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ORIGINAL PAPER

Spatial models for probabilistic prediction of wind
power with application to annual-average and high temporal
resolution data

Amanda Lenzi1 • Pierre Pinson2 • Line H. Clemmensen1 • Gilles Guillot1

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Producing accurate spatial predictions for wind

power generation together with a quantification of uncer-

tainties is required to plan and design optimal networks of

wind farms. Toward this aim, we propose spatial models

for predicting wind power generation at two different time

scales: for annual average wind power generation, and for a

high temporal resolution (typically wind power averages

over 15-min time steps). In both cases, we use a spatial

hierarchical statistical model in which spatial correlation is

captured by a latent Gaussian field. We explore how such

models can be handled with stochastic partial differential

approximations of Matérn Gaussian fields together with

Integrated Nested Laplace Approximations. We demon-

strate the proposed methods on wind farm data from

Western Denmark, and compare the results to those

obtained with standard geostatistical methods. The results

show that our method makes it possible to obtain fast and

accurate predictions from posterior marginals for wind

power generation. The proposed method is applicable in

scientific areas as diverse as climatology, environmental

sciences, earth sciences and epidemiology.

Keywords Wind power � Spatial prediction � Latent
Gaussian field � Integrated nested Laplace approximation

1 Introduction

In a society increasingly concerned with sustainability, the

share of wind energy in total installed power capacity has

grown rapidly in recent years around the world. For

example, Denmark has the largest proportion of wind

energy capacity relative to the volume of electricity con-

sumption and the Danish government aims at having 50 %

of the energy demand met by wind power by 2025 (Tastu

et al. 2011). The main expected benefit from using wind

power as a source of energy instead of fossil fuels is the

reduction of carbon emissions. However, advanced fore-

casting methodologies are necessary to address issues

related to the limited predictability of wind power gener-

ation. Increasing the quality of wind energy forecasts is not

only important in order to efficiently handle the energy

demand (Katzenstein et al. 2010), but it also increases the

revenues from the electricity market, with the optimization

of bidding strategies (Pinson et al. 2007).

From a statistical perspective, accurately predicting

wind power and quantifying the uncertainties of the pre-

dictions at a regional scale is a challenging problem.

Indeed, the statistical distribution of wind power data is

characterized by the presence of complex temporal and

spatial trends that are not well encompassed by stationary

models. Also, the intermittent nature of wind leads to a

spike at zero in the empirical distribution for high temporal

resolutions (e.g. 15 min interval), which is difficult to

model.

Studies on the medium-term and short-term forecasting

of wind speed and wind power have received a lot of

attention lately. Predictions of wind speed are ultimately in

order to predict power; thus, there is a strong link to power,

even when assessing the quality of wind speed predictions.

The reader should note that it is common to have an

& Amanda Lenzi

amle@dtu.dk

1 Applied Mathematics and Computer Science Department,

Technical University of Denmark, 2800 Kgs Lyngby,

Denmark

2 Electrical Engineering Department, Technical University of

Denmark, 2800 Kgs Lyngby, Denmark

123

Stoch Environ Res Risk Assess

DOI 10.1007/s00477-016-1329-0

http://orcid.org/0000-0002-4303-4695
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-016-1329-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-016-1329-0&amp;domain=pdf


overlap between wind speed and wind power in the liter-

ature. Based on this loose behaviour, we talk inter-

changeably here about wind speed and wind power. A

common approach when the focus is on a single wind farm

based on local measurements only, is related to a time-

series framework that usually assumes a Gaussian distri-

bution for the wind speed response. One of the first pro-

posals in the literature was published in Brown et al.

(1984) and uses auto-regressive moving average (ARMA)

models for wind speed observations at lead times of

between a few hours and a few days. The following year,

Bossanyi (1985) used a Kalman Filter to predict wind

speed at a one-minute resolution with the last six values as

input, and observed an improvement in the RMS error over

persistence for the prediction of the next time step of up to

10 %. Some years later, Daniel and Chen (1991), on the

other hand, used stochastic simulation and forecasting

models of hourly averages of wind speeds, taking into

account the autocorrelation, non-Gaussian distribution and

diurnal non-stationarity, and fitted an ARMA process to

wind speed data. On a regional scale, Shih (2008) assessed

periodic diurnal components and prevailing wind direc-

tions of wind speed time series in Taiwan using spectral

analysis.

Recently, in a more general set up, Gneiting et al.

(2006) introduced the regime-switching space-time model

that identifies the atmospheric regime at the wind energy

site and fits a conditional predictive model for each regime

providing probabilistic forecasts of wind speed data. This

approach deals with non-Gaussianity and with the discon-

tinuity at zero by making use of a truncated normal dis-

tribution. To deal with discrete probability masses and the

fact that normalized wind power is bounded between zero

and one, Pinson (2012) applied the generalized logit-nor-

mal distribution with a potential concentration of proba-

bility mass at the bounds of the unit interval [0, 1] to

forecast wind power fluctuations at single wind farms.

The methods mentioned above use only historical data at

a single site. Because the spatial aspect of the problem is

disregarded, these methods do not provide a straightfor-

ward way to extrapolate predictions at un-monitored

locations. Moreover, wind power forecasting models

developed for one location do not match the other sites due

to, for example, change in terrain, different wind speed

patterns and atmospheric factors. It is therefore not

straightforward to transpose the results to other locations.

In this sense, developing a portable and general model that

mimics the spatial dependence structure and gives an

overview of power generation at all wind power generation

sites over a region is a timely objective.

Several spatial interpolation techniques are available to

predict the wind speed in locations where data is not

available. Luo et al. (2008) studied seven methods to

estimate the daily mean wind velocity surface showing that

kriging methods produce more accurate results than

deterministic techniques on a country level. Joyner et al.

(2015) compared the number of high-error stations pro-

duced when interpolating stations from wind data using

ordinary kriging and cokriging. A geographic information

system (GIS) based approach is used to assess wind

resources in India and Poland in Hossain et al. (2011) and

Sliz-Szkliniarz and Vogt (2011), respectively. Cellura et al.

(2008) dealt with spatial estimation of the wind fields in

Sicily by using neural kriging modeling. Etienne et al.

(2010) predicted extreme wind speed with a combination

of GIS techniques and Generalized Additive Models.

The purpose of the present paper is to propose statistical

models for wind power generation that incorporate the

spatial features of all the wind farm locations and yield

calibrated predictive distributions with a minimum amount

of computational effort. Reliability, also referred to as

calibration, of probabilistic forecasts is assessed with reli-

ability diagrams. A calibrated forecast should have the

observed levels matching the nominal levels for specific

quantile forecasts. Reliability is considered as the main

required property of probabilistic forecasting (Gneiting

et al. 2007) since it is used as input for decision problems

and a probabilistic bias in the forecasts would yield poor

operational decisions.

We use conventional kriging as a benchmark method for

predicting the annual average wind power generation and

high temporal resolution of wind power generation. This is

one of the standard techniques for spatial interpolations, as

described in Cressie (1988). Although kriging is an optimal

method when the data follows a Gaussian distribution, it

has proved to be a robust method under a range of condi-

tions (Deutsch and Journel 1992). It can provide an effi-

cient way to linearly interpolate nearby observations and

thus lead to an estimation of wind power generation in each

station; exclusively based on the mean and covariance

structure of the Gaussian field.

In a first step, we focus on a model describing spatial

variation of annual average wind power generation. We use

a hierarchical spatial model based on a skewed continuous

distribution with a stochastic, spatially structured mean that

depends on the covariate. The spatial structure is captured

by a latent Gaussian random field with a Matérn covariance

function. In a second step, we propose a model tailored for

wind power generation data with high temporal resolution.

This type of scenario is of relevance for a number of

operational problems where wind power generation is only

observed at a limited number of wind farms, while deci-

sion-making problems may require an overview of power

generation at all sites over a region. This setting is mod-

elled with a mixture of degenerated distributions at zero

and a skewed continuous distribution for the non-zero
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values. The distributions share a Gaussian random field

with a Matérn covariance function.

Note that for these models, the posterior marginals are

not available in closed form due to the non-Gaussian

response variables. Departure from normality can easily be

handled, but comes at a computational cost (Diggle et al.

1998). To issue probabilistic forecasts, we use an inte-

grated nested Laplace approximation (INLA) (Rue et al.

2009) as an alternative to MCMC methods, and directly

compute approximations to the posterior marginals. The

resulting predictions are evaluated on a case study based on

wind farms located in the western part of Denmark, while

comparing the results from our approach to those from the

ordinary kriging method.

Although this paper is motivated by the problem of

spatial prediction of wind power generation, the solution

developed here is relevant to many spatial prediction

problems in earth and environmental sciences involving

non-Gaussian data.

The remainder of this article is organized as follows. In

Sect. 2, we give details of the data wind power data set used

as a case study in order to show a realistic view of the

methods proposed in this paper. In Sect. 3, we first describe

the krigingmethod used here as benchmark. Thenwe present

the hierarchical spatial model for predicting annual average

wind power generation as well as the model tailored for wind

power generation with high temporal resolution. We even-

tually explain how to perform inference and prediction with

such models. A detailed explanation of the methods used for

evaluation is given in Sect. 4. In Sect. 5,we present results for

the probabilistic prediction of annual average and high

temporal resolution of wind power generation, and compare

our method with kriging. Section 6 contains a discussion of

the limitations and possible extensions of our method and

draws conclusions to our work.

2 Western Denmark wind power data

We consider a data set consisting of wind power generation

measurements in wind farms located in the western part of

Denmark. Each measurement is the temporal average

power over a 15-min time step. The period covered ranges

from January 2006 to March 2012. The distances between

the wind farms range between 1 and 310 km.

The amount of wind power produced at a wind farm

depends on its capacity, which is the maximum output

when all turbines operate at their maximum nominal

power. Since most of the wind farms have different

capacities, and in order to facilitate comparisons between

data sets, we normalize the wind power data by dividing all

the measurements by the maximum nominal power value

of each specific wind farm.

We start by modelling the annual average wind power

generation in the year of 2010, where average wind power

is obtained by averaging the 15-min normalized power

output at each of 349 wind farms in 2010, resulting in

purely spatial data. The year of 2010 was chosen for no

specific reason to illustrate the proposed methods and the

other years gave similar results. Note that here, in contrast

with the scenario for the wind power at high temporal

resolution, the large amount of zero measurements is not

present, since these are averaged out with all the mea-

surements at that specific station over 2010. A map of the

normalized annual average wind power generation data set

for 2010 is shown in Fig. 1. Thus, a value of 0.4 indicates

that the annual average wind power generation for that

specific wind farm is 40 % of the highest measurement

obtained for that wind farm in 2010.

Next, to illustrate the methodology for modelling wind

power generation at high temporal resolution, we fit the

model separately to the data of each time step from the first

day of every month in 2010. Please note that the remaining

days and years gave similar results. Taking measurements

from the first day of each month during 2010 results in

4� 24� 12 ¼ 1152 time steps. Since 165 of the 1152 time

steps contain a large number of zero measurements, which

results in problems during the estimation when using the

R-INLA package, we used the remaining 987 time steps in

our analysis, so that, in total, we have measurements from

349 wind farms over 987 time steps during the year of

2010.

Figure 2 shows the observed relative frequency of

observations with wind power generation greater than zero

0.0

0.1

0.2

0.3

0.4

Fig. 1 Normalized annual average wind power in 2010

Stoch Environ Res Risk Assess

123



for the first day of each month of 2010. In each plot, we

calculate the relative frequency for wind farms 1; . . .; 349,

by dividing the number of observations with power pro-

duced greater than zero by the total number of observations

in a day. As we can see from this plot, in 2010, July,

August and November had lower empirical probability of

producing wind power, meaning that the data sets for these

months contain a larger number of zeros.

3 Models and prediction methods

In this section we start by describing the standard bench-

mark kriging. Next, we introduce two different spatial

models, one for the annual average wind power generation

and another for high temporal resolution of wind power

generation. The section ends with the methods used to

perform inference and obtain probabilistic forecasts.

3.1 Kriging as a benchmark model

Kriging is just the usual name to describe the best linear

unbiased predictor for a spatial process Zi at location

i (Matheron 1963). Although the kriging equations also

hold for non-Gaussian processes, the kriging predictor

coincides with the best linear unbiased predictor only when

the process is Gaussian. Nevertheless, the kriging method

is an attractive benchmark due to its robustness and sim-

plicity in obtaining predictions. Examples of models for

precipitation and air quality monitoring using kriging

methods can be found in Atkinson and Lloyd (1998) and

Ignaccolo et al. (2014), respectively.

Depending on how the mean of Zi is modelled, different

versions of kriging can be derived. While in ordinary

kriging the mean is assumed to be constant and unknown

over the neighbourhood of the value to be predicted, in

universal kriging models, the mean is a function of

covariates.

Two types of kriging methods are used in this paper—

ordinary kriging and universal kriging. For the universal

kriging, we define the covariate di as the distance from

wind farm i to the closest neighbouring coordinate on the

border of the west coast of Denmark. The initial idea of

including this covariate was inspired by maps of Danish

wind speed developed to assist the Danish municipalities in

their planning work for wind-turbine installation. These

maps show that the prevailing wind directions in Denmark

are west and southwest. Since the covariate improved the

predictions only for the annual average of wind power

generation, we use ordinary kriging to model wind power

generation at a high temporal resolution and universal

kriging to model the annual average of wind power
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Fig. 2 Histogram of the relative frequency of wind power generation

greater than zero over the 349 wind farms in Denmark in the first day

of each month of 2010. The relative frequency of wind power

generation greater than zero for each wind farm is calculated as the

number of observations with wind power generation greater than zero

divided by the total number of observations in a day
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generation. For simplicity of notation, we refer to both

ordinary and universal kriging as just kriging.

To obtain predictions at unobserved locations, we fit a

parametric variogram to the data. Before fitting the para-

metric variogram,we need to divide the data into several bins

by breaking up the distances between each of the points

based on a lag size between the distances, and afterwards the

actual semi-variogram value is calculated for the bins. We

start by calculating a sample variogram from the data that

depends only on the distance between the wind farms. Next,

we fit a parametric variogram model to the binned data from

the sample variogram with the sill being equal to the maxi-

mum estimate of the sample variogram. The estimation of

the variogram model parameters is done by iteratively

reweighted least squares, with weights equal to Nh=h
2

(Cressie 1985), whereNh is the number of point pairs and h is

the distance between the locations. The range is set to be

equal to the maximum of the distance from the sample var-

iogram divided by two, and a parametric Matérn covariance

structure is assumed. The Matérn covariance function is a

flexible model that contains as special cases many of the

covariance functions used in spatial statistics and is given by

Rðs; s0Þ ¼ r2

2m�1CðmÞ ðjjjs� s0jjÞmKmðjjjs� s0jjÞ ð1Þ

where Km is the modified Bessel function of second kind of

order m[ 0, j can be used to select the range and r to

achieve the desired marginal variance. The parameter m is a
smoothness parameter determining the mean-square dif-

ferentiability of the underlying process. Although this

parameter is fixed to 1 for computational reasons, it

remains flexible enough to handle a broad class of spatial

variation (Rue et al. 2009). Applications with fixed

parameter m include (Guillot et al. 2015; Cameletti et al.

2013; Munoz et al. 2013; Musenge et al. 2013). Detailed

information on the Matérn covariance model can be found

in Guttorp and Gneiting (2006) and Stein (1999).

We perform kriging using the R package gstat.

3.2 A spatial model for annual average wind power

generation

Annual average wind power generation is obtained by

averaging the power produced over 2010 at each wind farm.

Although the distribution of annual averagewind power does

not have the problem of probability mass at zero and is less

skewed than individual power, there is still the challenge that

it is bounded below by zero and above by the maximum total

capacity of the turbines. As a result, it is reasonable to gen-

erate predictions that lie inside this permissible range. We

propose a hierarchical spatial model for annual average wind

power generation. To ensure that the final predictions lie in

the valid range, we use a Beta distribution with a stochastic

mean that we model using a log-normal distribution

including both covariates and a spatial structure which is

captured by a latent Gaussian random field.

Let Y1; . . .; YN be the annual average normalized wind

power, where N is the number of spatial points. We use the

following parametrization for the Beta distribution with

parameters a and b,

m ¼ a

aþ b
; 0\m\1 and / ¼ aþ b; /[ 0;

ð2Þ

which implies that a ¼ m/ and b ¼ ð1� mÞ/. The distri-

bution of Yi can be written, in the new parametrization, as

Yi �Betaðmi/; ð1� miÞ/Þ: ð3Þ

Wedefine a linear predictor for the log of themean of Yi, i. e.,

log ðmiÞ ¼ f ðdiÞ þ xi ð4Þ

where di is the distance from wind farm i to the closest

neighbouring coordinate on the border of the west coast of

Denmark, to be thoroughly described in the following and

xi is a value of a Gaussian random field.

First of all, the spatial correlation of the random field

formed by the set of xi’s in (4) is incorporated through a

zero mean Gaussian random field x

x � N 0;Rð Þ: ð5Þ

The covariance function R belongs to the Matérn family.

Instead of the parametrization given in (1), we redefine the

covariance function depending on the range, r ¼
ffiffiffiffi

8m
p

j

Rðs; s0Þ ¼ r2

2m�1CðmÞ

�

ffiffiffiffiffi

8m
p

r
jjs� s0jj

�m
Km

�

ffiffiffiffiffi

8m
p

r
jjs� s0jj

�

ð6Þ

The range parameter r introduced in the correlation func-

tion is interpreted as the minimum distance for which the

correlation between two locations becomes negligible.

Now, we turn towards the component f ðdiÞ in (4). Let

d ¼ ðd1; . . .; dNÞ, the vector of distances from each wind

farm to the closest neighbouring coordinate on the border of

the west coast of Denmark.We define ~d as a grouped version
of d with groups indexed by c ¼ 1; . . .; 25 and components
~dc’s. We obtain the groups by first ordering the values of d

from the smallest to the largest, and then using bins of equal

length with the groups set to the median of the covariates

belonging to that group. Next, the effect of the covariate di is

modelled as a smooth function f, defined as

f ðdiÞ ¼
X

m

c¼1

wi½c�lcðiÞ ð7Þ

where wi½c� is the cth component of the vector wi. We

suppose that the vector wi is a set of serially randomly
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correlated regression coefficients, normally distributed

with mean 0 and covariance matrix Q. The vector lðiÞ
forms the series of basis functions. The basis function lðiÞ
could be chosen, for example, as the so-called spline or

B-spline basis (Lindgren et al. 2011). However, here we

explore the use of explanatory variables as the basis

function. We define lcðiÞ equal to an indicator function

equal to one if the covariate di belongs to group ~dc, and

zero otherwise.

Moreover, we assume that the coefficients over the

range of the covariate values have a first order random

walk prior. The random walk model of order 1 for a vector

ðu1; . . .; unÞ is constructed assuming independent

increments:

Dui ¼ ui � uiþ1 �Nð0; s�1Þ ð8Þ

In order to test the significance of the covariate ~di in the

model, we compare the error of prediction with and with-

out the covariate. Since including the covariate results in a

smaller error of prediction, we choose to include it in the

model.

Using Yi’s Beta distribution in (3), it follows that the

likelihood is

L ðhjyÞ ¼
Y

N

yi¼1

Beta ðyijmi;/Þ

¼
Y

N

yi¼1

Cð/Þ
Cðmi/ÞCð/� mi/Þ

y
mi/�1
i ð1� yiÞ/ð1�miÞ�1

ð9Þ

The smoothness parameter m in the Matérn covariance is set

to 1 as in Sect. 3.1. Moreover, the function f in (7) only

depends on the parameter s in (8). It follows that the vector

of hyperparameters is given by

h ¼ f/; s; j; rg:

Default log-Gamma priors are assumed for all the hyper-

parameters in the model. We obtain predictions for the

model just described with the INLA methodology imple-

mented in the R-INLA package to be described in Sect. 3.4.

3.3 A spatial model for high temporal resolution

of wind power generation

This model is tailored for wind power generation at high

temporal resolution. It has a competitive advantage over

using a truncated Gaussian process to handle the bound at

zero, as explained in Stein (1992). Instead, our model uses

a Bernoulli distribution to model the large amount of zero

measurements in the data set, and it makes use of a Gamma

distribution to model the asymmetric distribution of the

positive values. This specification has the advantage of a

well-behaved likelihood function that factors into two

independent terms, making calculations relatively simple.

The first term has only the logit model parameters and the

second term involves only the parameters of the Gamma

distribution [see Eq. (14)]. To overcome the so-called

intermittency problem, where areas with small values lie

very close to areas with large values, there is an underlying

Gaussian field that is part of the linear predictor of both

distributions—Bernoulli and Gamma.

Different approaches exist to deal with applications in

which data take nonnegative values but have a substantial

proportion of values at zero. One approach is to model a

zero-inflation parameter that represents the probability of

having zeros, given that these zero measurements come

from the same distribution as the non-zero values. An

example is found in Hall (2000).

Alternatively, data containing an abundant amount of

zeros can be modelled with two latent Gaussian processes.

The first controls the probability of observing zero values,

and the second governs the density distribution of non-zero

observations. Examples of this type of model used to

describe accumulated precipitation include Berrocal et al.

(2008) and Kleiber et al. (2012). On the other hand, Bax-

evani and Lennartsson (2015) model simultaneously the

occurrence and intensity of rainfall using a single latent

Gaussian field and then the positive part of the process is

considered to be observed up to a transformation of the

observed data. Rainfall and precipitation share similar

features with wind power data sets, since one could have

long periods of dry days with no rainfall observation. Here,

we consider that wind power generation is driven only by

one latent Gaussian field that controls both the occurrence

and the intensity. Moreover, the probability of having

power generation greater than zero is modelled as a Ber-

noulli distribution with probability that depends on the

latent Gaussian field.

The model used in this paper is often called a hurdle

model. The hurdle model for count data was proposed in

Mullahy (1986). One part of the model is a binary model,

such as a logistic or a probit regression, for whether the

response outcome is zero or positive. To estimate the level

of the positive outcomes, the second part of the model

consists of a truncated model that modifies an ordinary

distribution by conditioning on a positive outcome.

Applications of similar models can be found in Pohlmeier

and Ulrich (1995) and Gurmu (1997). Within the INLA

framework, Serra et al. (2014) used a hurdle model to

predict the occurrence of wildfires with point mass at zero

followed by a truncated Poisson distribution for the non-

zero observations.

In the second stage of our model, the distribution is a

Gamma density for the non-zero values, which represents

the amount of wind power generated. The Gamma distri-

bution is a good choice for describing wind power values
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for several reasons. It provides a flexible representation of a

variety of distribution shapes while utilizing only two

parameters: the shape and the scale. It can range from

exponential-decay forms for shape values near one, to

nearly normal forms for shape values beyond 20 (Wilks

1990). In addition, a distribution that excludes negative

values and is positively skewed is readily applicable for the

analysis of wind power.

We start by defining a binary random variable Zi at

location i ¼ 1; . . .;N which depends on the generation of

wind power

Zi ¼
1; if yi [ 0;
0; otherwise :

�

where yi is the observed wind power generation at wind

farm i. We assume that Zi follows a Bernoulli distribution

with parameter pi

Zi �Bern pið Þ ð10Þ

where pi is the probability of having wind power genera-

tion greater than zero at wind farm i and is modeled as

logit pið Þ ¼ az þ xi ð11Þ

with az being the intercept and xi an observation from a

latent Gaussian random field with Matérn covariance as

defined in (5). Then, conditional on the presence or absence

of wind power, we model the amount of wind power

generation at station i

YijZi [ 0 � Gamma /;
/
mi

� �

ð12Þ

with the expected value mi at wind farm i, defined as

mi ¼ exp ay þ byxi
� 	

ð13Þ

Finally, ay is the intercept and by the scaling parameter for

xi, which is defined in (11). The vector of the parameters to

be estimated is given by

h ¼ ðaz; ay; by;/; j; rÞ

The joint likelihood function is given by the product of the

likelihood for the occurrence and the amount as

L ðhjz; yÞ ¼
Y

zi¼0

Bern ðzijpiÞ
Y

zi¼1

Bern ðzijpiÞ Gamma ðyijmi;/Þ

¼
Y

zi

Bern ðzijpiÞ Gamma ðyijmi;/Þzi

¼
Y

zi

pi
zið1� piÞ1�zi

h 1

Cð/Þ
� /
mi

�/
yi
/�1 exp

�

� /
yi

mi

�izi

ð14Þ

The binary variables zi for i ¼ 1; 2; ::;N are treated as

observed variables in this model. We use the default values

for the prior parameter, where a log-Gamma prior is

assumed for j and / and a Normal prior with a fixed vague

precision is assumed for the fixed effects az; ay and by.
Once again, we obtain predictions for the model just

described with the INLA methodology implemented in the

R-INLA package to be described in Sect. 3.4.

3.4 Inference and prediction

Recall that the ultimate goal here is to obtain prediction

and the corresponding uncertainty of wind power genera-

tion at unobserved locations. In this section, we explain

how to do the parameter inference and obtain probabilistic

prediction using the models described in Sects. 3.2 and 3.3.

When the focus is on prediction, latent Gaussian models

can easily become computationally expensive as the cost of

inverting dense covariance matrices increases cubically

with the number of observed locations. A recent break-

through alternative was proposed in Rue et al. (2009) and

Lindgren et al. (2011). The former develops a framework

for Bayesian inference in a broad class of models enjoying

a latent Gaussian structure. The latter bridges a gap

between Gaussian Markov random fields (GMRF) and

Gaussian random fields theory and makes it possible to

combine the flexibility of Gaussian random fields for

modelling and the computational efficiency of GMRF for

inference. The method of Lindgren et al. (2011) specifies a

spatial model from a stochastic partial differential equation

(SPDE) formulation instead of explicitly defining the

covariance function. The key point of the SPDE approach

is the finite element representation of the Matérn field that

establishes the link between the Gaussian random field and

the GMRF defined by the Gaussian weights to which a

Markovian structure can be given. In particular, it is pos-

sible to find an explicit mapping of the Matérn covariance

function of the Gaussian random field to the elements of

the precision matrix Q of the GMRF with a computational

cost of O(n). References on the accuracy of the INLA/

SPDE approach in spatial statistics, which has been widely

validated, can be found in Lindgren et al. (2011), Simpson

et al. (2012) and Martins et al. (2013).

Specifically, the Gaussian field x with Matérn covari-

ance is a solution to the linear SPDE

ðj2 � DÞa=2x ¼ W; a ¼ mþ D=2; j[ 0; m[ 0; ð15Þ

where D is the spatial dimension and ðj2 � DÞa=2 is a

pseudo-differential operator defined in terms of its spectral

properties (Lindgren et al. 2011). The random Gaussian

field x is then approximated by a linear combination of

basis functions and random weights
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x ¼
X

k

wkw
�
k ð16Þ

The random weights w� ¼ ðw�
1; . . .;w

�
mÞ in (16) determine

the values of the field at the vertices, and the values in the

interior of the triangles are determined by linear interpo-

lation. The full distribution of the solution to the SPDE in

(15) is determined by the joint distribution of the weights in

(16) (Lindgren et al. 2011).

Subsequently, the posterior estimates of parameters and

hyperparameters are computed using INLA (Rue et al.

2009). INLA approximates the integral involved in the

calculation of the marginal posterior distributions of the

hyperparameters by Laplace approximation while the latent

field is calculated using a Gaussian approximation evalu-

ated at the mode of the posterior distribution.

We use the R-INLA package to perform inference and

prediction. For more information on the package see http://

www.r-inla.org.

Model fitting and prediction of the spatial random effect

are done simultaneously on a grid of locations. The grid

with the prediction locations, usually called mesh, is a

partition of the region into triangles that discretizes the

random field at m nodes. The mesh is constructed by

defining the basis function w1; . . .;wm in (16) for every

node in the triangulation so that they are equal to one in the

mesh nodes and zero in all other nodes. The advantage of

the triangulation over a regular grid is the possibility to

have smaller triangles where there is the need for higher

accuracy of the field representation, so the observation

locations are dense, and larger triangles where there is no

data and spending computational resources would be

wasteful (Lindgren 2012).

Figure 3 shows the triangulation using the western

Denmark data described in Sect. 2. The red dots denote the

349 wind farms in our data set. Note that the area of

Denmark where we have data includes several islands. In

order to construct the triangulation, we form one single

polygon that represents the global boundary of the western

part of Denmark (blue line at Fig 3).

We use a copula-based correction for the INLA (Ferk-

ingstad and Rue 2015). The correction is especially useful

for generalized linear mixed models that involve the

Binomial or Poisson distributions, where inaccuracies in

the Laplace approximation can occur because of the very

low degree of smoothing in some models. Following the

Bayesian framework in Rue et al. (2009), it is necessary to

approximate the full joint distribution of the latent field

given the parameters and the observations in order to

compute the posterior marginal distributions of the

parameters and the latent field given only the data. This

approximation is usually done in INLA using a Gaussian

approximation found by matching the mode and the

curvature at the mode of the posterior marginal distribution

of the latent field. However, approximations using skew

normal densities based on a second Laplace approximation

are shown to be more accurate than the Gaussian approx-

imation (Rue et al. 2009). Ferkingstad and Rue (2015)

shows how to use the Gaussian copula to construct an

approximation to the full joint distribution that retains the

dependence structure of the Gaussian approximation, while

having the improved marginals from skew normal densi-

ties. The correction has been added as part of the R-INLA

and adds minimally to the running time of the algorithm.

4 Evaluation framework

To assess the quality of the predictive distributions for the

annual average and high temporal resolution of wind power

generation, we use k-fold cross validation with k ¼ 4 for

the three methods described in Sect. 3. The idea of the k-

fold cross validation is to split the data into k roughly

equal-sized parts. For each split, we fit the model to the

remaining k � 1 parts of the data and calculate the pre-

diction error of the fitted model when predicting the k-th

part of the data. We repeat this procedure 50 times to

reduce sampling bias and variance. The prediction error is

obtained by combining the four estimates from the 50 data
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Fig. 3 The western Denmark triangulation. Red denotes the 349 wind

farms where we have data. The blue line is the boundary that covers

all the islands in the western part of Denmark
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sets. Overall, 5 to 10-fold cross-validation is recommended

as a good compromise between bias and variance (Breiman

and Spector 1992; Kohavi 1995). However, here we choose

4-fold cross-validation since we have a large sample size

and want to reduce computational costs.

The cross-validation estimate of the prediction error is

measured through the continuous ranked probability score

(CRPS), which is a strictly proper scoring rule for the

evaluation of probabilistic forecasts of a univariate quantity

(Gneiting and Raftery 2007). The CRPS is negatively ori-

ented, i.e., the smaller the better, and is defined as

CRPS ðP; xÞ ¼
Z 1

�1
ðPðyÞ � Iðy� xÞÞ2dy ð17Þ

whereP is the cumulative distribution function of the density

forecast and x is the normalized observed wind power.

In addition, we obtain the point forecast for the nor-

malized wind power at a specific location as the mean of

the predictive distribution. We calculate the root mean

squared error (RMSE) and bias of the point forecasts to

compare prediction performances. Note that since RMSE is

a quadratic loss function, the mean of the predictive dis-

tribution is the optimal point predictor (Banerjee et al.

2005). The RMSE and bias are defined as follows

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NR

X

N

i¼1

X

R

j¼1

ðyij � ŷ
�kðiÞ
ij Þ2

v

u

u

t ð18Þ

bias ¼ 1

NR

X

N

i¼1

X

R

j¼1

ðyij � ŷ
�kðiÞ
ij Þ ð19Þ

where N is the number of data points, R is the number of

replicates in the k-fold cross-validation, k(i) is the function

that maps the observation i to the group k and ŷ
�kðiÞ
ij is the

mean of the posterior predictive distribution when the

model was fitted with the data set excluding the k(i) part.

Similarly, using the median of the density forecasts as

the point forecast, we compute the mean absolute error

(MAE). Here, the point forecast that minimizes the MAE is

the median of the predictive distribution, since MAE is a

symmetric linear function in contrast to the RMSE (Fraley

et al. 2010; Pinson and Hagedorn 2012).

MAE ¼ 1

NR

X

N

i¼1

X

R

j¼1

jyij � ŷ
�kðiÞ
ij j ð20Þ

To formally test for a significant difference between the

predictions made for two spatial fields, we apply the spatial

prediction comparison test (SPCT) introduced in Hering

and Genton (2011). The null hypothesis to be tested is that

of equal predictive ability on average in terms of a loss

function, such as absolute differences, squared differences,

as well as skill score functions. Gilleland (2013) proposed

two new loss functions to the SPCT, the first is based on

distance maps and the second on image warping.

The SPCT yields a statistical test that accounts for

spatial correlation without imposing any assumption on the

underlying data or on the resulting loss differential field.

The loss differential field is a field giving the straight dif-

ference between the two loss functions calculated for each

of two forecasts. We are interested in the average of the

loss differential field, which is asymptotically Normal

distributed (Hering and Genton 2011). Because the loss

differential field is likely to have a strong spatial correla-

tion, the standard error for its mean is calculated from the

variogram. Here, we use an isotropic exponential vari-

ogram to fit the data. Moreover, if a trend on the data is

suspected, it should be removed before applying the SPCT,

since the mis-specification of the trend can result in a test

for prediction comparison that is undersized or oversized.

We perform ordinary least squares (OLS) to estimate and,

if necessary, remove the trend from our data. Based on the

large p-values of the regression coefficients in the OLS that

were obtained when we fitted the data from the annual

average power output, we conclude that there is no sig-

nificant trend to be removed in this case.

TheSPCTis implemented in theRpackageSpatialVx,which

is used here to obtain p-values for the difference in RMSE,

CRPS, bias andMAE between the models described in Sect. 3.

We assess the predictive performance with reliability and

sharpness diagrams. Reliability represents the ability of the

forecasting system to match the observation frequencies. Ide-

ally, the nominal coverage rates, which is the proportion of

times that the cumulative distribution of a random variable is

below a threshold, and the observed frequencies would be the

same, resulting in points aligning with the diagonal. For

example, for a nominal coverage rate a ¼ 0:05, it is expected

that 5 % of the observations are smaller than the predictive

quantile at nominal level 0.05. However, a reliable forecast is

not useful if it is not informative. The sharpness diagram gives

an indication of the spread of the predictive distributions. It is

measured by the average interval size in the case of predictive

intervals, which should be as tight as possible for a sharp fore-

cast (Gneiting et al. 2007).

In order to construct reliability diagrams, we start by

introducing an indicator variable I i;j
ðaÞ, which is defined for

a quantile forecast p̂
ðaÞ
i;j made at wind farm i and replicate j

with observed value pij as follows

I i;j
ðaÞ ¼ 1 if pij 	 p̂

ðaÞ
i;j

0; otherwise

�

The indicator variable I i;j
ðaÞ tells whether the actual out-

come lies below the quantile forecast (hits) or not (miss).

Next, denote n
ðaÞ
1 the sum of hits and n

ðaÞ
0 the sum of misses

over all the realizations
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n
ðaÞ
1 ¼

X

N

i¼1

X

R

j¼1

I i;j
ðaÞ and n

ðaÞ
0 ¼ N � n

ðaÞ
1

An estimation âðaÞ of the actual coverage aðaÞ is then

obtained by calculating the mean of I i;j
ðaÞ over the N wind

farms and R replicates in the validation set.

âðaÞ ¼ 1

NR

X

N

i¼1

X

R

j¼1

I i;j
ðaÞ ¼ n

ðaÞ
1

n
ðaÞ
1 þ n

ðaÞ
0

ð21Þ

This approach to the evaluation of prediction intervals was

proposed in Baillie and Bollerslev (1992) and McNees and

Fine (1995). Consistency bars for the reliability diagram

with 95 % confidence level are computed by simulating a

Binomial distribution with parameters N equal to the cor-

responding number of wind farms, and p, the probability of

success, equal to the nominal level a.
In the sharpness diagram, for each nominal quantile and

each station, we can obtain the length of the central predicted

interval. Central predictive intervals are centered in proba-

bility around the median. For example, the value at the 60 %

nominal coverage is the predicted value at the 80 % quantile

minus the predicted value at the 20 % quantile. The final

predicted interval size is the average size of the predicted

intervals over all the wind farms and replicates as follows

�d
ðaÞ ¼ 1

NR

X

N

i¼1

X

R

j¼1

dðaÞi;j ¼ 1

NR

X

N

i¼1

X

R

j¼1

�

p̂
ð1�a=2Þ
i;j � p̂

ða=2Þ
i;j

�

ð22Þ

We complete this section by explaining how to assess the

reliability of the induced probability forecasts for the

occurrence of wind power in the model shown in Sect. 3.3.

We compute the observed relative frequencies in 21

equally spaced bins between 0 and 1. For each predicted

value, it is established which of the bins the value falls into.

The corresponding observed relative frequency is the

number of times the event happens, given that the predicted

probability belongs to a specific bin, divided by the total

number of predicted values in that bin. Each bin is repre-

sented by a single forecast probability, which is chosen to

be the average of the predicted values over the bin. Bröcker

and Smith (2007) mentions the advantages of considering

the average instead of the popular choice of the arithmetic

center of the bin.

5 Results

We now present verification results for the probabilistic

prediction of annual average and high temporal resolution of

wind power generation after k-fold cross-validation based on

the evaluation framework described in Sect. 4.

5.1 Verification results for annual average wind

power generation

In this section, we show results obtained from modelling

the annual average wind power generation in the year of

2010, where average wind power is obtained by averaging

the power output at each of the 349 wind farms in the

western part of Denmark. We compare the predictions

obtained with the Beta model with covariates fitted with the

INLA/SPDE approach described in Sect. 3.2 with kriging

in Sect. 3.1. Table 1 shows summary measures of predic-

tive performance for annual average wind power genera-

tion, which are fully described in Sect. 4. The large p-

values in this table indicate that we do not reject the

hypothesis of equal predictive ability on average in terms

of RMSE, CRPS, Bias and MAE between the Beta model

with covariate fitted with the INLA/SPDE approach and

kriging. This is not surprising given that here, since the

data is averaged over an entire year, the individual noises

are smoothed out and the distribution becomes closer to

Gaussian.

We assess reliability and sharpness of the predicted

annual average wind power generation through the dia-

grams in Fig 4. In this figure we can see a comparison

between the Beta model with covariates fitted with the

INLA/SPDE approach and kriging of the reliability dia-

gram together with the respective consistency bars (left)

and sharpness diagram (right). The Beta model tends to

overestimate the annual average wind power generation for

quantiles larger than 0.25, which results in a reliability

curve below the diagonal. However, this model also has a

considerably smaller prediction interval, as shown in the

right plot of the same figure. We remark that the consis-

tency bars in this figure are constructed without consider-

ing the replicates of the k-fold validation as part of the total

number of observations, since they are not independent

realizations of the process. The method of combining

replicates of predictions when building consistency bars for

Table 1 Root mean square error (RMSE), continuous ranked prob-

ability score (CRPS), bias and mean absolute error (MAE) with

respect to the maximum capacity (in percentage) for annual average

wind power generation using kriging and the Beta model with

covariate.

Kriging Beta model p-values

RMSE 7.518 7.377 0.97

CRPS 4.235 4.319 0.934

Bias 0.012 0.164 0.923

MAE 5.547 5.665 0.936

The last column shows the p-values for the differences in RMSE,

CRPS, bias and MAE between kriging and the Beta model
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Fig. 4 Reliability diagram with respective consistency bars (left) and sharpness diagrams (right) for the annual average wind power generated in

2010

[0,0.08621]
(0.08621,0.1724]
(0.1724,0.2586]
(0.2586,0.3448]
(0.3448,0.4311]

[0,0.08621]
(0.08621,0.1724]
(0.1724,0.2586]
(0.2586,0.3448]
(0.3448,0.5548]
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(0.1724,0.2586]
(0.2586,0.3448]
(0.3448,0.5548]

Fig. 5 Example of normalized wind power data generated at a fixed 15 min interval from 2010 (left). Predicted mean of the normalized wind

power obtained with kriging (middle) and with the hierarchical hurdle Gamma model (right)
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the reliability diagram should be investigated further to

have consistency bars of correct size in Fig. 4.

In summary, the results for modelling the annual aver-

age of wind power generation show that kriging should be

preferred over the Beta model with covariates fitted with

the INLA/SPDE approach. Both methods present similar

results, while kriging is easier to set up and has lower

computational cost. While kriging takes approximately

0.05 s to fit and get point predictions at one replication and

1-fold in a single processor Intel Core i7-4600U/2.10 GHz

machine, the INLA method takes approximately 20.08 s to

get inference and density of the predictions in the same

machine.

5.2 Verification results for high temporal resolution

of wind power generation

We now present verification results for predicting wind

power at a high temporal resolution, considering data from

2010 in the western part of Denmark. We fit the model

separately to each of the 987 time steps spread over 12

days, each day belonging to a different month in the 2010

calendar year. Then, we calculate the average of the results

and scores from the individual prediction cases. Here, we

compare the models described in Sects. 3.3 and 3.1.

Figures 5 and 6 show an example of normalized wind

power data at high temporal resolution in 2010, together

with the predictive maps of the mean and the standard

deviation for the western part of Denmark. In Fig 5, the left

plot is the observed wind power after normalization, the

middle plot corresponds to the predicted mean obtained

with kriging and the plot on the right corresponds to the

hierarchical hurdle gamma model fitted with the INLA/

SPDE approach. From Fig 5, we can see that the Gamma

model is able to predict larger mean values of normalized

wind power than the kriging. The predicted standard

deviations are shown in Fig 6. In this figure, the left plot is

produced with kriging and the plot on the right corresponds

to the hierarchical hurdle Gamma model fitted with the

INLA/SPDE approach. While the standard deviation from

the Gamma model is larger where the predicted mean value

is also larger, the kriging has a large standard deviation

everywhere except where the observations are placed.

[0.0001171,0.2]
(0.2,0.5]
(0.5,1.5]
(1.5,3]
(3,4.933]

[0.0001171,0.2]
(0.2,0.5]
(0.5,1.5]
(1.5,3]
(3,4.933]

Fig. 6 Predicted standard

deviation of the normalized

wind power obtained with

kriging (left) and with the

hierarchical hurdle Gamma

model (right)
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We start by presenting the verification results for the

observed measurements that are greater than zero. In

Table 2, we compare summary measures of predictive

performance for wind power greater than zero obtained

using the hurdle gamma model fitted with the INLA/SPDE

approach which is described in Sect. 3.3 and kriging

described in in Sect. 3.1. The hierarchical hurdle Gamma

model produces significantly better predictions on average

in terms of RMSE, CRPS and MAE than kriging. The

superiority of the hierarchical spatial method over the

kriging may stem from a lack of flexibility of the latter, as

it does not consider the point mass at zero in the wind

power distribution and is optimal only when data is

Gaussian distributed. In contrast, the hurdle Gamma model

attempts to accommodate wind occurrences with a Ber-

noulli distribution and wind power magnitude using the

Gamma distribution, where a shared latent process is

included to handle spatial correlation between wind farms

in both distributions.

On the other hand, kriging is considerably faster than the

model fitted with the INLA/SPDE approach. It takes

approximately 0.06 s to estimate one replication and 1 fold,

while the hurdle Gamma model fitted with INLA takes

approximately 44.4 s to get inference and density of the

predictions in a single processor Intel Core i7-4600U/2.10

GHz machine. The trade-off between a method that offers

more accurate predictions with a sharper predictive density

and a method that is simpler to set up and requires less

computational effort will most likely depend on the type of

application.

The plots in Fig. 7 show a comparison between the

hierarchical hurdle Gamma model and kriging in terms of

reliability (left) and sharpness (right) for a power output

greater than zero. Kriging has a curve close to the diagonal,

while the hierarchical hurdle Gamma model has a sigmoid-

shaped curve, which could be due to a violation of the

model assumptions. In this scenario, we do not need con-

sistency bars because of the large sample size, since we

have 349 wind farms and 50 replicates for each of the 987

time steps.

Table 2 Root mean square error (RMSE), continuous ranked prob-

ability score (CRPS), bias and mean absolute error (MAE) with

respect to the maximum capacity (in percentage) of wind power

generation at high temporal resolution when the wind power output is

greater than zero using kriging and the hierarchical hurdle Gamma

model

Kriging Gamma p-values

RMSE 13.689 7.214 0.05

CRPS 5.827 2.455 0.039

Bias 0.56 -0.222 0.201

MAE 8.665 2.917 0.044

The last column shows the p-values for the differences in RMSE,

CRPS, bias and MAE between kriging and the Gamma model
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Fig. 7 Reliability (left) and sharpness (right) diagrams for wind power generation at high temporal resolution when the wind power output is

greater than zero using kriging and the hierarchical hurdle Gamma model
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Figure 8 shows the histogram for the wind power

measurements greater than zero together with their pre-

dictions, which is the mean value of the posterior distri-

bution, using the two methods of comparison: kriging and

the hierarchical hurdle Gamma model. The positive values

of wind power are clearly not Gaussian distributed. It can

also be observed that the kriging method (second plot)

predicts less values close to one in comparison to the

hurdle Gamma model (third plot) and in comparison with

the true distribution (first plot). In fact, the proportions of

observations, kriging predictions and Gamma model pre-

dictions that exceed 0.75 are 0.0207, 0.0006 and 0.0131

respectively.

Recall that the hierarchical hurdle Gamma model fitted

with the INLA/SPDE approach additionally gives predic-

tions of the Bernoulli-distributed random variable that

maps the occurrence of wind power generation. We assess

the reliability of the probability predictions for the occur-

rence of wind power generation through the diagram in the

bottom line of Fig 9. This plot shows the empirically

observed frequency of wind power occurrence as a function

of the binned forecast probability. The actual observed

relative frequency is well approximated by the forecast

probability, as the line in this plot lies close to the diagonal.

The top plots in the same figure correspond to histograms

of the empirical probability (left) and the predicted prob-

ability (right) of wind power occurrence. As we can see

from the left plot, there are almost five-times as many time

steps with generated power greater than zero than equal to

zero. The histogram of the predicted probabilities on the

right side shows the same tendencies, since most of the

estimated probabilities of wind power occurrence are close

to one.

6 Discussions

We have presented statistical methods for obtaining proba-

bilistic predictions of wind power generation at annual

average as well as high temporal resolution (15 min aver-

ages) and we have compared the results from these methods

with the benchmark kriging. In the first scenario, at any

individual wind farm, the distribution of the annual average

wind power generation is modelled with a Beta distribution,

where the distance to the west coast of Denmark is used as a

covariate and the spatial dependence between different

locations is captured by a spatial Gaussian process with

Matérn covariance. The second scenario builds on a hierar-

chical hurdle Gammamodel, which is similar to well-known

models for precipitation such as Berrocal et al. (2008) and

Baxevani and Lennartsson (2015) in the sense that it is also a

two-stage model with a Gaussian field to account for spatial

correlation. However, our approach introduces a new Ber-

noulli-distributed random variable to account for the prob-

ability of wind power occurrence. The parameter p of this

distribution depends on the Gaussian field and can be fully

estimated. The continuous part of our two-stage model has a

Gamma distribution where the mean depends on the same

Gaussian field that is used for modelling p.

To perform inference and prediction, instead of using

MCMC, we have used the novel INLA approach. We have
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Fig. 8 Histograms of the normalized wind power greater than zero (left), of the predicted wind power using kriging (middle) and of the predicted

wind power using the hierarchical hurdle Gamma model (right)
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shown that complex hierarchical spatial models are well

suited to wind power data and can be implemented seam-

lessly under the SPDE approach that is implemented in the

R-INLA library providing results in reasonable computa-

tional time.

We show results from case studies on the probabilistic

prediction of annual average and high temporal resolution

of wind power generation with wind farms from the

western part of Denmark. While the Beta model approach

showed similar results to the benchmark method, the

hierarchical hurdle Gamma model resulted in predictive

distributions that consistently outperformed the benchmark

model in terms of the validation measures CRPS, RMSE,

bias and MAE. The predictive distributions obtained from

the hurdle Gamma model have increased sharpness,

resulting in less reliability as compared to the kriging

method. Therefore, a more accurate method for generating

consistency bars in the reliability diagram should be con-

sidered to draw more solid conclusions about the reliability

of the predictions from our method.

The models presented in this work could also be

extended to the spatiotemporal domain by incorporating an

extra term for the temporal effect such as an autoregressive

component or by the introduction of a non-separable spa-

tiotemporal structure. This would come with a computa-

tional cost, which would have to be assessed.
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