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Abstract 

Developing a robust chronology for mass-movement events is of crucial importance to understanding 

triggering mechanisms and assessing hazards. We constrain the emplacement time of four 

palaeorockfall boulders near Christchurch, New Zealand, using optically stimulated luminescence 

(OSL) of quartz and infrared stimulated luminescence dating (IRSL) of K-feldspar from colluvial loess 

deposits underlying and upslope of individual boulders. The quartz OSL and K-feldspar pIRIR290 ages 

are all consistent with the stratigraphy and in excellent agreement with each other, indicating that all 

the boulders that overlie the in-situ loess and oldest loess colluvium unit must have been emplaced < 13 

ka ago. A comparison of luminescence ages with cosmogenic 
3
He surface-exposure ages from the 

surfaces of each boulder shows that two out of four boulders contain pre-deposition 
3
He inheritance. 

Overall, the optical ages are consistent with both a prehistoric rockfall event at ~8-6 ka and a possible 

preceding event at ~14-13 ka, although the temporal resolution of the time of emplacement of 

individual boulders is ca. 3-5 ka. This resolution is not limited by age uncertainties but rather by the 

stratigraphy. This study is the first to show a successful application of luminescence dating to New 
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Zealand colluvium loess and demonstrates the great advantage of a multi-technique approach in mass-

movement dating.  

1. Introduction 

Mass movements such as rockfalls, landslides and debris flows pose a serious hazard to human 

population and infrastructure in mountainous areas. At least 300 million people are exposed to these 

events worldwide (Dilley et al., 2005) and every year there are tens of reports of major mass 

movements around the world; these cause human fatalities (e.g. Bunce et al., 1998; Guzzetti et al., 

2000; Baillifard et al., 2003; Massey et al., 2014), destroy buildings (e.g. Evans and Hunger, 1993; Yin 

et al., 2008) and damage transportation corridors (e.g. Hungr et al., 1999; Budetta, 2004). Determining 

the return frequency of such events is central to understanding their driving mechanisms and estimating 

their hazard. Earthquakes are one of the major causal mechanisms for slope failure, and rockfalls are, in 

turn, the most abundant type of landslide induced by earthquakes (Keefer, 1984). Coseismic rockfalls 

can thus be an indicator of past earthquakes and their timing may allow us to constrain earthquake 

recurrence intervals (Bull, 1996; Matmon et al., 2005; Mackey and Quigley, 2014). Unfortunately, 

establishing this timing is notoriously difficult due to the lack of reliable geochronological tools. 

Different techniques have been developed with the object of providing a chronology for past rockfall 

activity (Lang et al., 1999; Panek, 2014). These range from studying the degree of rock-surface 

weathering (e.g. Nesje et al., 1994) to lichenometry (e.g. Bull et al., 1994; Luckman and Fiske, 1995; 

Andre´, 1997; McCarroll et al., 2001), dendrochronology (e.g. Stoffel, 2006), radiocarbon (
14

C) dating 

(e.g. Stout, 1969; Bertolini, 2007), optically stimulated luminescence (OSL) dating (e.g. Balescu et al., 

2007; Chapot et al., 2012) and cosmogenic nuclide (CN) surface-exposure dating (e.g. Rinat et al., 

2014; Stock et al., 2014; Mackey and Quigley, 2014). All these techniques suffer from major 

uncertainties: most do not date the rockfall events directly and even CN dating cannot be easily applied 

because of problems resulting from inheritance of pre-event cosmogenic nuclides. Modern 

geochronology lays great emphasis on a multi-technique approach as this helps verify results from 

different techniques and reduce ambiguity in chronology. For example, using a novel approach of OSL 

dating directly applicable to rock surfaces, Chapot et al. (2012) determined the burial age of a fallen 

boulder as well as the underlying sediment in order to date a rockfall event that removed parts of a 

Barrier Canyon Style (BCS) rock art in southeastern Utah, USA. They supported the OSL ages by 
14

C 
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dating of a cottonwood leaf serendipitously found immediately between the boulder and underlying 

sediment (Chapot et al., 2012). In another example, Matmon et al. (2005) determined the age of three 

different rockfall events along the margins of the Dead Sea fault using a combination of CN dating of 

the fallen boulders and OSL dating of underlying deposits.   

In South Island, New Zealand, earthquake-induced rockfalls are frequently embedded in loessic 

sediments (Heron et al., 2014); direct CN dating (Mackey and Quigley, 2014) and robust chronologies 

for loess accumulation and remobilization can thus be used to constrain the timing of these rockfalls. 

Luminescence is widely used to date loessic materials around the world (Roberts, 2015 and references 

therein) but luminescence dating of loess from South Island is perceived to be challenging (e.g. 

Almond et al., 2007). This perception is mostly based on studies using thermoluminescence (TL) and 

infrared stimulated luminescence (IRSL) of polymineral fine grain (i.e. 4-11 µm) fractions from loess 

deposits in Westland, Southland and Canterbury (Berger et al., 2001a,b, 2002). The ages obtained have 

been reported to be anomalously young or old with low precision and in some cases in stratigraphically 

reversed sequence (Almond et al., 2001, 2007). The undesirable luminescence characteristics have been 

attributed to the highly weathered nature of these sediments and the dominance of albites compared to 

K-rich feldspars (Berger et al., 2001a; Almond et al., 2001). With technical and instrumental 

developments in luminescence dating techniques, later studies have reported more reliable ages for 

loessic material from the South Island even though some age inconsistencies, mainly attributed to 

anomalous fading of IRSL signals from K-feldspars, still occurred (Litchfield and Lian, 2004; Preusser 

et al., 2005). There have been few successful studies utilizing optically stimulated luminescence (OSL) 

dating of quartz (Holdaway et al., 2002; Rowan et al., 2012), probably due to reports on low OSL 

signal intensities and large changes in sensitivity (e.g. Preusser et al., 2006); none of these attempted to 

date loess. We are unaware of any prior attempts to (i) use ‘paired’ quartz OSL and K-feldspar IRSL 

dating to rigorously test the reliability of luminescence ages from New Zealand sediments, (ii) apply 

luminescence dating to larger grain size (i.e. >11 µm) fractions of loess from the South Island, and (iii) 

apply luminescence dating to a steep, high-energy hillslope containing both in-situ and colluvial 

(reworked) loessic sediments.  

In this study, we use coarse-grained quartz OSL and K-rich feldspar IRSL signals to date loessic 

deposits south of Christchurch, New Zealand (Fig. 1a). We show that these techniques provide 
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consistent and robust sediment chronologies and give confidence in the results even in such challenging 

depositional environments. These loess deposits host numerous palaeorockfall boulders that have 

previously been dated by cosmogenic 
3
He (Mackey and Quigley, 2014), enabling cross-validation of 

our optical ages with independent age control. The new luminescence ages allow us to refine the timing 

of palaeorockfall emplacement in an area of high rockfall hazard (Massey et al., 2014). This study and 

that of Borella et al. (in review) represent the first use of luminescence dating to refine palaeorockfall 

chronologies in New Zealand and one of the first to apply this technique globally (Matmon et al., 2005; 

Chapot et al., 2012).  

2. Site description and geological context 

The study site (Rapaki Study Site) is located in the Port Hills of southern Christchurch, nearby the 

village of Rapaki on Banks Peninsula (Fig. 1a,b). It is a steep (~20-25
o
) grassy slope (Fig. 1b) 

composed of in-situ loess deposits, overlying large basaltic rockfall boulders, and loessic colluvium 

deposits that contain basaltic clasts. A large number of boulders (> 650) were dislodged from the steep 

source cliff upslope of the Rapaki Study Site during moment magnitude 6.2 and 6.0 earthquakes in 

Christchurch in 2011 (Fig. 1b). The palaeorockfall boulders identified on the same slope (Fig. 1b, c) 

have the same morphology, lithology, and similar spatial distribution as modern boulders and imply 

that similar earthquakes are likely to have been responsible for past rockfall activity (Mackey and 

Quigley, 2014; Borella et al., 2016, in review).   

The loessic colluvium deposits have been remobilized by hillslope erosion and deposited downslope 

(Fig. 1c). Stratigraphic boundaries between in-situ and colluvial units (Fig. 1c) have been distinguished 

on the basis of textural, compositional, and grain-size variations (Borella et al., in review). Palaeosols 

have been identified in the loess colluvium and the top of the most recent colluvium contains an A-

horizon (Borella et al., in review). The slope geomorphology on the interfluve considered here consists 

of numerous rills and channels (Fig. 1b) that primarily originate from collapsed tunnel gullies, and 

sedimentary wedges formed upslope of boulders. More detailed geomorphic and stratigraphic data for 

the study site are available in Borella et al. (2016, in review). 
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The source of the loess has been attributed to the proximal floodplains of the Waimakariri River (Fig. 

1a) (Griffiths, 1973), which primarily transports weathered Cretaceous greywacke from the Southern 

Alps out into the Canterbury Basin (Villasenor et al., 2016). The basaltic source rock immediately 

upslope of the Rapaki Study Site is not a likely source because of the absence of quartz and low 

abundance of K-feldspar in the source rock. 

Constraints on the timing of regional loess accumulation consist of previous 
14

C, optical dating, and 

tephrochronology at other study sites on Banks Peninsula (Fig. 1a) (Griffiths, 1973; Almond et al., 

2007) and cosmogenic 
3
He dating of palaeorockfall boulders overlying the in-situ loess (Mackey and 

Quigley, 2014). In-situ loess at the Rapaki Study Site has been correlated to the Birdlings Flat loess 

(Borella et al., in review). Intercalated volcanic ash within the Birdling’s Flat loess (Fig. 1a) has been 

attributed to the 26,500 cal. yr BP Kawakawa Tephra (Almond et al., 2007). Humic acid from the 

uppermost identified palaeosol near the top of a section of correlative loessic units yielded a 
14

C age of 

17,450 ± 2,070 cal. years B.P. (Griffiths, 1973). Almond et al. (2007) obtained a feldspar IRSL age of 

17,300 ± 1,000 cal. years B.P. from near the top of the sequence. They interpreted feldspar IRSL ages 

to be underestimates, and suggested loess accumulation initiated prior to ca. 30,000 
14

C yr BP (ca. 

35,000 cal. yr BP). Mackey and Quigley (2014) used cosmogenic 
3
He surface-exposure dating to 

determine the emplacement time of 19 prehistoric rockfall boulders overlying the in-situ loess. The 

apparent surface-exposure ages ranged from 6 to 70 ka with most ages between 6 and 20 ka; age 

concentrations at ca. 6-8 ka and ~12-14 ka were interpreted to reflect surface-exposure ages and older 

ages were attributed to pre-depositional inheritance (Fig. 1d). Borella et al. (2016, in review) obtained 

14
C dates from charcoal within the uppermost layers of the reworked colluvial loess of ~1660-1880 

A.D. (2σ). The in-situ loess at the Rapaki Study Site is thus conservatively attributed to deposition 

beginning before ca. 30 ka and ending before ca. 6-13 ka, while the majority of reworked colluvial 

loess is attributed to deposition after ca. 6-13 ka and prior to 1660-1880 A.D. 

3. Sampling, laboratory preparation and analytical facilities 

Sampling for optical dating was targeted at five palaeorockfall boulders; three with credible exposure 

ages of < 13 ka in stratigraphic order with the expected post-LGM depositional age of 17-13 ka for the 

underlying loess and two with exposure ages of > 20 ka. Thirteen OSL samples were collected by 
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hammering metal tubes (5 cm diameter and 15 cm length) into freshly cleaned trench walls: (i) 8 

samples from loess and loess colluvium deposits underlying the boulders, and (ii) 5 samples from 

reworked loess colluvium that accumulated behind the boulders after their emplacement on the 

hillslope (Fig. 1c, e). The samples underlying the boulders should predate their emplacement and thus 

give a maximum boulder emplacement age, whereas the accumulated deposits upslope of the boulders 

should postdate their deposition and so provide a minimum boulder emplacement age (Fig. 1e); by 

dating these samples we should be able to constrain the time window during which each boulder must 

have been put in place and thus determine the age of the responsible rockfall event. 

Sediment was removed from sampling tubes under low level orange light and potentially light-exposed 

material from the outer ends of the tubes discarded; sediment from the middle of the tubes was then wet 

sieved to 40-63 µm. The grains were treated with 10% HCl to remove carbonates and 10% H2O2 to 

dissolve any reactive organic material. They were then etched with 10% HF for 40 min to remove any 

alpha-irradiated surface layer and weathering products and coatings, followed by 10% HCl for 20 min 

to remove any fluoride contamination. The K-rich feldspar fractions were then separated in a water-

based heavy liquid solution (ρ = 2.58 g.cm
-3

; Fastfloat). The quartz grains were further treated with 

hydrofluorosilicic acid for 2 weeks, followed by 10% HCl. 

All luminescence measurements were carried out using a Risø TL/OSL reader (model TL-DA 20), with 

blue light stimulation (λ = 470 nm, ~80 mW.cm
-2

) and photon detection through a 7.5-mm Hoya U-340 

glass filter for quartz, and infrared stimulation (λ = 875 nm, ~135 mW.cm
-2

) and photon detection 

through a Schott BG39/BG3 filter combination (2 and 3 mm, respectively) for K-feldspar (Bøtter-

Jensen et al., 2010). Beta irradiations used a 
90

Sr/
90

Y source mounted on the reader and calibrated for 

both discs and cups using 180-250 µm calibration quartz grains (Hansen et al., 2015). Grains were 

mounted as large (~9 mm diameter for quartz) or medium (~4 mm diameter for feldspar) aliquots in a 

monolayer using silicone oil on 9-mm-diameter stainless steel discs (quartz) or cups (feldspar). The 

heating rate was 5
o
C.s

-1
 throughout. All thermal treatments and stimulations at temperatures higher 

than 200
o
C were carried out in nitrogen atmosphere, and a pause of 5 s was inserted before stimulation 

to allow all grains to reach the measurement temperature. Five empty channels were inserted before 

and after the stimulation to monitor any isothermal TL signals.  
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4. Dosimetry 

Radionuclide concentrations (
238

U, 
226

Ra, 
232

Th and 
40

K) were measured using high-resolution gamma 

spectrometry on sediment collected from around the OSL sample tube. Approximately 50 g of 

sediment was dried at 50
o
C, pulverized and homogenized, and then heated to 450

o
C for 24 h to 

remove any organic matter. The material was then cast in wax to prevent radon loss and to provide a 

reproducible counting geometry. Samples were stored for at least three weeks to allow 
222

Rn to reach 

equilibrium with its parent 
226

Ra before being measured on a high-purity Germanium detector for at 

least 24 h. Details of the gamma spectrometry calibration are given in Murray et al. (1987). The 

internal beta dose rate activity from 
40

K was calculated based on an assumed effective potassium 

content of 12.5±0.5% (Huntley & Baril, 1997), and the beta contribution from 
87

Rb was calculated 

assuming a 
87

Rb content of 400±100 ppm (Huntley & Hancock, 2001). For K-feldspar, a small 

internal alpha contribution of 0.10±0.05 Gy ka
-1

 from internal 
238

U and 
232

Th was assumed included in 

the dose rates, based on from 
238

U and 
232

Th concentration measurements by Mejdahl (1987). For 

quartz, an internal dose rate of 0.010±0.002 Gy ka
-1

 was assumed (Vandenberghe et al., 2008). The 

radionuclide concentrations were converted to dose rate data using the conversion factors from Guérin 

et al. (2011). The contribution from cosmic radiation to the dose rate was calculated following Prescott 

and Hutton (1994), assuming an uncertainty of 5%. The long-term water content (expressed as a 

percentage of dry weight) was assumed to be similar to the modern water content. Water content, 

radionuclide concentrations and dry, infinite-matrix beta and gamma dose rates are summarized in 

Table 1. 

5. Luminescence characteristics 

5.1. Quartz 

Quartz is the most widely used dosimeter in luminescence dating and the reliability of the quartz OSL 

single-aliquot regenerative-dose (SAR) protocol (Murray and Wintle, 2000) for dose determination is 

well-established (e.g. Murray and Olley, 2002).  All the OSL measurements were performed at 125
o
C 

for 40 s. A high-temperature blue-light stimulation at 280
o
C was also carried out for 40 s at the end of 

each cycle to minimize the residual signal transfer between different cycles (Murray and Wintle, 2003). 

Signal intensities were calculated using the initial 0.32 s of the signal, less an immediate background 

Page 7 of 41

http://mc.manuscriptcentral.com/jqs

Journal of Quaternary Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 

 

derived from the following 0.8 s. An early background subtraction was selected to minimize the 

contribution of the more difficult to bleach and more thermally unstable medium and slow components 

to the net signal (Jain et al., 2003; Li and Li, 2006; Cunningham and Wallinga, 2010).  

For all samples, the purity of quartz extracts was examined by measuring the OSL signal from three 

aliquots from each sample with and without prior infrared stimulation at room temperature for 100 s. 

The ratio of the two OSL signals, the so-called OSL infrared (IR) depletion ratio, was then calculated 

for each aliquot (Duller et al., 2003). The resulting average OSL IR depletion ratio was 0.974±0.012 

(n=39), implying that any feldspar contamination of our quartz luminescence signals is negligible. 

Quartz extracts from all the samples were sensitive and the OSL signal was dominated by fast 

component (Fig. 2).  

The performance of our quartz OSL SAR protocol was verified using both natural and dose-recovery 

preheat-plateau tests. The natural preheat-plateau test was carried out to investigate the dependence of 

equivalent dose (De) on preheat temperature. Twenty-four aliquots of quartz from one of the samples 

were sorted in groups of three. Each of the eight groups was then treated with a different preheat 

temperature (between 160 and 300
o
C for 10 s, with temperature increasing in 20

o
C steps). The 

temperature of the preheat treatment with immediate cooling after the test dose (the so called cut-heat 

temperature) was chosen to be 20
o
C lower than the preheat temperature. From Fig. 3a it can be seen 

that there is no obvious dependence of De on preheat temperature between 160 and 300°C.   

For the dose-recovery preheat-plateau test, twenty-four fresh aliquots were stimulated twice at room 

temperature for 100 s using blue LEDs to fully reset the natural OSL signals. A pause of 1 ks was 

inserted between the two stimulations to allow for any charge trapped in shallow refuge traps 

(especially that associated with the 110
o
C TL peak) to decay and subsequently partly refill the OSL 

trap prior to the second stimulation. The aliquots were then given a dose of ~36 Gy and measured in a 

similar manner as in the natural preheat-plateau test. Fig. 3b summarizes the measured-to-given dose 

ratios at different preheat temperatures. It appears that the dose recovery ratio is poor for low preheat 

temperatures ( < 240°C) but is satisfactory (within 10% of unity) for the 240-280°C interval. The 

closest ratio to unity is 0.98±0.06 (n=3) at 260
o
C, showing that a known laboratory dose absorbed 

before any thermal pretreatment can be accurately measured at this preheat temperature. Accordingly, a 
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preheat temperature of 260
o
C (for 10 s) and a cut-heat temperature of 240

o
C for (0 s) were selected for 

all quartz OSL De measurements. A summary of the De values and calculated ages is given in Table 1.  

5.2. K-rich feldspar 

K-feldspar is an alternative dosimeter in luminescence dating. However, its application has been 

hampered because K-feldspar IRSL signals are usually not stable with time (e.g. Huntley and Lamothe, 

2001; Spooner, 1994; Wallinga et al., 2007). It is now broadly accepted that this athermal loss of 

signal, commonly called as anomalous fading, is due to the tunneling of electrons from thermally stable 

traps to nearby recombination centers (Jain et al., 2015). The presence of anomalous fading results in 

age underestimations (Aitken 1985), however the use of K-feldspar as dosimeter in luminescence 

dating has been increasing rapidly over the last few years since the recognition of the more stable 

infrared (IR) signals measured after a low temperature IR stimulation, the so-called post-IR IRSL 

signals (pIRIR) (Thomsen et al., 2008; Buylaert et al., 2009). We used a pIRIR290 SAR protocol to 

measure the K-feldspar fractions from all the samples (Thiel et al., 2011). A preheat treatment of 320
o
C 

was applied for 60 s after natural, regenerative and test doses. The first IR stimulation at 50
o
C (IR50) 

was followed by a second IR stimulation at 290
o
C (pIRIR290). A high-temperature stimulation at 325

o
C 

was also performed at the end of each SAR cycle to minimize signal carry-over to the next cycle. All 

IR stimulations were carried out for 100 s and the full protocol is given in Table 2. The first second of 

stimulation less a background from the last ten seconds was used for all calculations. 

In order to verify the reliability of the measurement protocol, a dose-recovery test was carried out by 

adding different known laboratory doses to the natural dose of the youngest sample. The largest added 

dose was selected in a way so that the total dose is close to the pIRIR290 De of the oldest sample. As it 

can be seen from Fig. 4, while the IR50 dose recovery ratio is poor (~0.8), the pIRIR290 dose recovery is 

satisfactory (within 10% of unity) over the entire dose range in our samples (Fig. 4). Similar low dose 

recovery ratios have been observed for the IR50 signal measured as a part of the pIRIR290 protocol (e.g. 

Buylaert et al., 2012; Schatz et al., 2012; Tsukamoto et al., 2013; Murray et al., 2014). It has been 

argued that this may be due to a trapping sensitivity change caused by the stringent preheating (here 

320
o
C for 60 s) of the sample prior to measuring the natural IR50 signal (Wallinga et al., 2000). Kars et 

al. (2014a) show that this sensitivity change cannot be detected through test dose responses in the SAR 
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protocol, and thus may result in an invalid equivalent dose estimation. We therefore do not use the IR50 

equivalent doses for age calculation. Instead, we only use these values in the discussion of incomplete 

bleaching (see section 6).  

5.2.1. Anomalous fading 

To measure the stability of the IRSL signals in our samples, an anomalous fading test was carried out 

on the same aliquots as used for De determination. Anomalous fading is usually quantified by the ‘g’-

value, which is the fractional loss of signal during a storage period of one decade of time, where the 

storage periods are expressed as decades relative to the laboratory irradiation time (Aitken 1985: 

appendix F). Three aliquots from each sample were measured to evaluate the ‘g’-value using SAR 

cycles (Table 2), following Auclair et al. (2003). Each aliquot was given a regenerative dose close to 

the sample-averaged pIRIR290 equivalent dose and a test dose equal to 50% of the regenerative dose 

was used. The ratios of regenerated signals (Lx) to test dose signals (Tx) were measured repeatedly, 

with time delays of ~0.22 h (IR50) and ~0.27 h (pIRIR290) for prompt measurements, and 12 h for delay 

measurements. The ‘g’-values were calculated using equation 4 of Huntley and Lamothe (2001) and 

normalized to a measurement delay time (tc) of 2 days after irradiation (Fig. 5).  

Fading rates showed no trends with depth or depositional environment (i.e. loess/(reworked) colluvium 

loess). We therefore combined data of all the samples and obtained mean g2days values of 0.7±0.8 and 

0.9±0.3 %/decade (n=39) for the IR50 and pIRIR290 signals, respectively. Several studies have 

documented similar fading rates of ~1%/decade for the pIRIR290 signal, while the IR50 signal usually 

shows higher laboratory fading rates (e.g. Stevens et al., 2011; Roberts, 2012; Roskosch et al., 2012; 

Tsukamoto et al., 2013; Schatz et al., 2012). It has been suggested that such low fading rates (i.e. 

<1.5%/decade) are most likely an artefact of the measurement procedure and do not accurately reflect 

the signal instability in nature (e.g. Thiel et al., 2011; Buylaert et al., 2012; Roberts, 2012). The 

feldspar ages were not corrected for apparent laboratory fading. 

5.2.2. Residual dose 

Post-IR IRSL signals are known to be difficult to bleach as there remains a residual dose even after 

prolonged exposure periods in daylight or solar simulator (e.g. Buylaert et al., 2011; Reimann and 
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Tsukamoto, 2012; Lowick et al., 2012; Roberts, 2012; Li et al., 2013; Kars et al., 2014b). In order to 

determine the size of this residual dose in our samples we followed two different approaches. In the 

first method, 24 aliquots from the youngest sample were bleached in groups of three for different 

lengths of time (from 1 to 512 h, increasing by powers of 2) using an artificial daylight spectrum 

(Hönle SOL2 solar simulator) approximately six times more intense than full sunlight. The IR50 and 

pIRIR290 residual doses were then measured in the usual manner (Table 2). For both signals the residual 

doses decrease slowly with bleaching time and appear to reach a constant after 64 h of bleaching (Fig. 

6). The average IR50 and pIRIR290 residual doses after an exposure time of 64 h are 1.24±0.14 Gy (n=6) 

and 6.15±0.10 Gy (n=6), respectively.  

Sohbati et al. (2012) reported a correlation between the IR50 and pIRIR225 equivalent doses and their 

corresponding residual doses (after laboratory bleaching) with finite intercepts on the residual dose 

axes. They interpreted these intercepts as unbleachable residual doses that would have been present in 

their samples, had they been fully bleached at the time of deposition. Similar observations have been 

made by various workers for different pIRIR signals (e.g. Buylaert et al., 2012; Schatz et al., 2012; 

Sohbati et al., 2013; Tsukamoto et al., 2013; Veit et al., 2014; Qiu and Zhou, 2015). In the second 

method, we followed a similar approach; three aliquots per sample were first bleached for 4 h in a 

Hönle SOL2 solar simulator. The IR50 and pIRIR225 residual doses were then measured and plotted 

against the corresponding De values for each sample. As Fig. 7 shows there is a clear correlation 

between the residual doses and the equivalent doses. The intercepts of the linear fits to the IR50 and 

pIRIR290 data are 1.6±0.3 and 5.9±0.5 Gy, respectively. Interestingly, these values are comparable to 

the residual doses observed in the youngest sample after 64 h of bleaching, and are similar to the values 

reported in literature for the same signals (e.g. Buylaert et al., 2012; Schatz et al., 2012; Murray et al., 

2014; Kars et al., 2014b; Yi et al., 2015). It is not clear whether these residual doses originate from a 

truly unbleachable IRSL component or arise from the transfer of charge from light-insensitive traps to 

IR-sensitive trap(s) during preheating, so-called thermal transfer (e.g. Aitken, 1998; Buylaert et al., 

2011). In either case, they would correspond to residual doses present in a fully bleached, modern 

sample and are likely to have been present in all our samples at the time of deposition. The resulting 

IR50 and pIRIR290 De values after residual dose subtraction and the calculated pIRIR290 ages are given 

in Table 1. 
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6. Discussion 

6.1.  Reliability of the luminescence ages: were the samples well-bleached? 

The laboratory behavior of the quartz OSL signals from these samples of New Zealand loess is 

satisfactory and the dose recovery for the sample tested under the chosen measurement conditions is 

consistent with unity (0.98±0.06; n=3). Thus for these samples it appears that our measurement 

protocol is appropriate for the measurement of dose. As discussed in the Introduction, this is in contrast 

to earlier work on quartz from South Island. With the exception of Holdaway et al. (2002) and Rowan 

et al. (2012) previous luminescence studies have concluded that quartz was insensitive and unsuitable 

for dating (e.g. Preusser et al., 2006; Almond et al., 2007).  

Similarly, our feldspar IRSL dosimetry signal is also well-behaved. The slope of the measured to given 

dose relationship for the pIRIR290 signal is within 10% of unity, and laboratory fading rates are not 

considered significant (g2days values of 0.7±0.8 and 0.9±0.3 %/decade (n=39) for the IR50 and pIRIR290 

signals, respectively). Previous work suggested that ages based on feldspar IRSL signals 

underestimated independent age control (presumably due to anomalous fading) and this was blamed on 

the apparent high degree of weathering (Almond et al., 2001).     

A major challenge in luminescence dating of hillslope deposits is incomplete bleaching (Fuchs and 

Lang, 2009). The colluvial deposits accumulated behind the boulders were reworked by slope 

processes and thus, because of short transport distances and mixing during transportation, may not have 

been well-bleached. Fuchs and Lang (2009) point out that one way to identify insufficient bleaching 

may be to use luminescence signals of different bleaching characteristics. Several studies have shown 

that the quartz OSL signal resets faster than the K-feldspar IR50 signal and that the IR50 signal, in turn, 

bleaches more rapidly than the elevated temperature post-IR IRSL (pIRIR) signals (e.g. Godfrey-Smith 

et al., 1988; Thomsen et al., 2008; Murray et al., 2012; Kars et al., 2014b; Sugisaki et al., 2015; 

Colarossi et al., 2015; Möller and Murray, 2015). Based on this, Murray et al. (2012) suggested an 

approach to identify well-bleached quartz samples by comparing quartz and K-feldspar equivalent 

doses. Möller and Murray (2015) used this approach in a study of Swedish glaciofluvial samples and 

were able to conclude that the quartz OSL in about half of the samples was well-bleached at deposition 

(based on agreement with IR50 and pIRIR signals). In our study, there is excellent agreement between 
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the quartz OSL and K-feldspar pIRIR290 ages for all the samples (Fig. 9). Given the well-known 

difference in bleaching rates (see above), this similarity in ages strongly suggests that the quartz OSL 

signals in our samples must have been well-bleached prior to final deposition (Fig. 9).   

In addition, Buylaert et al. (2013) proposed an independent method to identify poorly-bleached K-

feldspar samples by comparing the IR50 to pIRIR290 De ratios. Following a similar approach, we plotted 

the IR50 De value versus the corresponding pIRIR290 equivalent dose for each sample (Fig. 8). First of 

all, it is interesting to note that the value of intercept on the pIRIR290 axis in Fig. 8 (i.e. 4.9 Gy), is 

indistinguishable from the difference between the values of 1.6±0.3 and 5.9±0.5 Gy inferred as IR50 

and pIRIR290 unbleachable residual doses, respectively, from the intercepts on the De axes in Fig. 7. 

Secondly, all data points lie on the same curve, indicating a good correlation of doses over a wide dose 

range (Fig. 8). Such smooth correlation implies that either all the samples were equally poorly-bleached 

or they were well-bleached. Given the heterogeneous nature of the bleaching process in space and time, 

the former seems unlikely. We conclude that these data suggest that both the feldspar signals from our 

samples were sufficiently bleached before deposition. Note that the poor dose recovery for the IR50 

signals is most unlikely to perturb this conclusion. If poor dose recovery was to affect the conclusions 

drawn from this correlation, it would have to increase the scatter around the fitted line in Fig. 8; clearly, 

this cannot have happened to a significant degree. A similar conclusion was reached by Buylaert et al. 

(2013).   

From the satisfactory dose recovery characteristics of the quartz OSL and K-feldspar pIRIR290 signals 

and the excellent agreement between ages based on these signals, we conclude that the internal 

luminescence evidence strongly suggests that our quartz OSL ages are reliable and unlikely to have 

been significantly affected by incomplete bleaching. Since the quartz signal is more readily reset, and 

there are potential complications in the pIRIR290 ages arising from signal instability and residual dose 

subtraction, we use the quartz OSL ages in the next section.  

6.2.  OSL-CN age comparison 

The quartz OSL ages are all concordant with the stratigraphy; they range from ~2 to 29 ka with the 11 

(out of 13) OSL ages most closely related to the boulders consistently younger than ~13 ka. Fig. 10 
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shows a schematic view of one of the boulders (PB-2) together with the OSL ages of the surrounding 

loess colluvium deposits as well as the 
3
He surface-exposure age from the top of the boulder. It can be 

seen that the two samples collected below the boundary identified as the ground surface at the time of 

boulder emplacement have ages of 12.5±1.1 ka (ROSL-05) and 12.0±1.4 ka (ROSL-06), the weighted 

average of which provides a maximum age limit of 12.3±1.0 ka for the boulder deposition. 

Furthermore, sample ROSL-04, taken from the colluvial wedge upslope of the boulder and thus 

deposited after the boulder, has an age of 7.7±0.8 ka. These ages limit the boulder emplacement time to 

between 12.3±1.0 ka and 7.7±0.8 ka. The maximum age limit of 12.3±1.0 ka is indistinguishable from 

the 
3
He exposure age of 13±2.3 ka from the top surface of the boulder. Our preferred interpretation is 

that (i) PB-2 was emplaced at ca. 12-13 ka (Mackey and Quigley, 2014), (ii) 
3
He pre-detachment 

inheritance is negligible, and (iii) the boulder emplacement time is indistinguishable from that of the 

underlying loess. In this instance, the possibility of significant 
3
He inheritance is inconsistent with the 

optical chronology, highlighting the importance of these complementary data. 

Maximum/minimum loess ages exist for only four of the boulders. Only one OSL sample (ROSL-02, 

29±2 ka) was taken in association with PB1 (from underneath) and there is no corresponding upslope 

sample to provide post-depositional age limit. Fig. 11 summarizes the OSL age constraints and the 
3
He 

surface-exposure age for the other four boulders (PB2, 3, 4, 5). The OSL ages associated with PB-3 

suggest an emplacement time between 2.9±0.3 and 5.8±0.5 ka, while the 
3
He surface-exposure age 

from the top surface of the boulder is 8±2 ka. Again the boulder age is indistinguishable from that of 

the underlying loess, suggesting that either boulder emplacement occurred at 5.8±0.5 ka, or the boulder 

was emplaced after 5.8±0.5 ka (and contained some 
3
He inheritance) but before 2.9±0.3 ka. 

In contrast, PB4 and PB5 have 
3
He surface-exposure ages that are significantly older than the ages of 

the associated loess. PB4 has an exposure age of 26.9±2.9 ka, while the OSL ages constrain the 

emplacement time to between 4.2±0.4 and 10.2±1.1 ka. Similarly, the OSL ages associated with PB5 

suggest that it must have been deposited between 1.7±0.2 and 10.2±0.8 ka, whereas the 
3
He age 

suggests an emplacement time of 15.7±2.3 ka (Fig. 11). Given the internal stratigraphic consistency of 

the quartz OSL ages and their agreement both with K-feldspar ages and with the regional climate 

record (i.e. loess formation during the termination of LGM), we conclude that the discrepancy between 

the OSL and 
3
He ages for PB4 and PB5 is most likely due to pre-detachment 

3
He inheritance.  
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7. Conclusions 

We successfully determined the emplacement time of palaeorockfall boulders by applying 

luminescence dating techniques to colluvial (reworked) loess deposits in South Island, New Zealand. 

The quartz OSL and K-feldspar pIRIR290 ages are all consistent with stratigraphy and in excellent 

agreement with each other for all the samples. To our knowledge, these are amongst the first reliable 

loess luminescence ages from New Zealand, although a few earlier studies have reported reliable ages 

from non-loessic material (e.g. Holdaway et al., 2002; Rowan et al., 2012; Hornblow et al., 2014).  

The correlation between the IR50 and pIRIR290 K-feldspar equivalent doses and the corresponding 

residual doses seems to provide a reliable method to determine the unbleachable residual dose present 

in the samples. The size of the unbleachable IR50 and pIRIR290 residual doses in our samples, as 

inferred from the intercepts on the residual dose axes, are 1.6±0.3 and 5.9±0.5 Gy, respectively.  

Regardless of whether the IR50 equivalent doses are reliable or not (due to poor dose recovery), the 

comparison between the IR50 and pIRIR De values appears to provide a viable independent approach to 

identify well-bleached K-feldspar samples. The smooth correlation between the IR50 and pIRIR290 De 

values over a wide dose range, strongly suggests that all our samples were well-bleached prior to final 

deposition on the slope. This is confirmed by the agreement between the quartz OSL and K-feldspar 

pIRIR290 ages. 

Of the six loess colluvium samples immediately underlying the boulders the oldest has an age of ~13 

ka, suggesting the deposition of loess colluvium after the termination of the LGM (Griffiths, 1973; Ives 

et al., 1973; Tonkin et al., 1974; Hughes et al., 2010). This implies that all the palaeorockfall boulders 

must have been emplaced after the loess colluvium deposition ~13 ka ago (Mackey and Quigley, 

2014). The emplacement time of individual boulders was further constrained by luminescence dating of 

colluvial (reworked) loess deposits underlying and upslope of individual boulders. A comparison of 

luminescence ages with 
3
He surface-exposure ages from the surfaces of each boulder shows that two 

out of four boulders (ignoring PB1 because of the poor age constraint) probably suffer from 
3
He pre-

detachment inheritance, as hypothesized by Mackey and Quigley (2014). Overall, the optical ages are 

consistent with both a prehistoric rockfall event at ~8-6 ka and the possible preceding event at ~14-13 

ka hypothesized by Mackey and Quigley (2014), although the temporal resolution of the time of 
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emplacement of individual boulders remains at ca. 3-5 ka. However, this temporal resolution is not 

limited by age uncertainties but rather by the stratigraphy; there was simply no material deposited 

closer to the time of emplacement. Nevertheless, we are able to convincingly identify two boulders 

containing significant cosmogenic 
3
He inheritance and two for which the 

3
He ages are probably 

accurate, demonstrating the great advantage of a multi-technique approach in geochronology.  
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Table captions 

Table 1) Summary of sample code, burial depth, radionuclide concentrations, measured water content, 

quartz OSL and K-feldspar IR50 and pIRIR290 equivalent doses and ages. Residual doses of 1.2 and 6 

Gy were subtracted from the IR50 and pIRIR290 Des, respectively. Feldspar dose rates assume a K 

concentration of 12.5±0.5% for K-feldspar (Huntley and Baril, 1997). An absolute error of 4% is 

assumed on the water content values.  

Table 2) Outline of the quartz OSL (Murray and Wintle, 2003) and K-feldspar pIRIR290 (Thiel et al., 

2011) SAR protocols.  
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Table 1

Sample 

code 

Sample 

 name 
Depth 

Water 

content  
226

Ra 
232

Th 
40

K 
Total 

 dose rate 

Quartz  

OSL De
 n 

Quartz  

OSL age 

K-feldspar  

IR50 De 

K-feldspar 

 pIRIR290 De 
n 

K-feldspar 

 pIRIR290 age 

  
(cm) 

(%) (Bq kg
-1

) 

± se 

(Bq kg
-1

) 

± se 

(Bq kg
-1

) 

± se 

(Gy ka
-1

) 

± se 

(Gy) 

± se 

 (ka) 

± se 

(Gy) 

± se 

(Gy) 

± se 

 (ka) 

± se 

146601 ROSL-02 (PB1) 247 10 30.14±1.08 40.07±1.16 502±16 2.65±0.13 78±5 17 29.3±2.5 44.24±1.14 84.3±1.8 12 28.5±1.6 

146602 ROSL-08 (PB3) 81 14 35.8±0.9 42.3±0.9 554±16 2.85±0.12 8.14±0.66 18 2.9±0.3 4.07±0.30 8.4±0.4 12 2.6±0.2 

146603 ROSL-09 (PB3) 170 6 33.38±1.14 38.5±1.2 446±16 2.76±0.14 15.9±1.2 18 5.8±0.5 11.8±0.6 19.9±0.6 12 6.5±0.4 

146604 ROSL-10 (PB4) 93 11 32.7±0.9 41±1 473±12 2.66±0.12 11.0±0.9 18 4.2±0.4 7.4±0.5 11.4±0.5 12 3.8±0.2 

146605 ROSL-11 (PB4) 120 8 38.6±1.9 42±2 440±30 2.55±0.15 26±2 18 10.25±1.07 16.5±0.5 29.8±1.0 12 10.4±0.7 

146606 ROSL-12 (PB4) 131 7 33.8±1.6 42.5±1.7 510±20 2.87±0.16 38±3 18 13.4±1.2 23.7±0.6 40.4±0.6 12 12.7±0.7 

146607 ROSL-13 (PB5) 31 4 36.2±1.7 42.8±1.8 520±20 3.18±0.17 5.5±0.4 22 1.7±0.2 3.8±0.3 6.8±0.3 12 1.94±0.14 

146608 ROSL-14 (PB5) 110 8 35.9±1.7 43.5±1.9 460±30 2.94±0.16 30.0±1.7 24 10.2±0.8 22.7±0.7 40.7±0.9 12 12.6±0.8 

146609 ROSL-03 (PB2) 70 12 32.6±1.2 39.877±1.114 470±20 2.69±0.13 7.6±0.7 24 2.8±0.3 4.5±0.3 7.4±0.3 12 2.46±0.15 

146610 ROSL-06 (PB2) 87 7 31.9±1.5 43.2±1.4 490±30 2.89±0.15 35±4 24 12.0±1.4 18.5±0.4 32.7±0.7 12 10.2±0.6 

146611 ROSL-07 (PB2) 171 4 31.5±1.6 49±1.8 440±20 2.93±0.16 80±8 22 27.2±3.0 39.2±1.4 70.5±1.9 12 21.8±1.4 

146612 ROSL-04 (PB2) 99 12 35.8±1.5 40.3±1.4 460±20 2.47±0.13 19.0±1.5 23 7.7±0.8 11.13±0.35 19.2±0.3 12 6.9±0.4 

146613 ROSL-05 (PB2) 116 9 34.6±1.6 40.4±1.7 480±20 2.79±0.15 35±2 17 12.47±1.06 19.0±0.3 33.7±0.4 12 10.8±0.6 

Page 29 of 41

http://mc.manuscriptcentral.com/jqs

Journal of Quaternary Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30 

 

 

Table 2 

Step Quartz     K-feldspar  

 Treatment Observed  Treatment   Observed 

1 Dose  Dose  

2 Preheat (260
o
C for 10 s)  Preheat (320

o
C for 60 s) 

3 Blue stimulation (125
o
C for 40 s) Lx Infrared stimulation (50

o
C for 100 s) Lx, IR50 

4 -------   Infrared stimulation (290
o
C for 100 s) Lx, pIRIR290 

5 Test dose  Test dose  

6 Cut heat (240
o
C)  Preheat (320

o
C for 60 s)  

7 Blue stimulation (125
o
C for 40 s) Tx Infrared stimulation (50

o
C for 100 s) Tx,IR50 

8 -------   Infrared stimulation (290
o
C for 100 s) Tx, pIRIR290 

9 Blue stimulation (280
o
C for 40 s)  Infrared stimulation (325

o
C for 100 s)  

10 Return to 1  Return to 1  
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