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ABSTRACT 

The application of air-to-air heat recovery plays an important role in reducing the amount of 

energy used for heating and cooling the ventilation air. The benefits of heat recovery depend 

on the outdoor conditions, level of ventilation, and must be evaluated in relation to the amount 

of energy used by fans. If heat recovery and fans are compared solely from energy viewpoint, 

a clear benefit might be seen in favor of heat recovery; however, this may or may not be the 

case from exergy viewpoint. Exergy analysis allows a more holistic and objective comparison 

of heat recovery and fan than energy analysis alone, and the actual benefits and limitations of 

applying heat recovery can then be better quantified. 

 

Energy and exergy performances of a warm-air heating system (with and without heat 

recovery on exhaust air), and a floor heating system were theoretically compared, including 

the auxiliary energy inputs to pumps and fans. The relative benefits of heat recovery were 

analyzed. 

 

The exergy input required by the floor heating system was 60% lower compared to warm-air 

heating without heat recovery, and 15% lower compared to warm-air heating with heat 

recovery. The floor heating system required 42% less exergy input to the power plant for the 

auxiliary components compared to warm-air heating without heat recovery, and 68% less 

compared to warm-air heating with heat recovery. 

 

For the warm-air heating system, applying heat recovery lowered the exergy input to the 

boiler by 53%, however at the cost of increased auxiliary exergy input. The application of 

heat recovery in this study was beneficial, since the exergy input reduction to the boiler was 

considerably larger (2998 W) than the extra exergy input required at the power plant for the 

additional fan in case of warm-air heating with heat recovery (357 W). 

 

Even though the application of heat recovery might provide clear benefits over the fan energy 

use in energy terms, the benefits become less significant in exergy terms and fan power 

becomes a crucial and decisive parameter. 
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INTRODUCTION 

Several approaches can be used to heat or cool indoor spaces in buildings. Indoor terminal 

units are a part of building heating and cooling systems, and they mostly rely on either 



convection, or a combination of radiation and convection to emit or remove heat (and/or 

moisture) from indoor spaces (Kazanci and Olesen, 2015).  

 

In HVAC systems used throughout the world (e.g. Europe, North America, Asia, etc.), energy 

sources and energy generators are similar and the main differences between HVAC systems 

are often the indoor terminal units (Olesen and Kazanci, 2015). The choice of terminal units 

has important effects on occupant thermal comfort, the energy use of distribution system, 

generation plant, and on the usable energy resources.  

 

Different studies have compared the energy and thermal comfort performances of air-based 

systems with water-based systems (Imanari et al. 1999; Fabrizio et al. 2012; Sastry and 

Rumsey, 2014). Several authors have indicated that energy analysis alone is not sufficient to 

have a holistic understanding of the energy utilization (Shukuya, 1994; Yildiz and Gungor, 

2009; Dovjak et al. 2010). In order to overcome this limitation, exergy analysis can be used to 

have a better understanding of the energy utilization in a system, especially when not only 

thermal energy flows but also the electricity input to different components (e.g. fans, pumps) 

are involved. 

 

When a warm-air heating system is used to heat an indoor space, applying heat recovery on 

the exhaust air can result in considerable reductions of the energy used for heating the 

ventilation air; however, the overall benefits should be evaluated also in relation to the energy 

requirement by the fan. Exergy analysis allows a holistic comparison of the heat recovered 

and energy use by fans. 

 

This paper demonstrates a comparative study on the energy and exergy performances of an 

air-based and a water-based heating system assumed to be installed in a single-family house. 

 

DESCRIPTION OF THE STUDIED SPACE HEATING SYSTEMS 

The studied systems were assumed to be installed in a detached, one-story, single-family 

house with a floor area of 66.2 m2 and a conditioned volume of 213 m3. The house was 

assumed to be located in Copenhagen, Denmark. Detailed description of the house and its 

systems can be found in (Kazanci and Olesen, 2014). 

 

The studied space heating systems were warm-air heating with and without heat recovery on 

exhaust, and floor heating. Figure 1 shows the schematic drawings of these systems. 

 

 
 



 

Figure 1. Schematic drawings of the analyzed heating systems: a) Floor heating (FH), b) Warm-air 

heating without heat recovery (WAH_NoHR), c) Warm-air heating with heat recovery (WAH_HR). 

 

The calculations were carried out under steady-state conditions. The outdoor air temperature 

was -5°C (Olesen et al. 1980), and the indoor temperature was 20°C. The heat recovery unit 

had a heat recovery efficiency of 85% (sensible heat). This meant that the temperature of the 

intake air leaving the heat recovery unit was 16.3°C. Airflow rate in warm-air heating cases 

was determined based on the space heating load, while the ventilation rate was 0.5 ach in floor 

heating case. 

 

The resulting space heating loads were 30.9 W/m2-floor area for warm-air heating, and 32.9 

W/m2-floor area for floor heating. Further details of the load calculation procedure are given 

by Kazanci et al. (2016). 

 

Floor heating 

The load calculations showed that a specific heat output of 48.4 W/m2-floor heating area with 

an average floor surface temperature of 24.7°C was required to satisfy the space heating 

demand. The required mass flow rate was 469 kg/h. The supply and return water temperatures 

to and from the floor loops were 33°C and 29°C, respectively. The calculations of the heat 

output, surface temperature, and the flow rate was based on Babiak et al. (2009), EN 1264-2 

(2008), and EN 1264-3 (2009).  

 

Warm-air heating 

The supply air temperature to the indoor space was limited to 35°C (DS 469, 2013). The 

necessary heating rate needed for bringing the outdoor air at -5°C to the supply air 

temperature of 35°C was 5460 W when there was no heat recovery, and it decreased to 2559 

W with heat recovery. The necessary heat was supplied to the air by an air-heating coil, which 

was connected to a boiler. The supply and return water temperatures to the air-heating coil 

were 50°C and 39°C, respectively (ASHRAE, 2000). 

 

The necessary airflow rate was 410 m3/h (1.9 ach) for both of the warm-air heating cases. The 

mass flow rate required in the air-heating coil was 428 kg/h and 201 kg/h for the case without 

and with heat recovery, respectively. 

 

Fan and pump powers 

Power requirements for pumps and fans were determined as described by Kazanci et al. 

(2016). Table 1 summarizes the pump and fan powers for the studied cases. 

 



Table 1. Summary of the pump and fan powers for different heating cases. 

 
Epump [W] Efans [W] Etotal [W] 

FH 27.5 67.9 95.4 

WAH_NoHR 27 136.5 163.5 

WAH_HR 25 273 298 

 

Heat and power generation 

It was assumed that the heat generation for space heating in all cases was through a natural 

gas fired condensing boiler with an efficiency of 90% (Shukuya, 2013). The ratio of chemical 

exergy to the higher heating value of natural gas was 0.93 (Shukuya, 2013).  

 

The electricity provided to the pumps and fans was generated in a remote, natural gas fired 

power plant. The conversion efficiency at the power plant, transmission and distribution 

efficiencies combined was assumed to be 0.35 (Shukuya, 2013).  

 

Kazanci et al. (2016) provide further details regarding the studied cases. 

 

EXERGY CALCULATION METHODOLOGY 

For any system, it is possible to obtain the exergy balance equation from energy and entropy 

balances. In its general form, exergy balance equation is obtained from the energy and entropy 

balance equations as follows (Shukuya, 2013): 

 
[𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡] = [𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑] + [𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡]                  (1) 

 
[𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑖𝑛𝑝𝑢𝑡] + [𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑] = [𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑠𝑡𝑜𝑟𝑒𝑑] + [𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑢𝑡𝑝𝑢𝑡]    (2) 

 

In its general form, exergy = energy – entropy · To. Therefore it is possible to obtain the 

exergy balance equation as Eq. (1) – Eq. (2) · To. 

 
[𝐸𝑥𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡] − [𝐸𝑥𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑] = [𝐸𝑥𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑] + [𝐸𝑥𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡]    (3) 

 

where [Exergy consumed] = [Entropy generated] · To, and To is the environmental (reference) 

temperature [K]. The storage terms in Eqs. (1), (2), and (3) disappear under steady-state 

conditions. 

Eqs. (1), (2), and (3) indicate that every system consumes a part of the supplied exergy and in 

the meanwhile entropy is generated. This applies to heating and cooling systems in buildings 

as well. 

 

The detailed calculation methodology for the studied systems was described by Kazanci et al. 

(2016), therefore they are not described further in this paper. Here, the exergy balance for the 

heat recovery unit is given. The exergy consumption in the heat recovery unit is obtained 

through the exergy balance equation set up for the heat recovery unit: 

 

𝑋𝑜𝑢𝑡𝑑𝑜𝑜𝑟 𝑎𝑖𝑟 + 𝑋𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑎𝑖𝑟 − 𝑋𝑐 = 𝑋𝑖𝑛𝑙𝑒𝑡 𝑎𝑖𝑟 + 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟      (4) 

 

where Xoutdoor air is the exergy of the intake air from outdoors (=0) [W], Xexhaust air is the exergy 

of the exhaust air (from the indoor space) [W], Xinlet air is the exergy of the inlet air (supply air 

for the floor heating case, and the air entering the air-heating coil in the warm-air heating with 

heat recovery) [W], and Xdischarge air is the exergy of the discharge air (discarded to the 

environment after the heat recovery) [W].  



Eq. (5) is used for calculating Xoutdoor air, Xexhaust air, Xinlet air, and Xdischarge air with respective 

airflow temperatures. 

 

𝑋𝑎 = 𝑉𝑎𝑐𝑎𝜌𝑎 {(𝑇𝑎 − 𝑇𝑜) − 𝑇𝑜 ln
𝑇𝑎

𝑇𝑜
}           (5) 

 

where Xa is the exergy of the airflow [W], Va is the volumetric flow rate of air [m3/s], ca is the 

specific heat capacity of air [J/kgK], ρa is the density of air [kg/m3], and Ta is the temperature 

of the air flow [K]. 

 

In addition to the exergy consumption due to heat transfer in the heat recovery unit, the 

discharged air also contains a certain amount of exergy. This exergy is totally consumed while 

the discharged air is completely discarded into the environment.  

 

RESULTS AND DISCUSSION 

Figure 2 shows the whole chains of exergy flows from the exergy input to the boiler to the 

environment. Figure 3 shows the exergy consumption in the heat recovery unit, and Figure 4 

shows the required exergy inputs to the pump, fans and to the power plant. 

 

 

Figure 2. Exergy flows for different heating strategies. 

 

 

Figure 3. Exergy consumption in the heat recovery unit (cross-flow heat exchanger), shown for 0.5 ach 

(values in the parentheses indicate the exergy values, Xc is the exergy consumption). 

 



 

Figure 4. Required exergy inputs to the pump, fans and to the power plant (four bars in each case 

indicate, from left to right, the exergy input to pump, to fans, their total, and the exergy input to the 

power plant). 

 

The heating exergy load (input to the “Building” in Figure 2) consists of the heat loss from the 

building envelope (transmission loss) and the heat required for bringing the fresh air at 16.3°C 

to the indoor temperature of 20°C. The heating exergy load is 186 W for the floor heating 

case, and 174.6 W for the warm-air heating case (this load is different since the supply air has 

to be warmer than the indoor air). 

 

Exergy consumption in the indoor space varies with the heating strategy chosen. For floor 

heating, the exergy consumption in the space is 31.2 W, and this is lower than that of warm-

air heating case (46.3 W). This is because of the low temperature heating possibility and the 

low surface temperature of the floor. 

 

The application of heat recovery on the exhaust air resulted in a significant decrease in the 

exergy consumption within the air-heating coil, from 479.6 W to 137 W, (71% decrease, 

Figure 2), because with heat recovery, the air temperature should be increased from 16.3°C to 

35°C in the air-heating coil compared to no heat recovery when the air temperature should be 

increased from -5°C to 35°C. This is also reflected in the necessary energy and exergy inputs 

to the boiler. 

 

The floor heating requires the smallest fuel (exergy) input to the boiler (2253 W) while the 

required fuel input is largest for the warm-air heating without heat recovery (5642 W), 

followed by the case with warm-air heating with heat recovery (2645 W). The exergy input 

required by the floor heating is 60% smaller compared to warm-air heating without heat 

recovery, and 15% smaller compared to warm-air heating with heat recovery. It should be 

noted that this is only the thermal exergy flow and does not consider the exergy input to 

auxiliary components. 

 

Regarding the exergy inputs to the heating plant, the use of a boiler does not allow taking 

advantage of the low exergy demand of the radiant floor heating system. The largest exergy 

consumption through the whole space heating process occurs in the boiler and this is mainly 

due to the combustion process. 



The results in Figure 4 show that an air-based heating system requires large fan powers, 

resulting in a further decrease of the system energy and exergy performances. This is mainly 

because larger flow rates and volumes are required to transport the same amount of heat with 

air compared to water, and this emphasizes an advantage of water-based heating and cooling 

systems over air-based systems. The floor heating system requires 42% less exergy input to 

the power plant for the auxiliary components compared to warm-air heating without heat 

recovery, and 68% less compared to warm-air heating with heat recovery. 

 

There is a trade-off between the exergy gain with the heat recovery unit and the electricity 

necessarily supplied to the additional exhaust fan (also the extra fan power needed to cover 

the additional pressure drops). Depending on the local climate, ventilation rate and on the 

efficiency of the heat recovery unit, it might not always be beneficial to have heat recovery. If 

the exergy input to the fan exceeds the exergy recovered from the exhaust air, this indicates 

that there is a threshold for which the heat recovery is beneficial. This issue should be 

carefully considered before applying heat recovery on ventilation systems. 

 

When considering the warm-air heating cases with and without heat recovery, extra exergy 

input for the exhaust fan is the crucial parameter to consider when evaluating the benefits of 

heat recovery. The extra exergy input required at the power plant for the additional fan in the 

case of warm-air heating with heat recovery is 357.4 W, which is significantly less than the 

saved exergy input to the boiler due to the application of heat recovery (2998 W), therefore 

the application of heat recovery is justified for this application.  

 

During the heat recovery from the exhaust air, the exergy consumption in the heat recovery 

unit is inevitable. Due to heat transfer between air streams, there is exergy consumption in the 

heat recovery unit and due to the efficiency being less than 100% (exergy is necessarily 

consumed even if the 100% energy-wise efficiency is possible), it is not possible to fully 

recover the thermal exergy from the exhaust air. A certain amount of air with exergy is 

discarded into the environment after the heat recovery, and hence it is lost. This amount of 

exergy would vary in different locations: in the present case of Denmark, due to low outdoor 

temperature, it has higher exergy compared to another location with a mild climate. 

 

The exergy consumption in the heat recovery unit for the warm-air heating case is 37.2 W 

(40.6 W including the exergy of the discharge air), and it is 9.6 W (10.5 W including the 

exergy of the discharge air) for the floor heating case. 

 

CONCLUSION 

Exergy performances of floor heating and warm-air heating were compared in this study. In 

addition to the thermal exergy, these systems were also compared in terms of auxiliary exergy 

used for pumps and fans. The relative benefits and penalties associated with the application of 

heat recovery in the ventilation system were identified. 

 

The floor heating system had the lowest exergy consumption and it performed better than the 

warm-air heating systems in terms of required exergy input, and exergy consumption. The 

overall performance of the floor heating system could have been improved further by 

coupling it to another heating plant than a natural gas fired condensing boiler (e.g. a ground 

coupled heat pump), because the boiler does not allow taking advantage of the low exergy 

demand of the radiant floor heating system. 

 



The water-based floor heating system required lower auxiliary exergy input than the warm-air 

heating systems. This shows a clear benefit for water-based systems over air-based systems. 

 

For a heat recovery unit to be beneficial, the thermal exergy gained from the heat recovery 

(from the exhaust air) must be greater than the exergy supplied to the exhaust fan, and this 

analysis should be carried out before deciding on the application of heat recovery. In the 

current case, the application of heat recovery proved to be beneficial: the extra exergy input 

required at the power plant for the additional fan in case of warm-air heating with heat 

recovery was 357.4 W, which is significantly smaller than the reduced exergy input to the 

boiler due to the application of heat recovery (2998 W). 
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