
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Large Gliadin Peptides Detected in the Pancreas of NOD and Healthy Mice following
Oral Administration

Bruun, Susanne W.; Josefsen, Knud; Tanassi, Julia T; Marek, Ales; Pedersen, Martin Holst Friborg;
Sidenius, Ulrik; Haupt-Jorgensen, Martin; Antvorskov, Julie C.; Larsen, Jesper; Heegaard, Niels H.;
Buschard, Karsten
Published in:
Journal of Diabetes Research

Link to article, DOI:
10.1155/2016/2424306

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bruun, S. W., Josefsen, K., Tanassi, J. T., Marek, A., Pedersen, M. H. F., Sidenius, U., ... Buschard, K. (2016).
Large Gliadin Peptides Detected in the Pancreas of NOD and Healthy Mice following Oral Administration.
Journal of Diabetes Research, 2016, [2424306]. DOI: 10.1155/2016/2424306

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/84000779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1155/2016/2424306
http://orbit.dtu.dk/en/publications/large-gliadin-peptides-detected-in-the-pancreas-of-nod-and-healthy-mice-following-oral-administration(2a9ca748-3165-45a6-b3a2-33829582bd63).html


Research Article
Large Gliadin Peptides Detected in the Pancreas of NOD and
Healthy Mice following Oral Administration

Susanne W. Bruun,1 Knud Josefsen,1 Julia T. Tanassi,2 Aleš Marek,3,4

Martin H. F. Pedersen,3 Ulrik Sidenius,5 Martin Haupt-Jorgensen,1 Julie C. Antvorskov,1

Jesper Larsen,1 Niels H. Heegaard,2 and Karsten Buschard1

1The Bartholin Institute, Rigshospitalet, Copenhagen N, Denmark
2Clinical Biochemistry, Immunology & Genetics, Statens Serum Institut, Copenhagen S, Denmark
3The Hevesy Laboratory, DTU Nutech, Technical University of Denmark, Roskilde, Denmark
4Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
5Enzyme Purification and Characterization, Novozymes A/S, Bagsværd, Denmark

Correspondence should be addressed to Knud Josefsen; knud@eln.dk

Received 6 May 2016; Accepted 10 August 2016

Academic Editor: Marco Songini

Copyright © 2016 Susanne W. Bruun et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Gluten promotes type 1 diabetes in nonobese diabetic (NOD) mice and likely also in humans. In NOD mice and in non-diabetes-
pronemice, it induces inflammation in the pancreatic lymphnodes, suggesting that gluten can initiate inflammation locally. Further,
gliadin fragments stimulate insulin secretion frombeta cells directly.We hypothesized that gluten fragmentsmay cross the intestinal
barrier to be distributed to organs other than the gut. If present in pancreas, gliadin could interact directly with the immune
system and the beta cells to initiate diabetes development. We orally and intravenously administered 33-mer and 19-mer gliadin
peptide to NOD, BALB/c, and C57BL/6 mice and found that the peptides readily crossed the intestinal barrier in all strains. Several
degradation products were found in the pancreas bymass spectroscopy. Notably, the exocrine pancreas incorporated large amounts
of radioactive label shortly after administration of the peptides. The study demonstrates that, even in normal animals, large gliadin
fragments can reach the pancreas. If applicable to humans, the increased gut permeability in prediabetes and type 1 diabetes patients
could expose beta cells directly to gliadin fragments. Here they could initiate inflammation and induce beta cell stress and thus
contribute to the development of type 1 diabetes.

1. Introduction

A gluten-free (GF) diet reduces the incidence of diabetes
in nonobese diabetic (NOD) mice and DP-BB rats [1, 2].
In humans, early exposure to gluten-containing food has
been associated with increased risk of islet autoimmunity [3],
and a recent case study has described a prolonged remission
period in a type 1 diabetes (T1D) patient adhering to the GF
diet [4, 5]. Finally, up to 10% of T1D patients have coeliac
disorders, compared to 1% of the background population,
indicating a commonpathogenesis in coeliac disease andT1D
[6].

A gluten-containing diet affects immune cells in the
pancreatic lymph nodes and possibly contributes to local

inflammation. In healthy mice, gluten intake promotes a
proinflammatory profile of regulatory T-cells in both mesen-
teric and pancreatic lymph nodes [7]. In BALB/c and NOD
mice, we recently described changes inNK- and dendritic cell
populations in pancreatic lymphnodes, when comparingGF-
with a gluten-containing diet [8, 9]. However, whether the
effects of gluten take place in the intestinal immune system
or by direct priming in the local lymph nodes and pancreas is
unknown.

Much evidences suggest that gliadin peptides cross the
intestinal barrier. After gluten intake, large gliadin fragments
are found in the small intestine due to partial resistance of
gliadin to digestive enzymes [10, 11]. Intestinal permeability
and serum zonulin levels are increased in T1D patients even
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before clinical onset of the disease [12, 13]. This may likely
enhance the entry of gliadin fragments into lamina propria
and lymphoid tissue. Finally, enterovirus infection, which
is associated with T1D, increases the intestinal permeability
[14]. After crossing the intestinal epithelium, it is likely that
gliadin peptides enter the bloodstream.This is seen for other
dietary proteins such as ovalbumin when administered orally
tomice [15], and, in one study, gliadin has been demonstrated
in serum and breast milk by ELISA [16], although the finding
was never confirmed.

The current study investigates the murine uptake and
biodistribution of 33-mer and 19-mer gliadin peptides. We
used the proline-rich 33-mer (p56–88) and 19-mer (p31–
49) alpha-gliadin peptides, which are resistant to digestive
proteases [10, 11, 17] and widely studied due to their impli-
cation in coeliac disease (CD) [18, 19]. Their transepithelial
passage in vitro is low in healthy individuals compared to
CD patients, in whom the fragments are transported by
protected transcellular transport [17, 20, 21]. We show that
these large gliadin peptides are present in circulation after
oral administration and that large gliadin fragments access
pancreas even in nondiabetic BALB/c and C57BL/6 mice.
Thismay contribute to local inflammation and beta cell stress,
which could accelerate the development of type 1 diabetes.

2. Methods

2.1. Gliadin Peptides. The peptides H-LQLQPFPQPELPYP-
QPELPYPQPELPYPQPQPF-OHY (33-mer) and H-LGQ-
QQPFPPQQPYPQPQPF-OHY (19-mer), 98%pure (Schafer-
N, Denmark), were 3H-labeled in the underlined positions
using diiodotyrosine (Y(3,5-I

2
)) iodinated peptides by stan-

dard technique [22, 23].Theywere dissolved inDMSO,mixed
with 10% palladium on carbon catalyst, and subjected to 10 Ci
tritium gas in a tritiummanifold system (RC Tritec) for 2 h at
room temperature, then purified by HPLC, and conserved by
addition of 50mM ascorbic acid. pH was 7.5 for intravenous
use (i.v.) and 6 for peroral (p.o.) use. Radiochemical stability
was 10 days, during which the animal experiments were
performed.

2.2. Mice. BALB/cA BomTac (males), C57BL/6JBomTac
(males), and NOD/MrkTac mice were purchased from
Taconic Europe A/S, Ejby, Denmark, kept in an SPF animal
facility and fed standard Altromin 1324 diet. NODmice were
bred in the same facility. Animal experiments were approved
by the Danish Animal Experiments Inspectorate and exper-
iments performed according to international guidelines for
the care and use of laboratory animals.

2.3. Liquid Chromatography-Mass Spectrometry (LC-MS).
BALB/c mice, 4–16 weeks of age, were given 650–900𝜇g of
33-mer, either i.v. or p.o., and heparin-plasma was prepared
15–60min later at 0∘C. Protein inhibitors were added to
the tissues that were homogenized, mixed with internal
standard (GENESEQP:AZF58701), andprecipitatedwith 50%
methanol, 1% TFA, and centrifugation. The samples were
analyzed using an Orbitrap XL (Thermo Scientific) equipped
with a Nano LC (Easy nLC II, Thermo Scientific). The

chromatographic system was a 10 cm, ID 75 𝜇m, 3 𝜇m C18-
A2 column (Thermo Scientific) with a flow of 300 nL/min
with 0.1% formic acid as mobile phase A and 0.1% formic
acid in acetonitrile as B. The MS scan was performed using
a resolution of 30000 and a scan range of 300–2000𝑚/𝑧.

2.4. SDS-PAGE Analysis. Six mice received 230–1200 𝜇Ci
of 3H-33-mer or 3H-19-mer i.v. or p.o. or 200𝜇Ci of 3H-
tyrosine (Perkin Elmer). Heparin-plasma was prepared from
tail blood at 0∘C and analysed by SDS-PAGE without further
processing, after depletion of albumin and IgG using a
commercial kit (Protea Biosciences) or after digestion with
trypsin (incubation with 125mM dithiothreitol, 0.05% SDS
at 53∘C, pH 7.5 for 45min, followed by digestion with trypsin
(Fluka) at 37∘C). The gel was fixed in 15% formalin/25%
ethanol and Coomassie-stained. For fluorography, the fixed
gels were soaked in 7% glycerol and Amplify Fluorographic
Reagent (GEHealthcare), each for 30min, dried, and exposed
on Amersham Hyperfilm MP at −80∘C. Subsequently, the
dried gels were rehydrated in 7% acetic acid for 2–4 h and
Coomassie-stained.

For scintillation counting, gel slices were excised from the
nonfixed gel, covered with 600𝜇L of 30% hydrogen peroxide,
and heated at 50∘C overnight before measurement.

2.5. Matrix-Assisted Laser Desorption Ionization Time-of-
Flight Mass Spectrometry (MALDI-TOF MS). Plasma was
fractionated in Amicon Ultra 10 kDa centrifugal filter
units (Merck Millipore), Vivaspin 500, 5 kDa filter units
(Sartorius), PD10 columns, Amicon Ultra 0.5mL 10 kDa
centrifugal filters, or SEP-PAK C18 Plus short cartridges
(Waters), or they were ethanol-precipitated or acid-ethanol
extracted. Slices from nonfixed gels were extracted overnight
at 37∘C in 100 𝜇L of 50mM NH

4
CO
3
with or without

12.5 ng/𝜇L Endoproteinase Glu-C Sequencing Grade (Roche
Diagnostics). The gel slices were further extracted on a
shaker for 15min in 20𝜇L extraction buffer (1 : 2 (vol/vol)
50mM NH

4
HCO
3
/acetonitrile). The extracts were com-

bined.
Samples were dried in a vacuum concentrator (Eppendorf

5301) and reconstituted in 20 𝜇L 5% acetic acid before
desalting using POROS C18 matrix and elution onto a
stainless steel 96-well MALDI target plate with 1 𝜇L 𝛼-
cyano-4-hydroxycinnamic acid (HCCA matrix) ready-made
from Agilent (6mg/mL in 30% acetonitrile, 30% methanol,
and 0.1% TFA) for dried droplet crystallization. Analysis
was done on Bruker Ultraflex with Daltonics flexAnaly-
sis software, externally calibrated using a standard pep-
tide mixture (Bruker, range: 1,000–3,200Da). Spectra were
recorded in positive linear mode and summed from 100 laser
shots.

The MS mass of 84 fragments >800Da was calculated.
They were randomly generated from the 33-mer sequence,
allowing for deamidation of up to two glutamine residues
(only one deamidation for Mr <1500Da) and for sodium
and potassium ion adduct formation. Measured masses were
matched to the predicted masses, using a difference of
<0.5Da as threshold. Masses from negative control samples
were matched using a threshold of 1.0 and removed.
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2.6. Biodistribution. For initial evaluation of accumulation
and elimination in blood, NOD mice (6–8 weeks) received
230–900𝜇Ci 3H-33-mer or 3H-19-mer. For biodistribution
experiments, BALB/c, C57BL/6, and NOD mice (8 or 12
weeks) received 50𝜇Ci (1.5–3.6 nmol) of 33-mer or 19-mer,
either p.o. or i.v., and NOD mice aged 20 weeks received
25 𝜇Ci (0.5 nmol) 3H-tyrosine. Organs were incubated with
SOLVABLE (Perkin-Elmer) at 55∘C until dissolved and then
with 30% hydrogen peroxide to decolorize the solution.
Ultima Gold (Perkin Elmer) was added, and samples were
counted 1 h later in a Packard 1600TR scintillation counter.

Specific activities (dpm/mg tissue) were calculated by
dividing the counts by the respective weight of the sample
that was measured. The tissue distribution was examined
using the tissue/blood ratios. To compare responses in blood
across different doses (230–900 𝜇Ci), data were normalized
to a dosage of 100𝜇Ci.

For kinetics studies, using SDS-PAGE and fluorography,
230 𝜇Ci 3H-33-mer or 770 𝜇Ci of 3H-19-mer was used for
i.v. administration and 620–1200𝜇Ci 3H-33-mer was used for
oral administration to NODmice aged 6–8 weeks. One NOD
mouse aged 20 weeks received 200 𝜇Ci 3H-tyrosine.

Before oral gavage, mice were starved for 4 h andwere not
fed until 20min after.

2.7. Autoradiography. Standard tissue sections were dipped
in a 1 : 1 dilution in water of melted Kodak NTB Emulsion
with 10% Amplify Fluorographic Reagent (GE Healthcare),
air-dried, stored in the dark at 4∘C with desiccant for 1–3
weeks, developed in Kodak D19 developer, fixed in Ilford
Rapid Fixer, HE stained, and examined in an Olympus
Bx51 microscope (UPlanSApo 20x, 0.40) equipped with a
Colorview 1 camera and Analysis getIT software (Olympus).

2.8. Statistical Analysis. One-way ANOVA with Tukey
posttest was carried out using GraphPad Prism version 5.00
for Windows (GraphPad Software, San Diego, California,
USA) to analyze the distribution of the label at each time
point. The stomach and intestine were excluded from the
analysis due to their large variation. The age of the animals
(8 and 12 weeks) did not influence the uptake or distribution
of radioactivity from the 3H-33-mer peptide. Thus, mice of
different ages were pooled.

3. Results

To test the hypothesis that large gluten fragments might be
absorbed from the intestine, two fragments that have been
well investigated in coeliac disease, gliadin 33- and 19-mer,
were tritium-labeled and given orally to NOD mice, and
blood and tissues were sampled up to 72 hours after admin-
istration (Figure 1(a)). Interestingly, a high level of label from
both fragments was seen in the pancreas shortly after admin-
istration (0.01 < 𝑝 < 0.05). To increase the time resolution
for this phenomenon, we looked in detail at the early events
in NODmice (Figure 2(b)) and found that the label was pre-
sent 1/2 h after administration and still remained 3 hours
after oral administration. A tyrosine control was included
to simulate enzymatic degradation of the peptides, since the

label was introduced into the peptides through this amino
acid. This label accumulated similarly to the 33- and 19-mer,
suggesting that degradation of the peptides could account for
the accumulation of label.

To investigate if the intestinal transfer of tracer was spe-
cific for NODmice, we also investigated BALB/c and C57BL/
6 mice. In these strains, similar findings were seen (Figure 2),
suggesting that the enteric permeability for gluten peptides
was not specific for NOD mice and that the pancreatic
accumulation of the label occurs similarly in several strains.

For reference, we investigated the absorbance and distri-
bution of gliadin fragments following intravenous injection
and observed an even more pronounced accumulation of
label (Supp. Figure 1A (see Supplementary Material available
online at http://dx.doi.org/10.1155/2016/2424306)). Again, the
results did not differ when investigating thematter in BALB/c
mice (Supp. Figure 1B).

To investigate the spatial distribution of the radiolabel,
we performed autoradiography. In pancreas (Figure 3(a)), the
majority of the label was present in the zymogen granules of
the exocrine pancreas and in the duct system and to a lesser
extent in the islets. In the other tissues examined (lung (b),
kidney (c), and ileum (d)), the label was less abundant and
evenly distributed.

3.1. Analysis of Molecular Weight Species in the Blood. The
results do not necessarily demonstrate the presence of the
peptides in the various tissues, as the peptides might cleave
during uptake [24]. This is in fact a distinct possibility, as
investigated in Supp. Figure 2. In blood (Supp. Figure 2A),
molecular weight species about twice the molecular weight
of the peptide (12 kDa) were seen withinminutes of injection.
After 1 h, higher molecular weight species (HMW) emerged.
Formation of the HMW species could be prevented by inject-
ing unlabeled 33-mer, suggesting that the signals originated
from 33-mer adsorbing to high molecular weight species
or from tyrosine from the 33-mer that were incorporated
into newly synthesized HMW molecules. The 19-mer (Supp.
Figure 2B) showed similar behavior, except that the 12 kDa
signals were absent at 30min.

Blood analyses following oral administration showed
similar results (Supp. Figure 2C), except again absence of
the 12 kDa signals. It is noticeable that the 33-mer signal is
still present in the blood, although in low amounts, 1 h after
oral administration of the peptide. Interestingly, the 12 kDa
signal, but not the HMW signal, also formed in vitro (Supp.
Figure 2D). This suggests that the 12 kDa signal does not
require de novo synthesis, whereas the HMW does.

To investigate the relation of the HMW signal with
albumin and IgG, we selectively removed these molecules
from blood samples from mice that had received 33-mer
orally.This removed 35%of the label, regardless of the route of
administration. If adding the 3H-33-mer to blood in vitro or
if cold peptide was injected prior to injection of the labeled
peptide, only 14-15% could be removed (Supp. Figure 2E).
This suggests that the label was either associated with or
synthesized into thesemolecules. Following trypsin digestion
of serum, which degrades albumin, but not 33-mer (Supp.
Figure 2F), no distinct band was released, suggesting that
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Figure 1: Quantification of 3H-33-mer, 3H-19-mer, and 3H-tyrosine following oral ingestion inNODmice in intestine (white), pancreas (red),
and other tissues (green). (a) Radioactivity relative to blood in selected tissues 1, 24, and 72 h after oral administration of 3H-33-mer to mice
aged 8 and 12 weeks, of 3H-19-mer to mice aged 12 weeks, and of 3H tyrosine to mice aged 20 weeks (𝑁 = 2–4 mice). Error bars represent
SEM. Sto (stomach), Duo (duodenum), Jej (jejunum), Ile (ileum), Pan (pancreas), Liv (liver), Gal (gallbladder), Spl (spleen), Kid (kidney),
Hea (heart), Lun (lung), andThy (thyroid gland). (b) Tissue distribution of 3H-33-mer, 3H-19-mer, and 3H-tyrosine tracer in NODmice 0.5,
1, and 3 hours after oral administration. NOD mice (6–8 weeks) were given 3H-33-mer (upper), 3H-19-mer (middle), or 3H-labeled tyrosine
(bottom).𝑁 = 4mice. Error bars represent SEM.The abbreviations are as above.



Journal of Diabetes Research 5

BALB/c

Ti
ss

ue
/b

lo
od

 ra
tio

33
-m

er
19

-m
er

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

1 h 24 h 72 h

(a)
C57BL/6

33
-m

er
19

-m
er

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

Ti
ss

ue
/b

lo
od

 ra
tio

0

2

4

6

8

10

St
o

D
uo Je

j
Ile Pa

n
Li

v
G

al Sp
l

Ki
d

H
ea

Lu
n

Th
y

1 h 24 h 72 h

(b)

Figure 2: Tissue distribution of gliadin 33-mer and 19-mer following oral ingestion in BALB/c (a) and C57BL/6 mice (b), 8–12 weeks of age.
Blood and organs were sampled after 1, 24, and 72 h. The specific radioactivity is shown relative to blood, and data are average values of 2–4
mice and shown with SEM values. Abbreviations are as in Figure 1.

the HMW signals originate from de novo synthesis. Further,
injection of 3H-tyrosine in mice results in appearance of the
HMW band (data not shown). This is compatible with the
delay in the appearance of the signal following oral ingestion
(Supp. Figure 3A). In summary, our data are compatible with
degradation of the 33-mer in vivo.

3.2. Mass Spectrometry Analysis of Blood and Tissue. We
finally used mass spectrometry to identify the peptides. We
first optimized the LC-MS detection of the 33-mer by dif-
ferent purification procedures, using samples containing 33-
mer, plasma, and plasma spiked with 33-mer (Figure 4). We

then analyzed blood from BALB/c mice that had received 33-
mer by intravenous or peroral administration and detected
intact peptide in samples 15, 30, and 60minutes after injection
and 60min after oral administration (Figure 4).

A total of 21 MALDI-TOF MS signals from blood and
tissues could be matched to 33-mer fragments (Table 1). In
blood, the longest peptide detected was a 32-mer, which was
originally described as stable [11].Using pancreas samples, the
longest peptide observed was 16 amino acids. In NOD mice,
we detected fragments in mice at 6, 8, 10, and 20 weeks of
age. Further, we demonstrated thatmany of the fragments are
also generated in vitro (Table 2) if 33-mer is incubated with
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Table 1: 33-mer fragments in mouse plasma and pancreas 45–60min after oral administration, as determined by MALDI-TOF MS.

LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF Sample
1 YPQPQPF Plasma, NOD
2 FPQPELPY Plasma, C57BL/6
3 QPFPQPELP Plasma, NOD
4 ELPYPQPELP Plasma, NOD pancreas, C57BL/6
5-1 LQLQPFPQPE Pancreas, C57BL/6
5-2 QLQPFPQPEL
6-1 QPFPQPELPY Pancreas C57BL/6
6-2 ELPYPQPQPF Plasma, NOD
7 QLQPFPQPELP Plasma, NOD
8 ELPYPQPELPYP Plasma, NOD pancreas, NOD
9 QLQPFPQPELPY Plasma, NOD, C57BL/6
10 ELPYPQPELPYPQ Plasma, NOD
11 YPQPELPYPQPQPF Plasma, NOD, C57BL/6
12 LPYPQPELPYPQPQPF Pancreas, NOD, C57BL/6
13 LQLQPFPQPELPYPQPE Plasma, NOD
14 ELPYPQPELPYPQPELPYPQPQ Plasma, NOD plasma, NOD
15-1 QPFPQPELPYPQPELPYPQPELPYPQPQ Plasma, NOD, C57BL/6
15-2 LQLQPFPQPELPYPQPELPYPQPELPYP
16-1 QPFPQPELPYPQPELPYPQPELPYPQPQP Plasma, NOD, C57BL/6
16-2 LQPFPQPELPYPQPELPYPQPELPYPQPQ
17 LQLQPFPQPELPYPQPELPYPQPELPYPQPQP Plasma, C57BL/6
Mice (6–20 weeks) were given 500–900𝜇g of 33-mer p.o. and blood and pancreas were analyzed. Samples were filtrates from 10 kDa centrifugal filters,
supernatant from ethanol precipitation, an acidic ethanol extract from pancreas, peptide fractions from a PD10 desalting column, fractions from SEP-PAK
C18 columns, and slices from SDS-PAGE gels (extracted without Glu-C digestion). The 33-mer fragment sequences were identified by matching the observed
masses to the masses predicted for a list of arbitrary 33-mer fragments. Predictions were done using the theoretical masses and mass changes allowing 1-2
deamidations of glutamine and binding of sodium and potassium ions.

Table 2: Fragments formed in vitro during incubation of 33-mer in mouse plasma, as determined by MALDI-TOF MS.

LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF Sample
1 YPQPQPF Filtrate
2 ELPYPQPEL Filtrate
3 QPFPQPELPY Filtrate
4 YPQPELPYPQPQPF Filtrate
5 ELPYPQPELPYPQPEL Filtrate
6 LQLQPFPQPELPYPQPE 4–6 kDa
7 ELPYPQPELPYPQPELPY Filtrate
8 ELPYPQPELPYPQPELPYPQPQPF 14–18 kDa
9 FPQPELPYPQPELPYPQPELPYPQPQPF 10–12 kDa
10 PFPQPELPYPQPELPYPQPELPYPQPQPF 10–12 kDa
11 LQLQPFPQPELPYPQPELPYPQPELPYPQP 14–18 kDa
12 QPFPQPELPYPQPELPYPQPELPYPQPQPF 14–18 kDa
13 QLQPFPQPELPYPQPELPYPQPELPYPQPQP 14–17 kDa
14 LQLQPFPQPELPYPQPELPYPQPELPYPQPQ 14–17 kDa
15 LQLQPFPQPELPYPQPELPYPQPELPYPQPQP 4–6 kDa
16 LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF 4–6 kDa, 6–9 kDa, 14–17 kDa
33-mer was incubated at 37∘C in mouse plasma, and samples were filtered through 5 kDa MWCO centrifugal filters or run on SDS-PAGE gels before MALDI-
TOF MS analysis. Approximate ranges of the gel slices, according to the molecular weight marker, are shown, and assignment of observed masses to 33-mer
fragments was done as described in Table 1. The appearance of bands at 10–20 kDa on SDS-PAGE gels during incubation was confirmed before analysis of gel
slices (not shown). The identified fragments at 10–18 kDa were not found in plasma where 33-mer was not added or when sampled at 𝑡 = 0.
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(a) (b)

(c) (d)

Figure 3: Autoradiography of mouse tissues following administration of 3H-33-mer. Mouse pancreas (a), lung (b), kidney (c), and ileum (d)
were sampled 1 h after oral administration of 3H-33-mer. Asterisk denotes zymogen granules, which showed high accumulation of label. In
all other tissues examined, homogenous labeling was observed. No difference was seen between i.v. and p.o. administration.

mouse plasma, suggesting that the fragments form as a result
of proteolytic enzymes found in plasma.

4. Discussion

In this report, we demonstrated that 33-mer and 19-mer
gliadin peptides are readily absorbed from the intestine of
NOD mice and healthy BALB/c and C57 mice. We did not
find differences related to the age or strain of the animals.

The absorption of gliadin peptides is complex. Gliadin
stimulates zonulin expression, which in turn enhances the
uptake of 33-mer by the paracellular route [25], and absorp-
tion is also affected by cytokines and gut bacteria [26–28].
It could be expected that the absorption is increased during
development of diabetes, as increased capillary permeability
is seen in the gut [12, 13, 29, 30] and in the islets [31, 32] in type
1 diabetes patients, prediabetes patients, and relatives and in
the BB rat model [33]. In NOD mice, the issue is less clear.
Infection with a bacterial pathogen (Citrobacter rodentium)
that can increase the intestinal permeability in NOD mice
also increases disease incidence [34], but a change in perme-
ability alone does not affect the disease mechanisms [35].

Nondegraded gliadin was previously identified in human
breast milk [16] and in blood plasma in Wistar rats [26].
In addition, gliadin fragments have been demonstrated in
animals under pathological conditions: in Rhesus macaques
suffering from gluten-induced enteropathy or when sensi-
tized to gluten [36]. Absorption of other macromolecules
(ovalbumin and 𝛽-lactoglobulin) has been described, but in

general the bioavailability is low and the half-life short of
orally delivered peptide drugs and bioactive peptides [37, 38].
Therefore, our observation of 33-mer crossing the gut barrier
in healthy mice is interesting in the light of the few similar
reports describing dietary protein fragments of significant
length, crossing the intestinal epithelium [39].

It is difficult to quantify the daily intake of 33-mer as the
gliadin content in crop is variable, but based on data from
[40] and, assuming that a mouse ingests 5 g of food per day,
we estimate that the intake is 50–100𝜇g.The native, amidated
form of the 33-mer was not included in our studies, but since
tissue transglutaminase is present in the intestine, it is likely
that gliadin is at least partly deamidated before absorption.
We therefore believe that the chosen dosages and peptides
reflect the physiological exposure to gliadin.

We observed 10–20 kDa bands on SDS gels, which con-
tained 33-mer and fragments hereof. The bands could be
SDS-resistant, noncovalent di-, tri-, and multimers [41] in
agreement with the ability of the (native, nondeamidated)
33-mer to dimerize and assemble into supramolecular struc-
tures, such as colloidal nanospheres [42]. Polymerized gliadin
fragments could possibly accelerate the development of T1D,
as multivalent surface presentation of epitopes [43] and
particulate material [44] can more efficiently elicit immune
responses. Self-assembly of the 33-mer might also protect it
from enzymatic degradation or influence the uptake mecha-
nism in the gut.

Other mechanism may, however, also explain the super-
numerary gel bands. Deamidation of glutamines increases
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Figure 4: Analysis of plasma after administration of 33-mer to BALB/cmice by LC-MS. (a) Total ion current chromatograms with the 33-mer
eluting at approximately 22.9min. (b) Averaged mass spectra corresponding to the elution profiles. Plasma was precipitated with methanol-
TFA before analysis. Rows 1–4 show control samples: 33-mer at 150𝜇g/mL (rows 1 and 2), plasma (row 3), and plasma added 150 𝜇g/mL
33-mer (row 4). Rows 5–7 show plasma obtained 15, 30, and 60min, respectively, after i.v. administration of 850𝜇g 33-mer, and row 8 shows
plasma obtained 60min after p.o. administration of 650𝜇g 33-mer. The levels after p.o. administration were close to the detection limit, and
the peptide was not detected in all mice.
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the number of negatively charged residues, thus decreasing
the migration rate [45]. Prolyl cis-trans isomerization of
gliadin fragments [46] could result in more rigid conforma-
tions that move slower in the gel [47] and could form as
the 33-mer [42] and other gliadin sequences [48] are able to
formPPII helix structure, whichmight exist at the denaturing
conditions. In blood, the two latter phenomena could be
promoted by enzymes (e.g., transglutaminases and prolyl
isomerases), but spontaneous reactions are also possible.

The demonstration of gliadin fragments in islets provides
new insight into how gliadin might contribute to diabetes
development. The observation that gliadin readily or as a
result of increased zonulin secretion [49] penetrates the gut,
even in healthy animals and irrespective of the genetic back-
ground, suggests that gluten contributes to the pathogenesis
of the disease. Thus, beta cells are most likely also exposed
to the gliadin fragments as their molecular weight (4 kDa) is
lower than capillaries retain [50]. This would cause stimula-
tion of the insulin secretion, under both resting and glucose-
stimulated conditions [51], and lead to beta cell stress. Fur-
ther, gliadin contributes to local inflammation as it induces a
more proinflammatory cytokine profile among T-cells in the
intestinal and extraintestinal lymphatic centers [7], reduces
the number of regulatory T-cells in BALB/c mice [52], stimu-
lates NKG2D expression [53] and NK cell activity [8] in
BALB/C and NOD mice, increases expression of dendritic
cell activationmarkers in NODmice [9], and, at least in vitro,
activates macrophages [54]. These changes could all con-
tribute to beta cell destruction.

How this suggested sequence of events translates into the
human disease is not known, but several pathogenic aspects
are similar in human and murine disease. For instance,
gliadin also increases permeability in human intestinal
mucosa [25], and recently a prolonged remission period
among newly diagnosed T1D patients on a gluten-free, low-
glycemic diet [55] was demonstrated. If the immunological
consequences of gliadin exposure are similar in humans,
the findings in the present study represent a missing link
for understanding how gliadin contributes to the disease
development.

Competing Interests

The authors declare that they have no conflict of interests.

Acknowledgments

This study was supported by Kirsten og Freddy Johansens
Fond.

References

[1] D. P. Funda, A. Kaas, T. Bock, H. Tlaskalová-Hogenová, and K.
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