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Abstract 

Nitrate concentration and runoff are site-specific and driven by climatic factors and crop management. As 

such, nitrate emissions may increase in the future due to climate change, affecting the marine eutrophication 

mechanism. In this context, and considering the case of spring barley production in Denmark, the paper has 

two objectives: (i) to estimate the present and future marine eutrophication impacts by combining a novel 

Life Cycle Impact Assessment (LCIA) modelling approach with a quantification of the effects of climate 

change on its parameterisation, and (ii) to discuss the implications of different normalisation references when 

comparing future Life Cycle Assessment (LCA) scenarios with current production systems. A parameterised 

characterisation model was developed to gauge the influence of future climatic-driven pressures on the 

marine eutrophication impact pathway. Spatial differentiation was added to the resulting ‘present’ and 

‘future’ characterisation factors (CFs) and calculated for the Baltic and North Sea. The temporal variability 

of both midpoint normalised impact scores and damage scores reflect a 34% and 28% increase of the CFs in 

the North Sea and Baltic Sea, respectively. The temporal variability is mostly explained by CF variation and 

increasing future nitrogen flows. The marine eutrophication indicator scores at both midpoint and damage 

levels suggest that the differentiation of impacts to various receiving (and potentially perturbed) ecosystems 

is relevant. Damage scores are quantified with a factor 2.5 and 2.3 differentiation between the Baltic (higher) 

and North Seas (lower) for the present and future scenarios, respectively. The comparison of the 

normalisation methods, either based on total annual impacts (domestic inventory of background 

interventions), on ecological carrying capacity, or on the presently proposed method, point to the value of 

adding spatial differentiation to LCIA models. The inclusion of time variation and spatial differentiation in 

characterisation modelling of marine eutrophication and the identification of a paucity of adequate inventory 

data for future scenario analysis constitute the main outcomes of this study. Further research should aim at 

reducing the uncertainty of the parameterisation under future conditions and strengthening emissions 

projections. 
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1. Introduction 

Conserving and sustainably using the oceans, seas and marine resources, taking urgent action to mitigate 

and adapt to climate change, and achieving food security whilst improving nutrition are three of the 17 

Global Goals 2030 Agenda for Sustainable Development Global Goals (UN General Assembly, 2015). 

Global food security and environmental sustainability are interlinked, whereby the former only becomes 

possible if agricultural systems meet certain sustainability criteria (Foley et al., 2011). Life Cycle 

Assessment (LCA) is one method to holistically assess whether agricultural systems are meeting the 

necessary benchmarks. The use of LCA to assess the potential environmental impacts of agricultural systems 

is growing (Soussana, 2014), and guidance on tailoring LCAs for crops has recently been published, with 

regard to the agri-food sector (Notarnicola et al., 2015). Agriculture and energy production are the main 

sources of environmental emissions of reactive nitrogen (N) (Galloway et al., 2008). The application of 

fertilizers in agriculture introduces ammonium (NH4
+
) and nitrate (NO3

-
) to soil and water, and ammonia 

(NH3) to air, whereas the combustion of fossil fuels adds nitrogen oxides (NOx) to air (Socolow, 1999). In 

agriculture practices, N added to the soil may exceed plant assimilation. This surplus emitted to the 
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environment may constitute the main cause for anthropogenic fertilization of freshwater and marine 

ecosystems that lead to deleterious aquatic eutrophication. 

Marine eutrophication is a syndrome of ecosystem responses to the increase of the availability of 

growth-limiting plant nutrients in the euphotic zone of marine waters (Cloern, 2001; Cloern et al., 2016; 

Nixon, 1995; Smith et al., 1999). For modelling purposes, nitrogen is assumed to be the growth-limiting 

nutrient in marine waters, considering representative average spatial and temporal conditions (see also 

Vitousek et al. (2002); Howarth and Marino (2006); Cosme et al. (2015)). Such N-enrichment promotes 

planktonic growth and often involves depletion of dissolved oxygen (DO) in bottom waters to hypoxic and 

anoxic levels, potentially affecting exposed species (e.g. Gray et al., (2002); Levin et al., (2009), Vaquer-

Sunyer and Duarte, (2008)). Impacts of eutrophication-induced hypoxia are seen from the local to regional 

scales (Breitburg et al., 2009). Similarly, variability at short time scales (e.g. seasonal) can have a significant 

role in impacts modelling, e.g. latitude and light availability, temperature and species distribution, water 

stratification and oxygen depletion. Current research of Life Cycle Impact Assessment (LCIA) methods for 

marine eutrophication is being directed to improve the representation of short term variability and spatial 

differentiation – see e.g. Azevedo et al. (2013); Cosme and Hauschild (2016a, 2016b); Cosme et al. (2016a, 

2016b, 2015). Parameterisation of future pressures in those methods for impact forecasting is naturally 

absent. To the knowledge of the authors no other studies addressing the effects of time variation and future 

environmental conditions on marine eutrophication in LCA exist. 

Nitrate concentration and runoff are site-specific and driven by climatic factors and crop management, as 

shown for organic cereal cropping systems in Denmark (Jabloun et al., 2015). As a consequence of the 

expected increase in temperature and changed rainfall pattern, N runoff may increase in the future (Doltra et 

al., 2012; Jensen and Veihe, 2009). However, to what extent N and water management can close the yield 

gaps is still uncertain (Mueller et al., 2012). Therefore the definition of future scenarios for agricultural 

systems is not straightforward. 

In the LCA framework, future-oriented scenarios for crop production have so far mainly focused on 

comparing different GHG mitigation options of both crops and livestock production on farms in northern 

Europe and USA (Audsley and Wilkinson, 2014), wheat in the UK (Röder et al., 2014), as well as to 

compare different adaptation strategies, e.g. for wheat in Switzerland (Tendall and Gaillard, 2015) and UK 

(El Chami and Daccache, 2015), and for barley in Denmark (Dijkman et al., 2013; Niero et al., 2015b). 

Guidance to manage uncertainty in the definition of future LCA scenarios addressing the effect of climate 

change in crop production is provided at the Life Cycle Inventory (LCI) level and implemented in the case of 

spring barley cultivation in Denmark under a future, realistic, worst-case climate scenario (Niero et al., 

2015a). However, the effect of increased temperature and CO2 concentration will also affect the impact 

pathway and therefore the LCIA modelling. A similar approach using temporal scenarios (present and future) 
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to address the influence of climate change at the regional scale has been applied for water availability (Núñez 

et al., 2015).  

Marine eutrophication characterisation in LCIA models the variation of an indicator located between the 

emission and the damage through an impact pathway, e.g. dissolved N concentration increase, as in the 

ReCiPe (Goedkoop et al., 2012), EDIP 2003 (Hauschild and Potting, 2005), IMPACT 2002+ (Jolliet et al., 

2003), and CML 2002 (Guinée et al., 2002) LCIA methods. Marine eutrophication indicators at a later point 

(closer to the damage) would need a longer modelling work of the environmental mechanisms, but are 

lacking in the methods above. The inclusion of ecosystem exposure and effects on biota, as done for the 

ecotoxicity indicator (Rosenbaum et al., 2008), is proposed here for marine eutrophication – see also Cosme 

and Hauschild (2016b). The impact assessment, at any point, is done by applying substance-specific 

characterisation factors (CF) that convert the emissions into a potential impact (Hauschild, 2005). 

The characterisation modelling work of the marine eutrophication indicator presented here was 

developed in the EU FP7 project LC-IMPACT (http://lc-impact.eu/) and was improved with recent 

developments. It involves the estimation of CFs consistent with the generic impact assessment framework 

(Udo de Haes et al., 2002) by modelling factors for the environmental fate of emissions, ecosystem exposure 

to these, and effects on exposed species. 

Normalisation in LCA relates the characterised impact indicator scores of an analysed system to those of 

a reference system (Laurent and Hauschild, 2015). It is an optional step in the characterisation phase and it is 

useful to understand the relative magnitude of the impact indicator (ISO 14044, 2006). Different 

normalization references can be applied, with different reference duration of the included activities and 

boundaries of the reference system, i.e. following either a production-based or a consumption-based 

perspective. In both cases, the flows from all activities occurring within the physical or geographical 

boundaries of the reference system over the reference duration need to be quantified, either in terms of the 

total production activities or total consumption of the reference system, respectively (Laurent and Hauschild, 

2015). 

Building on the results of an LCA study of spring barley in Denmark (Niero et al., 2015b), this paper 

estimates the present and future marine eutrophication impacts by combining a novel LCIA approach which 

includes the influence of climate change using model parameterisation to add both temporal and spatial 

variation beyond previous attempts. Furthermore, the implications of different normalisation references when 

comparing future LCA scenarios with current production systems are discussed.  

2. Materials and methods 

First, the framework to characterise the marine eutrophication impact category is introduced (section 2.1) 

and the LCI data used to feed the LCIA model are presented (section 2.2). Secondly, the parameterisation in 

the LCIA under present and future climate conditions is presented, including the implications of climate 
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change on marine eutrophication modelling (section 2.3), as well as the possible adaptations of normalisation 

procedures in future scenarios definition (section 2.4), and a method to estimate damage factors for marine 

eutrophication damage modelling (section 2.5). 

2.1. DPSIR and impact pathways for marine eutrophication  

Environmental indicators have become an important tool in decision-making (Tscherning et al., 2012), 

often benefiting from conceptual frameworks based on causality (Niemeijer and Groot, 2008). The causal 

chain framework Drivers-Pressures-State-Impacts-Responses (DPSIR) (Smeets and Weterings, 1999) is 

formally an adaptive environmental management approach that integrates environmental and human systems 

into a common conceptual framework. 

The Drivers can be defined as economic and social factors triggering Pressures to the environment (Borja 

et al., 2006). Applying the DPSIR approach to the marine eutrophication impacts indicator (Figure 1), the 

primary Drivers arise from the population growth and consequent need for food and energy (Galloway et al., 

2008; Zaldívar et al., 2008). The Pressures express the way ecosystems are disturbed by human activities 

(Borja et al., 2006), and correspond to the N emissions identified in the LCI. The State refers to the 

ecosystem condition under the Pressures, and can be assessed by field measurements or indicators (Bricker et 

al., 2008; Ferreira et al., 2011). Impacts are the effects on the ecosystem and society caused by changes in 

the State, like hypoxia that causes behavioural, physiological, or ecological impacts on biota (e.g. Davis 

(1975), Diaz and Rosenberg (1995), Gray et al. (2002), Vaquer-Sunyer and Duarte (2008)), or like toxic and 

harmful algal species, loss of biodiversity, water quality degradation hindering water uses, fish production, 

or aesthetic value (Kelly, 2008; Rabalais, 2002). The Responses are the management and societal measures 

aimed at preventing, minimising, or mitigating the Impacts by feeding back to the D-P-S, i.e. modifying the 

Drivers, reducing Pressures, and restoring the State to ‘healthy’ conditions.  

LCIA indicators focus on the P-S-I components, based respectively on inventoried emissions in LCI, fate 

(on P) and exposure (on S) modelling work, and the effects modelling (on I). The LCA framework supports 

decision-making processes in devising Responses aimed at modifying the Drivers and reducing the 

Pressures. The conceptual ‘management sphere’ thus feeds back information and action from the problems in 

the ecosphere to the solutions in the technosphere, which is the core value of LCA – the characterisation of 

the interface between techno- and ecosphere. 
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Figure 1 The Drivers-Pressures-State-Impacts-Responses (DPSIR) framework applied to the marine eutrophication 

indicator in life cycle impact assessment. Indication of the impact assessment modelling components and interface with 

the DPSIR framework: fate factor (FF), exposure factor (XF) and effect factor (EF) are combined in order to 

characterise emissions inventoried in the life cycle inventory (LCI) phase. 

 

2.2. Life Cycle Inventory of present and future spring barley cultivation 

The details of the scenario describing the present spring barley cultivation in Denmark are reported in 

Niero et al. (2015b). This scenario, with ‘cradle-to-farm gate’ boundaries, refers to the average cultivation of 

1 kg of dry matter spring barley (Hordeum vulgare L.) grain for malting in Denmark (functional unit). The 

average Danish crop yield in the 5-year interval 2009–2013 was considered (5,700 kg·ha
-1

). For future spring 

barley cultivation, the data on crop yields produced in the climate phytotron RERAF (Risø Environmental 

Risk Assessment Facility) were used, where spring barley cultivars were cultivated under controlled and 

manipulated treatments mimicking a worst case climate change, i.e. double CO2 concentration (700 ppm) 

and a global mean temperature increase of 5°C in the atmosphere (Ingvordsen et al., 2015). The measured 

variation in crop yield depends on the set of cultivars and experimental conditions (Niero et al., 2015b), but it 

is considered here equal to 4,207 kg·ha
-1

 (26% less than current situation). In the experiments mimicking 

future climate the amount of fertilizer currently applied was used, therefore the amount of N·ha
-1

 was kept 

constant for the future scenario, but assuming an increase in nitrate leaching (+24%) (Jensen and Veihe, 

2009). The LCI model delivers emissions of NO3
-
 to water and NH3 and NOx to air calculated per ha of 

cultivated land and kg yield (Table 1). The calculation of the N emissions described above are based on 

emission factors model work by Hamelin et al. (2012) (for NOx and NH3) and Kristensen et al. (2008) (for 

NO3
-
) and the N content in fertilizer – see details in Niero et al. (2015b).  
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Table 1 Summary of emitted quantities of N-derived substances per emission route, in the present and future spring 

barley production system (based on Niero et al. (2015b)).  

Elementary flow Amount emitted Unit 

Present scenario Future scenario 

N in nitrogen oxides (NOx-N) to air:    

- per area 

- per yield 
1.77 1.77 kg·ha

-1
 

9.88E-05 1.34E-04 kgN·kgbarley
-1

 

N in ammonia (NH3-N) to air:    

- per area 

- per yield 
7.34 7.34 kg·ha

-1
 

1.06E-03 1.43E-03 kgN·kgbarley
-1

 

N in nitrate (NO3
-
-N) to water:    

- per area 

- per yield 
126 157 kg·ha

-1
 

4.99E-03 8.43E-04 kgN·kgbarley
-1

 

 

2.3. Characterisation factors for marine eutrophication under present and future scenarios   

The impact assessment methodology characterises waterborne N emissions as nitrate (NO3
-
-N) and 

airborne N deposition as ammonia (NH3-N) and nitrogen oxides (NOx-N) obtained in the LCI (Table 1). The 

characterisation model used here applied LC-IMPACT marine eutrophication CFs modified with recently 

developed XF and EF models. The CF is composed of a Fate Factor (FF) that quantifies the environmental 

losses from the original emission in freshwater and marine compartments expressing the availability of N in 

the euphotic zone of coastal waters (Azevedo et al., 2013), an eXposure Factor (XF) that expresses the 

‘conversion’ potential of the available N into organic matter (biomass) and oxygen consumed after its 

aerobic respiration (Cosme et al., 2015), and an Effect Factor (EF) that quantifies the effect of oxygen 

depletion on exposed species (modelled as time- and volume-integrated Potentially Affected Fraction of 

species, PAF) (Cosme and Hauschild, 2016a). 

The emitted amounts of N from each of the emission routes (e.g. to air, surface freshwater, groundwater, 

or marine water) are multiplied by the respective CF to deliver the impact score (IS) for the specific human 

activity from which the reported emission was originated, per receiving marine coastal ecosystem (66 spatial 

units). The Large Marine Ecosystems (LME) biogeographical classification system (Sherman and Hempel, 

2009) was adopted for its consistent use in the three factors modelled. Coastal ecosystems LME#22 (North 

Sea) and LME#23 (Baltic Sea) were identified as the receiving coastal spatial units for Danish emissions. 

Predictions of future pressures caused by altered climatic conditions predominantly describe negative 

consequences for biodiversity and ecosystems functions (Brierley and Kingsford, 2009; Rabalais et al., 

2009). Modelling such future impacts involves a highly uncertain quantification of both pressures and 

responses (biogeochemical, biological, and ecological) due to the diversity of potential impacts and the 

complexity of cumulative and synergistic effects. For this reason, caution should be applied to its application 

and especially interpretation. 
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The major drivers for those pressures relate to increased temperature, sea level rise, enhanced 

hydrological cycles, and shifts in wind and currents patterns (Rabalais et al., 2009). Individually, or 

cumulatively, these impose direct and indirect effects on species and ecosystems. Increased temperature 

directly affect physiological aspects such as increasing metabolic rates, including oxygen requirements, 

temperature or hypoxia stress, heterotrophic respiration and oxygen consumption (Pörtner and Knust, 

2007; Rabalais et al., 2009); or indirectly, via phenology and species succession by altering food 

availability and food webs (Edwards and Richardson, 2004). On the abiotic component, temperature- and 

salinity-driven density gradients (pycnoclines) may be strengthen, with special impact on intensified 

stratification in coastal waters (Rabalais et al., 2009). Stratification hinders oxygen diffusion and vertical 

mixing, facilitating the onset of hypoxia in bottom waters and the disruption of biogeochemical cycles 

(Diaz and Rosenberg, 2008; Middelburg and Levin, 2009). Moreover, oxygen solubility in seawater is a 

function of temperature. In a future warmer ocean altered availability of oxygen may pose important 

limitations to species occurrence (Brierley and Kingsford, 2009). In addition, increased riverine 

discharge of nutrients and organic matter, from a potential increased precipitation regime, may 

exacerbate oxygen depletion after its respiration in shallow coastal waters. Reviews of these and other 

future pressures and effects can be found in (Brierley and Kingsford, 2009; Rabalais et al., 2009).  

In an attempt to model the influence of the pressures affected by future climate change and to add 

environmental relevance to the characterisation modelling of the future scenario, modifications to the 

parameterisation of the original CFs were introduced (Table 2). 

 

Table 2 Changes introduced in the characterisation modelling factors in order to represent the influence of future 

climatic-driven pressures. Abbreviations used: fate factor (FF), exposure factor (XF), effect factor (EF), North Sea 

(NS), Baltic Sea (BS), climate zone (CZ). 

Parameter Induced change Driver for change 
Affected 

factor 
Reference 

Mean annual sea 

surface temperature 

From 10.5°C to 12.3 °C (NS), 

from 8.3°C to 9.8°C (BS) 
Temperature increase FF, XF 

Belkin (2009); Cosme 

et al. (2015) 

Mean annual bottom 

water temperature 
a
 

From 10.5°C to 12.3 °C (NS), 

from 8.3°C to 9.8°C (BS) 
Temperature increase FF, XF 

Cosme and Hauschild 

(2016a) 

Q10, Temperature 

Coefficient  (increase 

factor of a rate at a 10° 

temperature increase)  

Q10 = 2 Temperature increase FF, XF 
Söderlund and 

Svensson (2012) 

Nitrogen removal rate 

in freshwater systems 

From 0.527 to 0.595 (NS) and 

0.584 (BS) removal fractions 

(Q10-based) 

Temperature increase FF Wollheim et al. (2008) 

Residence time in 

coastal waters 
Constant 

Altered wind and 

hydrographic patterns 
FF - 

Denitrification rate in 

marine compartment  
From 0.3 to 0.338 (NS) and to 

0.332 (BS) denitrified 
Temperature increase FF 

Van Drecht et al. 

(2003) 
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Parameter Induced change Driver for change 
Affected 

factor 
Reference 

fractions (Q10-based) 

N losses by advection 

in marine compartment 
Constant 

Altered wind and 

hydrographic patterns 
FF - 

Respiration rate of 

sinking marine snow 
b
 

From 0.13 d
-1

 to 0.145 d
-1

 

(Q10-based) 
Temperature increase XF 

Iversen and Ploug 

(2010) 

Phytoplankton grazed 

fraction (fPPgrz) 

10% shift from sink to grazed 

fraction: fPPgrz from 0.3 to 0.27 

(NS), and 0.49 to 0.44 (BS) 

Temperature increase XF Cosme et al. (2015) 

Bacterial Growth 

Efficiency (metabolic 

rate) 

From 0.22 to 0.248 (NS), and 

0.37 to 0.421 (BS) (Q10-based) 
Temperature increase XF Cosme et al. (2015) 

Species poleward shift 

20% influence of species from 

temperate CZ (NS) and 10% 

(BS) on sensitivity to hypoxia 

Temperature increase, 

wind and currents 

patterns, advection 

EF 
Cosme and Hauschild 

(2016a) 

a  Continental shelf depth is assumed as of 200 m; for modelling purposes the average depth is 100 m (Cosme and Hauschild, 2016a). 
b  Marine snow refers to the sinking flux of particulate organic carbon (POC) of aggregates of phytoplankton cells, faecal pellets, 

zooplankton carcasses, and other organic material from dead or dying microorganisms (Fowler and Knauer, 1986). 

 

2.4. Normalisation under present and future scenarios   

The years chosen to be representative of the current and future scenarios are 2010 and 2050, 

respectively. Characterised impact scores at the midpoint level (mpIS) were normalised with an external 

normalisation reference (NR) (production-based, per capita). This was calculated with the same LC-

IMPACT marine eutrophication characterisation model applied to the annual emissions from inorganic 

fertilisers and manure in 2010 in Denmark using a nitrogen use efficiency coefficient of 0.4 and N-content in 

annual applications (Bouwman et al., 2009), sewage water in 2010 following the emission model by Van 

Drecht et al. (2009), and NOx-N and NH3-N in 2005 after Roy et al. (2012). The NR for the future scenario 

(year 2050) was estimated from projections of fertilizers application (FAOSTAT, 2013), GDP growth in 

Denmark (TradingEconomics, 2015), and predicted future emissions of NOx and NH3 in Denmark (Nielsen 

et al., 2014). The calculated NRs for 2010 and 2050 are included in Table 3. 

Marine eutrophication emerged as one of the most contributing impact categories for the current spring 

barley cultivation scenario after normalisation performed with the ReCiPe LCIA method at midpoint level 

(Niero et al., 2015a). It is also one of the impact categories showing the highest variation from current to 

future scenario (Niero et al., 2015a). It would be interesting to verify whether the situation is confirmed also 

under future climatic pressure, but currently there are no available characterisation models and normalisation 

references that cover future pressures for marine eutrophication. Therefore, different approaches to 

normalisation at the midpoint level were compared, referring to the recommended ILCD LCIA methodology 

(Hauschild et al., 2013). One, was the traditional normalisation approach, where the indicator scores of a 

product system are compared to those of society’s background interventions, i.e. the EU-27 ‘domestic 
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inventory’ in 2010 corresponding to the emissions and consumptions in that spatial and temporal scope (Sala 

et al., 2015). An alternative normalisation reference was also included, based on the carrying capacity of 

ecosystems, i.e. the maximum environmental intervention these can withstand without experiencing negative 

changes, recently proposed by Bjørn and Hauschild (2015). In such approach, NRs were calculated as the 

carrying capacity for each impact category divided by the population in the reference region and year. For 

the future scenario, the population in Europe (EU-28) in 2050 was used. A summary of the considered 

scenarios and data/assumptions in the calculations is reported in Table 3. 

 

Table 3 Summary of the inventory data used to calculate the normalisation references (NR) for Denmark (DK) in 2010 

and 2050. 

Reference NR LC-IMPACT  NR ‘domestic inventory’ 
1
  NR carrying capacity 

2
 

Scope 
DK 

(2010) 

DK 

(2050) 

 EU-27 

(2010) 

EU-28 

(2050) 

 EU-27 

(2010) 

EU-28 

(2050) 

Background intervention (kgN·yr
-1

) 3.55E+09 3.98E+09  8.44E+09 1.12E+10  - - 

Carrying capacity (kgN·yr
-1

) - -  - -  2.27E+10 2.27E+10 

Population (pers) 
3
 5,417,692 6,271,485  498,867,771 525,527,890  498,867,771 525,527,890 

NR value (kgN·pers
-1

·yr
-1

) 641 620  16.9 21.3  45.6 43.3 

1  
Source: Sala et al. (2015); 

2  
Source: Bjørn and Hauschild (2015);

 

3  
Source: DK 2010 and EU-27 2010 – EUROSTAT (2015a); DK 2050 and EU-28 2050 – EUROSTAT (2015b). 

 

2.5. Damage factors 

Midpoint modelling was extrapolated to damage level by converting PAF to Potentially Disappearing 

Fraction (PDF) of species and by applying spatially explicit species densities. The metrics conversion and 

the species density-based weighting corresponds to the damage factor (DF). This approach is also adopted in 

the ReCiPe method (Goedkoop et al., 2012), but the spatial differentiation feature is limited to a single site-

generic marine species density value. 

For the PAF to PDF metrics conversion a factor 0.5 was chosen, i.e. PDF=0.5*PAF, as discussed in   

Cosme et al. (2016a) (see also Jolliet et al. (2003) and Larsen and Hauschild (2007)), or the assumption that 

50% of the species affected eventually disappear due to hypoxic stress. Species density (SD, in species·m-3
) 

then converts PDF into species·yr – the unit for ‘Ecosystems’ damage in the ReCiPe method (Goedkoop et 

al., 2012). Spatially explicit species density values are available per LME as 6.7E-12 species·m-3
 in the North 

Sea and 3.6E-12 species·m-3
 in the Baltic Sea (Cosme et al., 2016a).  
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3. Results and discussion 

Present and future inventory flows from spring barley production were characterised with the proposed 

spatially explicit CFs for the marine eutrophication indicator. Results were normalised with three alternative 

methods and analysed. Indicators of damage to ecosystems were further calculated for the same temporal 

scenarios. The results of these estimations are presented and discussed in the next sections. 

3.1. Characterisation factors under present and future scenarios 

The CFs applied to the present and future spring barley scenarios in the various routes and receiving 

LMEs are included in Table 4. For the present scenario, N emissions from spring barley cultivation (Table 1, 

second column) were characterised using the spatially differentiated FF, XF, and EF (see section 2.3). For 

the future scenario, future N emissions (Table 1, third column) were characterised using the modified FF, 

XF, and EF parameterised in accordance to the influence of future climatic-driven pressures, as reported in 

Table 2. 

 

Table 4 Marine eutrophication characterisation factors (CFs) used to characterise present and future nitrogen (N) 

emissions from spring barley production to the North Sea and Baltic Sea, estimated from fate factors (FF), exposure 

factors (XF), and effect factors (EF) modelling. 

Scenario Present   Future  

Receiving ecosystem North Sea Baltic Sea  North Sea Baltic Sea 

Factor Emission route      

FF [yr] 

NO3
-
-N to water 0.59 1.39  0.48 1.12 

NOx-N to air 0.05 0.12  0.04 0.10 

NH3-N to air 0.05 0.12  0.04 0.10 

XF [kgO2·kgN
-1

] All 9.11 15.9  8.30 13.91 

EF [(PAF)·m3·kgN
-1

] All 1.59 1.78  1.70 1.91 

CF [(PAF)·m3·yr·kgN
-1

] 

NO3
-
-N to water 8.53 39.20  6.81 29.76 

NOx-N to air 0.75 3.46  0.60 2.62 

NH3-N to air 0.74 3.39  0.59 2.57 

 

The future FFs are lower than present FFs due to a predicted increase of the denitrification rate in both 

freshwater and marine compartments (Veraart et al., 2011). This fact leads to a lower N-fraction available to 

promote eutrophication impacts (Cosme et al., 2015). The XFs decrease in the future scenarios due to i) a 

predicted larger fraction of phytoplankton grazed and less sinking material to be respired near the bottom, 

and (ii) increased metabolic rates (with enhanced respiration of sinking marine snow dominating the 

enhanced bottom respiration). In both cases, oxygen depletion and eutrophication potential are decreased 

(Cosme et al., 2015). The future EFs predict higher impacts as species shift poleward from the Celtic-Biscay 

shelf (ca. 14% and 23% more sensitive to hypoxia than North Sea’s and Baltic Sea’s, respectively) (Cosme 

and Hauschild, 2016a). Given the higher variation of the XF to the CF estimation (Table 4) and the potential 
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underestimation of future pressures in the EF modelling, these are believed to be the most relevant sources of 

variation in the future CFs. Other possible future pressures, not quantified in Table 2 due to high uncertainty, 

may change habitat conditions and lead to significant increase of the CFs, like stronger water stratification 

and reduced oxygen solubility that affect, respectively, the XF and EF.  

Acknowledging the concerns about uncertainty in modelling both present and future CFs, the advantage 

of producing spatially explicit impact scores to LCIA seems highly relevant (Potting and Hauschild, 2006; 

Udo de Haes et al., 2002). Moreover, given the spatial differentiation of species distributions at the same 

scale (i.e. LME-dependent), these can be coupled for the damage modelling. 

3.2. Uncertainty in the normalisation step 

Figure 2A shows normalised impacts scores (normIS) for marine eutrophication at the midpoint level 

(characterised with ILCD recommended CFs, i.e. ReCiPe’s CFs for aquatic eutrophication applied to N 

flows) using ‘domestic inventory’ NRs and carrying capacity NRs for Europe, and LC-IMPACT NRs for 

Denmark, in 2010 (present scenario) and 2050 (future scenario).  

The mpIS obtained with the ILCD LCIA method for present and future emissions from the spring barley 

production system are based on the same characterisation model, i.e. use the same CFs (Niero et al., 2015b). 

It is assumed that such model is adapted to represent the present impacts. The model fit for future conditions 

is not quantified or discussed here, because the underlying models have no parameterisation adjustment to 

represent the effect of future pressures. The normalisation references calculated for the future scenario (3) 

adopt reference emissions inventory (background interventions) and population values for 2050, but use the 

same characterisation model as for 2010, introducing an inevitable uncertainty to the normIS of the future 

scenario. 

The adoption of the alternative normalisation based on carrying capacity helps quantifying that 

misestimation. Beyond short-timed natural variability, the carrying capacity is per definition constant at the 

timescale used here (decades) (Bjørn and Hauschild, 2015), so it can be assumed that there is no additional 

uncertainty introduced in the normIS. The ‘domestic inventory’-based and carrying capacity-based NRs vary 

in their essence, i.e. relative to a varying (yearly) background in the former and to a fixed (European) 

carrying capacity in the latter (the contribution from the population increase is the same in both methods). 

The variation in magnitude (Figure 2A) is justified by the carrying capacity being 2.6 times higher than the 

‘domestic intervention’ in 2010 and 2 times in 2050 (3), whereas the variation in relative contribution 

(Figure 2B) originates from considering a population growth in the ‘domestic inventory’ NR2050 but a 

constant carrying capacity value in this method (3). 
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Figure 2 A) Normalised impacts scores (normIS) for marine eutrophication at midpoint level, B) Relative contribution 

(in %) of each normIS to the maximum score. Both sets of results calculated for the present scenario (2010) and future 

scenario (2050) per normalisation method used – the EU ‘domestic inventory’ and carrying capacity-based NRs for 

Europe, and LC-IMPACT NR for Denmark. 

Since the midpoint LC-IMPACT-based CFs model a longer marine eutrophication impact pathway, 

those mpIS are therefore not comparable to ILCD’s (units are (PAF)·m3·yr and kgN-eq, respectively). The 

normalisation step eliminates any uncertainty in the characterisation modelling and the results can be 

compared. The normIS show an increase in both ecosystems, i.e. 0.04 to 0.06 PAF·m3·yr (North Sea), and 

0.20 to 0.25 PAF·m
3
·yr (Baltic Sea). The normalisation step also reveals the steeper increase in the Baltic 

Sea (Figure 2A) due to the spatial differentiation feature embedded in the model. This is particularly visible 

in the FF (4.6 times higher for the Baltic Sea and North Sea, Table 4) or 2.6 times the variability of the XF 

and 4.1 the EF’s. The present and future LC-IMPACT NRs are very similar (section 2.4), due to the 

cancelling effect of increasing waterborne N emissions (inorganic fertilizer, manure, and sewage discharge) 

but decreasing airborne emissions (NOx and NH3). As such, the variability of the normIS results in the future 

scenario is mostly explained by (i) CFs variation (+34% and +28% from present to future CFs, for the North 

Sea and Baltic Sea, respectively, Table 4), (ii) the larger LCI flows, and (iii) the population change (+16%) 
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projected for 2050 in Denmark. The contribution of these three terms to the total uncertainty of the 

characterisation model is not quantified here. However, the high sensitivity to the XF and EF, and the 

confidence on the projections for 2050 (especially in the quantification of the total annual emissions) are 

potentially determinant in explaining the variability of the characterisation model and normalisation step, 

respectively. Despite the overall uncertainty of the marine eutrophication model in the modified LC-

IMPACT method, it seems valuable to i) add environmental relevance, by including the effect of future 

climate pressures in the characterisation model expressed in the future impact scores, and ii) increase the 

completeness of the impact pathway coverage in modelling a later midpoint indicator that includes the 

ecosystem exposure and the effect components in the model. 

The total N emissions in Denmark in 2050 were split evenly towards the North Sea and the Baltic Sea 

for the characterisation step – this procedure is a necessary simplification in the method at this point but may 

add a significant uncertainty in the normalised scores. The variation of normIS from present to future 

emissions (Figure 2A) shows relative increases similar to ILCD-based method (the currently recommended 

method that used ReCiPe’s aquatic eutrophication midpoint model for N emissions), therefore suggesting 

that future N emissions from Denmark follow those of the European average in 2050. 

The results presented in this assessment do not intend to give a full perspective of the environmental 

profile of the spring barley production as other impacts indicators are lacking. Similarly, the discussion is not 

on the sustainability of the spring barley production system (see Niero et al., 2015b), but rather on the value 

of introducing temporal and spatial variation in the impact assessment model. 

The LC-IMPACT NRs show the relevance of introducing spatial differentiation, especially for indicators 

of local to regional impacts. These NRs are estimated from present and future emissions normalised by the 

respective present and future national emissions per capita. In opposition, the ‘domestic inventory’ based NR 

for the future scenario, are inconsistently representing the reference system, as no projection of this inventory 

is available so far. The carrying capacity-based NRs use a constant global carrying capacity, so the NRs 

variation is directly dependent on the reference system’s emissions. 

3.3. Damage modelling scores and application 

The results of the damage scores estimation (Figure 3), based on midpoint characterisation of barley 

production emissions (Niero et al., 2015b) and DF application (section 2.5), show an increase of damage 

towards future conditions in both receiving marine ecosystems considered. Damage indicators show a factor 

2.5 and 2.3 of spatial differentiation between the Baltic (higher) and North Seas (lower) for the present and 

future scenarios, respectively. Such differentiation is mostly caused by the higher primary productivity 

potential of the Baltic Sea (Cosme et al., 2015). 
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Figure 3 Damage impact scores to marine eutrophication (ME) for the present (2010) and future (2050) emissions to 

the North Sea and Baltic Sea from the spring barley production system studied. 

While damage modelling may facilitate communication of (more understandable) results connected with 

the higher environmental relevance of longer pathway coverage (completeness), the loss of transparency and 

especially the additional uncertainties (parameter, model, or scenario) (Bare et al., 2000) may decrease the 

validity of the results in less robust models. Improving the DF modelling by means of spatially differentiated 

quantification of the fraction of species affected (as PAF) that potential becomes extinct (as PDF) in a spatial 

unit, may contribute to overcome the uncertainty of the model simplification that constitutes the DF. Such 

model improvements may embrace the inclusion of species vulnerability, uniqueness, ecosystem resilience, 

or functional diversity indicators – see e.g. Souza et al. (2013), Verones et al. (2015). 

3.4. Implications for decision-makers and LCIA model developers 

The inclusion of spatial differentiation is a valuable addition to any LCIA method, as long as there is a 

significant variability in the relevant parameters, not only to increase its discriminatory power (Udo de Haes 

et al., 1999), but also to add an extra information level to the decision-making process. Those who benefit 

from LCA results may adopt such differentiated information especially when dealing with human activities 

and emissions with local to regional impacts, like marine eutrophication. Complementary, it may provide 

useful analysis of supply chains with emissions at different locations with potentially differentiated impacts 

and increased the quality of the results produced in support of sustainability assessment. 

The LCI models should preferably be supplied with spatially differentiated input data in order to 

maintain and explore that feature later in the characterisation. The LC-IMPACT method currently delivers 

CFs for the marine eutrophication indicator at country-to-LME as the highest spatial resolution, with 214 

combinations of emitting country to receiving LME (Azevedo et al., 2013). LCIA developers may then aim 

at introducing temporal- (if relevant) along with spatial-differentiation in the models. In particular, the 

temporal variability in the marine eutrophication phenomenon at the intra-annual scale (months or seasons) 

may have a significant impact on the biological processes that compose the characterisation model, e.g. 

nutrients limitation, marine primary productivity, and species succession (Cosme et al., 2015) or species 
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sensitivity (Cosme and Hauschild, 2016a). Its inclusion can be seen as future model improvement or research 

opportunity. The flexibility (or adaptability) of model parameterisations may further adopt archetypes that 

represent possible degrees of confidence or intensity of pressures. Notwithstanding, the value of flexible 

parameterisations seems essential in modelling future impacts beyond the adoption of timeframe 

perspectives (Hauschild et al., 2013). The calculation of NRs has also to match the time variation with 

corresponding data at the necessary spatial- and time-resolution, as also noted by Sleeswijk et al. (2008). 

LCA scores aggregated at damage level can be relevant to decision-makers (e.g. managers, regulators) in 

the assessment of sustainability of activities and options, but also for ecosystems management and 

conservation. The misleading sense of certainty and comprehensiveness can however mine the confidence on 

its application (Bare et al., 2000). So, facing the merits and limitations of both midpoint and damage 

modelling steps, the use of both sets of results is suggested for a sound(er) interpretation and for the 

development of consistent methods across impact indicators. 

Overall, the adjustment of the CF parameterisation is essential for the forecasting of LCIA results and its 

application in management plans for e.g. the agriculture and energy sectors, their regulation, and 

technological development (see other DPSIR Responses in Figure 1). 

The application of the precautionary principle to the DPSIR approach (Figure 1) aims at showing that it 

is possible to anticipate impacts and act before the environment is affected. The concept, formalised in the 

UN ‘Earth Summit’ in 1992, ensures that by using indicators and impact assessment tools, (the magnitude 

of) the effects of future climatic changes can be already estimated and (some of) the Impacts anticipated, 

based on the present knowledge of the Pressures, so that Responses may be implemented sooner. In this line, 

specific LCIA indicators (such as marine eutrophication) are valuable contributions to support the 

precautionary approach, and so is the modelling of future impacts. 

4. Conclusions 

A novel characterisation model for nitrogen emissions from spring barley production was applied. The 

main improvement to the LCIA midpoint CFs is the inclusion of ecosystem exposure and effects to biota, by 

improving the commonly used ‘increase in N concentration’ in marine water to a ‘fraction of species (as 

PAF) affected’ by the eutrophication impacts in the marine coastal compartment. A first attempt to account 

for potential future climatic pressures, relevant to the marine eutrophication phenomenon, in a 2050 scenario 

was implemented, based on corresponding altered emission flows and modified parameterisation in the CF 

estimation.  

Normalisation of results from present and future scenarios was compared, by estimating NRs based on 

total annual impacts (domestic inventory of background interventions), on ecological carrying capacity, and 

the newly proposed method. The comparison shows consistent results and also point to the value of adding 

spatial differentiation to the indicator’s modelling framework. 
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The (i) inclusion of the time variation feature in CF modelling of marine eutrophication impacts, (ii) the 

characterisation of emissions at a spatially differentiated scale, and (iii) the identification of the need for 

adequate inventory data to assess future scenarios, constitute the main outcomes of the present study. Further 

research is needed to reduce the uncertainty of the parameterisation under future conditions extending the 

coverage of the climatic change aspects into the impact pathway and to tighten projections of future 

emissions. 

The findings of this exploratory research point to the relevance of including time and spatial 

differentiation in characterisation modelling in LCIA. It also serves as a proof of concept that this kind of 

forecast modelling can, and should, be included in LCA. Finally, modelling the temporal variability of both 

inventory data and impacts appears central in exploiting the potential of LCA and fostering its legitimate 

application in decision support for scenario and precautionary analyses. 
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