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Abstract

We present an optimization approach which can be employed to calculate the globally op-
timal segmentation of a two-dimensional magnetic system into uniformly magnetized pieces.
For each segment the algorithm calculates the optimal shape and the optimal direction of the
remanent flux density vector, with respect to a linear objective functional. We illustrate the
approach with results for magnet design problems from different areas, such as a permanent
magnet electric motor, a beam focusing quadrupole magnet for particle accelerators and a
rotary device for magnetic refrigeration.

1 Introduction

With the development of new and powerful magnetic materials [1], the range of application of
permanent magnets is expanding to many scientific and technological areas [2]. The geometry
of the magnetic system must be optimized to achieve high efficiency and minimize the amount
of permanent magnetic material. Among the wide range of geometry optimization techniques
we can identify two important categories of algorithms: topology optimization methods and
parametric shape optimization methods.

The purpose of topology optimization algorithms is to determine how to subdivide a given
design area into regions occupied by materials with different magnetic properties, e.g., magnetic
permeability or remanent flux density. Since the topological features of the allowed solution are
not restricted by an initial design concept, these algorithms potentially lead to novel geometrical
configurations. Typically, the implementation of this class of algorithms employs finite element
analysis for the calculation of the magnetic field. The properties of the materials are linked
to control fields which are optimized by numerically evaluating the sensitivity of the objective
with respect to the control fields [3, 4, 5] and applying iterative techniques such as sequential
linear programming or gradient descent. Alternatively, the control fields can be optimized with
gradient-free heuristic approaches, such as genetic algorithms [6, 7, 8]. While being very versatile,
topology optimization may produce solutions characterized by finely subdivided or jagged shapes
which are not suitable for manufacturing. Avoiding this problem often requires fine tuning of
some regularization parameter. Generally, topology optimization techniques present a trade-off
between computational time and resolution of the mesh underlying the simulation.

In parametric geometry optimization the shapes of the boundaries between materials with
different properties are linked to a finite number of control parameters. The magnetic field for a
given configuration may be determined with numerical techniques [9, 10], by analytically solving
the partial differential equations [11, 12, 13], or by approximating the magnetic system with a
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simplified model [14]. When numerical methods are employed it is possible to consider arbitrary
shapes and to take into account non-linear magnetic effects. With analytical approaches the
computational time is very short, but they can only be applied to the geometries for which the
solution is available. Moreover, analytical solutions generally assume linear magnetic behavior
or even more ideal approximations, such as permanent magnets with permeability equal to one
and soft magnetic material with infinite permeability. Parametric optimization techniques are
intrinsically limited by the fact that the search space is determined beforehand: the diversity of
the allowed configurations is restricted to variations around the same design concept.

The optimization approach discussed in this paper presents some of the advantages of both
categories. Since it relies on an analytical result to determine the optimal remanent flux density
at any point with a single finite element simulation, it can be implemented in a computationally
efficient algorithm. Moreover, it does not share the limitations that are typical for parametric
optimization. The method provides the globally optimal subdivision of a given design area into
uniformly magnetized segments with respect to a linear objective functional. The optimality is
guaranteed as long as each material in the system exhibits a linear magnetic behavior. Under the
more restrictive assumption that the permeability of the permanent magnet material is close to
1 we are also able to determine the border between permanent magnet and air which maximizes
the linear objective. Another possibility is to optimize the border between permanent magnet
and soft magnetic material by considering the limit of infinite permeability.

Since the optimality results are derived under the specific assumptions about the magnetic
behavior of the materials in the system, the optimization of magnetic systems which are expected
to exhibit a highly non-linear behavior must be performed using other techniques. However, non-
linear magnetic phenomena — such as demagnetization of the permanent magnets due to the
finite coercivity and anisotropy field, or magnetic saturation of any soft magnetic materials —
often cause detrimental effects which it is desirable to minimize. When these effects are expected
to be small, it is possible to perform the optimization by assuming linear behavior, and check
that the optimized configurations obtained in this way are within the ranges for which the linear
approximation is justified. It will be possible to apply small corrections to the geometry with a
final optimization step which takes into account the non-linear behavior.

We illustrate the result of our optimization approach with three examples from different fields
of application: a permanent magnet electric motor, a beam-focusing quadrupole magnet, and a
rotary device for magnetic refrigeration at room temperature. Since the method always assumes
a linear objective functional, we will also evaluate the goodness of each optimized configuration
in terms of those features of the produced field which are most relevant to the corresponding
application. We will also discuss quantitatively the variation of the field when it is computed
under more realistic assumptions about the magnetic response of the materials in the system.

2 Framework of the optimization method

2.1 The reciprocity theorem and the Virtual Magnet method

Our optimization method is based on the reciprocity theorem, an energy equivalence principle of
magnetostatics, which can be expressed by the following equation [15]:∫

dV Br 1(x) ·H2(x) =

∫
dV Br 2(x) ·H1(x) (1)

where Br 1(x) is the remanence of the system 1 at the point x, H1 is the magnetic field generated
by Br 1, and similarly for system 2. The integration domain of both the volume integrals extends
over the whole space. However, if the integration domain of the left-hand side of (1) was replaced
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with the region where ‖Br 1‖ > 0 the result would be the same, and similarly for the right-hand
side. The theorem in this form holds as long as there are no free currents, and all materials in
the system obeys a linear B-H relation, i.e.: B = µH +Br. The permeability tensor field µ(x)

must be the same for both the systems.
The theorem equates the energy possessed by the magnetic flux sources of system 1 when

placed in the field generated by the flux sources of system 2 with the energy possessed by the flux
sources of system 2 when placed in the field generated by the flux sources of system 1. We use
this theorem in order to calculate the remanence field Br 1 which produces a magnetic field H1

which maximizes a given objective. The magnetic system 2 is a mathematical construction that
is used to solve this optimization problem. For this reason, the system 1 will also be referred to
as the real system and system 2 as the virtual system.

If the virtual remanence Br 2 is interpreted as an objective vector field [16, 17], the right-hand
side of (1) can be seen as the definition of an objective functional S. Any objective functional
which is linear with respect to the field H1 can be expressed in this form. Equation (1) implies
that the optimal direction of the real remanence Br 1, with respect to the objective functional
S, is aligned at any point with the virtual field H2.

This approach also provides a way to quantify how much a specific point x of the real magnet
is contributing to the value of the objective functional S. Once the real remanence has been
aligned at the point x with the virtual field H2(x), the contribution to the value of S from the
point x is proportional to the norm H2(x) = ‖H2(x)‖. If the relative permeability of the magnet
is equal to 1, the border between magnet and air does not need to be determined in advance:
the optimal border lies on a contour level of H2. Since the contribution of any given point to
the value of S is always positive, extending the magnet area can only increase the value of S.
This means that being able to determine the magnet border that maximizes S in presence of a
specific constraint on the total magnet volume is equivalent to minimizing the magnet volume
that is necessary to obtain a given value of S.

In some cases it is necessary to determine the border separating permanent magnet material
from soft magnetic material, such as iron, characterized by such a high permeability that it can
be approximated as infinite. In the regions where the permeability is finite, the virtual field H2

is normal to the borders with infinite-permeability regions. Being defined as H2 = −∇Φ2, the
virtual field is also normal to the equipotential surfaces of its magnetic scalar potential Φ2. As
pointed out in [18], to achieve maximal energy efficiency an equipotential surface of Φ2 can be
converted into the boundary between magnet region and highly permeable material so that the
magnet is completely shielded from the outside.

2.2 Optimal Segmentation of 2D system

The determination of the virtual field H2 provides a continuously varying vector field which at
any point gives the optimal direction of the real remanence Br 1. In practice, however, magnetic
assemblies are realized by splitting the magnet into several uniformly magnetized segments.
Because of the linearity, the different points of the magnet are independent, which implies that
it is never optimal to split a region over which the direction of the virtual field H2 is uniform
[19].

For two dimensional systems, the optimal border between two adjacent segments always lies on
a contour level of the angle ψ = arctan(H2 y /H2 x ), reducing the optimal segmentation problem
to the simpler one of selecting the optimal contours with a given total number of segments
NSegments.

It can be shown [19] that this problem is equivalent to the problem of approximating a
continuous curve H(ψ) with an inscribed piecewise linear curve, in such a way that the perimeter
of the piecewise curve is maximized. The continuous curve to be approximated is parametrized
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by the orientation ψ of the virtual field H2. The curve has the dimension of magnetic field
integrated over an area and is expressed by the following equation:

H(ψ) =

∫
R[ψ0,ψ1]

dS H2(x) (2)

The area of the surface element is denoted by dS, and the integration domain R[ψ0,ψ1] is defined
as:

R[ψ0,ψ1] = {x : ψ(x) ∈ [ψ0, ψ1]} ∩ { Design Area } (3)

The total extension of the design area can be decided arbitrarily depending on the geometrical
constraints of each system. The problem of maximizing the perimeter of the piecewise linear
approximation of H can be solved with the desired degree of accuracy by employing dynamic
programming [20].

3 Optimized magnetic systems

We present magnet design problems from different areas of application and show how our ap-
proach can be used to determine the optimally segmented solution. We will express the objective
functional for each optimization problem by defining the objective vector field, which corresponds
to the remanence Br 2 of the virtual system. For each example we will show two figures. The

Iron (stator)
Iron (rotor)

Virtual Magnet Design Area (stator)

H2

Br 2

(a) (b)

Figure 1: Designing a magnet for an electric motor with the purpose of creating a sinusoidal
radial field in the air gap between the stator and the rotor. Fig. 1(a): geometry of the virtual
system. Fig. 1(b): FEM simulation of the optimal segmentation.

first figure (as, e.g., Fig 1(a)) is an illustration of the geometry of the virtual system, including
the virtual magnet area, shaded in pink, the design area, shaded in light blue, and the regions
originally filled with soft magnetic material, shaded in gray. The virtual remanence vector field
is represented by the red arrows, and the virtual field H2, which will be shown only inside the
design area, is represented by blue arrows.

The second figure (as, e.g., Fig 1(b)) is the result of the Finite Element Method (FEM) sim-
ulation for the optimally segmented system performed using the commercial software COMSOL
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Multiphysics. The magnetic field is obtained by projecting on a triangular mesh the partial
differential equation governing the magnetic vector potential and solving the resulting system
of equations using the direct solver PARDISO, available with the software. The surface area of
the mesh elements averaged over the design region is for all the examples ≈ 10−5 of the surface
area of the design region. The real flux density B1 is indicated in the figures by the black flux
lines, and its norm is indicated by the color, darker shades corresponding to a higher norm. The
direction of the optimal remanence for each segment is indicated by a black arrow.

Our approach allows us to choose freely the number of segments NSegments to be used as a
constraint in the optimization. The value of the objective functional will increase monotonically
with the number of segments, converging asymptotically to the limit given by the case of a con-
tinuously varying remanence field. However, because of the symmetry exhibited by the geometry
of each of the example optimization problems, if NSegments is a multiple of 4 the optimally seg-
mented magnetic system preserves the symmetry, and this results in the additional advantage
of many segments having the same shape. We decided to use the value NSegments = 12 for all
the examples because 3 segments for each symmetric quadrant is a good trade-off between the
goodness of the final result and the intent of minimizing the total number of segments which
decreases the manufacturing cost of the magnetic assembly.

In all of the examples, the permanent magnetic material has a relative permeability µ = 1,
and a remanence of 1.4 T. The relative permeability of the soft magnetic material, such as iron,
is set equal to µ = 1000. The spatial dimensions of the examples will not be reported since the
solution is invariant with respect to an isotropic rescaling.

As a final verification step, the field generated by the optimized configuration of each example
have been calculated using more realistic models for the magnetic behavior of the materials. In
particular, the relative permeability of permanent magnets is set to µ = 1.05, and the iron is
modeled with the non-linear B-H curve included in the material library of COMSOL, which has
a magnetic saturation of 2 T. Moreover, the magnetic field inside the permanent magnet material
has been decomposed into the component that is parallel to the remanence and the component
that is normal. When the demagnetizing fields or transversal fields are too intense the linear
approximation of the B-H relation may not be an accurate description of the magnetic behavior.
The parallel and normal components of the field inside the permanent magnet material have
been compared with typical values of, respectively, the coercive force and the anisotropy field of
typical present-day rare-earth magnets. In all the examples these final validation tests confirmed
that the underlying approximations were justified. In cases where this is not true, it will be
possible to predict the effect of the non-linear demagnetization of permanent magnets by using
numerical approaches such as the one presented in [21].

3.1 Electric Motor

The geometry of the virtual system for a four-poles surface-mounted permanent magnet electric
motor is shown in Fig. 1(a). The iron core of the stator is surrounded by permanent magnet
material. A small air gap is present between the stator and the external iron ring of the rotor
(the rotor’s slots are not represented). The virtual magnet area is located in the air gap, where
the following virtual remanence is defined, with the purpose of minimizing the detrimental higher
harmonics [13]:

Br 2 = sin(2φ) êρ. (4)

It is possible to apply a constraint on the total volume of permanent magnetic material. We
arbitrarily set the volume of magnetic material to 90 % of the total volume of the design region.
We use this volume constraint to determine the optimal border between magnet and air by
considering the norm of the virtual field H2, as explained in section 2.1. This results in the
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Figure 2: The radial component of the air gap flux density for the electric motor example is
plotted as a solid blue line. This curve has been decomposed into the first mode, plotted as a
red dashed line, and the sum of all the other undesired harmonics, plotted as a solid black line.

four holes adjacent to the iron core in the center, which are visible in Fig. 1(b). The desired
properties of the solution can be checked by expanding in Fourier series the radial component Bρ
of the flux density B1 = µ0H1 in the air gap between the stator and the rotor, close to external
yoke. This is plotted in Fig. 2 for one quadrant of the geometry, given by the following interval
of the angular coordinate: φ ∈ [0◦, 90◦].

The amplitude of the first harmonic is 0.9998 of the amplitude of the total signal, correspond-
ing to 1.032 T. This implies that the total harmonic distortion, THD, is equal to 0.02. When
the field is calculated taking into account the non-linear behavior of iron, and by setting the
permeability of the magnets to µ = 1.05, the amplitude of the first harmonic decreases to 1.020
T, but remains 0.9998 of the amplitude of the total signal, and thus the THD does not change.

3.2 Quadrupole magnet for Beam Focusing

Quadrupole magnets are used in the field of particle acceleration for the purpose of focusing
beams of charged particles [22]. The following virtual remanence, corresponding to a quadrupole
field, is defined over the square cavity shown in Fig. 3(a):

Br 2 = y êx + x êy. (5)

The magnet area is limited by the external circle visible in the figure. The radius of the circle is
determined by the desired field intensity. The results of the FEM simulation for the optimally
segmented system is shown in Fig. 3(b). In order to evaluate the optimized magnetic system,
we expand the field H1 in two components: a perfectly quadrupolar field HQ(x), proportional
to the virtual remanence Br 2 defined in (5), and the residual undesired component of the field,
which we denote by ∆(x):

H1(x) = HQ(x) + ∆(x) (6)

The field HQ is the second-order term of the interior cylindrical multipole expansion, and ∆
is the sum of all the remaining terms. The calculation of the normalized amplitudes of the two
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H2
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Virtual Magnet
Design Area
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Figure 3: Design of a quadrupole magnet with a square air gap and circular external border.
The design is relevant for beam focusing applications in particle accelerator devices. Fig. 3(a):
geometry of the virtual system. Fig. 3(b): FEM simulation of the optimal segmentation.

components shows that the field H1 is quadrupolar within a very good approximation:

cQ =

(∫
Ω
dS ‖HQ(x)‖2∫

Ω
dS ‖H1(x)‖2

)1/2

= 0.993 (7)

c∆ =

( ∫
Ω
dS ‖∆(x)‖2∫

Ω
dS ‖H1(x)‖2

)1/2

= 0.120 (8)

The integration domain Ω is the whole square cavity. Because of the normalization we have:
c2Q + c2∆ = 0.986 + 0.014 = 1. When the magnetic behavior of permanent magnets and iron is
calculated using the more realistic models described at the beginning of section 3, the values of
the coefficients change only slightly, thus giving: cQ = 0.992 and c∆ = 0.122.

3.3 Magnetic Refrigeration

Fig. 4(a) shows the geometry of the virtual system for a rotary device for active magnetic
refrigeration at room temperature. The following virtual remanence is defined, with the purpose
of creating a high field in the pink shaded regions of the air gap and a low field in the angular
sectors between them, as desirable for this kind of devices [23]:

Br 2 = sign(x) êρ (9)

where x denotes the coordinate parameterizing the horizontal direction. As shown in Fig. 4(a),
the virtual remanence is only defined in the high field regions of the air gap, which are situated
on the two sides of the iron core.

We apply a constraint on the total volume of magnet material, which is equal to 5 times the
volume of the high field region. This ratio is comparable to other published designs of magnetic
refrigeration devices [24].
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As explained in section 2.1, we can convert an equipotential line of the virtual scalar potential
Φ2 into the external border between permanent magnet and soft magnetic material. The level
curves corresponding to the volume constraint are the kidney shaped lines shown on both the
sides of the air gap in Fig. 4(b). After determining the boundary between magnet and iron,
the outer border of the iron region can be determined arbitrarily, as long as magnetic saturation
is avoided. We choose a circular external border which encloses the design area. The result of

H2

Br 2

Virtual Magnet
Design Area

Iron

(a) (b)

Figure 4: Design of a magnetic assembly for application in magnetic refrigeration. The purpose
of the magnetic system is to create high and low field regions in the air gap between the iron core
and the external cylinder. Fig. 4(a): geometry of the virtual system. Fig. 4(b): FEM simulation
of the optimal segmentation.

the FEM simulation is shown in Fig. 4(b). The flux density norm averaged over the high field
region is equal to 1.25 T and averaged over the low field region is 0.13 T, which is a satisfactory
result with respect to other published magnetic refrigeration devices [23]. The norm of the flux
density evaluated at the middle radial position of the air gap is plotted in Fig. 5 as function of
the angular coordinate φ in the interval φ ∈ [−90◦, 90◦]. It would be possible to further reduce
the average norm in the low field region by employing non-linear optimization techniques as the
final step of the optimization process. When the field is calculated with the more realistic models
for magnets and iron, the flux density norm averaged over the high field region decreases slightly
to 1.23 T, while the low field region average remains 0.13 T.

4 Conclusions

We have briefly introduced a new method for optimal segmentation of magnetic systems, based
on a linear objective functional. Its usefulness has been illustrated for three different applications
of permanent magnet arrays.

Since the virtual field can be computed by means of FEM, this technique is applicable to any
geometry, even when the analytical solution is not known.

The solution is globally optimal with respect to the considered geometry and objective func-
tional. Moreover, the method can be implemented into a fast algorithm, since only one FEM
computation is necessary.
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Figure 5: Norm of the air gap flux density for the magnetic refrigeration example. The objective
is to maximize the field in the interval φ ∈ [−45◦, 45◦]

It would be interesting to extend our approach by considering its generalization to the case
of a non-linear objective functional. This problem could be solved with an iterative procedure
involving the linear approximation to the objective functional at each step.
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