ar. (c) Loss of intensity as a function of 

pressure for different gasses (Courtesy: Jakob Wagner)52
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Figure 7. 
(a) Number of participants using various instruments/techniques for in situ measurements 

and (b) area of improvement identified for successful experiments as needed to advance the 

state of the art.
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Table 1

Summary of Future Developments needed to address unresolved scientific issues.

Category Current Applications Suggested Improvements Scientific challenges

Heating holders √ Phase transformation
√ Gas-solid reactions
√ High temperature 
electrochemistry
√ Nucleation and growth of 
Precipitates

• Higher temperature limit
• Local, precise Temperature 
measurement
• Uniform temperature across the 
sample grid/chip

• Phase transformations in ceramic 
materials.
• Nanoscale kinetic and 
thermodynamic measurements

Indentation Holders √ Mechanical property 
measurement.
√ Structure- property 
relationship.
√ Stress induced phase 
transformation.

• Higher mechanical stability for high 
magnification tests
• Versatile testing modes, such as 
compression, tensile, bending etc.
• Coupling with thermal/electrical/gas 
fields.
• Different tip geometries and grip 
styles, e.g., for doing tensile 
experiments different sample 
geometries

• Noises resulted from both the 
instruments and the environment
• Thermal drift upon heating.
• Decouple the effects from different 
sources, like e-beam, thermal etc. 3-D 
stress state analysis as a function of 
crystal orientation

Liquid cell holders for 
electrochemistry

√ In-situ synthesis.
√ Liquid-solid interactions 
Liquid electrochemistry

• Robust windows.
• Uniform thickness for entire viewing 
region Heating in liquid

• Nucleation and growth mechanisms.
• Phase transformations of solid 
materials in liquids.
• Improve life time of batteries by 
understanding electrode poisoning.

High pressure gas cells 
with heating device

√ Gas solid reactions.
√ Catalytic reactions 
atmospheric chemistry climate 
research.

• Robust windows.
• Temperature measurement.
• Gas Composition measurement.

• Nanoscale kinetic and 
thermodynamic measurements.
• Heterogeneous catalysis.
• Gas-solid reactions involving 
corrosive and/or contaminating gases.
• Understand the sites for catalytic 
reactions, Improve efficiency.

High gas pressure 
ETEM Emission 
source/Electron gun

√ Catalytic reactions.
√ Gas effect on mechanical 
properties.
√ Gas-effect on electrical 
resistance.

• High pressure and high resolution.
• Integration with spectroscopic 
techniques High energy resolution High 
intensity

• Controlled nanostructure growth
• Beam-induced contamination in 
TEM parts
•Interaction of e-beam, materials and 
gases
• Understand ice nucleation in 
aerosols

Ultrafast TEM √ Phase transformation in a 
few systems.

• Better time resolution in movie mode, 
more images in a movie, higher spatial 
resolution, more in situ capabilities

• Understand the nucleation of phase 
transformation on an atomistic level.
• Application to radiation sensitive 
systems in soft matter research.

Concurrent 
Microscopy and 
spectroscopy: Large 
polepiece gap

√ Not available. • Multi-probes.
• High tilt tomography.

• Perform complex chemical 
experiments completely inside a TEM 
-> better understanding of chemical 
and electrochemical reactions

High speed data 
acquisition

√ In situ nucleation and growth 
of nanostructures.

• High spatial and high temporal 
resolution.
• Embedment of metadata of in situ 
parameters.

Understanding of defect dynamics in 
2D materials Controlled nanostructure 
growth

Ultramicroscopy. Author manuscript; available in PMC 2017 November 01.


	Abstract
	1. Introduction
	1. CURRENT STATUS
	1.1. Specialty Holders
	1.2. Modified TEM Column
	1.2.1. Ultra-high vacuum TEM
	1.2.2. Environmental TEM (ETEM)
	1.2.3. Ultrafast TEM

	1.3. Data Collection (Recording media)

	2. FUTURE DEVELOPMENT NEEDS
	2.1. Collective Challenges
	2.1.1. Identification/measurement of electron beam effects and their mitigation
	2.1.2. Drift-correction
	2.1.3. Temperature measurement
	2.1.4. High temporal resolution for recording media
	2.1.5. Data acquisition and processing
	2.1.1. Concurrent Microscopy and Spectroscopy (lab in the polepiece gap)
	2.1.2. Simultaneous Acquisition of images and diffraction patterns

	2.2. Challenges relevant to Specific Research field
	2.2.1. Scientific challenge in catalysis
	2.2.2. Scientific challenges in electrochemistry
	2.2.3. Scientific challenges for Phase transformations


	4. CONCLUSIONS
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1

