
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Spatial dispersion in two-dimensional plasmonic crystals: Large blueshifts promoted
by diffraction anomalies

David, Christin; Christensen, Johan; Mortensen, N. Asger

Published in:
Physical Review B Condensed Matter

Link to article, DOI:
10.1103/PhysRevB.94.165410

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
David, C., Christensen, J., & Mortensen, N. A. (2016). Spatial dispersion in two-dimensional plasmonic crystals:
Large blueshifts promoted by diffraction anomalies. Physical Review B Condensed Matter, 94(16), [165410].
DOI: 10.1103/PhysRevB.94.165410

http://dx.doi.org/10.1103/PhysRevB.94.165410
http://orbit.dtu.dk/en/publications/spatial-dispersion-in-twodimensional-plasmonic-crystals-large-blueshifts-promoted-by-diffraction-anomalies(6b0aa292-4b7a-436a-8ce8-d5ba22f7b3e6).html


PHYSICAL REVIEW B 94, 165410 (2016)

Spatial dispersion in two-dimensional plasmonic crystals:
Large blueshifts promoted by diffraction anomalies

Christin David,1,* Johan Christensen,1,2 and N. Asger Mortensen1,3

1DTU Fotonik, Department of Photonic Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
2Instituto Gregorio Millán Barbany, Universidad Carlos III de Madrid, ES-28916 Legans (Madrid), Spain

3Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
(Received 23 June 2016; revised manuscript received 21 September 2016; published 12 October 2016)

We develop a methodology to incorporate nonlocal optical response of the free electron gas due to quantum-
interaction effects in metal components of periodic two-dimensional plasmonic crystals and study the impact of
spatial dispersion on promising building blocks for photonic circuits. Within the framework of the hydrodynamic
model, we observe significant changes with respect to the commonly employed local-response approximation,
but also in comparison with homogeneous metal films where nonlocal effects have previously been considered.
Notable are the emergence of a contribution from nonlocality at normal incidence and the surprisingly large
structural parameters at which finite blueshifts are observable, which we attribute to diffraction that offers
nonvanishing in-plane wave vector components and increases the penetration depth of longitudinal (nonlocal)
modes.

DOI: 10.1103/PhysRevB.94.165410

I. INTRODUCTION

The increasing ability to fabricate particle arrays and holey
metal films with nanoscale resolution has made the design and
characterization of a wide range of nanostructured materials
an attractive field to achieve new solutions towards total light
control. Plasmonic crystals (PlCs) are intensely studied both
in theory and experiment for their unique optical properties
[1–9]: Hybrid photon-plasmon modes are found for corrugated
metal films [10,11], nanoparticle arrays [12], photonic crystals
supported by metal substrates [13,14], and in a range of other
periodic and aperiodic realizations.

Photons are strongly confined at the edge of band gaps in
the crystal structure yielding strong local field enhancements.
Plasmon-assisted enhancement of spontaneous and stimulated
emission rates is crucial for the improvement of single-
molecule fluorescence and photoluminescence of quantum
dots [15]. Such structures can achieve unidirectional emission
radiation through plasmon-induced transparency and photon-
tunneling effects that are interesting for optical filters and light
guidance through directed transmission [9,16–19].

Dealing with mesoscopic metal structures makes it nec-
essary to account for the quantum nature of electrons and
include effects induced by the free conduction band [20–24].
The common local-response approximation (LRA) of clas-
sical electrodynamics omits short-ranged electron-electron
coupling, while spatial dispersion in metals leads to a sizable
interaction distance [25].

The successful observation of such quantum
effects [26–30] has fueled the interest in an accurate
description of electrons in the nonlocal regime and
electron dynamics in photonic systems was studied
in recent years with semiclassical [21,22,25,31–34]
and ab initio methods [35–41]. There has naturally been
a large emphasis on localized plasmons in subwavelength
metallic nanostructures and basic planar geometries [42],
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while only few works have considered plasmons in periodic
structures [43–47].

Our aim is to study the influence of spatial dispersion in
metal components of two-dimensional (2D) PlCs to increase
the understanding of the underlying physical phenomena
and investigate the limiting regimes of structural parameters
towards the LRA at the nanoscale. While we restrict our
discussion to holey metal films, the presented theoretical
framework is applicable to particle arrays as well.

In this work, we apply the hydrodynamic model [48,49]
to calculate the electric field �E at a given frequency ω. It
describes the dynamics of the free electron plasma sepa-
rately via the (linearized) Navier–Stokes equation, emphasiz-
ing a real-space formulation [21–24]. The induced current
density

�j ind = i

ω + iγp

(
ω2

p

4π
�E − β2∇ρ ind

)
(1)

couples to the electromagnetic wave equation as

∇ × ∇ × �E − k2εb
�E = 4πik2

ω
�j ind (2)

and relates to the induced charge density ρ ind through the
continuity equation ∇ �j ind = iωρ ind. The wave number is k =
ω/c with c being the speed of light. Properties of the material
are captured in the plasmon frequency ωp and damping γp

which reflects the lifetime of collective electron excitations,
as well as in the dielectric background εb and the interaction
strength of the nonlocal electrons β = √

3/5vF , where vF is
the Fermi velocity. Note that we use Gauss units throughout
this work.

Extending established periodic photonic crystal concepts
based on the rigorous plane-wave method and scatter-
ing matrix approach allows us to investigate generalized
geometries—particle arrays and holey metal films—with non-
locality [50,51]. We observe significant changes with respect
to the LRA, but also in comparison with homogeneous metal
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FIG. 1. (a) A holey metal film with thickness t of space-modulated, frequency-dependent permittivity ε1 (using bulk gold properties from
tabulated experimental data) is investigated; see inset. The lattice constant is a and separates air holes of radius r . A substrate with ε2 supports
the structure. The local crystal limit, see Refs. [16,17], with a = 400 nm, r = 114.5 nm, t = 250 nm, and ε2 = 2.25 is shown. At this film
thickness, no nonlocal response is noted. (b), (c) For a symmetric environment (ε1 = 1) the homogeneous film limit (r → 0) is demonstrated;
see Ref. [42]. (b) At vanishing parallel momentum local and nonlocal theory coincide (no longitudinal waves supported in a homogeneous film
at k‖ = 0). (c) For high enough parallel momentum, the homogeneous film shows nonlocal optical response. (d) Reducing the film thickness to
t = 150 nm and t = 100 nm reveals resonance shifts and reduced intensities in the optical response induced by nonlocal effects in the crystal
structure. (e) The film thickness is varied for two angles of incidence and the position of the lowest order transmittance peak is shown. Sizable
resonance shifts are found for t � 50 nm.

films where nonlocal effects have been considered [42,52,53].
The most striking observations are the emergence of a contri-
bution from spatial dispersion at normal incidence and the sur-
prisingly large structural parameters at which small but finite
blueshifts of resonances in the optical response are observable
when compared to the spectral position predicted in the LRA.
The former can be attributed to the diffraction the incoming
light experiences due to the space-modulated crystal structure,
which provides contributions from higher parallel momenta
via �k �G

‖ = �k‖ + �G = (kx + n2π/a)x̂ + (ky + m2π/a)ŷ in the

plane-wave expansion. Hereby, reciprocal lattice vectors �G
define the diffraction order via the lattice period a and integers
n,m where we assume a square lattice and contributions to
the parallel momentum in the xy plane. The latter effect can
be seen as an interplay of a larger number of geometrical
parameters important in a crystal that do not play any role
in homogeneous films: not only film thickness, but also
hole (or particle) size and lattice period become important.
Moreover, when considering metal films with dielectric holes,
larger holes provide narrow metal bridges or constrictions
between different unit cells. From these results, a remarkable
impact on high-Q sensing applications, quantum dot emitters,
molecular decay rates, and absorption spectra in large-area
nanostructured materials is anticipated. A nonlocal method-

ology for 2D PlCs can give a full account on the impact of
nonlocal response for important concepts and applications
in photonics, such as particle-array-enhanced spectroscopic
methods [16–18,21,54–58] and transmission through holey
metal films. We show that additional pressure waves induced
by the electron oscillation lead to a change in the band
structure and electromagnetic fields supported by a plasmonic
crystal. This has previously been shown in 1D hyperbolic
metamaterials and slit arrays [44–47] and in 2D periodic
particle arrays exploiting the nonlocal polarizability of single
particles [43].

The next section shows that the local (transversal) con-
tribution to the solution of the coupled system does not
observe any changes [50,51], but an additional, scalar wave
equation for the longitudinal modes needs to be solved on
which special emphasis is put. Eigenvalues and modes from
the infinite crystal are then used in the scattering matrix
technique to describe the case of a plasmonic crystal slab
of finite thickness between two homogeneous semi-infinite
dielectric regions; see inset in Fig. 1(a). Here, the complexity
of the original local problem can be maintained and with it the
iterative steps in propagating the scattering matrix. However,
the field expressions and boundary conditions—extended
by an additional boundary condition stemming from the
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FIG. 2. (a)–(d) Example of reflected field distributions for a t = 150 nm crystal at normal incidence and λ = 660 nm (reflection maxima).
(a), (b) Real and (c), (d) imaginary parts of the z component of the electric field associated with the (a), (c) reflected local field, just outside of
the front interface of the crystal, and (b), (d) nonlocal contributions calculated from Eq. (9b) just inside the crystal. (e) Real and (f) imaginary
part of the eigenvalues kz (local) and qz (nonlocal) of the respective wave equations in comparison to the homogeneous thin film analytics.
The crystal structure allows for a large penetration depth of nonlocal contributions (provision of modes with strongly reduced imaginary part)
which makes nonlocal effects more prominent in crystal structures than in homogeneous films.

Navier-Stokes equation—become more involved leading to
complex interface matrices. Such technicalities are laid out in
detail in the appendices.

II. PROPERTIES OF THE INFINITE CRYSTAL

In this section, we briefly summarize the plane-wave
expansion (PWE) method for both local (transversal) and
nonlocal (longitudinal) solutions of the electromagnetic field
in a 2D photonic crystal in the xy plane with constant material
properties in the z direction. We follow Refs. [50,51] closely,
introduce the PWE for all material parameters ψ(ω,�r) =∑

�G ei �G �Rψ̂G, and use the Fourier transformation (FT) of
the periodic real-space functions to compute matrices of
dimensions N × N :

ψ̂GG′ = 1

a2

∫
A

ψ(ω,�r)e−i( �G− �G′) �Rd2r, (3)

where A denotes the unit cell area, a is the periodicity of the
square lattice, and N is the integer giving the total number of
reciprocal lattice vectors used as N2(different plane waves),
which is a crucial parameter to achieve numerical convergence.
Note that always |n|,|m| � (N − 1)/2. In contrast to the
local case, not only the transversal permittivity ε⊥(ω,�r) =
εb(ω,�r) − ω2

p/ω(ω + iγp) but also further parameters such
as the strength of the nonlocal interaction β and the plasma
frequency ωp are modulated across the 2D crystal. All those
parameters are step functions in real space and the FT for
circular particles or holes is analytical [59].

Similarly, the electric and magnetic fields are expanded,
accounting for the parallel momentum �k‖ = (kx,ky)T of the
external field and a wave number kz(qz) for the wave propa-
gation in the z direction for the local (nonlocal) contributions.
With this, the classical (local) wave equation for the in-plane
magnetic field results in [50,51]

k2
z
�
 = {E[(ω/c)2I2N2 − κ] − K} �
 (4)

with eigenvalues k2
z , eigenmodes �
 = (
x,
y)T , and further-

more E = ε̂⊥I2,

K =
(

k̂x k̂x k̂x k̂y

k̂y k̂x k̂y k̂y

)
, κ =

(
k̂y ε̂

−1
⊥ k̂y −k̂y ε̂

−1
⊥ k̂x

−k̂x ε̂
−1
⊥ k̂y k̂x ε̂

−1
⊥ k̂x

)
, (5)

with diagonal matrices k̂ξ GG′ = δGG′(kξ + Gξ ), where in
the 2D square crystal �G = 2π

a
(n�x + m�y). The electric field

follows from the previous solutions through

M00 ≡ [(ω/c)2I2N2 − κ]
(kzω/c)−1. (6)

As the nonlocal contributions are pressure-like waves
of longitudinal character, they only add to the electric
field, but leave the magnetic field unchanged [21,23], i.e.,
�e‖ = (−ey,ex)T = �e‖0 + �e‖nl, �h‖ ≡ �h‖0. The nonlocal wave
equation is thus independent from the local contributions and
results from the divergence of the induced current density �j ind,
Eq. (1), where the continuity equation iωρ ind = ∇ �j ind is used
and after introducing the PWE we obtain

q2
z ρ̂ = [

(β̂2)−1ω(ω + iγ̂p)ε̂⊥ε̂−1
b − k̂x k̂x − k̂y k̂y

]
ρ̂. (7)

From Eqs. (2) and (1) we find the relevant matrix for nonlocal
contributions [42,53]

N00 ≡ −4πi[ε̂⊥ω(ω + iγ̂p)]−1β̂2

(
−k̂y

k̂x

)
ρ̂. (8)

Both expressions (M00,N00) are key ingredients to compute
the optical properties of the finite crystal slab which is shown
in more detail in the next section.

From N00 it can be seen that—for vanishing parallel
momentum—a homogeneous metal film does not support
these types of pressure waves, but a nanostructured surface
allowing for multiple diffraction orders is able to sustain
such modes even for normal incident light. This is a striking
difference from previous results for nonlocal but homogeneous
thin films [42,53]. While we concentrate on studying the
impact of nonlocality on finite crystal slabs, results for
eigenvalues kz and qz of the infinite crystal are presented in
Figs. 2(e) and 2(f). This allows drawing conclusions about the
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observed nonlocal modes also in contrast to results found for
homogeneous (nonlocal) films and is discussed further below.

III. OPTICAL PROPERTIES OF THE FINITE CRYSTAL

With the modes and wave vectors calculated for the crystal
layer, we are now ready to tackle the finite slab supported on
a substrate [50]. The fields are in each layer expanded as

�hl,‖ = �
l(fkl(z)�al + fkl(d − z)�bl), (9a)

�ρl = ρ̂l(fql(z)�al,nl + fql(d − z)�bl,nl), (9b)

where �
l and ρ̂l are the matrices containing the (local)
magnetic and (nonlocal) charge density eigenvectors obtained
in the previous section. The diagonal matrices fξl(z)

nn′ =
δnn′ exp(iξl,znz) are propagators composed of the respective
eigenvalues kl,zn,ql,zn and �al,�bl,�al,nl,�bl,nl are the forward and
backward scattering coefficients within each region.

A. Local case

The boundary conditions are given by the continuity of
in-plane field components which can be written in a compact
way for each layer as(�e‖,l

�h‖,l

)
= Ml

(
fkl(z)al

fkl(d − z)bl

)
,Ml =

(
Ml,00 −Ml,00


l 
l

)
.

(10)

An analytical inverse of the block matrix Ml exists and the
interface matrix is found in a straightforward manner:

I
l,l+1
loc = Ml

−1Ml+1 = 1

2
M−1

l,00Ml+1,00

(
1 −1

−1 1

)

+ 1

2

−1

l 
l+1

(
1 1
1 1

)
. (11)

The scattering matrix for the cross-layer field propagation
follows an iterative scheme to propagate solutions [50].

B. Nonlocal case

Transversal and longitudinal fields are summed up(�e‖,l
�h‖,l

)
= Ml

(
fkl(z)al

fkl(d − z)bl

)
+ Nl

(
fql(z)al,nl

fql(d − z)bl,nl

)
,

Nl =
(

N00 N00

0 0

)
. (12)

A full solution requires 4 × 4 block matrices and two addi-
tional boundary conditions for the induced charge and current
to be continuous, in order to solve for the four unknowns
involved here. However, we can strongly simplify the calcu-
lation when we evoke the additional boundary condition first.
This poses a few limitations to our approach. This and the
widely analytic solution to the additional boundary condition
are discussed in more detail in Appendix A. With the result

obtained there in mind, we rewrite(�e‖,l
�h‖,l

)
= M�

l

(
fkl(z)al

fkl(d − z)bl

)
(13)

with an extended matrix M�
l . This allows us to maintain the

scattering matrix scheme [on extracting fkl(z) and fkl(d − z)
from the parameters] and we can still find the analytic inverse
of M�

l . The expressions found are given in Appendix B.
The final scattering matrix contains the reflection and

transmission coefficients which for the comparison to local
results [16,17] in Fig. 1 are further used to calculate the power
flux (time-averaged Poynting vector) normalized to the power
of the incident wave, i.e., reflectance and transmittance, in
accordance to Ref. [51]. In these cases, due to the symmetry
of the setup the polarization does not play a role. However,
we also consider setups with finite parallel momentum where
the incident field is evanescent and does not provide a
suitable normalization factor since its power flux vanishes and
we consider the optical coefficients directly. Moreover, the
polarization does make an impact and we use p polarization
with �k‖ ‖ �x.

Note furthermore that the number of plane waves used (N2)
ranges from N = 23 (N2 = 529) for the near-field plots in
Fig. 2 at a specific wavelength to typically N = 31 (N2 = 961)
for the calculated spectra. The convergence was checked for
several spectra using up to N = 47 (N2 = 2209).

IV. RESULTS AND DISCUSSION

The inset in Fig. 1(a) depicts the setup of the finite
plasmonic crystal—here a holey metal (Au) film. In Figs. 1(b)
and 1(c) we compare the developed theory in the homogeneous
limit (vanishing hole size r → 0) with analytic theory [42]
for two cases of parallel momentum that result in local
response in (b) and nonlocal response in (c). Note that for
the homogeneous film the power flux of the incoming light
vanishes for excitation with an evanescent source in Fig. 1(c),
where coupling to higher diffraction orders is not possible,
so that we compare the resulting reflection and transmission
coefficients directly. Comparing to previous theoretical results
on plasmonic crystals, Refs. [16,17], Fig. 1(a) reveals that
these earlier studies are within the local-response regime as
both local and nonlocal descriptions coincide. However, on
decreasing the film thickness in the otherwise unchanged
setup from t = 250 nm to t = 150 nm and t = 100 nm, we
begin to observe differences in the spectra of 2 nm and 4 nm,
respectively. Those are in agreement with previous findings
on nonlocal interaction; that is, we observe a blueshift in the
transmission peak (and reflection dip) positions as well as a
reduction of the peak magnitudes (increase in the dips, resp.).
The most striking aspect here is the fact that we consider
normal incidence, which in the case of a homogeneous film
always results in a suppression of longitudinal waves which
need a finite value in the parallel momentum to emerge; cf.
Fig. 1(b).

The crystal structure does, however, provide modes of
higher order with finite in-plane components in the wave vector
through Gξ = kξ + n2π/a which become larger for smaller
a and we expect an increasing influence on decreasing the
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FIG. 3. Comparing the (a) reflection and corresponding density of optical states spectra and (b) the shift in peak positions as a function
of hole separation for local and nonlocal plasmonic crystals using k‖ = 10π/a,r = 0.2a,t = 250 nm and in (a) for constant a = 100 nm for
experimental data of gold. The reflected modes B and C are strongly impacted in the nonlocal theory at this high parallel momentum.

distance between the air holes (see for instance Fig. 3 discussed
further below). The crystal readily provides several parameters
of interest that could switch the properties from local to
nonlocal. Interestingly, decreasing the hole size does yield the
homogeneous film limit for vanishing hole sizes, so that indeed
larger dielectric holes result in a stronger nonlocal response.
For a hole radius close to the maximum of r = 0.5a thin
metal bridges are left between the neighboring holes and we
conclude that strong nonlocal effects in holey metal films stem
thus from fields scattered at the edges of the dielectric holes
and longitudinal fields arising in thin metal walls confined by
these holes. The film thickness plays a similar role to that for
homogeneous nonlocal films; i.e., the thinner the crystal the
stronger the observed resonance shifts as shown in Figs. 1(d)
and 1(e).

We show near-field maps of the real and imaginary part
of the Ez component of the local field and the nonlocal
contribution stemming from Eq. (8) (i.e., not the total field)
in Figs. 2(a)–2(d) calculated from the optical coefficients at
the air-crystal interface. Most strikingly, the wavelength of
the longitudinal field is much smaller (about one order of
magnitude) than that of the transversal field which is reflected
in the nodes of standing waves seen in the near-fields. This
can be understood by comparing the wave vectors—which
are eigenvalues to the crystal structure—from the two wave
equations, which we do in Figs. 2(e) and 2(f).

Let us first consider the case of a homogeneous metal
film, where Eq. (4) reduces to kz =

√
(ω/c)2ε⊥ − k2

‖ ,
while the nonlocal wave number Eq. (7) becomes qz =√

ε⊥/(β2εb)ω(ω + iγ ) − k2
‖ . Assuming vanishing parallel

momentum and damping, as well as for the sake of argument
a Au metal film described by a Drude model with constant
εb = 9, the remaining values allow a direct comparison to
the expected analytic value through

√
(c/β)2/εb ≈ 90. This

means, the local and nonlocal wave numbers differ by a large
factor in quantity, but are similar in their spectral structure.
This remains true including a finite damping and parallel
momentum accounting for the reciprocal vectors. This yields
closely spaced dispersion relations of the different modes with
a typical square root dependence, which can be seen in both

Figs. 2(e) and 2(f). However, the full solution of the complex
eigenequations leads to further modes with no analogies to
the homogeneous metal film; e.g., in Fig. 2(f) local modes
are seen that have a spectral resonance structure, with a
strongly increased imaginary part compared to the analytic
homogeneous metal film (reflecting evanescent modes).

The real part of these eigenvalues determines the propaga-
tion constant, and the (smallest) nonlocal wave vector qz is
indeed about one order of magnitude larger then the (largest)
local kz = 2π/λ at the wavelength of incidence.

Another interesting conclusion can be drawn from the
imaginary part in Fig. 2(f): Its inverse relates to the penetration
depth of the wave, which becomes very small in the analytic
case. For the crystal, the imaginary part becomes strongly
reduced for a number of crystal modes which allows the
longitudinal wave to penetrate more deeply into the structure.
Thus we find a crossing of local and nonlocal modes which
allows such excitations to exist simultaneously in the crystal
with comparable penetration depths and hence contribution to
the total field. This could explain why we see a significant
resonance shift induced by nonlocal response at already rather
thick slabs in both reflectance and transmittance; see Fig. 1(d).

We study one example of an incoming field with high
parallel momentum far beyond the first Brillouin zone in
Fig. 3. Due to the large value of the in-plane component
of the wave vector, transmission is strongly reduced in the
vertical direction. A spectrum for parameters comparable to
the setup in Fig. 1(a) is given in Fig. 3(a), while 3(b) shows
the dependence of the identified reflective modes (discussed
further below) with the lattice period (while the radius is
scaled as r = 0.2a). Next to the reflection |r|2 in Fig. 3(a) we
show the derived density of optical states (DOS) [61], which
emphasizes the physical meaning of the observed resonances.
For large parallel momentum, the solutions outside the metal
slab are evanescent and the plasmon modes are consequently
nonradiative.

At this high parallel momentum a clear difference between
local and nonlocal modes is given, the observed blueshift
with respect to the spectral position of the modes predicted
in the LRA increases on decreasing the hole-hole separation,
while both theories converge for larger hole distances. A strong
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FIG. 4. Band structure calculated from the reflection coefficient |r|2 for the (a) local and (b) nonlocal crystal with a Drude model for Au
(εb = 9) for clarity, t = 10 nm, and other parameters as in Fig. 1(d). Corresponding homogeneous slab calculations are shown as insets. The
guiding lines indicate the nondispersive local modes seen in (a). These modes correspond to the ones found in Fig. 3 for experimental data of
gold, whereby mode A is suppressed with the fully complex background permittivity.

impact of longitudinal waves that are not present in the local
theory of classical electrodynamics is thus demonstrated. This
example shows very clearly the effects of the presence of
nonlocal modes even at rather large structural parameters.
While the feasibility of such a setup is disputable, decreasing
geometrical sizes and using a lower parallel momentum
coupled into the system can yield sizable spatial dispersion
effects for an angle of incidence still within the first Brillouin
zone, as was shown in Fig. 1(e).

Finally, we calculate the band structure from the reflectance
in Fig. 4. In panels (a) and (b) we compare the local and
nonlocal crystal’s optical response as a function of the parallel
momentum where the same reflection modes as in Fig. 3 are
found. The insets show the corresponding homogeneous case
and allow identifying mode A as the usual surface plasmon
polariton present at the front surface of a homogeneous
metal film. The higher order modes B and C emerge from
reflection outside of the first Brillouin zone. Scattering into
higher diffraction orders costs a specific amount of energy,
so that we see those modes at lower energies. More modes
appear when, e.g., decreasing the hole separation. Similar
to findings for homogeneous slabs [42,52], the main optical
mode does not saturate at a fixed frequency, but continues
to shift. The guiding lines depict these fixed frequencies
from the corresponding local modes. In the nonlocal case all
those modes are blueshifted, but only the zeroth-order mode

observes a significant continued shift with increasing in-plane
component. The plasmon broadening is strongly increased as
well. In Fig. 4(c), we directly compare specific spectra from
(a) and (b).

V. CONCLUSIONS

For a plasmonic crystal placed in a dielectric environment,
an extension of an existing rigorous plane-wave method
accounting for nonlocal response in the metal components
of the crystal could be achieved that maintains the complexity
of the original problem. Hereby, the additional boundary con-
dition stemming from the hydrodynamic equation for the free
electron gas was exploited in an analytic way. An additional but
scalar eigenvalue equation has to be solved, and the interface
matrices used in the layer-by-layer propagation (scattering-
matrix theory) become more involved. It was demonstrated
that nonlocal response plays a role already at normal incidence
for nanostructured metal films whereby diffraction plays a
major role in offering in-plane components in the wave
vector not present in the incoming wave. Furthermore, a
number of geometrical parameters influences the impact of
nonlocality in these systems: (i) decreasing film thickness
and (ii) increasing hole size in accordance to what can be
expected from homogeneous films, as well as (iii) decreasing
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hole separation and (iv) thin metal walls confined between
dielectric holes.

This study does exclude surface effects such as the electron
spill-out [40,53,60]. However, as far as such effects can be
attributed to a smooth change in the permittivity of the material
this method can as well be used since a central ingredient is
the Fourier transform of material parameters, which can be
evaluated numerically for generalized surfaces. Accounting
for a metal and thus possibly nonlocal substrate faces the
challenges outlined in the appendices: A full extension would
need a more complex matrix system of four unknowns. The
bottleneck here is in particular the inverse of the interface
matrix which cannot immediately be obtained by analytic
means. The presented theory allows us to study a wide range
of hybrid photon-plasmon systems. We concentrated here on
metal films with dielectric holes, but complementary metal
particle arrays can be studied. Defects with either nonlocal
properties (e.g., a missing air hole) or dielectric properties
(e.g., a missing metal particle) are of further interest. Other
metamaterial designs that can be studied within our approach
are (random) metal alloys and nonlocal inhomogeneous
composites.
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APPENDIX A: ADDITIONAL BOUNDARY CONDITION

Treating the free conduction band electrons with the lin-
earized hydrodynamic equation makes it necessary to consider
an additional boundary condition (ABC) [21,22,24,42,44,62].
The component along the surface normal of the induced
current density n̂ · �j ind ≡ 0 at the crystal slab interfaces
when both neighboring layers are dielectric, i.e., local, and
a trespassing of the electron current is prohibited in the limit
of an exceedingly high work function of the metal. It should
be noted that this assumption neglects the impact of the
electron spill-out relevant to metals with more modest work
functions [40,53,60,63].

While this step introduces a noniterative aspect into the
layer-by-layer solution of the scattering matrix approach [50],
it reduces the computational effort enormously, since we can
solve the ABC inside the crystal layer independently from
electronic properties of neighboring layers. We show in this
section that we can maintain the dimensionality of the original
problem with this limitation, instead of solving a system of
four unknowns (local and nonlocal forward and backward
scattering amplitudes) which would make an extension of the
scattering matrix approach to 4 × 4 matrices of block matrices
necessary in each iteration step.

We start from Eq. (1) with 0 = n̂ · �j ind = j ind
z :

0 = ω2
p

4π
ez − β2∂zρ

ind = ω2
p

4π
e0
z − εb

ε⊥
β2∂zρ

ind. (A1)

Note that we omit the layer index l for clarity; all material
parameters and field amplitudes relate to the central crystal
layer. Inserting the e0

z component and expanding into the field
amplitudes Eqs. (9), we summarize material parameters in the
matrix

L = i(ρ̂)−1 1

qz

(β̂2)−1 ε̂⊥
ε̂b

ω̂2
p

4πk

1

ε̂⊥
(−k̂y k̂x)
, (A2)

and can write the ABC in a compact way

L(fk(z)�a + fk(d − z)�b) = fq(z)�anl − fq(d − z)�bnl.

We evaluate this for the two interfaces z = 0 and z = d and
abbreviate fξ = fξ (d),

L(�a + fk
�b) = (�anl − fq

�bnl), (A3a)

L(fk �a + �b) = (fq �anl − �bnl), (A3b)

from which we can work out

[IN − fqfq]�anl = (L − fqLfk)�a + (Lfk − fqL)�b, (A4a)

[IN − fqfq]�bnl = (fqL − Lfk)�a + (fqLfk − L)�b. (A4b)

The interface matrix needs to be adjusted to include the
additional terms. This is outlined in the next appendix.

APPENDIX B: INTERFACE MATRIX IN NONLOCAL CASE

The extended interface matrix M�
l can be built by using

Eqs. (A4) in Eq. (12) which yields the general, z-dependent
expressions

M�
l,00 = Ml,00 + N00[IN − fqfq]−1[fq(z)(L − fqLfk)

+ fq(d − z)(fqL − Lfk)][fk(z)]−1,

M�
l,01 = −{M00 − N00[IN − fqfq]−1[fq(z)(Lfk − fqL)

+ fq(d − z)(fqLfk − L)][fk(d − z)]−1}.
Two cases can occur: When the nonlocal crystal layer is the
next l + 1 layer, we simply find

I l,l+1 = Ml
−1M�

l+1 = 1

2
M−1

l,00N00

(
χ ξ

−χ −ξ

)
+ I

l,l+1
loc

with the parameters

χ = [IN − fqfq]−1([IN + fqfq]L − 2fqLfk), (B1)

ξ = [IN − fqfq]−1([IN + fqfq]L − 2fqLf −1
k ). (B2)

When the nonlocal layer is the current layer l, the inverse of
the extended matrix is needed. Due to our simplified approach
of having the metal crystal layer between dielectric layers, this
inverse is analytic:

(M�
l )−1 =

(
(νl)−1 (νl)−1μl


−1
l

−(νl)−1 [IN − (νl)−1μl]

−1
l

)
,
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where νl = 2[Ml,00 − N00(χ + ξ )/2], μl = Ml,00 − N00χ ,
and the interface matrix becomes

(M�
l )−1Ml+1 = (νl)

−1Ml+1,00

(
1 −1

−1 1

)
+ 
−1

l 
l+1

×
(

(νl)−1μl (νl)−1μl

IN − (νl)−1μl IN − (νl)−1μl

)
.

It should be noted that in the homogeneous case N00L =
kz⊥
kε⊥

k2
‖

qkz⊥
(1 − ε⊥

εb
) ≡ kz1

kε⊥
g as found previously [42] and with

G± = g

i sin(qd) [e
±ikz1d − cos(qd)], e.g.,

rp = kz0ε⊥ − kz1ε0(1 − G−)

kz0ε⊥ + kz1ε0(1 + G+)
, (B3)

tp = 2kz0ε⊥
kz0ε⊥ + kz1ε0(1 + G+)

, (B4)

for the front surface. The homogeneous analytics are used
in Figs. 1(b) and 1(c), Figs. 2(e) and 2(f), and the insets in
Figs. 4(a) and 4(b).
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