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With the increasingly intrusive insight

gained since the dawn of the Atomic Age

the ‘cowboy’ economy rumbling across the

apparent illimitable plains of the past may

today and in the future similarly be called

the ‘spaceman’ economy, in which Earth

has become a single spaceship, without

unlimited reservoirs of anything,

either for extraction or for

pollution, and in which,

therefore, man must

find his place in a

cyclical ecological

system.

Freely adapted from the essay

The Economics of the Coming Spaceship Earth

K. E. Boulding

1966





TECHNICAL UNIVERSITY OF DENMARK

Abstract

Department of Wind Energy

Meteorology Section

PhD thesis

by Martin Haubjerg Rosgaard

The worldwide deployment of wind energy has continually accelerated during the last

few decades, and the implications of day ahead predictability for this highly fluctuating

renewable energy source for feasible wind power integration in electrical grids are mul-

tifaceted. This thesis concerns forecast accuracy for operational wind power scheduling.

Numerical weather prediction history and scales of atmospheric motion are summarised,

followed by a literature review of limited area wind speed forecasting. Hereafter, the

original contribution to research on the topic is outlined. The quality control of wind

farm data used as forecast reference is described in detail, and a preliminary limited area

forecasting study illustrates the aggravation of issues related to numerical orography

representation and accurate reference coordinates at fine weather model resolutions.

For the offshore and coastal sites studied limited area forecasting is found to deteriorate

wind speed prediction accuracy, while inland results exhibit a steady forecast perfor-

mance increase with weather model resolution. Temporal smoothing of wind speed

forecasts is shown to improve wind power forecast performance by up to almost 1 %,

and the explanatory value for wind power forecasting of six different prognostic and

diagnostic weather model variables modelled semi-parametrically is found to differ de-

pending on the local terrain. In terms of wind speed ramp predictability, the study finds

consistent improvement for better resolved forecasts, and indications of wind speed fluc-

tuation phase-drift with weather model integration time are countenanced, which in part

explains the faster decline in limited area forecast performance with leadtime, relative

to global model forecasts. The limited area forecasting study is rounded off with a

demonstration of the feasibility of forecasted wind speed variability for predicting wind

power uncertainty. Finally, a statistical postprocessing framework for numerical wind

speed forecasts is developed and evaluated, and the proposed methodology made possi-

ble the discovery of the lifted index weather model diagnostic as containing systematic

corrective potential for wind speed forecasts generated by the weather model studied.
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DANMARKS TEKNISKE UNIVERSITET

Dansk Resumé

Institut for Vindenergi

Meteorologi sektionen

PhD afhandling

af Martin Haubjerg Rosgaard

Vindenergikapaciteten p̊a verdensplan øges i stadig højere tempo og følgelig er forudsige-

lighedsgraden af denne bæredygtige energiform af væsentlig betydning for effektiv inte-

gration i elnettet. Denne afhandling drejer sig om vejrprognosenøjagtighed med henblik

p̊a operationel drift af vindparker og effektiv h̊andtering af den producerede el.

Numerisk vejrprediktion gennemg̊as historisk og forskellige skalaer for atmosfæredy-

namik opridses, efterfulgt af et litteraturstudie af vindhastighedsprediktion med re-

gionale vejrmodeller. Kvalitetskontrol af vindparkdatasæt der anvendes som vejrprog-

nosereferencer beskrives detaljeret, og den negative indflydelse af relativt små afvigelser

i det anvendte terrænelevationsdatasæt, samt i vindpark referencekoordinatet, illustreres

via et forstudie for en af vindparkerne.

For de studerede vindparker offshore og p̊a kysten forværrer de genererede regionale vejr-

prognoser nøjagtigheden mht. vindhastighed, hvorimod nøjagtigheden af højopløste ve-

jrprognoser forbedres i komplekst terræn. Tidslig udjævning af vindhastighedsprognoser

giver en forbedring af vindkraftprognosenøjagtighed p̊a knap 1 %, og forskellig præsta-

tion afhængig af lokationen findes ved semiparametrisk modellering af seks prognostiske

og diagnostiske vejrmodelvariable. Det vises at vindhastighedsramper forudsiges bedre

for højopløste regionale vejrprognoser, og ydermere demonstreres det at modelprog-

noserne gradvis forsinkes ift. referencem̊alinger hvilket delvis forklarer det hurtigere

tab af nøjagtighed for regionale- vs. globale vejrprognoser. Vha. ændringer i den re-

gionale models kildekode vises det at vindhastighedsvariabilitet er en lovende prediktor

i fremtidige statistiske modeller for vindkraftusikkerhed. Endelig udvikles og demon-

streres – for førnævnte globale vejrmodel – en statistisk efterbehandlingsmetode til at

opn̊a forbedrede vindhastighedsprognoser, og vha. af denne fremgangsm̊ade findes det

at den diagnostiske lifted index variabel indeholder systematisk korrigerende værdi.
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Chapter 1

Introduction

Unexpected wind power fluctuations impede the transmission system operator’s ability

to balance supply and demand and may entail substantial costs for wind energy compa-

nies [1], which therefore rely on numerical weather prediction (NWP) of wind speed for

operational wind energy scheduling to forestall events potentially harmfull to business.

Wind speed is considered one of the most challenging meteorological parameters to pre-

dict [2], yet the accuracy of wind speed forecasts has direct implications for efficient

integration of wind energy [3]. A concise overview of wind power forecasting methods

anno 2010 is given in Foley et al. [4], updated in their 2012 paper [5]. Foley et al. [4, 5]

classify methods as either statistical, physical or hybrid. A range of statistical modelling

techniques based on measurements are employed, though without weather model input

all of these are only feasible for prediction a few hours ahead, as pointed out e.g. in

Giebel et al. [6, 7]. More comprehensive in scope than can be achieved in a journal pub-

lication format, as in Foley et al. [4, 5], the work of Giebel et al. [8] is a technical report

from 2011 on the state of the art in wind power prediction, thus providing an extensive

review of the latest research results on the topic. Physical methods encompass the field

of NWP as well as downscaling from NWP model output to power forecasts, calibrated

to wind farm sites of interest based on physical principles and the local topography. An

example closer to the former is the adaptive and recursive semi-parametric wind power

prediction tool (WPPT) [9, 10], whereas the Previento model [11, 12] to a greater extent

is based on physical principles. Common for all wind power forecasting methods feasible

in practice for day ahead wind energy scheduling is the dependence on input from NWP

model data [6, 7].

1
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Global NWP models, or general circulation models (GCMs), are often unable to ade-

quately resolve local topography forcing on surface layer atmospheric dynamics in the

vicinity of a site of interest in complex terrain, as well as meso- and microscale mete-

orological features of importance to weather forecast end-users. Limited area models

(LAMs) describe atmospheric dynamics for a specified geographical region only, taking

initial conditions (ICs) and lateral boundary conditions (LBCs) from GCM data. There-

fore higher spatio-temporal resolution can be accommodated for reasonably attainable

computational resources, hence making LAM simulations feasible for end-users to carry

out themselves, or outsource to third parties, if accurate forecasts covering a certain

geographical region are needed. End-users may be interested in customising the spatio-

temporal resolution, sub-grid scale physical process parameterisations, output variables

for decision model input, or apply high-resolution topography data, in order to optimise

the LAM configuration for the application at hand.

This work aims to quantify the extent to which limited area forecasting can increase

wind power forecasting accuracy, and proposes an original statistical postprocessing

framework for systematically correcting for NWP model deficiencies. A brief historical

review of the scientific discipline of weather simulation is given next, followed by a

discussion on different scales of atmospheric motion, leading to a literature review of

limited area forecasting studies, and finally a summary of the research contribution

presented in the thesis.

1.1 Historical rundown of numerical weather prediction

In 1904 Bjerknes [13, 14] framed the challenge of forecasting the weather by the following

two statements:

1. One has to know with sufficient accuracy the state of the atmosphere at a given

time.

2. One has to know with sufficient accuracy the laws according to which one state of

the atmosphere develops from another.

He developed the idea of describing atmospheric dynamics solely on the basis of physical

and mechanical laws [15] discovered since Euler’s derivation of the general equations of
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prognostic model formulations for atmospheric dynamics simulation

Hydrostatic Nonhydrostatic

The primitive equations: Relaxation of hydrostasis assumption:
Simplified equation for vertical motion Unaltered equation for vertical motion

Less computation intensive More computation intensive
Unreliable simulations for high model Suitable for atmospheric flow

resolutions and for very complex terrain modelling over complex terrain

Table 1.1: Hydrostatic and nonhydrostatic NWP model formulation traits.

motion from Newton’s Second Law of Motion [16, 17]. Richardson formulated the atmo-

spheric prediction equations into a form similar to that used in current NWP [18], and

explains in his book from 1922 [19] how he performed weather prediction calculations

based on these equations. A few years later the pioneering work of Courant, Friedrichs

and Lewy on the discretisation of partial differential equations (PDEs) [20, 21] laid a

sound theoretical foundation for solving PDE systems in practice, an endeavour facili-

tated with the advent of the Electronic Numerical Integrator and Computer (ENIAC)

in 1946, on which the first machine-aided NWP experiments were carried out in the fol-

lowing years. In the late 1940s Charney [22] and Eady [23] derived models for baroclinic

instability that largely explain observations of midlatitude synoptic fluctuations not di-

rectly related to diurnal solar heating. Charney reasoned that largescale atmospheric

dynamics can only be analysed in practice if approximations to separate high-frequency

gravity- and sound waves from largescale atmospheric motion are made [22, 24]. In 1950,

Charney, Fjörtoft and von Neumann [25] first publicised application of the electronic

computer for weather prediction, integrating in time the barotropic vorticity equation

numerically. This achievement was the first demonstration of NWP execution on a ma-

chine based on spatially discretised forms of mathematical relations originating from

hydro- and thermodynamics theory, integrated as a stepwise process in time. During

the 1950s attention turned first to NWP models for simple baroclinic flow [26] before

the primitive equations were considered [27, 28].

NWP models can roughly be categorised in the four combinations spanned by hydro-

static/nonhydrostatic and shallow/deep-atmosphere approximations [29]. See Table 1.1

and e.g. Xu et al. [30], Janjic et al. [31], Saito et al. [32], Staniforth and Wood [33]

for an overview of mathematical and numerical aspects of nonhydrostatic NWP, and

namely Saito [34] provides a meticulous overview of various formulations of the govern-

ing equations for atmospheric dynamics and particular nonhydrostatic NWP models in
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use worldwide operationally and for research purposes — including the LAM considered

in this work.

1.2 Spatio-temporal scales of atmospheric dynamics

An atmospheric dynamics scale reference commonly referred to in the literature is pro-

posed in Orlanski [35], reproduced in Table 1.2. A more recent definition can be found

in Lackmann [36], reproduced in Table 1.3.

The weather experienced by an observer on the ground is a superposition of dynamics

across scales, from polar front jet streams sustained by planetary rotation and solar

heating to boundary layer turbulence due to vertical wind speed shear and thermal

stratification. The former is a westerly flow that reaches wind speeds of ∼150 km per

hour along strong upper troposphere pressure gradients and thus does not directly affect

surface weather conditions important for wind energy applications, contrary to weaker

low level jet-like weather phenomena that occur under certain conditions, e.g. barrier

jets along mountain ranges, as well as other types of offshore and onshore persistent

horizontal flow at wind turbine height [37, 38]. At spatial scales less than a few hundred

meters the average kinetic energy spectrum of lower atmosphere horizontal motion is

understood to be generated by isotropic three-dimensional turbulence, cf. Kolmogorov

[39], while at spatial scales greater than a few hundred kilometers, Charney [40] predicts

a dependence on the wavenumber associated with horizontal velocity to the minus third

with his theory on geostrophic turbulence, later verified by Gage and Nastrom [41]

among others. On the intermediate scale, the mesoscale (as defined in Table 1.3), which

Scale Range Examples of atmospheric dynamics

Microscale-γ < 20 m Turbulence, plumes, roughness
Microscale-β 20-200 m Dust devils, thermals, wakes
Microscale-α 200-2000 m Tornadoes, short gravity waves

Mesoscale-γ 2-20 km
Thunderstorm convection,
complex terrain flows, urban effects

Mesoscale-β 20-200 km Nocturnal low-level jets, cloud clusters, sea breezes
Mesoscale-α 200-2000 km Fronts, low-pressure systems, hurricanes

Macroscale-β 2000-20000 km Baroclinic waves
Macroscale-α 2000-20000 km Tidal waves

Table 1.2: Characteristic atmosperic dynamics scales as proposed by Orlanski [35].
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Scale Length [km] Time Examples of atmospheric dynamics

Microscale <1 < 1 hour Turbulence, planetary boundary layer
Mesoscale 1-100 1 hour to 1 day Thunderstorm, land-sea breeze
Synoptic 1000-6000 1 day to 1 week Upper-level troughs, ridges
Planetary >6000 > 1 week Polar front jet stream, trade winds

Table 1.3: Characteristic atmosperic dynamics scales as proposed by Lackmann [36].

is relevant to weather forecasting for wind energy scheduling, there are two prevalent

theories. On one hand, VanZandt [42] and Dewan [43] suggest that observed kinetic

energy spectra are created by gravity waves, while Gage [44] and Lilly [45] highlight

evidence for quasi-two-dimensional turbulence. Cho et al. [46] investigate whether

horizontal wind fluctuations on the mesoscale, as defined in Table 1.3, are mainly due to

the former or the latter theory, and find stronger evidence for the quasi-two-dimensional

turbulence theory in their study.

Lorenz [47] derives, in his 1969 paper, theoretically a pessimistic limit on atmospheric

predictability of ∼1 hour for a horizontal resolution of about 40 km, based on a two-

dimensional form of the vorticity equation. In practice, however, the error growth were

later shown to be much slower for mesoscale prediction than anticipated by Lorenz

[47], see e.g. [48–52], making day ahead NWP feasible for wind energy scheduling.

Numerical weather modelling approaches feasible on the mesoscale are well-established,

while sub-kilometer scale turbulence poses a severe challenge for weather simulation on

the microscale [53]. Skamerock [54] defines effective resolution of a NWP model as the

wavenumber at which the kinetic energy spectrum of the model starts to be damped

relative to corresponding observations, cf. [41, 55–57]. Based on Weather Research and

Forecasting (WRF) model [58, 59] simulations with computational grids of 22, 10 and

4 km horizontal resolutions, Skamarock [54] estimates the effective spatial resolution of

the WRF model to be 7 times as coarse as the specified model resolution.

The study presented in Chapter 3 is based on WRF model version 3 [60, 61] simulations.

1.3 Wind speed forecast dependence on model resolution

Worldwide GCM forecasts are generated daily, e.g. by spectral NWP models such as the

European Integrated Forecast System (IFS) [62] and the Global Forecast System (GFS)
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[63] in the USA, or based on finite differences as the UK Meteorological Office Unified

Model (MetUM) [64], though restrictions on computational resources limit model reso-

lutions attainable. The accuracy of local predictions near the Earth’s surface depends

on the ability of a NWP model to resolve atmospheric processes on a range of spatio-

temporal scales, and the local topography must be represented on a scale consistent with

the spatial resolution of the NWP model. In order to further increase the resolution of

weather simulations operationally a LAM must be employed, initialised based on assim-

ilated realtime atmospheric measurements and/or taking as IC spatial meteorological

fields provided by a GCM used to force the outermost computational grid laterally for

the duration of the LAM forecast. The feasibility of such configurations depends on the

resolution required to resolve the features of interest with sufficient accuracy, computa-

tional resources available, and the forecast leadtime horizon of interest. However, before

reviewing studies pertaining to operational forecasting WRF model performance in the

context of climatology simulation in considered, for completeness.

Jiménez et al. [65] study the WRF model’s [60] ability to reproduce the wind field

of six typical wind patterns for the northeastern part of the Iberian Peninsula. They

extend the study by evaluating the accuracy of the wind field simulations conditioned on

synoptic pressure patterns, as identified in previous work by Jiménez et al. [66]. They

demonstrate that regional details unavailable in the IFS-based reanalysis forcing data

(ERA-40 and ERA-Interim) are simulated by WRF with acceptable accuracy. Wind

speed is underestimated at mountain tops and hills, while overestimated at plains and

in valleys. Wind direction scores higher at sites at hills and plains than in valleys.

Apart from the dependence on the accuracy of the synoptic scale forcing data, Jiménez

et al. [65] attribute WRF model errors to IC and LBC issues, as well as topography

missrepresentation in the WRF model. Horvath et al. [67] find that the WRF model

[60] generally overestimates the mean wind speed, especially during the night, whereas

the model’s predecessor; the fifth-generation Pennsylvania State University – National

Center for Atmospheric Research Mesoscale Model (MM5), underestimates winds in

general. The experiments span horizontal computational grid points 27 km down to 1
3 km

apart and show that numerical scales down to at least near-kilometer grids are necessary

for wind speed climate downscaling over the complex terrain studied. Hahmann et al.

[68] study the wind climate over the North- and Baltic seas using the WRF model [60]

and meteorological tower- and lidar measurements for validation. They demonstrate
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clear inferiorness of ERA-Interim data relative to WRF model simulations initialised

and laterally forced with said reanalyses. The annual wind speed bias of the WRF model

data is small, though the wind speed variability is lower than that for observations. This

is a well-known NWP model issue [54]. The results indicate that the WRF model spin

up time over land is larger than 12 hours for the model configuration employed. The

spin up time is the time atmospheric dynamics represented on the LAM grid needs in

order to “recover” from the discretisation-shock induced due to the interpolation from

coarserly gridded forcing data during initialisation, as well as differences in governing

equations approximations, discretisation schemes, and sub-grid scale parameterisations

[52]. LAM initialistion is discussed further in Section 3.1. Laprise et al. [69] carry out

two LAM experiments, based on the Canadian Regional Climate Model (CRCM) [70],

with forcing from 6 hourly analyses generated by the Canadian Meteorological Centre

[71] and synthetic “GCM” data; i.e. CRCM runs for a large region and subject to

filtering of short scales (shorter than 500 km). The experiment suggests that a LAM

cannot predict finescale structures deterministically if the information is not explicitly

present in both IC and LBCs.

Deppe et al. [38] briefly touch upon the subject of LAM resolution comparison for

day ahead wind speed forecasts, yet decide to drop their WRF model [60] configura-

tion’s computational domain of 4 km horizontal resolution early on in the study, as data

extracted from the parent 10 km grid exhibits lower wind speed mean absolute error

(MAE), based on 80 m above ground level (AGL) mast measurements. Another study

more thoroughly investigating the effect of LAM resolution-increase on wind speed and

power forecasts is that of Lazić et al. [72]. They examine day ahead forecast performance

of a 22 km horizontally resolved computational domain with 45 vertical layers providing

ICs and LBCs for a nested domain of 4 km horizontal resolution and 60 vertical layers,

using the Eta model [73–76] with integration time steps 72 s and 12 s, respectively. ICs

for the coarse Eta model domain are taken from the US National Centers for Envi-

ronmental Prediction (NCEP) global reanalysis which is not available in realtime – i.e.

the experiment does not resemble an operational forecast situation – and the LBCs are

obtained from the GFS. Lazić et al. [72] thoroughly evaluate the performance of the

high-resolution Eta model predictions of wind speed and power at different heights AGL,

yet do not compare the performance metrics to corresponding values for the coarser Eta

domain, nor global model data. Deppe et al. [38] and Lazić et al. [72] are fairly recent
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studies from 2013 and 2010, respectively.

Going back 10–15 years, Rife et al. [77] compare wind speed forecasts from four dif-

ferent NWP models, namely the Rapid Update-Cycle (RUC) and Eta models, both at

40 km horizontal resolution, as well as 1◦ data from the GFS and MM5, the latter with

1.33 km horizontal resolution. They find no significant benefit from the high-resolution

MM5 data in terms of wind speed. However, anomaly correlation results illustrate un-

ambiguous improvement of the fine MM5 grid compared to forecasts from the other

models. In a study published in the following year, Rife and Davis [78] return to the

question of whether high-resolution NWP skill increases relative to corresponding coarser

resolved wind forecasts. They hypothesise that traditional forecast verification metrics

are not suitable estimators of “value” added from increased NWP model resolution as

these sharply penalise spatio-temporal deviations from observations. Using MM5, the

predecessor of the WRF model [60] used in this work, wind speed forecast performance

of two model configurations with 30 km and 3.3 km horizontal resolutions are compared

in terms of root mean square error (RMSE), anomaly correlation, ramp objects, and

equitable threat score (ETS) for dichotomous temporal variance data. Overall, Rife and

Davis [78] find incremental improvements from the high-resolution MM5 forecasts, but

the skill relative to the coarser MM5 runs increases when temporal dilation is allowed;

less so for the slight tolerance introduced in the wind speed ramp object verification and

more so for the full-forecast-span dichotomous variance ETS metric. It should be men-

tioned that Rife and Davis [78] do not nest the high-resolution domain within the coarse

resolution domain; the two runs are from separate MM5 configurations both predict-

ing the atmosphere over the reference sites, though with computational domain borders

outlining different geographical regions. Colle and Mass [79] find improvement in the

simulation of downslope winds in a mountaneous region when increasing MM5 horizon-

tal resolution from 27 km to 1 km. Expanding the range of considered meteorological

variables beyond wind, Mass et al. [80] address the question “Does increasing horizontal

resolution produce more skillful forecasts?” anno 2002. First, they review the latest

results around the time when research intensified for spatial scales beyond hydrostatic-

approximation validity, that is; scales where nonhydrostatic formulations [30–33] of the

governing equations are necessary and the adverse effects of convection parameterisa-

tion begin to outweigh the benefits [81–83]. Mass et al. [80] then present results from

a multiyear verification of mesoscale forecasts in the Pacific Northwest, including a case
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study in which the model resolution is varied. Based on ∼2 years of twice-daily 48 hour

MM5 forecasts for 36 km, 12 km and 4 km horizontally resolved computational domains,

they find consistent, albeit small, wind speed MAE reduction when going from 36 km to

12 km, though not when going from 12 km to 4 km resolution, and the 4 km wind speed

results are by far the most biased. For wind direction, both MAE and bias consistently

improve with resolution, although very little from 12 km to 4 km. For their case study, a

frontal passage is studied and the spatial structure is clearly approaching that of radar

observations as model resolution increases. The front does, however, make landfall ap-

proximately 1 hour early, which severely affects traditional scores, as also discussed in

Rife et al. [78]. Overall, many studies do provide evidence that increasing NWP model

resolution do indeed better describe the fundamental physics of the atmosphere. Mc-

Queen et al. [84] find improvement to the realism of meteorological structures over land

when increasing Regional Atmospheric Modeling System (RAMS) forecasts from 10 km

to 2.5 km horizontal resolution, due to the better topography representation of the high-

resolution domain, as do Davis et al. [85] when increasing MM5 horizontal resolution

from 10 km to 1.1 km. By increasing the horizontal resolution of University of New South

Wales High Resolution Limited-Area Atmospheric Prediction (HIRES) model forecasts

from 50 km to 10 km, Buckley and Leslie [86] demonstrate greatly improved accuracy of

wind and pressure predictions for a storm case.

1.4 Research contribution

As stated above, the work presented in the thesis concerns limited area forecasting and

statistical modelling for wind energy scheduling.

Cf. Section 1.3, a number of studies have looked into how increased LAM resolution

affects forecast accuracy for wind speed and other meteorological variables. The work

presented here differs from part of the literature reviewed on the following points.

• The experiment is carried out subject to realistic operational conditions

LAM forecasts are generated solely using information that would be available opera-

tionally and thus resemble a realistic forecasting situation, contrary e.g. to the case in

the Lazić et al. [72] study where reanalysis data is used for LAM initialisation.



Chapter 1 — Introduction 10

• Type of reference measurements used for NWP model performance assessment

In this work, the wind speed measurements forming the basis of forecast assessment

are farm-averaged anemometer readings from wind turbine nacelles. In comparison,

data from measurement masts in the vicinity of- or inside a wind farm is less robust to

topography and wind farm wake effects for arbitrary wind directions. Another argument

pro the use of farm-averaged observations for comparison to NWP model data is the fact

that a computational grid point represents a spatio-temporal mean of local atmospheric

dynamics, depending on the choice of grid constants and integration time step. As such,

comparison of NWP wind speed data to a farm-average of wind speed measurements from

each wind turbine, as would represent the spatial extent of the wind farm, is arguably

more reasonable than comparison to e.g. mast measurements, which only represent

a single point within or outside the spatial extent of the wind farm. Finally, many

previous studies use 10 m AGL wind observations which are plausibly corrupted more

by turbulence due to surface roughness than data measured at wind turbine hub-height

— where the wind power is harvested.

• Forecast leadtime horizon differentiation

Contrary to all reviewed literature on the topic, traditional forecast performance metrics

are here consistently evaluated separately for three forecast leadtime horizon groups, to-

gether spanning the day ahead time span relevant for operational wind energy schedul-

ing. Thus, not only the effect of LAM resolution increase is examined, but also the

relative forecast performance decrease as a function of the leadtime is resolved, and each

reference data point is represented once within each forecast leadtime group.

• A non-traditional scalar accuracy metric for forecast performance assessment

Based on the review of Section 1.3, as well as other literature related to wind power pre-

diction [8, 87], traditional forecast scores include bias, MAE and RMSE. Bias for a NWP

modelled meteorological variable of interest is, naturally, very important to quantify if

one needs accurate predictions of said variable for a given application. Knowledge of the

systematic deviation from corresponding atmospheric observations allow for correction

prior to further transformation of the variable, as e.g. when NWP model forecasts of
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wind speed are transformed to power for day ahead quantification of the amount of en-

ergy that can be delivered by a given wind farm. Provided wind speed observations are

continually available, realtime bias correction based on e.g. a few months data leading

up to the forecast initialisation time can be integrated in wind power prediction models

[88]. Metrics like MAE and RMSE penalise bias and are therefore misleading forecast

performance evaluation quantities for NWP data providing input for bias-correcting

wind power prediction models. A metric such as Pearson’s correlation coefficient (PCC)

is robust to systematic over- or underprediction, and is thus a more pure measure of

NWP model ability to time wind speed fluctuations correctly. Therefore, the PCC is

the primary forecast performance metric in Chapter 3 and Appendix A, rather than the

traditional MAE and RMSE metrics.

• LAM resolution comparison is based on nested computational domains

In contrast to e.g. the Rife et al. [77] and Rife and Davis [78] studies, LAM resolu-

tion comparison is here based on the same model configuration, consequetively nested

babushka dollwise. I.e. the first nested LAM domain is forced laterally from the coars-

est LAM domain, the second nest is forced laterally from the first nest, etc. thereby

enabling a somewhat more fair comparison than if e.g. domain borders of one out of two

or more different configurations traverse more challenging terrain than the other model

configuration(s), thus being more prone to induce differing adverse effects due to e.g.

spurious gravity waves amplified by the shortcomings of the ill posed relaxation LBC

formulation [89] typically employed in LAMs [52].

• Several other atmospheric variables than wind components are considered in sta-

tistical modelling for weather model prediction postprocessing

Few studies reviewed by the author go beyond including a handfull of NWP modelled

variables as predictors in statistical postprocessing frameworks to improve wind speed

forecasts. Lange and Focken [90, 91] relate wind speed forecast RMSE to meteorological

situations, using principal component- and cluster analysis, and Vincent and Hahmann

[92] use Kohonen’s Self-Organising Map approach [93] to arrive at 36 large scale weather

pattern categories of which a few are identified to be associated with severe wind vari-

ability at the offshore Horns Rev wind farm, which is also studied in this work. Both
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studies restrict attention to mean sea level pressure in the classification procedures. Ran-

aboldo et al. [94] consider temperature, pressure, planetary boundary layer height, heat

flux, Monin-Obukhov length, and Richardson number in their model output statistics

(MOS) [95] framework. Instead of the forward stepwise selection [96] of predictors em-

ployed in Ranaboldo et al. [94], the original MOS postprocessing framework proposed

in Appendix C is based on backward elimination.

1.5 Software tools

As mentioned last in Section 1.2, the LAM study of Chapter 3 and appendices A,

B is based on WRF model [60] simulations. The R language [97] is used extensively

throughout the thesis for data analysis, statistical modelling, and visualisation of results.

Computational grids considered in WRF model simulations cf. Appendix A and the

wind farm sites map in Appendix C are sketched using the NCL language [98], as is the

orography plot of Figure 3.3.

Zhu and Genton [88] review the challenges related to translating weather modelled wind

speed forecast time series to wind power predictions, and several methods are found in

the literature. In this work, the conversion of NWP model data to wind power is carried

out using the commercial WPPT [9, 10] mentioned above. As described e.g. in the

concise overview provided in Cutler et al. [99], the WPPT estimates, based on a few

recent months’ wind power measurements and forecast data, parameters in a wind power

curve model with forecasted wind speed and direction as predictors — with separate

model parameter fits for each forecast leadtime step to account for deteriorating NWP

model performance with forecast integration time. The prediction model is a realtime

data-driven weighting between the current and previous wind power forecasts, the power

curve model response, diurnally varying terms, and a bias term.
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Forecast reference data

Oreskes et al. [100] discuss the concepts of verification and validation in the context of

Earth system modelling, and emphasise that the primary value of models is heuristic;

useful tools perhaps, but not susceptible to proof. Natural systems are never closed.

The challenge outlined in Chapter 1, however, is not concerned with underlying “truth”

in nature, but instead has a rather practical scope: To what extent can limited area

forecasting and statistical modelling facilitate wind energy integration in the power grid?

Wind turbine anemometer readings averaged farm-wide constitute forecast reference

data throughout this work, along with corresponding power production time series. The

three sites considered are subject to offshore, coastal and inland weather conditions and

thus cover a wide range of terrain types. Compared to measurement tower observations,

farm-averaged wind turbine anemometer readings

1. spatially approximates the spatio-temporal computational grid cell mean wind

speed that NWP simulations of atmospheric flow represent, and

2. are for arbitrary wind directions more robust to adverse effects due to wind farm

wakes and topography complexity and/or misrepresentation in the NWP model.

E.g. Cutler et al. [101] find that power curve models based on farm-averaged nacelle

measurements of wind speed results in more accurate power predictions than if mast

measurements are used, even when calibration corrections are made to the mast mea-

surements. N.b. that measurement tower and meteorological mast is used interchangably

in this work to reflect the widespread use of both terms in the literature.

13
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Horns Rev Rejsby Hede Stor-Rotliden

Local terrain type Offshore Coastal Inland
Hub-height [m] 70 45 95

55.5297◦ north, 55.0373◦ north, 64.2166◦ north,
Coordinates

7.9061◦ east [102] 8.6699◦ east [103] 18.3829◦ east [104]
Number of turbines 80 39 40
Turbine make Vestas V 80 [105] Micon [106] Vestas V 90 [107]
& capacity [MW] 2 (all turbines) [105] 0.6 (all) [106] 2 (29), 1.8 (11) [104]
Farm capacity [MW] 160 23.4 77.8
Commissioned [year] 2002 1995 2011

Table 2.1: Wind farm data for the forecast reference sites considered in this work.
The wind farms are operated by the Swedish energy company Vattenfall.

Wind farm data is listed in Table 2.1, and the structure of files describing wind farm

measurements is reviewed and associated issues are discussed and resolved. Data pro-

cessing steps are argued for and applied sequentially, accompanied by tables and graph-

ical assessment of the effect of a given processing action on the data. The result is

a measurement dataset that constitute a suitable reference for forecast validation and

statistical modelling in the studies presented in the following chapters and appendices.

The shortest dataset for sites listed in Table 2.1 is that for Stor-Rotliden, commencing

in April 2012. As the GCM used to initialise LAM forecasts cf. Chapter 3 was upgraded

22 May 2012, and henceforth includes e.g. 80 m and 100 m AGL wind speed variables,

the study period chosen w.r.t. the studies carried out in Chapter 3 and appendices A,

B spans 23 May 2012 through 23 May 2013, thus covering all seasons.

N.b. that Chapter 2 concerns the time period relevant to Chapter 3 and appendices A,

B. The raw wind farm measurements underlying reference data applied in Chapter 4

and Appendix C, spanning the time period from 1 October 2012 to 30 September 2014,

is processed according to the procedure outlined in the this chapter.

2.1 Wind farm data vs. measurement tower data

The findings of Cutler et al. [101] are elaborated on and discussed in the following. As

mentioned they find, when used in conjunction with NWP model data, that time series of

farm-averaged wind turbine nacelle measurements of wind speed consistently outperform

measurements from nearby meteorological masts for translating atmospheric flow to wind

power production. Although flow disruption by wind turbine blades upwind partially

distorts anemometer readings at the wind turbine nacelle, the study [101] indicates
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that the limited spatial representativeness of local conditions offered by meteorological

mast readings is a greater liability. A forecast user may be more interested in weather

conditions in the vicinity of particular coordinates, as reflected by measurement tower

data, yet highly accurate point forecasts are not reasonable to require from a global

NWP model representing atmospheric dynamics on a discrete grid on which the spatio-

temporal continuum of actual atmospheric dynamics is approximated. Smoothing the

time series spatially, e.g. by averaging individual wind turbine anemometer readings,

facilitates more consistent comparison to the four-dimensional grid cell average NWP

modelled quantities represent, in that the study becomes more robust to sensitivity to

topography and other sources of local wind field heterogeneity that mast measurements

would be more vulnerable to.

2.2 Algorithm for processing of raw wind farm data

The raw data files for the three wind farms share the same technical quirks1, and hence

a single processing function is developed and applied to the data files for each site,

respectively.

• Instantaneous farm-averaged wind speed measurements and wind power produc-

tion are available as 5 minute time series, respectively, and these time series are

averaged to 10 minute values to match the LAM output frequency employed in

Chapter 3 and appendices A, B.

• To ensure fairly homogeneous inter-turbine shadowing and spatial representation

of wind turbines throughout the dataset an arbitrary limit of one third of farm

capacity is set, below which data is discarded. N.b. that wind turbine wakes for

wind farm capacities above this heuristic lower limit constitute an error source

in the wind speed forecast reference datasets used in the following chapters and

appendices, though in terms of wind power forecasts by the WPPT any directional

bias is addressed in the power curve model, cf. Section 1.5.

1Time stamp/file name issues at transition between CET winter and summer time.
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Missing data time period Hours duration Percentage

2012-09-26 15:50:00 to 2012-09-27 00:00:00 8
2012-10-08 21:25:00 to 2012-10-09 00:00:00 3
2012-10-19 12:30:00 to 2012-10-20 00:00:00 12

Average duration of outage 8
Median duration of outage 8
Missing data due to flat period removal 0.5
Total missing data 0.8

Table 2.2: Raw wind speed data for Horns Rev processed according to the algo-
rithm described in Section 2.2.

Missing data time period Hours duration Percentage

2012-06-28 00:00:00 to 2012-06-29 00:00:00 24
2012-09-26 15:50:00 to 2012-09-27 00:00:00 8
2012-10-08 21:25:00 to 2012-10-09 00:00:00 3

Average duration of outage 12
Median duration of outage 8
Missing data due to flat period removal 2.7
Total missing data 3.1

Table 2.3: Raw wind speed data for Rejsby Hede processed according to the
algorithm described in Section 2.2.

Missing data time period Hours duration Percentage

2012-06-28 00:00:00 to 2012-06-29 00:00:00 24
2012-09-26 15:50:00 to 2012-09-27 00:00:00 8
2012-10-08 21:25:00 to 2012-10-09 00:00:00 3

Average duration of outage 12
Median duration of outage 8
Missing data due to flat period removal 4.7
Total missing data 5.1

Table 2.4: Raw wind speed data for Stor-Rotliden processed according to the
algorithm described in Section 2.2.

• Records are kept on available wind farm capacity for any given time stamp, i.e. the

fraction of wind turbines actively producing power times farm capacity, is used to

scale produced power in order to compensate power data for periods with inactive

wind turbines (temporarily reduced farm capacity). There are instances where the

wind turbine availability scaling results in power values exceeding farm capacity.

This is assumed to occur as a consequence of too pessimistic online capacity (i.e.

more wind turbines than indicated are in fact producing power) and such overshot

power values are reduced to farm capacity.

• From inspection of the raw data, wind speed and power measurements are some-

times observed to be exactly constant in time for one or more consecutive time
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Missing data time period Hours duration Percentage

2012-06-20 15:35:00 to 2012-06-21 00:00:00 8
2012-09-26 16:00:00 to 2012-09-27 00:00:00 8
2012-10-08 21:25:00 to 2012-10-09 00:00:00 3
2012-10-19 12:30:00 to 2012-10-20 00:00:00 12
2012-12-24 21:40:00 to 2012-12-25 00:10:00 2
2012-12-29 05:10:00 to 2012-12-29 05:50:00 1
2013-02-25 15:40:00 to 2013-02-25 15:45:00 0

Average duration of outage 5
Median duration of outage 3
Missing data due to flat period removal 0.7
Total missing data 1.1

Table 2.5: Raw wind power data for Horns Rev processed according to the algo-
rithm described in Section 2.2.

Missing data time period Hours duration Percentage

2012-06-20 15:35:00 to 2012-06-21 00:00:00 8
2012-08-13 11:50:00 to 2012-08-15 09:15:00 45
2012-09-26 16:00:00 to 2012-09-27 00:00:00 8
2012-10-08 21:25:00 to 2012-10-09 00:00:00 3
2012-12-24 21:35:00 to 2012-12-25 07:10:00 10
2012-12-26 01:20:00 to 2012-12-26 06:15:00 5
2012-12-30 23:45:00 to 2012-12-31 03:15:00 4
2012-12-31 03:20:00 to 2012-12-31 06:15:00 3
2013-01-30 23:05:00 to 2013-01-31 03:25:00 4
2013-03-09 12:55:00 to 2013-03-09 15:45:00 3
2013-04-28 13:20:00 to 2013-04-28 14:50:00 2

Average duration of outage 9
Median duration of outage 4
Missing data due to flat period removal 0.2
Total missing data 1.3

Table 2.6: Raw wind power data for Rejsby Hede processed according to the
algorithm described in Section 2.2.

stamps. Such unnatural behaviour is likely due to anemometer and/or wind tur-

bine control software malfunction, and is removed from the dataset if wind speeds

greater than 0.1 m/s or power values exceeding 1 % of farm capacity are observed

for more than four consecutive time stamps.

Tables 2.2 through 2.7 show particular time periods for which data is missing/removed

prior to filtering events of four consequetive constant values, along with the additional

data point percentage removed due to more than four consequetive constant values.

Finally, each table lists the total percentage of data points not available in forecast

reference datasets post processing by the algorithm described in Section 2.2.
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Missing data time period Hours duration Percentage

2012-06-20 15:35:00 to 2012-06-21 00:00:00 8
2012-06-22 16:00:00 to 2012-06-25 09:00:00 65
2012-07-01 15:20:00 to 2012-07-01 15:25:00 0
2012-07-16 17:50:00 to 2012-07-16 22:45:00 5
2012-07-17 16:15:00 to 2012-07-17 23:30:00 7
2012-07-24 05:20:00 to 2012-07-24 17:15:00 12
2012-07-25 05:40:00 to 2012-07-25 07:10:00 2
2012-07-25 11:20:00 to 2012-07-31 13:15:00 146
2012-08-08 06:35:00 to 2012-08-08 09:40:00 3
2012-09-12 04:25:00 to 2012-09-12 13:55:00 10
2012-09-26 16:00:00 to 2012-09-27 00:00:00 8
2012-10-03 11:10:00 to 2012-10-03 18:50:00 8
2012-10-08 21:25:00 to 2012-10-09 00:00:00 3
2012-10-22 09:45:00 to 2012-10-22 14:00:00 4
2012-10-23 07:30:00 to 2012-10-23 13:55:00 6
2012-11-02 13:05:00 to 2012-11-02 14:40:00 2
2012-11-26 10:30:00 to 2012-11-26 14:20:00 4
2012-12-04 06:30:00 to 2012-12-04 19:00:00 12
2012-12-19 02:40:00 to 2012-12-19 13:40:00 11
2012-12-19 14:30:00 to 2012-12-19 14:35:00 0
2013-01-01 04:55:00 to 2013-01-01 10:15:00 5
2013-01-06 17:30:00 to 2013-01-06 22:30:00 5
2013-02-05 17:30:00 to 2013-02-06 00:45:00 7
2013-02-27 07:00:00 to 2013-02-27 10:00:00 3
2013-03-17 22:35:00 to 2013-03-20 21:10:00 71
2013-04-04 11:05:00 to 2013-04-04 11:35:00 0
2013-05-06 16:00:00 to 2013-05-07 08:55:00 17
2013-05-17 17:45:00 to 2013-05-17 20:00:00 2
2013-05-22 01:50:00 to 2013-05-22 07:35:00 6

Average duration of outage 15
Median duration of outage 6
Missing data due to flat period removal 0.7
Total missing data 5.6

Table 2.7: Raw wind power data for Stor-Rotliden processed according to the
algorithm described in Section 2.2.

2.3 Detection of anemometer/power data inconsistency

Scatter density plots of anemometer readings vs. power production data are shown

in Figure 2.1. Ideally, a slim power curve tracing out the wind farm transformation

of kinetic energy in the atmospheric flow to electric energy is expected. However, the

following digressions are readily observed:

• Several “tongues” of data points protrude from the Stor-Rotliden power curve to

the high wind speed side. Given the inland location and high latitude of the site

these are likely wind turbine blade icing events during which power production is

reduced, cf. e.g. Davis et al. [109]. Figure 2.2 is a photo taken in cold weather
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Figure 2.1: Anemometer readings vs. power production scatter density plots. The
power curve region is heuristically framed by the dashed and solid lines. Upper left:

Horns Rev. Upper right: Rejsby Hede. Bottom: Stor-Rotliden.

and suggests that wind turbine blade icing events are plausible. Suggested action:

Keep wind speed data, power data below the solid line is removed from the dataset.

• On the low wind speed side of power curves for Stor-Rotliden and Rejsby Hede

a few data points trace out a curve roughly parallel to the power curves, as also

observed on the high wind speed side of the Horns Rev power curve. This would

occur if recordings of online wind turbine availability indicate less (more) capacity

than that actually available at Stor-Rotliden and Rejsby Hede (Horns Rev). Sug-

gested action: Keep wind speed data, power could be heuristically rescaled though
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Figure 2.2: Photograph of a Stor-Rotliden wind turbine blade during an icing event
[108].

due to the relatively few data points falling into this category such an endeavour is

not worth the effort and the power data above the dashed line is instead removed.

• The data points on the low wind speed side of the Horns Rev power curve exhibit

no reasonable temporal dependency nor scatter plot pattern and therefore the

inconsistent scatter plot relation cannot be attributed to errors in neither wind

speed nor power data. Likewise, there is an unexplainable lump of Rejsby Hede

data points in the vicinity of the cut-in wind speed, where power data should be

close to zero. Suggested action: Discard wind speed and power data above the

Horns Rev and Rejsby Hede dashed lines.

• Upon closer inspection, the remaining data points digressing from the three power
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Figure 2.3: Cumulative count of data points falling outside the visually inferred power
curve region framed by dashed and solid lines in Figure 2.1. Upper left: Horns Rev.

Upper right: Rejsby Hede. Bottom: Stor-Rotliden.

curves do suggest temporal and scatter plot relation. As such, erroneous availabil-

ity flags and/or wind farm curtailment is assumed responsible by which wind speed

measurements are unaffected. Suggested action: Keep wind speed data, discard

power data.

Based on the heuristic arguments put forth above the following data processing is ex-

ecuted: As only few wind speed data points are sacrificed by removing all wind speed

data above dashed lines, this is done in order to process wind farm data similarly for

the three sites. All power data above (below) dashed (solid) lines is removed.
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Figure 2.4: N.B.: Full-year GFS bias and scaling error has been removed
cf. Appendix A Section 2.1 . Left: Monthly mean of farm-averaged wind turbine
nacelle anemometer data for Stor-Rotliden, along with forecast leadtime hour 0 ↔ 12
twice-daily GFS wind speed data, as well as the corresponding forecast bias. Right:

Cumulative squared- and absolute forecast error for the 10 minute dataset.

Figure 2.3 shows the cumulative count of 10 minute data points outside the power curve

regions framed by dashed and solid lines in Figure 2.1. Near-vertical slopes in Figure 2.3

indicate that several temporally-consecutive data points digress from the power curve

region, while steady count-increase may well suggest diurnally conditioned digression

from the power curve region. The Stor-Rotliden winter season is characterised by finite

slopes which may be interpreted as icing events, oscillating diurnally between melting

and freezing weather conditions.

As an attempt to infer whether Stor-Rotliden anemometer readings are corrupted during

what appears to be icing events, monthly biases are shown in Figure 2.4 based on NWP

data from GFS operational forecasts. Figure 2.4 displays severe forecast underprediction

for December and January, in particular. However, had the discrepancy been due to

nacelle anemometer freezing one would expect lower measured wind speed relative to

forecasts, i.e. the inverse of the case in Figure 2.4. Hence, the winter bias cannot be

explained in terms of iced anemometers as the addition of a layer of frozen water can

hardly be imagined to accelerate anemometer rotation. Also, monthly scatter density

plots cf. Figure 2.1 for October, November and February (not shown) indicate icing

periods (data points below the solid line) as well, though no corresponding inconsistency
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Wind farm Wind speed Wind power

Stor-Rotliden 5.3 19.1
Rejsby Hede 3.3 1.8
Horns Rev 0.9 1.6

Table 2.8: Missing data percentage out of the yearlong, processed wind farm datasets
applied as forecast reference in Chapter 3 and appendices A, B.

stands out in Figure 2.4 for these months. Slight cumulative squared- and absolute wind

speed error slope-increases are observed, respectively, during the winter months, and

may suggest inferior NWP performance during winter where large-scale weather system

driven storms are more frequent than during summer.

In summary, all wind power data points above dashed lines and below solid lines are

removed from the dataset. In addition, Rejsby Hede and Horns Rev wind speed data

falling above the dashed lines in Figure 2.1 is removed.

2.4 A reference for the limited area forecasting studies

Table 2.8 displays missing data percentages for the three wind farms datasets post

processing for application as forecast referenc data in the limited area forecasting studies.

As noted first in this chapter, forecast reference data applied in Chapter 4 and Appendix

C are processed by the criteria established in sections 2.2 and 2.3.

In summary, cf. point 3) in Warner’s [110] modelling practices checklist, Chapter 2

describes in detail the processing of raw 5 minute nacelle anemometer and power pro-

duction data from an inland, a coastal and an offshore wind farm into a dataset suit-

able for comparison to 10 minute resolved forecasts issued twice-daily, each integrated

48 hours beyond initialisation time. As discussed in the following chapter, performance

assessment for operational forecasts from a GCM, namely the GFS briefly considered in

Section 2.3, and respective forecasts deriving from four nested LAM domains of increas-

ing resolution is carried out. Cf. Section 2.2, a heuristically set minimum of a third of

the wind turbines of a given wind farm are required to be online. If not, power data

is discarded due to concerns that, below this minimum, wind turbine wake effects will

have a strong impact on power readings, depending on the wind direction, and there is

no way to account for different offline patterns as information on the status of individual
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wind turbines is not available. However, wind direction bias is addressed in the WPPT

when translating wind speed forecasts to wind power predictions. A heuristically set

maximum of four temporally-consecutive time series data points are allowed for wind

speeds over 0.1 m/s and power data exceeding 1 % of full wind farm capacity. Such

occurences are assumed to be due to malfunction of anemometer and/or wind turbine

control software and are therefore discarded from the dataset. Based on scatter density

plots of nacelle-measured wind speed vs. power production data, a simplistic piece-

wise linear framing of power curve data points is inferred from visual inspection, and

wind power data outside the power curve region is removed due to the inconsistence

with anemometer readings. In addition to removal of power data digressing from power

curves, wind speed data above dashed lines in Figure 2.1 is also discarded for the three

sites since erroneous online-capacity flags (giving rise to inflated/deflated power scaling)

alone cannot explain the scatter patterns observed above Figure 2.1 dashed lines.
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Limited area forecasting

Development of the Weather Research and Forecasting (WRF) model [59] commenced

around the turn of the millenium and is ongoing, with numerous yearly contributions to

the open source code from the worldwide WRF community. Two dynamical cores are

available, of which the Advanced Research WRF (ARW) system [60, 61] is employed in

this work and henceforth, as in Chapter 1, referred to simply as the WRF model.

The temporal evolution of atmospheric dynamics is characterised by the three equations

for momentum conservation, the continuity equation expressing conservation of mass,

and the thermodynamic energy equation theorising energy conservation for a fluid ele-

ment, cf. e.g. Holton and Hakim [111]. In practice, the continuum of atmospheric dy-

namics underlying observed weather is represented either by spectral [112] or grid NWP

models [113], of which the WRF model adhere to the latter category, as do most limited

area models for climate and weather. The governing equations of the WRF model [114]

include nonhydrostatic (cf. Table 1.1) momentum equations for each spatial dimension,

along with four additional prognostic equations for potential temperature, simulation

layer thickness in terms of atmospheric pressure, geopotential height, and atmospheric

moisture, respectively. The four first-mentioned PDEs involve forcing terms representing

parameterised sub-grid scale physics, spherical projections, and Earth’s rotation. Fur-

thermore, the diagnostic equation of state along with an equation for the inverse density

of dry air are included in the dynamical core formulation. The time integration is based

on Runge-Kutta 2nd and 3rd order schemes, cf. Wicker and Skamarock [115], and 2nd

through 6th order accurate flux divergence discretisations are available for advection

25
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Figure 3.1: Sketch of how a finer-resolved Arakawa C-grid [117] computational domain
is nested within the parent domain. θ denotes scalar quantities such as pressure and
temperature, while U and V represent the horizontal components of atmospheric flow.

The figure is borrowed from [119] with permission.

modelling [116]. The horizontal plane on which the spatial scale of advective processes

is resolved numerically is spanned by rectangular grid points with Arakawa C-grid stag-

gering [117], and computational domains can be consequetively ingested with increasing

horizontal (not vertical) resolution for each nesting level, cf. Figure 3.1. The governing

equations for atmospheric dynamics are formulated on sigma levels cf. Laprise [118],

i.e. horizontal grids are discretised on a terrain-following hydrostatic-pressure vertical

coordinate.

In Section 3.1 LAM initialisation strategies are discussed, Section 3.2 concerns atmo-

spheric dynamics description on scales unresolved in NWP models, and Section 3.3

opens the LAM study of this work with a discussion on orography representation in the

WRF model. The article drafts in appendices A and B are introduced in Section 3.4,

and Chapter 3 is wrapped up with a discussion on error sources in the LAM studies

of appendices A and B — and limited area weather and climate modelling studies in

general.
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3.1 Initialisation of limited area weather model forecasts

There are two alternatives for LAM forecast initialisation; namely cold and warm ICs,

respectively [120, 121].

• Cold start: Direct interpolation of the GCM fields to LAM computational grids.

• Warm start: At initialisation time LAM variable fields are inferred from the pre-

vious LAM variable field forecast, in combination with assimilation of atmospheric

soundings, surface observations, satellite data, etc.

The latter accommodates continually developing atmospheric dynamics. E.g. vertical

motion and heat fluxes associated with mesoscale convective systems are well-established

in the simulation at forecast initialisation, and hence likely providing more accurate

spatio-temporal prediction of precipitation, convective storms, and squall lines, that is;

elongated thunderstorms that usually form along weather fronts. Cold start LAM simu-

lations need to gradually “spin up” the various atmopsheric dynamics aspects forced by

the GCM at initialisation and via LBCs for the duration of the forecast, and hence need

to recover a physical solution to the governing equations for atmospheric dynamics on

the LAM computational grid(s). The initial-shock numerical artefacts causing spurious

fluctuations in meteorological fields simulated decrease with LAM integration during

the first few forecast leadtime hours, until a credible representation of atmospheric dy-

namics is recovered. Though in the midlatitudes, including Scandinavia and the North

Sea region, flow above ∼1km altitude can often be assumed in geostrophic balance [122]

and largescale pressure systems typically dominate local weather at the surface — for

horizontal advection, in particular. As the application at hand concerns atmospheric

flow, and spin up of sub-grid scale physics parameterisations of namely convective dy-

namics is of less consequence than in tropical regions, a few advantages of the cold start

strategy are highlighted.

Warm IC weather forecasts drag along to subsequent forecasts errors induced by sparse

or erroneous observations during data assimilation, whereas cold start simulations start

anew with every forecast initialisation and thus do not accumulate errors cf. the warm

IC case. This warm start issue could be circumvented e.g. by initialising LAM forecasts

using only recently predicted cold start variable fields and/or nudging the fields with



Chapter 3 — Limited area forecasting 28

observations for a shorter period leading up to initialisation time, though this would still

allow LBC errors [28, 123, 124] longer time to corrupt meteorological features within the

interior LAM domains close to the target sites, cf. e.g. [48, 51, 52]. Atmospheric dynam-

ics simulated in cold start WRF model forecasts are assumed to have largely recovered

from adverse numerical artefacts due to the initial shock 12 hours into the forecast [54],

although e.g. the study by Hahmann et al. [68] indicate that proper spin up may take

longer. Based on the discussion above, and the fact that the forecast leadtimes of in-

terest here lie beyond said integration time in the simulation of the governing equations

for atmospheric dynamics (cf. Section 3.3), the cold start strategy is employed in this

study.

3.2 Parameterisations for sub-grid scale physics

Holton and Hakim [125] narrow in the most important classes of sub-grid scale physical

processes as pertaining to:

1. Radiation.

2. Clouds and precipitation.

3. Turbulent mixing and exchange.

In a wind energy scheduling context, namely the third class arguably directly impacts

simulation of near-surface atmospheric flow. However, the modelling accuracy of incom-

ing solar radiation and resulting exchange of heat from the ground – controlled by the

land surface model applied – feeds into 3. in terms of thermal boyuancy driving vertical

turbulent flow thus nudging simulated weather towards unstable conditions, and hence

e.g. affecting the mean flow with tangible implications for wind power generation. 2.

in turn feeds into 1. in that correct representation of the cloud fraction in part influ-

ences incoming solar radiation, and hence ultimately also atmospheric stability cf. the

discussion before. A sketch of the processes parameterised in NWP models is shown in

Figure 3.2. The key message is that testing individual parameterisations for sub-grid

processes in an NWP formulation is a challenging task, as all aspects interact via the

coupled nonlinear PDEs constituting the weather model’s dynamical core.
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Figure 3.2: Sketch of atmospheric dynamics that cannot be resolved explicitly and
therefore needs to be parameterised. Reproduced from [126] with permission.

A thorough review of the technical aspects and details underlying each class of NWP

model parameterisation for unresolved processes lies beyond the scope of this work, and

the interested reader is instead referred to e.g. Warner [127], and [128] for a description

of land surface modelling aspects, or Pielke [129] for more in-depth details on the topic.

However, a few characteristics of planetary boundary layer (PBL) schemes is discussed

in some detail, as the relative merits of alternative PBL parameterisations are arguably

central to the feasibility of NWP model forecasts for wind energy scheduling, cf. e.g.

Lee et al. [130] who find strong influence of the particular PBL representation approach

on WRF modelled 10 m wind speed forecasts. PBL schemes represent turbulent vertical

fluxes of momentum, heat, moisture, etc. and a closure scheme must be selected in

order to evaluate turbulent fluxes based on mean values of atmospheric quantities [131]

available from prognostic and diagnostic NWP variables. See e.g. Alapaty et al. [132]

for a concise overview and application of different closures, and e.g. Stull [133] for an

in-depth discussion on the topic. Turbulent kinetic energy (TKE) closure schemes in-

troduce a TKE prognostic equation to the NWP model formulation in order to describe

more of the physics of the atmospheric planetary boundary layer than simpler first-order

closure schemes, which model atmospheric turbulent transfer alike molecular transport

[131, 134]. Such local closure schemes rely on NWP variables and associated gradients
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at the local computational grid point only. In contrast, nonlocal PBL schemes accom-

modate interaction – though only vertically, due to computational resource constraints

– with NWP model variables at vertical layer grid points beyond the vicinity of the grid

point considered. Many approaches have been applied in the literature, either based

on explicit vertical coupling, cf. e.g. [135], or parameterised interaction, cf. e.g. [136].

The asymmetric convective model, version 2, (ACM2) is available in the WRF model,

and offers hybrid local/nonlocal PBL closure, including nonlocal transport only during

unstable weather conditions when convection dominates local atmospheric dynamics, cf.

Pleim [137, 138].

A number of comparative PBL parameterisation studies for WRF model options have

been carried out, see e.g. Hu et al. [139] getting smaller midlatitude (Texas, USA)

biases for the nonlocal Yonsei University (YSU) [140] and hybrid ACM2 schemes relative

to the local Mellor-Yamada-Janjic (MYJ) TKE-approach [75] for surface observations.

Extending said PBL parameterisation ensemble by the Boulac scheme [141], Xie et al.

[142] find superior accuracy of the ACM2 for 10 m wind speeds in a subtropical region

(Hong Kong, China). Further north, the WRF modelled wind speed results in the study

by Draxl et al. [143] hint local closure (MYJ) performance superiority subject to stable

weather conditions, while the ACM2 hybrid performs best under neutral conditions,

and the nonlocal YSU scheme outperforms the others for unstable conditions (northern

Europe). Finally, the six-PBL scheme study by Deppe et al. [38] find (Iowa, USA) that

the Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5 local closure scheme [144, 145]

better captures rapid changes in the atmospheric flow — so-called ramp events. Accurate

forecasts of wind speed ramps are important in a wind energy scheduling context [3], and

hence this topic is considered in Appendix B. Due to the results of Deppe et al. [38], as

well as the typically largescale pressure system dominated weather conditions cf. Section

3.1 in the regions considered, local closure schemes may be slightly more feasible for the

application at hand – cf. Draxl et al. [143] – on average during a yearlong study period

for three Scandinavian locations assumed mainly characterised by stable to near stable

weather conditions. Hence, the TKE-based MYNN 2.5 PBL parameterisation is applied

in WRF model simulations carried out in this work. See Section 3.4 and Appendix A

for an overview of the WRF model configuration.
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Figure 3.3: Sketch of terrain tiles representing the lower boundary of atmospheric
dynamics simulations. The figure is borrowed from [146] with permission.

3.3 Terrain representation on high-resolution model grids

As e.g. McQueen et al. [84] find in their study based on the RAMS, also mentioned

in Section 1.3, high-resolution NWP modelling may be required to accurately simulate

atmospheric flow. Coarsely-resolved GCM data is not able to represent complex terrain

in high detail, and hence added wind energy scheduling value from LAM forecasting

is expected for the inland Stor-Rotliden wind farm, in particular. The computational

domains used to generate the WRF model forecasts are sketched in Figure 1 of Appendix

A. The terrain tiles of horizontal grids are vaguely visible and each of these are assigned

a specific land use category with associated topographic attributes. For example, Figure

3.3 illustrates discretised representation of orography, needle- and leaf forest, grassland,

beach, and ocean/lake surfaces as “viewed” by the discretised PDEs of the WRF model.

As the McQueen et al. [84] study indicate for RAMS simulations, e.g. Santos-Alamillos

et al. [147] find that terrain representation has a strong impact on WRF modelled wind

speed. Hence, a preliminary study on the sensitivity to terrain representation in the

WRF model for the aforementioned complex terrain site in central Sweden is carried

out prior to the forecast performance studies for wind farms in different terrain types,

introduced in Section 3.4.

3.3.1 Forecast performance assessment strategy

On the Elspot day ahead market for energy trading in northern Europe, the auction

closes at noon CET [148] which in turn implies that only forecast leadtimes beyond
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12 hours ahead of this deadline are relevant for wind energy scheduling. When opera-

tional GCM forecasts are initialised, weather observations collected globally each day

are assimilated into GCM-predicted spatially gridded fields for meteorologial variables,

which are derived from the previous forecast based on a time-window traversing ini-

tialisation time for the current forecast. Hence, GCM computations commence with a

few hours delay from initialisation time and take an additional hour or so to compute,

depending on forecast length and model resolution. The WRF model forecast runtime

further adds to the delay from initialisation time, depending on the number of grid

points and integration time step specified for each computational domain, and hence a

total delay of 6–12 hours from initialisation time to forecast completion is realistic in

an operational setting for wind energy scheduling. The GCM applied for WRF model

initialisation and lateral forcing is the GFS [63], generating daily global weather fore-

casts initialised 0000, 0600, 1200, and 1800 UTC, respectively. Hence, daily GFS mid-

night UTC initialisations, or 0600 UTC depending on WRF model runtime, and forecast

leadtime hour span 12–48 are relevant for the WRF model application at hand.

An aspect of interest in this work is to gauge forecast accuracy as a function of forecast

leadtime, which can be illustrated in a number of ways. The dataset could be grouped

according to each forecast hour such that a performance metric is evaluated for wind

speed forecasts one hour ahead against corresponding observations, with similar evalu-

ations for the other forecast leadtime hours. This would provide performance leadtime

dependency information of high temporal resolution. However, since the NWP model

studied in this work do not provide forecasts initialised each hour operationally, differ-

ent leadtime hours are tied to specific hours of the day. This intrinsic diurnal influence

thwarts inference on the extent to which performance depends on forecast leadtime.

On the other hand, if a single performance metric evaluation is carried out for the full

dataset wind speed measurements would be recurrent which would constitute an indirect

violation of the assumption of independent and identically distributed (i.i.d.) statisti-

cal model residuals underlying the statistical model development process outlined in

Appendix C Section 3.4, and recurring data points arguably decrease the effective num-

ber of independent forecast reference measurements even further than the effect from

chronological data point dependency, cf. Section 4.4. Therefore, the dataset is binned

according to forecast leadtime spans of width equal to the time period between NWP

model forecast initialisations. Data within each forecast leadtime hour group is then
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augmented chronologically such that all wind speed measurement data points occur ex-

actly once in each dataset. In this way all hours of the day are represented in each

forecast performance metric evaluation and inference on forecast performance leadtime

dependency is thus readily assessed from forecast leadtime group results.

In order to resolve forecast leadtime dependency, both 0000 and 1200 UTC GFS ini-

tialisations are included in the study, and hence three forecast leadtime horizon groups

are available to resolve forecast performance dependency on the leadtime; namely the

three forecast leadtime groups 12 ↔ 24, 24 ↔ 36 and 36 ↔ 48 hours ahead of forecast

initialisation. N.b. that this is only done for wind speed, while wind power forecast

performance assessment is condensed to a single forecast leadtime group to summarise

results, cf. appendices A and C.

The magnitude of the Pearson correlation coefficient (PCC) is invariant under linear

transformations, and therefore not sensitive to NWP model bias when used for forecast

performance assessment. Shevlyakov and Smirnov [149] summarise a range of alternative

estimators of the correlation coefficient robust to outliers, that is; focusing evaluation on

“good” data, and thus potentially capturing a true relation otherwise masked in noisy

data. However, in this study a neutral assessment evaluating data subject to severe

forecast errors on par with better forecasts is preferred to sustain realistic conditions

in the study. Fosdick and Raftery [150] note that the PCC is a Maximum Likelihood

estimator provided the constituent variable datasets are drawn from a bivariate normal

distribution, which can typically be assumed for continuous variable time series data.

Hence, subject to this assumption, the PCC is a minimum variance statistically unbiased

estimator for wind speed forecast performance, and this scalar accuracy metric is applied

for forecast performance assessment in Section 3.3.2, as in all three appendices.

3.3.2 Forecast performance as a function of spatial smoothing

The highest resolved computational grids are assigned 3.3 km and 1.1 km horizontal

resolution, respectively, and all WRF model domains have one grid point specified at

the official Stor-Rotliden wind farm coordinate at 64.2166◦ latitude, 18.3829◦ longitude,

cf. Table 2.1. The 1.1 km resolution is so fine that several grid points cover the horizontal

extent of the wind farm, and hence a proper weighted grid-point wind speed mean may

provide a better overall forecast in comparison to farm-averaged wind turbine nacelle
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Figure 3.4: Wind speed forecast performance as a function of spatial smoothing
by Eq. (3.1) for the two high-resolution WRF model grids considered in the studies
introduced in Section 3.4, based on the official wind farm coordinate [151]. Forecast
leadtime dependency is resolved according to the strategy laid out in Section 3.3.1. The
number of grid points within r is noted above (below) 1.1 km (3.3 km) PCC values for

the 36↔ 48 forecast leadtime hour group.

anemometer readings. Therefore, the yearlong forecast dataset is assessed as a function

of the degree of spatial smoothing by the tricube weight function,

wt(x) =





(
r − ‖x− y‖

)3
∑

‖x−y‖<r

(
r − ‖x− y‖

)3 for ‖x− y‖ < r

0 for ‖x− y‖ ≥ r

(3.1)

The tricube weight wt(x) is only nonzero when the smoothing radius r is greater than

the Euclidean distance ‖x− y‖ between coordinates x for the grid point to be assigned

a weight and the wind farm reference coordinates y. The results are based on hourly

averages for the 10 minute dataset and shown in Figure 3.4. Note the inferior forecast

performance for the 1.1 km domain relative to the coarser 3.3 km grid for r < 3 km,

transcending to superior 1.1 km wind speed forecast performance for r > 3 km. This
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Figure 3.5: Representation of the Stor-Rotliden site in the WRF model. Top: Layout
of the wind farm turbines, reproduced here with permission [152]. Lower left: Orog-
raphy map [153] with near-turbine 1.1 km domain grid points marked in red, numbers
denote the ordinally ranked proximity to the wind turbine average coordinate X. The
official wind farm coordinate [151] for which the four WRF model computational do-
mains of the study in Section 3.4 have a grid point specified is marked with O. Lower
right: Representation of terrain elevation above mean sea level in the WRF model;

generated using NCL [154].

finding prompts a closer inspection of the 1.1 km grid points representing the weather

in the vicinity of the Stor-Rotliden wind turbines.

Coordinates for the 40 Stor-Rotliden wind turbines were obtained after carrying out the

WRF model runs. See Figure 3.5 for a sketch of the locations, 1.1 km domain grid points
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Height above mean sea level [m]

Ranked proximity of 1.1km
Observed Modelledgrid points to the average of

the turbine coordinates; X

1 495 537
6 569 505

Table 3.1: Observed [103] vs. WRF modelled terrain height above mean sea level for
1.1 km grid points closest and 6th closest to the average of the 40 coordinates of the

wind turbines constituting the Stor-Rotliden wind farm.

near wind turbines, and orography as modelled in the WRF model, cf. the illustration

in Figure 3.3. Two issues are apparent:

1. The mean wind turbine coordinates are ∼1 km from the official coordinates for

the wind farm [151], i.e. the 30 km, 10 km, 3.3 km, and 1.1 km computational

grids of the studies introduced in Section 3.4 do not each have a grid point at the

horizontal centre of the wind farm. That is, the WRF model grid points at O

represent atmospheric dynamics of the south-eastern corner of the wind farm.

2. Orography in the vicinity of the wind farm is modelled erroneously. As Table 3.1

demonstrates, the terrain-tile heights above mean sea level at X and O appear

to be swapped relative to the observed terrain. The hill at the southern end of

the wind farm is named Stor-Rotliden – the location that the official wind farm

coordinates [151] in fact denotes – is erroneously modelled as being next to a hill.

Wind speed forecast performance for each 1.1 km grid point sketched in Figure 3.5 is

shown in Figure 3.6. The three forecast leadtime group PCCs for the grid point at O,

the 6th closest to X, are ∼0.02–0.03 lower than for the grid point closest to X. Overall,

there is a steady drop in performance as a function of distance from X, though with

a few performance-humps for the 7th, 8th, 10th, 11th and 16th closest grid points to

X. Note from Figure 3.5 that these are all outermost grid points outlining the northern

part of the wind farm area, furthest away from the wrongly represented Stor-Rotliden

hill orography.

Upon changing the smoothing reference y, cf. Eq. (3.1), from O to X cf. Figure 3.5,

the wind speed forecast performance results shown in Figure 3.7 are obtained. Note

that the highest resolved WRF model domain now consistently outperforms the coarser

parent domain.
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Ranked proximity of 1.1km horizontal grid points to the mean of turbine coordinates
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Figure 3.6: Wind speed forecast performance for the WRF modelled 1.1 km grid
points sketched in Figure 3.5.
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Figure 3.7: Cf. Figure 3.4, though the smoothing reference wind farm coordinate is
replaced by the average of the 40 individual wind turbine coordinates constituting the

Stor-Rotliden wind farm.
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3.3.3 Remarks on the findings

The WRF model study by Jiménez et al. [65] partially attribute wind field simulation

errors to terrain misrepresentation, as is also demonstrated here and in the already men-

tioned study by Santos-Alamillos et al. [147]. The results of Section 3.3.2 emphasise the

importance of careful inspection and verification of prerequisite information, as small

spatial deviations in reference coordinates are shown to cause high-resolution forecasts

to perform inferior to the coarser laterally forcing data. Retrospectively, the WRF mod-

elled inner-most computational grid should have been based on higher-resolved terrain

dataset than the applied Moderate-resolution Imaging Spectroradiometer (MODIS) [155]

satellite data for landuse and United States Geological Survey Global 30 Arc-Second El-

evation (USGS GTOPO30) [156] orography dataset, both resolved at the same spatial

scale as the WRF model 1.1 km domain.

Upon correcting the smoothing reference consistent improvement with WRF model res-

olution is found. From the study of the 17 individual 1.1 km grid points overlapping

wind turbine coordinates, the three points closest to the average of the 40 turbine co-

ordinates – arguably the correct wind farm centre, in contrast to that proposed in [151]

– are the three best performing grid points. This supports the notion that the WRF

model does indeed reproduce observed atmospheric dynamics consistently in space and

time. The PCC drops by 0.05–0.06 (6–7 %) between the best and worst performing

grid points, which are closest and furthest from the wind farm centre, respectively. The

performance of the grid point at the Stor-Rotliden hill, the 6th closest to the wind farm

centre, has 0.02–0.03 smaller PCC than the best performing grid point closest to the

wind farm centre, corresponding to a decrease in performance of 3–4 %.

The peak performance radius for the 1.1 km computational grid is found to decrease

slightly as a function of the forecast leadtime group. This can be explained by increased

phase errors which cause computational grid points in the vicinity of the wind farm to

be less likely to capture in space the timing of wind speed fluctuations as observed at

wind turbine hub-height. Thus, including these grid points penalises the PCC accuracy

metric. Computational grid points close to the wind farm centre has greater phase

error tolerance, in that, no matter in which meteorological direction the wind speed

fluctuation timing is spatially off between grid point simulation and reality, there is a

higher probability that the wind farm data – which, cf. Chapter 2 and Figure 3.5, is
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based on measurements from 40 turbines covering several 1.1 km grid points – captures

behaviour seen at the close-to-central grid point, than for a WRF modelled 1.1 km grid

point in the vicinity of the wind farm (which is more likely to see information not

captured by simultaneous measurements, given finite phase errors).

Although there is a slight advantage from including more than just the 1.1 km grid point

closest to the wind farm centre, this never exceeds ∼0.002 improvement in PCC, which

corresponds to ∼0.3 %. This, combined with the fact that the optimal smoothing radius

is ∼1.5 km (6 computational grid points with nonzero tricube weights) for the 36↔ 48

forecast leadtime hour group, leads to the definition of an optimal smoothing radius of

no more than 1.5 km for the 1.1 km grid.

For the 3.3 km computational grid there is a ∼0.007 improvement independent of forecast

leadtime group when going from the grid point closest to the wind farm centre (r = 2 km)

to including the three closest grid points (r = 3 km). As the sketch of high-resolution

grid points shows, the 3.3 km grid point closest to the wind farm centre is on the top of

the Stor-Rotliden hill, the location of which is marked by the publicly available reference

coordinates for the Stor-Rotliden wind farm. As the sketch shows, this is more than 1km

off the average of individual wind turbine coordinates, and moreover is at the peak of

a hill which is not representative for all 40 wind turbines, since most are situated on

hill slopes and moderate depressions. As the potential benefit of moving beyond 4 km

smoothing radius for the 3.3 km grid is vanishingly small (∼0.1–0.2 % better for ∼10 km),

the optimal smoothing radius is defined to be 4 km, implying nonzero Eq. (3.1) weights

for the four grid points closest to the wind farm centre.

Perhaps not surprisingly, no performance gain can be documented for spatial smoothing

of the 10 km and 30 km WRF model grid data also considered in the studies introduced

in Section 3.4, and these grids are hence not considered in Section 3.3.2.

3.4 Introduction to appendices A and B

A key objective of this work is to assess the value of limited area forecasting for wind

energy scheduling, which in a northern European context implies energy trading on the

Elspot market [148] based on NWP modelled wind speed for leadtimes spanning the 12th
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Domain 1 Domain 2 Domain 3 Domain 4

Horizontal distance between
30 10 ∼3.3

(
10
3

)
∼1.1

(
10
9

)
computational grid points [km]

Unstaggered vertical levels
40 40 40 40

(∼ four below 100 m AGL)

Integration time step [s] 120 40 ∼13.3
(
40
3

)
∼4.4

(
40
9

)

Output frequency [minutes] 10 10 10 10

Table 3.2: Resolution and output frequency employed in WRF model simulations.

to 48th hour beyond forecast initialisation. The WRF model configuration employed is

shown in Table 3.2, cf. Appendix A for further details.

Although important for accurate simulation of sub-grid scale processes involving e.g.

turbulent momentum and thermal fluxes [157], a recent study [158] indicates that the

vertical resolution has little effect on the simulation accuracy for the mean flow across a

NWP model grid cell (though recall also McQueen et al. [84], arriving at the opposite

conclusion in their RAMS study). The relatively sparse 40 vertical layers (41 staggered

levels) – cf. e.g. the 64 layers in the GFS, albeit covering a greater vertical extent –

for each of the computational grids outlined in Table 3.2 are assessed adequate and also

serves to conserve computation walltime for the twice-daily 48 hour WRF model forecast

generation covering a year.

Integration time steps are kept sufficiently small to avoid violation of the Courant-

Friedrichs-Lewy (CFL) condition [20, 21]; roughly put atmospheric flow must not tra-

verse more than one horizontal grid point in a single time step in order for the numerical

integration process to stay stable. A common practice for WRF modelling is to set the

time step (in seconds) equal to six times the horizontal resolution (in kilometers) [146],

and hence this study is on the conservative side to substantiate numerical stability and

avoid simulation crashes due to violation of the CFL stability criterion.

In order to reduce generation of spurious inertia-gravity waves and other numerical

artefacts, cf. Warner et al. [52], the horizontal resolution of the outermost computational

grid (30 km) is kept close to that underlying NWP by the GFS (∼ 27 km; though ∼ 13 km

as of mid-January 2015 [159]) that forces WRF model runs laterally and for initialisation,

although GFS output is only available at coarser 0.5◦ (∼55 km) horizontal grid points.
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For high-resolution computational grids, a number of studies report realistic nonhydro-

static model simulation of a range of mesoscale convective systems, see e.g. [160–163].

Weisman et al. [163] mention horizontal resolutions from 4 km and finer, while Bernadet

et al. [164] find that 2 km resolution is necessary to capture convection explicitly in

their RAMS runs. Finally, Sato et al. [81] find that simulations with the cloud-resolving

Nonhydrostatic Icosahedral Atmospheric Model (NICAM) succesfully reproduce precip-

itation observations at 3.5 km horizontal resolution, while 7 km is off in both magnitude

and timing. Based on this cumulus parameterisation literature review, the Kain-Fritsch

scheme [165] employed here, cf. Appendix A Table I, is switched off for the 3.3 km and

1.1 km WRF model nests in this work. The microphysics, describing the physical pro-

cesses underlying precipitation from water and ice particle growth within a cloud, are

parameterised according to the Thompson parameterisation [166], the choice of which

is substantiated e.g. by the study of Rögnvaldsson et al. [167], and the study of a

2008 thunder storm in India by Rajeevan et al. [168] find better updraft/downdraft

description from this scheme compared to three alternatives, albeit similar simulation

of surface wind variation.

3.5 Multidimensional nearest neighbour smoothing

The conditional parametric modelling study presented in Appendix A could be extended

with coefficient multipredictor-dependence; θ(z1, z2, . . . , zn). However, for z candidates

uniformly distributed within a p-dimensional hypercube, a fraction r of the unit vol-

ume (corresponding to the fraction of data points covered to estimate the coefficient)

translates to an expected hypercube side-length, that is; individual z predictor (i.e.

individual-z-dimension) range of r1/p, cf. [169]. Hence, for modest smoothing degrees

r – corresponding to very local smoothing – a large fraction of each z candidate range

is necessarily included and the procedure becomes less local for each z predictor in-

volved in the nonparametric θ(z1, z2, . . . , zn) estimate. Consider e.g. inclusion of three

z candidates, implying that a smoothing degree of 10 % of the available data; r = 0.1,

corresponds to inclusion of 46 % of each of the z candidate data points! This issue is

known as the curse of dimensionality [170], and imposes a practical limit on the feasible

of conditional parametric modelling by the method of Nielsen [171] of no more than two
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simultaneously included z predictors [172]. Hence only single-z conditional parametric

modelling is explored in Appendix A.

3.6 Supplementary discussion on wind speed ramps

The WRF model output is at 10 minute resolution, the underlying integration time

steps ranging from 2 minutes to ∼4 s, cf. Table 3.2. As the GFS data is available at

18 times coarser (3 hourly) temporal resolution and resolves topography in the vicinity

of the wind farm sites at a ∼27 km horizontal grid constant, much coarser than can be

accommodated by the WRF 1.1 km computational domains, GFS wind speed data is

arguably less sensitive to local topography and hence likely closer to mean wind speed

than corresponding high-resolution WRF model data on average. To illustrate why this

may lead to better GFS forecast performance relative to corresponding WRF model

performance in terms of scalar accuracy metric assessement, cf. Appendix A, substitute

a sinus curve as the forecast reference time series. Subject to a π phase error an otherwise

perfectly matching high-resolution sinus curve would nowhere in the dataset be closer

to the forecast reference than the constant zero-mean that coarse forecast data is taken

to represent in this thought experiment. Hence, high-resolution forecasts of inferior

scalar accuracy metric performance due to more or less severe phase errors may in fact

yet contain superior information in terms of the temporal evolution of meteorological

structures of interest. The results presented in Appendix B support this notion. In the

following, adverse implications of wind speed ramps for wind power integration in the

electrical grid is discussed, thus supplementing the literature review in Appendix B.

An up-ramp event overestimated in magnitude or forecasted too soon may induce a

down-regulation penalty for the wind power producer if the electrical grid is already

balanced, depending on the spot (day ahead) and regulation (realtime adjustment) prices

[173]. Severe oversupply of wind power can e.g. occur when storms sweep across northern

Europe, when consumption is low, and neither German, Danish nor Swedish wind farm

production can be exported to neighbouring countries. Although rare, such situations

may potentially inflict severe damage on power cable bottlenecks lest wind farms are

shut down immediately. On the other hand, a misforecasted down-ramp may induce

an up-regulation penalty when power sold on the Elspot market cannot be delivered

fully [174], unless the absence of the promised amount of power helps the market. This
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situation is potentially very expensive for the energy producer and challenging to handle

for the transmission system operator, scaling with the amount of wind power in question.

Curiously, the WRF model study by Deppe et al. [38] find that less than a fifth of

observed ramp events occur during frontal passages or severe storms in the ramp-analysis

part of their study spanning one year, focussing on a region in Iowa, USA.

3.7 Error sources pertaining to limited area forecasting

Deferring discussion of general weather model deficiency to Chapter 4, this section con-

cluding Chapter 3 concerns forecast error sources within the context of LAMs, although

Section 3.7.1 is indeed relevant also for GCMs.

3.7.1 Starting out right — forecast initialisation

A realistic outset is vital for a computer simulation to attempt to reproduce reality.

Hence, two obvious weather modelling error sources concern measurement uncertainty

and shortcomings of data assimilation schemes employed to transfer information from

atmospheric measurements into weather models, let aside adverse effects from simpli-

fying assumptions necessary for practical feasibility of NWP model formulations and

numerical artefacts pertaining to different discretisation schemes. The World Meteo-

rological Organisation facilitates access to atmospheric observations worldwide several

times daily, and ongoing improvement of measurement instruments and in quality con-

trol algorithms run at weather centres ensure continual reduction in NWP corruption

by poor-quality observations. Hólm [175] provide an accessible, yet concise overview of

NWP data assimilation techniques, see also Bouttier and Courtier [176] for a more com-

prehensive review. Kalnay [177] offers an overview of the field of NWP, culminating with

a thorough review of data assimilation theory. A few of the techniques in widespread

use today are briefly outlined in the following paragraph.

Using the previous forecast to initialise the current forecast is one of the two main

types of four dimensional data assimilation (FDDA). The other is known as Newtonian

relaxation and involves “nudging” NWP data towards observations by adding forcing

functions to the NWP model equations, see e.g. the pioneering works of [178, 179],

and [180] for an overview of the technique development over the first few decades. In



Chapter 3 — Limited area forecasting 44

practice though, three data assimilation schemes which, in contrast to FDDA, applies

NWP model variable covariances for estimating a suitable balance between observed

and modelled fields are in use for operational forecasting. Two of these are variational

techniques involving minimisation of a cost function that estimates the difference be-

tween forecast and observations, though differing in the way the prognostic variable

(background) error covariance matrix is estimated. This matrix controls the effect of

observations on the NWP model variables and is a key dependency of the cost func-

tion. In the simplest of the two variational schemes; three-dimensional variational data

assimilation (3DVAR), the covariance is constant and based on historical data, while

the more advanced four-dimensional variational data assimilation (4DVAR) technique

includes realtime information within a given time window. The ensemble Kalman fil-

ter (EnKF) approach also utilises realtime information, though the background error

covariance is here inferred from an ensemble of forecasts, each forecast member with a

slightly different initial perturbation, cf. e.g. Evensen [181]. While it is well-established

that the 3DVAR approach generally performs inferior to the 4DVAR and EnKF ap-

proaches – namely with surface observations and in complex terrain [182] – it is less

clear-cut which of the latter two performs better [183]. However, Zhang et al. [184] find

the EnKF approach to be superior in their forecast experiment using the WRF model

in combination with the Data Assimilation Research Testbed (DART) [185–187], par-

ticularly for forecast leadtime horizons of 2–3 days ahead. As upper air measurements

are typically already assimilated in GCM forecasts providing ICs and LBCs for LAM

forecasts, any potential for improvement of the initialisation of LAM simulations should

derive from surface observations not available, or not ingestible, for GCM initialisation.

Ha and Snyder [188] recently demonstrated improved precipitation forecasts up to the

12th forecast leadtime hour from EnKF data assimilation of temperature and moisture

measurements 2 m AGL and 10 m AGL winds at initialisation time, based on the WRF-

DART system also used in the Zhang et al. [184] study mentioned above, and attribute

forecast improvements to better representation of the depth and structure of the PBL

and the reduction of surface bias errors.

The presented literature review concerns application of data assimilation for NWP model

initialisation. This section concludes with an alternative application of data assimila-

tion, also with implications to forecast accuracy, namely to infer the nature of NWP

model errors. Hacker and Angevine [189] employ the EnKF approach for assimilation
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of temperature, water mixing ratio and wind components in order to characterise NWP

model error. Results of their single-column WRF-DART experiment could indicate that

observed errors arise from unmet assumptions underlying the Monin-Obukhov similarity

theory applied in the surface layer parameterisation to provide lower boundary condition

turbulent fluxes for the PBL parameterisation.

3.7.2 Spurious perturbations — lateral boundary condition schemes

Deficiencies of LBC formulations are known to cause deteriorating LAM forecast per-

formance as integration time increases [52], cf. Section 3.1. The related issue of lower

boundary conditions handled via land surface modelling can also be viewed as a sub-

aspect of physical process parameterisation cf. Section 3.2 — a discussion of this complex

topic is not considered in detail in this work, although derived adverse effects are indi-

rectly studied in appendices A and C via statistical modelling of the wind speed based on

NWP model variables. Upper LAM (and GCM) boundary conditions are arguably less

important than LBCs for 2 day LAM simulated atmospheric dynamics near the Earth’s

surface, as is relevant for the weather modelling application at hand. See e.g. [190–192]

for theoretical discussions on upper atmosphere boundary conditions.

Sundström [193] derives two different LBC formulations for which unique solutions to

the barotropic vorticity equation exist within a limited area domain, though Oliger and

Sundström [194] show that the more complex initial boundary value problems for the

primitive equations used in modern NWP are ill posed for open boundaries fixed in space,

as is the case for all LAMs. However, the work of Temam and Tribbia [195] carried out a

few decades later demonstrates that the same problems are well posed if a mild vertical

viscosity is added. Termonia [196] illustrates how limited area modelling of a rapidly

moving meteorological feature crossing a LAM domain is dominated by errors coming

from the inflow boundary after a short time, with consequently poor performance relative

to that of the coarser GCM forcing data. A follow-up study from 2009 [197] suggests that

forecasts should be restarted as soon as the severe event has entered the domain, and it

is further argued that a scale-selective digital filter be employed for the re-initialisation.

Ren and Shepherd [124] provide a theoretical treatment of the influence of LBCs on slow

advective timescale atmospheric dynamics and Charney [28] demonstrates the adverse

effects of overspecification of the LBCs for the shallow-water equations; a simplified
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form of the primitive equations that describe atmospheric flow. Davies [123] extend

this work with a theoretical outline of the dependence of the uniqueness of solutions

to the barotropic and baroclinic primitive equations on the LBCs. Paegle et al. [51]

argue that the main source of LAM error growth with model integration time is due to

small uncertainties on larger spatial scales rather than small uncertainties on the smaller

scales, and furthermore associate the adverse largescale impact on LAM predictions to

LBCs rather than ICs.

Virtually all LAMs used in operational NWP use the relaxation LBCs proposed by

Davies in 1976 [89], one exception being the Eta model [73–76] which uses Mesinger’s

forward-backward scheme, first presented in 1977 [198]. A recent study by Mesinger

and Veljovic [199] raises doubts as to the justification of the widespread use of Davies’

relaxation LBCs and points out that the scheme makes no effort to respect the basic

mathematics of the problem. They compare the Davies [89] and Mesinger [198] LBC

schemes on the basis of six 32-day forecasts, assessing for one of the forecasts also the

effect of replacing the linear change of relaxation in the Davies approach by Lehmann’s

optimised choice [200] that minimises the unwanted partial reflection of waves leaving

the LAM domain at the boundaries under idealised conditions. Gustafsson et al. [201]

find that LBC errors are significant for one of two studied cases of poor 12 hour forecasts,

while the IC errors are large in both cases.

However, other authors downplay the impact of LBC errors on predictability in limited

area weather modelling. Hong and Juang [202] challenge the focus on LBC schemes by

suggesting that their orography blending technique applied across the lateral boundary

is likely more efficient than elaborating the numerics of a LBC scheme to eliminate

systematic error. Davies [109] demonstrates that LBC errors constitute only a small part

of the overall error in simulations made with the MetUM, see e.g. [203] for an overview

of the history of the development of this finite difference NWP model. Torn et al. [204]

find that interior-domain WRF model ensemble simulations are not particularly sensitive

to whether GCM ensemble forcing or perturbations around a deterministic forecast are

applied at the lateral boundary. That is; the study suggests that LAM ensemble forecasts

are not very sensitive to LBC errors far away from the lateral boundaries.

Be that as it may, the science of computational mathematics has evolved since the 1970s

and 80s when LAM LBCs were intensively studied, though the widespread application
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of Davies approach of 1976 [89] leads scientists to believe that the lateral boundary

value problem is inherently ill posed, cf. e.g. Hong and Kanamitsu [205]. However, the

work by e.g. Funaro and Gottlieb [206], Carpenter et al. [207], Nordström and Svärd

[208], Hieber and Monniaux [209], and Cheng et al. [210] suggest that accurate LBC

formulations can indeed be applied for limited area NWP, ensuring well posedness of

the initial boundary value problem. That is,

• a solution exist,

• the solution is unique,

• the solution’s behaviour changes continuously with the initial conditions.

Hesthaven [211] and Svärd et al. [212] show how to contruct a semi-discrete, energy-

stable and well posed boundary condition scheme for the compressible Navier-Stokes

equations, and Kreiss and Wu [213] discuss the relation between stability of semi-discrete

and fully discrete schemes for initial boundary value problems.

Davies [214] and McDonald [215] provide overviews of various LBC schemes employed

in limited area NWP. The method first proposed by Engquist and Majda in 1977 [216]

is revisited by McDonald [217–219]. In his 2005 study, he derives transparent LBCs for

two linear systems; a two-layer model of two superposed immiscible fluids of different

densities and a multilevel model of the hydrostatic primitive equations in two dimen-

sions (horizontal and vertical), and demonstrate that the boundaries are transparent to

outgoing waves while externally imposed incoming waves enter without distortion. Two

follow-up studies ensued in 2006 and 2009 where McDonald adressed potential vorticity

waves [220] and vertical shear [221], respectively. Termonia and Voitus [222] build on the

work of McDonald in trying to disentangle the transparent LBC formulation from the

dynamical core of semi-implicit semi-Lagrangian NWP models in order to ease future

maintance and scientific development. The following year, Voitus et al. [223] intro-

duced a well posed LBC formulation for a one-dimensional model employing Fourier

spectral horizontal discretisation, and the study finds improvement in terms of stability

properties.
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Weather model deficiency

The limitations on weather model accuracy pertain to the following seven error sources.

—— 1. A fundamental limit on atmospheric dynamics predictability ——

In his famous paper from 1963 [224], Lorenz presents his discovery of chaotic dynamics,

demonstrated by integrating numerically three coupled nonlinear equations describing

thermal convection, as proposed the previous year by Saltzmann [225]. The initial value

problem considered is a relatively simple coupled set of equations, two of which contain

nonlinear terms;

dx

dt
= c1x+ c1y,

dy

dt
= xz + c2x− y,

dz

dt
= xy + c2x− c3z, (4.1)

and choosing 0 < c2 < 1 results in the stable, steady-state solution (x, y, z → 0) inde-

pendent of c1 and c3, while c2 > 1 leads to two solutions that are stable – i.e. attractors

in the system described by Eqs. (4.1) – for

1 < c2 <
c1(c1 + c3 + 3)

c1 − c3 − 1
.

When viewing the temporal development in the phase space spanned by x, y and z,

the solutions based on Lorenz’ choice of c2 exceeding the upper stability limit spirals

outward from one of the two c2 > 1 stable solutions a number of times, before suddenly

transitioning to spiral outward from the other stable solution. The phase space trajectory

never repeats and the number of cycles taken around one attractor before transition

48
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to the other cannot be predicted. Moreover, Lorenz shows [224] that an infinitesimal

perturbation away from one trajectory may follow the original trajectory closely for

a while, but they will eventually diverge completely and become independent. More

complex nonlinear systems have been shown to exhibit such chaotic behaviour [226],

and as NWP models are based on nonlinear PDEs Lorenz’ results for a simpler system

hints a fundamental limitation on the predictability of coupled systems of nonlinear

PDEs, e.g. Baines [227] mentions 10–14 days ahead.

—— 2. Garbage in → garbage out ——

Successful application of the theoretical foundation underlying weather and climate mod-

elling is subject to proper initialisation of meteorological fields on the spatial grids on

which the governing equations for atmospheric dynamics are integrated, cf. Section

3.7.1. Hence, the feasibility of the endeavour depends on the extent to which the grid-

initialising snap-shot data representing the current state of the atmosphere is accurately

measured, as well as on the accuracy of previous weather or climate model predicted

fields used in combination with observations to propagate the simulation forward.

—— 3. Representing fractal nature on a finite number of pixels ——

Judd et al. [228] view the inability of the discretised governing equations for atmospheric

dynamics to properly represent observations across a continuum of spatio-temporal scales

as the computer simulation occupying a phase space of much of lower dimension than

actual dynamics.

—— 4. Physical processes that do not derive from first principles ——

Leith [229] distinguishes the former error source from inadequate representation of atmo-

spheric dynamics on numerically unresolved scales, of which Holton and Hakim [125] note

the three most important physical process classes to be radiative, cloud and precipita-

tion, and turbulent mixing and exchange, respectively, recalling Section 3.2. Associated

challenges are explored e.g. in the study by Brown et al. [230], considering bound-

ary layer wind profiles. They address issues related to representation of sub-grid scale
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convection in two operational NWP models with spectral and finite difference formula-

tions, respectively, and Milton and Wilson [231] illustrate the sensitivity of atmospheric

simulations to the complex balance between parameterisations together representing

mechanical dissipation.

—— 5. Approximations applied to avoid numerical artefacts ——

As pointed out by Charney [22, 24, 232] from the outset of NWP, approximations to the

governing equations for atmospheric dynamics are necessary to avoid numerical noise

from poorly resolved smallscale dynamics, while preserving phenomena of meteorolog-

ical interest. More or less severe inaccuracies accompany the choice of approximations

applied to remove unwanted, though physically correct, solutions such as acoustic waves.

Keller [233] shows that the hydrostatic approximation, commonly employed in opera-

tional GCMs, severely impacts the realism of simulated gravity wave propagation. Fil-

tering of smallscale atmospheric dynamics may gradually become a forecast accuracy

liability as NWP model resolution increases.

—— 6. From analytical ideal to numerical pragmatics ——

As discussed e.g. in Linz [234], artefacts of more or less severe impact on results derive

from spatial and temporal discretisation schemes applied to the governing equations for

atmospheric dynamics in order to implement these numerically. Derivatives estimated

by finite difference approximations are subject to unavoidable truncation errors, and e.g.

Bénard [235] studies temporal discretisation for a range of schemes commonly used for

NWP and finds associated stability properties to be highly dependent on fundamental

choices like the vertical coordinate. Novel NWP model formulations have appeared in

the literature recently, two finite element based examples being the Icosahedral Nonhy-

drostatic (ICON-AIP) model by Gassmann [236], designed to conserve mass and energy

on a hexagonal grid [237], and the Model for Prediction Across Scales (MPAS) by Ska-

marock et al. [238] featuring smooth model resolution increase across the vicinity of areas

of interest for high-resolution NWP modelling. Whether such modern NWP formula-

tions are less prone to suffer from adverse effects sensitive to the choice of discretisation

schemes remains an open question.
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—— 7. Bugs uncaught during model code verification ——

Usually left out of discussions on things that can go wrong, the physicist/programmer

may be in error at any point in the process of casting and implementing the model equa-

tions on discretised form. Elusive issues due to implementation error may indirectly be

picked up by weather model output postprocessing frameworks, as discussed in sections

4.1 and 4.2 introducing Appendix C.

4.1 Statistical forecasting by general linear modelling

With regard to points 4. through 7. above there are ways to rectify weather model

predictions to some extent, and one such postprocessing class is univariate general linear

modelling. A mathematical relation for an observed quantity – wind speed in the context

of the study introduced in Section 4.2 – denoted W is assumed related to a series of

additive terms, each of which taken to be proportional to an unknown model coefficient

θi,

W = θ0 +

n∑

i=1

xiθi + ε, (4.2)

and the relation is modelled as subject to stochastic error ε, for which a distribution

is usually assumed for θ0 and θi inference purposes. For normal theory models the

method of ordinary least squares (OLS), based on squared model residual minimisation,

corresponds to Maximum Likelihood estimation [239], and this approach is employed in

Appendix C to be introduced in the next section. The key challenge is to identify xi

predictors able to systematically account for measurements corresponding to the model

response W.

Classical statistical forecasting does not involve weather models in that the modelling

task is to construct regression equations relating atmospheric measurements for one or

more predictors to a response observed a specified forecast leadtime ahead. An applica-

tion of the technique for prediction of hurricane trajectories is outlined in Miller et al.

[240], using observed geopotential heights and geostrophic winds, among other atmo-

spheric observations, as predictors in a set of regression equations developed separately
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for four leadtime horizons each spanning 12 hours. Today, such purely statistical mod-

els are only competitive in nowcasting applications that concern leadtimes up to a few

hours ahead, at least in a wind power forecasting context [6, 7]. Klein et al. [241] first

combine statistical modelling of an observed response variable, related mathematically

to simultaneously observed predictor variables, with evaluation based on corresponding

NWP model variables as predictors. In contrast to the purely statistical approach this

method, known as perfect prog, does not involve a time lag between predictor(s) and

response, in that the idea is to develop the statistical model solely using observations,

and then apply it using corresponding NWP derived predictors. Hence, the perfect prog

method do not account for NWP model error. MOS is a third approach, pioneered

by Glahn and Lowry [95], where both statistical model development and evaluation is

based on NWP datasets with matching forecast leadtimes and the MOS technique can

therefore be used to quantify systematic NWP model errors. In a subsequent study

comparing the latter two techniques for probability of precipitation forecasts, Klein and

Glahn [242] find better improvement from the MOS postprocessing of NWP data.

The study introduced in Section 4.2 is based on MOS modelling.

4.2 Introduction to Appendix C

Representing weather and climate with numerical models based on well-established the-

ory [111] entails multifarious simplifications and approximations. With each choice of

discretisation scheme and parameterisation for sub-grid scale processes discrepancy be-

tween the practical implementation of the governing equations for atmospheric dynamics

and observations is potentially introduced. Figure 4.1 illustrates physical process inter-

actions that need to be represented numerically, and it is not hard cf. Section 3.2 to

imagine e.g. error in the solar radiation parameterisation to propagate into other phys-

ical processes as a function of model integration time, with adverse implications for the

simulation accuracy of moisture flux, atmospheric stability, etc. which ultimately affects

prediction of atmospheric flow, the weather feature of interest in this work.

The study presented in Appendix C concerns MOS postprocessing of GCM data, based

on a wide range of predictor candidates, and hence indirectly addresses weather model

deficiency. That is, the succesful MOS modelling predictor candidates provide guidance



Chapter 4. — Weather model deficiency 53

Figure 4.1: Illustration of the complexly coupled physical processes that need to
be accurately simulated in weather and climate models in order to reproduce surface
measurements of atmospheric variables. Black arrows denote surface and boundary
layer processes, red arrows radiation, while green arrows are land surface processes.
Solid (dashed) lines represent positive (negative) feedback. Circled numbers 1 to 8
display the origin and effect of the sketched physical processes, respectively. The figure

is adapted and reproduced with permission [243].

as to which GCM formulation aspect should be in focus with respect to future upgrades

of the weather model. Results presented in Appendix C Section 4 reflect forecast im-

provement, achievable in practice operationally, from statistical postprocessing by the

method of Appendix C Section 3 applied to forecasts derived from a state of the art

NWP model providing freely available global forecasts; the GFS.

In contrast to the LAM study of Chapter 3 and appendices A, B, the study presented in

Appendix C is based on a two-year dataset, and the forecast reference data is processed

according to the approach specified in Chapter 2. As remarked e.g. in Jacks et al.

[244], having several years of NWP data available for MOS model parameter estimation

increases the robustness of statistical forecasts. However, major and minor upgrades

of operational GCMs are regularly carried out which may not impact regression model

performance severely for minor NWP model changes, as observed e.g. by Erickson et al.

[245], though statistical model development should in general be based on data from a
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static NWP model implementation to avoid the risk of making false conclusions on the

explanatory value of one or more predictor candidates. Müller [246] proposes adaptive

short-term MOS, with daily model parameter updates based on data for the previous

30, 60 and 90 days, respectively, allowing the MOS equations to “recover” consistency

faster than is the case for longer training datasets traversing NWP model upgrades. The

inconsistent-dataset issue is circumvented in the study of Appendix C by selecting data

from a time period during which no changes were made to the GFS. Hence, the data

period commences a month after a land surface model bug fix was implemented and the

GCM remains unaltered until the dataset ends 30 September 2014 (+ 2 days).

4.3 Multicollinearity

Provided two or more Eq. (4.2) predictors are highly correlated, the model design

matrix M , containing predictors along the column dimension and observations along

the row dimension, multiplied with it’s transpose, is near-degenerate since M itself is

near-degenerate,

det
(
MTM

)
= det

(
MT

)
· det(M).

Recasting Eq. (4.2) in matrix notation,

W =
[

1 xT
]
θ + ε,

with x and θ respectively denoting column vectors with xi and θ0 & θi elements, the

OLS estimator for θ subject to the assumption of independent and identically distributed

(i.i.d) ε is

θ̂ =
(
MTM

)−1
MTW,

with covariance

Cov
[
θ̂
]

= σ2ε
(
MTM

)−1

cf. e.g. Pawitan [247]. The model coefficient estimates become uncertain, cf. e.g.

Valentine [248], which may lead to relatively large model coefficients – of opposite sign
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– being attributed to the two (or more) correlated predictor terms. Thus, assuming

two severely collinear predictors, each of these may appear to explain a large portion

of the model variation, while the combined effect of the two in fact may almost com-

pletely cancel. In terms of the variation histogram approach for predictor relative-value

screening, cf. Appendix C Section 3.5, severe collinearity would result in wide 95 %

quantile ranges for the two said predictors. In order to detect such false predictor-value

signals, xθ̂ variation histograms can be supplemented by ordering according to forecast

performance reduction due to removal of a given predictor. That is, the predictor term

causing the most severe performance reduction when removed from the model is at the

top of the hierarchy, and so forth as the adverse performance impact from predictor

removal decreases. If a predictor with a relatively wide 95 % quantile range assumes a

low ranking this indicates strong interpredictor coupling that may be confirmed from

interpredictor correlation matrix and scatter plots, cf. Appendix C Section 3.3. Valen-

tine [248] proposes to substitute the individual terms with a single linear combination

of the collinear predictors, though also emphasises the entailing challenge of choosing

appropriate weights for each of these. Hence, his other suggestion of simply leaving out

one of the collinear predictors is more straight-forward. To screen all predictors for true

explanatory value these are left out by turn, the model re-assessed, and severety-ranking

of adverse impact on performance in terms of accuracy metrics can be applied to root

out exaggerated-value (due to collinearity) predictors. Thus, inconsistency between xθ̂-

variation contribution vs. the same term’s removal severity-ranking leads to exclusion

of said predictor.

4.4 Autocorrelation

Another issue of the statistical modelling approach employed in Appendix C is the as-

sumption of independent observations. If the wind speed was 1 m/s five minutes ago, the

current wind speed is not likely to be far from this value, say 25 m/s. As measured and

forecasted wind speed time series are both subject to finite autocorrelation, MOS model

residuals εi will exhibit some autocorrelation — or put differently; there will be nonzero

off-diagonal (covariance) elements in the variance matrix for ε cf. Eq. (4.2). Continuous

data typically exhibits finite autocorrelation and hence an assumption underlying the

predictor-reduction process involving the Bayesian Information Criterion (BIC) is not
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Evaluated separately for the 3 x 3 forecast leadtime hour group datasets
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Figure 4.2: The black, vertical bars denote autocorrelation for the 12 ↔ 24, 24 ↔
36, and 36 ↔ 48 forecast leadtime groups considered in Appendix C (year 1). The
blue circles denote autocorrelation predictions from a first-order autoregressive model,
AR(1), for the residuals of the full MOS model considered in Appendix C. Similarly,
the red bullets mark AR(2) model predictions. The grey, horizontal lines delimit an
approximate white noise 95 % confidence interval cf. [249]. Top: The offshore Horns
Rev wind farm. Middle: Coastal Rejsby Hede. Bottom: Stor-Rotliden, situated in

central Sweden.
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satisfied, and redundant predictors likely survive the process cf. the discussion in Ap-

pendix C Section 3.4. Hence, the final development step based on variation histograms

is introduced.

Alternatively the MOS model considered in Appendix C can be brought to account

for autocorrelation by inferring the number of autoregressive (AR) process parame-

ters needed to model residual autocorrelation, and then integrate the chronological εi-

dependency into the residual matrix structure, cf. e.g. Ga lecki and Burzykowski [250].

Cf. e.g. Madsen [251], the p-order autoregressive process for Appendix C MOS model

residuals εi – AR(p) – is written,

εi + εi−1θ1 + εi−2θ2 + · · ·+ εi−pθp = εi, (4.3)

where εi here denotes a white noise process cf. [252]. Figure 4.2 indicates that suit-

able inclusion of AR(2) process parameters θ1 and θ2 in the residual variance-covariance

matrix (i.e. nonzero off-diagonal elements are introduced) for the MOS model studied

in Appendix C can effectively circumvent the autocorrelation issue by modelling the

chronological dependence as part of the Appendix C MOS model coefficient estimation,

introducing θ1 and θ2 coefficients of Eq. (4.3) as additional parameters to be estimated.

However, the computational expense was found to increase exponentially with the num-

ber of data points included, and statistical model fitting turned out to be infeasible for

the purpose at hand; iterative BIC-reduction for nine datasets each based on yearlong

hour-resolved time series.

4.5 Error-free predictors

A final remark pertaining to the approaches outlined in appendices A and C concerns

the implicit assumption of error-free predictors. All predictors considered in Appendix C

derive from GFS forecasts, initialised in part with 1) surface and upper-air observations

of the current state of the atmosphere, and 2) meteorological fields derived from the

previous GFS forecast. Each are subject to errors related to the data assimilation

process constituting forecast initialisation, due to

• the spatio-temporal grid of measurements is finitely and unevenly resolved,
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• mathematical/technical quirks of the data assimilation scheme employed,

• sensitivity of predicted trajectories to initial condition accuracy cf. [47, 224, 227],

• errors associated with measurement devices — satellites, measurement towers, etc.

Jonsson [253] considers the influence of predictor errors in a simple linear regression

model, and his study suggests that ordinary OLS estimation is quite feasible subject

to heteroscedastic predictor uncertainty. Effort toward accommodating above-discussed

error sources in the modelling framework laid out in Appendix C is not pursued in this

work.



Chapter 5

Conclusion & further research

The studies described in part aim to quantify the prospects of limited area forecasting

for use in operational wind energy scheduling, and also propose and assess an original

methodology for inferring deficiencies in the discretised formulations for atmospheric

dynamics under the hood of the weather models; the predictions of which are essential

to electrical grid stability subject to substantial wind power penetration.

For the particular WRF model configuration selected for the limited area forecasting

study, offshore and coastal LAM performance is inferior to corresponding GCM data

when assessed in terms of the scalar accuracy metrics of interest for wind energy schedul-

ing. From visual inspection of individual wind speed forecasts it is found that meteoro-

logical features on short time scales are indeed largely captured in the high-resolution

forecasts, yet subject to some phase error which is severely penalised by the forecast

performance metrics. Hence, a spatio-temporally coarse scale GFS forecast oblivious

to fast atmospheric flow fluctuations may achieve better scores in terms of the rele-

vant assessment criteria, and for the full-year dataset considered the adverse effect of

phase errors in finely resolved forecasts outweight the insensitivity to local terrain and

temporal volatility of a GCM. Inland, a dip in forecast performance is observed upon

numerically translating GCM data to the outermost LAM grid of comparable horizontal

resolution, though wind speed forecast performance steadily increases beyond that of

the GFS at high resolution. However, this LAM superiority for wind speed forecasts

does not transfer to the wind power domain.

59
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Temporal smoothing of wind speed forecasts is shown to consistently improve perfor-

mance, further supporting the notion that slight phase errors account for part of the

inferiorness of raw LAM data. Applying this simple NWP model forecast postprocess-

ing renders inland high-resolution LAM forecasts outperforming corresponding GCM

predictions, albeit by less than 1 % of wind farm capacity. From the conditional wind

speed modelling on prognostic and diagnostic weather model simulated quantities, a

pronounced dependence on the geographical region is established, and the method is

less feasible in terms of wind power at the coastal wind farm — except when considering

the surface pressure variable. The five other quantities are all strongly influenced by the

local topography and land surface model response, while atmospheric pressure largely

reflects synoptic scale dynamics. Hence, physical processes in the vicinity of the coastal

site may not be properly represented in the WRF model simulations. Inland, in complex

terrain, temperature, moisture, turbulent kinetic energy and Monin-Obukhov length are

all found relatively valuable; the two former to a greater extent for in-sample assessment

in terms of wind speed, while the two latter exhibit more potential when assessment is

instead based on adaptive and recursive (out-of-sample) wind power forecast evaluation.

These four quantities are all strongly coupled to the land surface model forcing, and

offshore – where surface feedback is more smooth – all six modelled quantities display

slight to moderate potential in a wind power forecast modelling context.

As also inferred from individual wind speed forecast data, power spectral density esti-

mates show that the WRF modelled flow dynamics approaches corresponding spectra

based on measurements as a function of grid resolution. However, leaving spectral space,

a closer inspection of LAM wind speed forecast performance as a function of integration

time reveals that the wind speed predictions of the WRF model configuration gradually

lags behind simultaneously measured wind speed time series, and a tendency towards

unstable weather conditions with forecast leadtime is revealed. This could e.g. be caused

by excessive heat exchange from the ground, perhaps due to exaggerated parameterised

amounts of downward short wave radiation, which in turn may point towards the mi-

crophysics Thompson scheme representing cloud fractions. To further infer the presence

of temporal lag between predictions and observations, the performance of a wind speed

ramp detection algorithm not penalised for slight phase errors – as are scalar accuracy

metrics – is evaluated, and consistent performance increase with LAM resolution is found

in terms of this assessment based on meteorological objects with implications for wind
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energy scheduling. A linear relation between LAM forecasted wind speed variability and

wind speed uncertainty is established for offshore and coastal sites, while the relation is

less evident inland. This link is re-addressed in the discussion on further research below.

The statistical postprocessing framework proposed for correction of NWP model defi-

ciencies results in seven competing MOS models, and the two fundamentally different

strategies employed for performance assessment in terms of wind speed and wind power,

respectively, points toward the simulated processes underlying the lifted index diag-

nostic as containing systematic coupling to the wind speed forecast error. To further

improve the methodology, the ignored – albeit very present – autocorrelation in wind

speed can be accounted as explained, yet as also mentioned the associated computational

costs were found too severe for the application at hand. If these practical limitations

can be circumvented, it is also possible to address heteroscedasticity via model residual

covariance modelling.

Concerning the LAM configuration employed in the limited area forecasting study, the

uneven LBC resolution around the outer LAM domain – due to the degree-resolved

GFS data – may potentially induce horizontally-skewed forcing of meteorological fields

on LAM grids. Equidistantly-resolved LAM forcing data may result in more spatially

balanced numerical simulations of the atmospheric fluid and hence yield better fore-

casts. Also, the adverse effects associated with warm LAM initialisation could turn out

to be less severe than the cold start shock that the presented LAM study is subject

to. Of more general concern is that each combination of the numerous NWP mod-

elling aspects together entail a multitude of alternative solutions — though only one

configuration is investigated. Exploring different LAM configurations accounting for all

seasons, and with enough data points to support statistically candid statements, is not

feasible in practice. To put things into perspective, the LAM study carried out here ran

on the university’s high-performance computing cluster during a time period of three

months, and afterwards broken simulations had to be identified and patched up. Several

years worth of human hours and computational resources are necessary to assess every

physics parameterisation setup, model resolution sensitivity, spatial extent of computa-

tional domains, LBC formulations, data assimilation schemes and forecast initialisation

approaches, etc., and new NWP model schemes are continually introduced. Hence, in

order to efficiently probe the feasibility of several weather forecasting tools and/or con-

figurations of these, future studies along the lines of isolating distinct synoptic weather
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situations with distinct impacts on wind power forecasting is proposed. One such ap-

proach could e.g. be based on SOMs as in Vincent and Hahmann [92], identifying days

with severe wind speed variability as discussed last in the introduction. The method

proposed by Lange [90] relates synoptic weather situations to wind speed forecast error

based on principal components and clustering analysis, and hence addresses the task

at hand; see also Lange and Focken [91]. Extending aforementioned endeavours further

into applicability for efficient objective identification of approximately optimal LAM

configurations for a given geographical site or region will in turn promote the vision of

substantial wind power penetration viably supplemented by other energy sources. In

the mean time, statistical postprocessing such as the MOS method suggested here finds

practical use for wind energy scheduling, and another recent development is the analogue

ensembles approach, cf. e.g. [254, 255]. In the context of the wind power uncertainty

analysis performed in this work, the SOMs technique could be envisioned as a largescale

component in a realtime wind power uncertainty warning system, based primarily on

forecasted wind speed variability to reflect more local and short term scales.

In a broader NWP modelling context, Wedi recently pointed out [256] that more so-

phisticated strategies than mere blunt increase of the horizontal resolution are needed

in the near future in order to accommodate deeper understanding of multiscale inter-

actions in the atmosphere and the corresponding numerical implementation on future

massively parallel computer architectures. In a few years time NWP formulations may

well incorporate stochasticity, cf. e.g. Annunziato [257, 258] and Palmer [259], and as

remarked previously and encouraged in Wedi [256] the sophistication of NWP formula-

tions and the associated practical implementability is an active research topic, and novel

approaches are frequently added to the growing literature on the subject of numerical

weather forecasting [260, 261].
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1. INTRODUCTION

The European Technology Platform for Wind Energy (TPWind) estimates that wind power could account for 34 % of the

electricity consumption in the European Union (EU) by 2030 [1], corresponding to as much as 800 thousand jobs in the EU

alone [2]. The scenario in turn magnifies the extent to which inaccuracy in day ahead assessment of this highly fluctuating

renewable energy source has adverse impact on the practical feasibility of wind power integration in the electrical grid. A

handfull of institutions worldwide carry out global numerical weather prediction (NWP) on a daily basis, cyclically updated

with the latest observations facilitated by the World Meteorological Organisation for each forecast initialisation, and thus

provide essential input for competitive wind power trading on the energy markets. Although atmospheric dynamics relevant

for renewable energy scheduling is well understood theoretically, the continuum of spatio-temporal scales involved, from

largescale synoptic systems down to microscale cloud processes, cannot be represented fully in NWP models primarily

due to practical limitations on computational resources. However, the resolution of general circulation model (GCM)

forecasts can be indirectly increased by embedding one or more limited area model (LAM) computional domains covering

geographical regions of interest, taking initialisation data and lateral boundary conditions from the GCM.

A recent study [3] briefly considers day ahead wind speed prediction accuracy subject to different LAM resolutions,

using the LAM also employed in this work, yet decides to drop the 4 km horizontally resolved computational domain prior

to further analysis due to performance inferior to that of the coarser 10 km parent domain. Another LAM study for wind

energy scheduling [4] is based on the Eta model, cf. e.g. [5] for a recent description, though only considers the performance

of the highest resolved computational domain and initialise forecasts with reanalysis data — which is not available in a

realtime setting. An older study [6] compares performance of three LAMs and the Global Forecast System (GFS) [7] and

find no wind speed forecast improvement for the high-resolution 1.33 km domain, though e.g. [8] reports more realistic

meteorological structures when going from 10 km to 2.5 km resolution using the Regional Atmospheric Modeling System

(RAMS) [9]. The present work supplements this literature, and several other related works not cited here, with a meticulous

LAM performance study covering different model resolutions and terrain types, targetting application within wind energy

scheduling.

The LAM employed is the Weather Research and Forecasting (WRF) model using the Advanced Research WRF (ARW)

dynamics solver [10], and the GCM data derives from operational GFS forecasts. The WRF model is an open source

community LAM in widespread use globally, the underpinning methodology relies on conformal map projection to a

physical grid, and many contributors continually improve and test numerical schemes employed in the discrete formulation

and sub-grid scale parameterisations for physical processes. GFS data at 0.5◦ and three-hourly resolution is freely available

online, with approximately 5 hours delay from forecast initialisation time. Hence, the data and tools employed in this study

are well-tested and readily available for realtime application.

The article is structured as follows. Section 2 specifies the details of the study, and results on forecast performance at

different spatio-temporal NWP model resolutions are presented in Section 3, along with forecast enhancement assessment

based on temporal smoothing and semi-parametric statistical modelling, respectively. The conclusion is given in Section

4.

2. EXPERIMENTAL DESIGN

The LAM study generating datasets analysed in Section 3 is summarised in Table I and Figure 1, and the governing

equations for atmospheric dynamics discretised in the WRF model are integrated 48 hours beyond initialisation. Note

that the lateral boundaries of the 10 km domains are not symmetric around the forecast target sites; the steep gradients

of the Norwegian mountains may incur numerical artefacts superposing – and cf. [18] hence potentially distorting –

meteorological features of interest translated from the 30 km domains into the 10 km domains, for the two WRF model

configurations respectively, through the lateral boundary conditions (LBCs) [19] to finer discretisation. In severe cases

2 Wind Energ. 2015; 00:1–16 c© 2015 John Wiley & Sons, Ltd.
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EXPERIMENT ASPECT APPROACH TAKEN

Study period 23 May 2012 to 24 May 2013
LAM employed in the study Advanced Research WRF model [10] version 3.4.1

Dataset generated WRF model forecasts initialised daily at 00 and 12UTC and time-integrated up to 48 hours from initialisation
Locations- and type of forecast reference data Wind farm data from three sites offshore, on the coast in flat terrain, and in heterogenous topography inland

WRF model initialisation and lateral forcing Extracted from operational GFS [7] data available at 0.5◦ horizontal resolution, lateral forcing is three-hourly
Configuration of WRF model runs Two separate same-resolution configurations; 1) covering offshore and coastal sites, 2) covering the inland site

Horizontal resolution in WRF model runs Four computational grids, one-way nested by increasing-resolution order, with 30 km, 10 km, 3.3 km, 1.1 km
Vertical resolution in WRF model runs 40 terrain-following hydrostatic pressure levels up to 50 mb, of which four are within∼100m above the ground

Integration time steps in WRF model runs 120 s on 30 km grids, 40 s (10 km), 13.3 s (3.3 km), and 4.4 s (1.1 km)
Sub-grid scale boundary layer dynamics Parameterised with the Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5 local closure scheme [11, 12]

Modelling of land surface processes Based on the Unified Noah Land Surface Model [13]
Representation of microphysics By the improved Thompson scheme [14]

Simulation of solar radiation Represented according to Dudhia’s method for shortwave radiation [15] and the RRTM for longwave [16]
Cumulus parameterisation Kain-Fritsch’s approach [17] is enabled for 30 km and 10 km domains, no fine-grid cumulus parameterisation

Table I. Outline of the LAM experiment.

Figure 1. The two WRF model configurations employed in the study. Each horizontally-rectangular computational domain delimited
in white is nested within the immediate parent in that lateral boundary conditions deriving from the latter is applied – one-way only –
to the former as time integration progresses. The GFS forces the 30 km grids laterally, cf. Table I. The offshore wind farm, Horns Rev,

is marked with a white bullet, the coastal Rejsby Hede is a white cross, and the inland Stor-Rotliden wind farm a white star.

simulations crash, which in turn exclude forecasts from the dataset and thereby bias conclusions drawn from this study

as extreme weather situations would be underrepresented. Thus the lateral expansion of the 10 km computational domain

boundary beyond the Norwegian mountains.

Further motivation for the particular WRF model configuration employed is given in [20]. An outline of recorded WRF

model forecast data analysed in this study is given in Table II.

2.1. Forecast performance assessment strategy

On the world’s largest day ahead market for power trading the energy auction closes at noon CET [21] and consequently

only forecast leadtimes beyond 12 hours ahead of this deadline are relevant for wind energy scheduling. In order to

resolve forecast leadtime dependency, two daily GFS initialisations are included in the study; 00 and 12 UTC, and

hence three forecast leadtime horizon groups are available to resolve wind speed forecast performance dependency on the
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VERTICAL LEVEL METEOROLOGICAL VARIABLE

For each vertical WRF model layer Wind speed
For each vertical WRF model layer Wind direction
For each vertical WRF model layer Turbulent kinetic energy estimated in the MYNN scheme, cf. Table I

Fluctuating Planetary boundary layer (PBL) height estimated in the MYNN scheme
Interpolated to 2 m AGL Temperature
Interpolated to 2 m AGL Water vapour mixing ratio

Characterising vertical profile of surface layer flow Monin-Obukhov Length derived from the MYNN surface layer parameterisation
At the surface Pressure

Table II. Subset of WRF model variables extracted every 10th minute.

leadtime; namely (12,24], (24,36] and (36,48] hours ahead of forecast initialisation. N.B.: Leadtime-resolved performance

assessment is relaxed in the wind power forecast evaluation, where a single forecast leadtime hour span is considered,

namely hours 12 to 30. Also, in terms of power the 5 hour lag on GFS data availability is accounted for, albeit no additional

delay is assumed for WRF model data availability as this depends on computational resources at disposal.

For a broad overview and accompanying in-depth discussions on forecast validation metrics, the reader is referred to e.g.

[22, 23]. In the present context, two scalar accuracy metrics commonly used in wind speed and power forecast performance

assessment are the root mean square error (RMSE), and the mean absolute error (MAE) [24, 25, 26, 27]. Forecast skill

score in terms of mean square error can be shown [28] to be decomposable into bias (unconditional) and scaling errors

(conditional) contributions, along with a third contribution; the squared Pearson correlation coefficient (PCC). In contrast

to RMSE and MAE, the PCC metric is not sensitive to forecast bias and scaling errors and hence ordinary least square

(OLS) fits to the normal theory [29] linear regression model for wind speed W,

W = c+ wθ + ε, (1)

with intercept c, slope θ, unexplained variation ε, and wind speed predictor w derived from NWP model forecasts and

assumed error-free (cf. e.g. [30]), will have sample PCC equivalent to that for raw w data, when assessed based on

a reference dataset of wind speed measurements w. This invariance to linear transformations is useful for obtaining

information on forecast performance post statistical correction by Eq. (1) — based on the unprocessed forecast data

w. In-sample fitted values for the Eq. (1) model response W are henceforth termed linear least square (LLS) wind

speed, following the convenient naming convention employed in [27]. In summary, forecast performance accuracy metrics

employed include

RMSE =

√√√√√
N∑
i=1

(xi − oi)2

N
MAE =

1

N

N∑

i=1

|xi − oi| PCC =

N∑
i=1

(xi − x̄)(oi − ō)
√

N∑
i=1

(xi − x̄)2

√
N∑
i=1

(oi − ō)2
(2)

with N data points of simultaneously recorded forecast variable x and observation o representing wind speed or power,

and their respective dataset means x̄ and ō. As wind power is usually traded in hourly intervals [31] the wind speed average

in the hour leading up to said time stamp is suitable for the application at hand and hence employed.

2.2. Forecast reference datasets and NWP model variable field extraction

Wind turbine anemometer readings of wind speed are averaged spatially, i.e. across individual-turbine time series data

points, for the three wind farms marked in Figure 1, respectively. In contrast to the case for mast measurements, rapid

smallscale fluctuations that no NWP model is able to accurately capture within a NWP model grid cell are hence evened

out, resulting in a less noisy reference for forecast performance assessment. Out of the yearlong time period considered

99.1 %, 96.7 %, and 94.7 % of the dataset is available post quality control for the offshore Horns Rev (HR), coastal Rejsby
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Hede (RH), and Stor-Rotliden (SR) in complex terrain, respectively. In the GFS dataset consisting of 730 48 hour forecasts

11 of these are missing and hence 11 WRF model forecasts are unavailable in the study. When aligned with the observation

datasets this renders 96.9 %, 94.1 %, and 92.9 % of the data points covered by the time period specified in Table I available

in the study of forecast performance for HR, RH, and SR wind farms, respectively. Details on wind power production

datasets are deferred to Section 3.2 as forecast performance in terms of power is not considered in Section 3.1.

The computational grids in the two WRF model configurations sketched in Figure 1 are designed with a horizontal grid

point at RH and SR coordinates in their separate configurations, respectively, for all model resolutions. The wind turbines

constituting the coastal site, RH, are spread across an area of roughly 1× 2 km2, and hence for this site only WRF model

grid points at the mean-coordinate of the farm-constituent wind turbines are included for all NWP model resolutions. The

offshore and inland sites HR and SR each cover an area around 4× 5 km2 and hence information from horizontal nearest

neighbour computational grid points is considered for WRF model forecasts for these sites. The tricube weight function,

typically an element in local smoothing techniques [32, 33, 34],

wt(x) =





(
r − ‖x− y‖

)3
∑

‖x−y‖<r

(
r − ‖x− y‖

)3 for ‖x− y‖ < r

0 for ‖x− y‖ ≥ r

(3)

is here used to process WRF model variable fields horizontally at the HR and SR sites for comparison to farm-averaged

wind speed measurements. The tricube weight wt(x) is only nonzero when the smoothing radius r is greater than the

Euclidean distance ‖x− y‖ between coordinates x for the grid point to be assigned a weight and the wind farm centre

coordinates y. The r values for HR and SR are estimated by assessing a range of smoothing radii in terms of PCC

performance for each forecast leadtime horizon group and choosing the r optimising performance for each computational

grid resolution, cf. [35]. Horizontal WRF grids at the second, third and fourth vertical WRF model layers are suitable for

comparison to datasets for RH, with wind turbine nacelle anemometers 45 m AGL, for HR this is 70 m AGL, and for SR

at 95 m AGL.

W.r.t. the GFS data, the hub-height datasets for the four horizontally nearest neighbour GFS grid points are bilinearly

interpolated to wind farm coordinates. For the RH site, GFS wind speeds 10 m and 80 m AGL are vertically interpolated

to the 45 m AGL hub-height pertaining to this coastal wind farm according to the logarithmic wind profile [36].

3. RESULTS

Wind power prediction relies on power curve estimation [37] and statistical correction is typically employed, e.g. in terms

of linear correction cf. Eq. (1) or more advanced model output statistics (MOS) [38], and hence RMSE and MAE based on

LLS wind speed rather than raw forecasts are assessed here. For each of the three sites considered, regression modelling

theory prescribes a static relation between the PCC and RMSE accuracy metrics for LLS wind speed forecasts via the

coefficient of determination, cf. e.g. [29]. Table III supports the notion that the relative comparison of computational grid

performance by the PCC accuracy metric for raw forecast data corresponds to that for RMSE post standard processing

by linear correction according to Eq. (1), the latter relying on wind speed measurements. Hence, the PCC is exclusively

applied for wind speed data, while MAE and RMSE are considered for wind power forecast performance assessment in

sections 3.2 and 3.3 as these metrics are customary, cf. Section 2.1, and provide units roughly translatable to monetary

value.
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Computational grid
Leadtime Root mean square error deviation factor Mean absolute error deviation factor

horizon Horns Rev Rejsby Hede Stor-Rotliden Horns Rev Rejsby Hede Stor-Rotliden

GFS 27 km (0.5◦) (12,24] h – – 2.0 – – 2.1

WRF 30 km (12,24] h 6.3 3.4 2.0 5.6 3.1 2.0

WRF 10 km (12,24] h 5.7 3.5 2.1 5.4 2.9 2.2

WRF 3.3 km (12,24] h 5.7 3.4 2.1 5.4 2.5 2.5

WRF 1.1 km (12,24] h 5.7 3.4 – 5.3 2.5 –

GFS 27 km (0.5◦) (24,36] h – – 1.7 – – 1.6

WRF 30 km (24,36] h 3.8 2.5 1.7 3.8 2.4 1.6

WRF 10 km (24,36] h 3.7 2.5 1.7 3.2 2.2 1.8

WRF 3.3 km (24,36] h 3.6 2.5 1.8 3.2 2.0 1.9

WRF 1.1km (24,36] h 3.6 2.5 – 3.1 2.1 –

GFS 27 km (0.5◦) (36,48] h – – 1.2 – – 1.8

WRF 30 km (36,48] h 2.7 2.1 1.2 3.2 2.3 1.2

WRF 10 km (36,48] h 2.7 2.1 1.2 2.8 2.2 1.3

WRF 3.3 km (36,48] h 2.6 2.1 1.3 2.7 2.1 1.2

WRF 1.1 km (36,48] h 2.6 2.1 – 2.7 2.1 –

Table III. Percentagewise deviation from the best performing computational grid (best accuracy defines 100%) in terms of RMSE and
MAE, respectively, divided by percentagewise deviation from the best performing computational grid in terms of PCC.

3.1. Forecast performance

The analysis strategy described in Section 2.1 hinges on the implicit assumption that performance of forecasts initialised

12 UTC is comparable to that of 00 UTC forecasts. In order to verify this, the PCC is computed separately for 00 and

12 UTC forecasts and the results are shown in Figure 2, along with performance for the dataset of chronologically

augmented 00 and 12 UTC forecasts. Upon splitting the dataset in forecast initialisation times each forecast leadtime

group becomes confined to mutually exclusive half-day time periods; namely the 00–12 and 12–24 UTC hours of the day.

That is, e.g. forecast leadtime group (24,36] h for 12 UTC forecasts represents only daily UTC hours 12 to 24, never 00

to 12. Under the assumption of no systematic influence of interactions between forecast leadtime group L, time of the day

T , and forecast initialisation time I on forecast PCC performance, the analysis of variance model M with no interactions

(see e.g. [29])

M = Li + Tj + Ik + εijk





i = 1, 2, 3

j = 1, 2

k = 1, 2

(4)

can provide a rough PCC assessment of the extent to which forecasts initialised 00 and 12 UTC can be used interchangably,

as assumed when augmenting these in the dataset underlying all analyses carried out in both parts of this work, cf. Section

2.1. Defining the model baseline≡ L1 + T1 + I1, that is; forecast leadtime group (12,24] h, time of the day midnight to

noon UTC, and initialisation time 00 UTC, the results shown in Table IV indicate whether L, T and I have significant

impact on forecast performance in terms of the PCC. Note that the PCC contribution from the time of the day T is larger

than the Eq. (4) model residual standard deviation for all three respective sites, while for forecast initialisation time I this

is only the case for the GFS at the offshore (HR) and coastal (RH) sites, as well as the coarsest WRF model domain at

the coastal wind farm RH. Hence, Eq. (4) OLS fits to forecast data derived from NWPs on each of the five computational

grid resolutions cannot consistently support the assumption that 00 and 12 UTC forecast initialisations are distinguishable

when assessed within the framework of Section 2.1.

For the offshore HR and coastal RH sites, Figure 2 exhibits performance decrease relative to the GFS data for all WRF

model resolutions; to better understand the modelling challenges underlying the adverse LAM performance bulk metric

assessment of Figure 2, three illustrative forecast examples are shown in Figure 3. Figure 3a demonstrates consistent WRF

modelled wind speed phase and magnitude correction increase as model resolution improves, while Figure 3b, from a

few days later, shows the opposite tendency. However, weather conditions are similar for both of these July datasets in
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(a) Offshore; HR.
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Figure 2. Wind speed forecast performance. Left: Assessment according to the three forecast leadtime groups, cf. Section 2.1. Right:
Separate assessment for 00 and 12UTC forecast initialisations, cf. Section 3.1.

that the temporal development at both occasions involves abrupt wind direction change from steady south-southeasterly to

westerly around ∼20–25 hours forecast leadtime. As this study concerns LAM forecast performance assessment based on

a yearlong dataset, a more detailed case study focusing on the performance-discrepancy identified for these days in July

2012 is not pursued. For Figure 3c each NWP model resolution increase brings additional wind direction distortion around

northerly flow after leadtime hour 30. The high-resolution WRF model grids clearly pick up observed rapidly fluctuating

dynamics not reproduced at coarser resolution, albeit slightly off in phase. As namely Figure 3c illustrates, scalar accuracy

metrics like the PCC penalise the more detailed representation of atmospheric advection relative to the case for coarser,

less volatile forecasts, due to relatively minor phase, amplitude, and temporal dilation errors. In this context, alternative

LAM forecast value extraction concerning wind energy scheduling is discussed in Part II of this work [39].
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Site
Modelled

Baseline H = (24,36] h H = (36,48] h T =
12-24 h

I = 12 UTC
Standard deviation for

dataset UTC the six model residuals

GFS 27km (0.5◦) 0.911 −0.031 −0.068 0.009 0.007 0.001

WRF 30km 0.905 −0.043 −0.092 0.018 0.003 0.007

WRF 10km 0.897 −0.044 −0.090 0.022 0.007 0.008

WRF 3.3km 0.897 −0.048 −0.092 0.019 0.006 0.006

HR

WRF 1.1km 0.896 −0.048 −0.092 0.018 0.004 0.005

GFS 27km (0.5◦) 0.866 −0.029 −0.056 0.010 0.013 0.003

WRF 30km 0.853 −0.041 −0.077 0.013 0.006 0.002

WRF 10km 0.857 −0.041 −0.076 0.013 0.005 0.005

WRF 3.3km 0.855 −0.036 −0.070 0.008 0.003 0.007

RH

WRF 1.1km 0.851 −0.037 −0.070 0.014 0.002 0.005

GFS 27km (0.5◦) 0.819 −0.024 −0.061 −0.039 0.012 0.019

WRF 30km 0.808 −0.030 −0.077 −0.043 −0.003 0.018

WRF 10km 0.823 −0.024 −0.080 −0.047 0.001 0.021

WRF 3.3km 0.839 −0.024 −0.082 −0.042 −0.001 0.017

SR

WRF 1.1km 0.844 −0.028 −0.079 −0.032 0.001 0.016

Table IV. Eq. (4) model fits to PCC data for the three sites, respectively.
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Figure 3. Time series of measured and forecasted wind speed illustrating (a) added value from WRF modelling at the HR site, (b)
exhibits for the same site WRF model introduction of phase error not present in the GFS data, while (c) displays weather conditions
subject to high-frequency fluctuations at RH. The grey dash-dotted horizontal lines roughly delimit full wind farm production and
no production, respectively. Note that the raw 10 minute dataset is shown here for better illustration of rapid atmospheric dynamics

represented in the WRF model simulations, rather than the hourly data employed in forecast performance assessment results.

3.2. The impact of temporal smoothing on forecast performance

Scalar accuracy metrics (2) assess the feasibility of NWP model input for wind energy scheduling, and thus GCM and

LAM forecasts are typically processed to maximise performance in terms of such metrics prior to downstream decision

making. For background literature on statistical modelling techniques for enhancing operational weather forecast value,

the reader is referred to e.g. [40] for running-mean bias correction, [41] authors apply a Kalman filter (KF) approach, [42]

study the performance of an analog scheme as well as the KF, and e.g. [43] employ MOS. Several studies compare these

approaches [44, 24, 45], along with e.g. artificial neural networks modelling [27].

In contrast to the case in the studies just mentioned, the forecast performance enhancement approach employed in this

section does not rely on previous data in that the performance impact of evening out slight temporal phase and dilation
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Figure 4. Forecast performance as a function of temporal smoothing bandwidth r according to (a) Eq. (3), i.e. zero order local
polynomial smoothing, and (b) post first order local polynomial smoothing, cf. [33]. Top row: HR, middle row: RH, bottom row: SR.

Data prior to leadtime hour 12 is included in the smoothing processes, while data after leadtime hour 48 is not available.

errors is assessed, which involves current forecast data only. This is motivated by the forecast performance results presented

in Section 3.1, namely Figure 3, indicating that temporal phase and dilation errors distort value extraction in terms of PCC.

Hence, subject to PCC and RMSE accuracy metrics, forecasts that largely capture observed dynamics – though with more

or less severe timing errors – may only achieve performance similar to e.g. the naı̈ve benchmark proposed in [46], gradually

shifting weight from persistence to climatology as forecast leadtime increases.

The tricube weight function of Section 2.2 is now employed for temporal smoothing of individual wind speed forecasts.

Hence, r of Eq. (3) here denotes a temporal smoothing window halfwidth, y is now a scalar y denoting the time stamp to

be smoothed, and function argument x is a scalar x covering all time stamps of the forecast at hand. Figure 4 shows that
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Site Computational grid
Root mean square error [%] Mean absolute error [%]

Raw Smoothed Improvement Raw Smoothed Improvement

GFS 27km (0.5◦) 18.04 17.93 0.11 12.89 12.83 0.06

WRF 30km 19.72 19.27 0.45 14.19 13.79 0.40

WRF 10km 20.22 19.46 0.76 14.58 13.86 0.72

WRF 3.3km 20.49 19.70 0.79 14.79 14.08 0.71

HR

WRF 1.1km 20.58 19.78 0.80 14.86 14.16 0.70

GFS 27km (0.5◦) 11.97 11.75 0.22 8.42 8.33 0.09

WRF 30km 13.46 12.99 0.47 9.62 9.23 0.39

WRF 10km 13.50 12.91 0.59 9.57 9.10 0.47

WRF 3.3km 13.63 12.86 0.77 9.66 9.10 0.56

RH

WRF 1.1km 13.68 12.86 0.82 9.70 9.10 0.60

GFS 27km (0.5◦) 17.42 17.31 0.11 13.25 13.16 0.09

WRF 30km 18.26 17.79 0.47 13.97 13.56 0.41

WRF 10km 18.17 17.51 0.66 13.92 13.42 0.50

WRF 3.3km 17.94 17.21 0.73 13.77 13.19 0.58

SR

WRF 1.1km 17.66 16.88 0.78 13.47 12.85 0.62

Table V. Capacity-relative wind power forecast [49, 50] performance on the (12,30] h leadtime subject to r = 7 hour temporal wind
speed forecast smoothing by Eq. (3) for HR (capacity 160 MW), RH (23.4 MW), and SR (77.8 MW) wind farms. The first three months
are discarded as spinup in this WPPT setup for GFS/WRF input. N.b. that the standard WPPT setup involves a handfull NWP sources.

optimal improvement from temporal smoothing by Eq. (3) is attainable for r ∼ 7 hours, as do corresponding results for

MAE and RMSE based on LLS wind speed forecast data (not shown). Note that first order local polynomial regression

smoothing [33] provides slightly higher peak performance for all WRF model resolutions at horizon (36,48] h for the HR

and RH sites, while the converse is true for SR, an effect the authors attribute to different boundary bias implications for

the two smoothing approaches (no forecast data beyond 48 h).

Section 2.2 outlines the wind speed dataset used in this article and in [39]. By the same token, corresponding reference

datasets for assessment of wind power forecast performance are based on 96.2 %, 95.8 %, and 77.7 % complete datasets

for HR, RH, and SR wind farms, respectively. The relatively severe dataset reduction for the Swedish site is due to icing

events – a current frontline research topic treated e.g. in [47] – reducing the power yield during winter, which in turn

complicates power curve estimation [48, 37]; a crucial modelling step in the Wind Power Prediction Tool (WPPT) [49, 50]

employed in this section and Section 3.3, as in all wind power forecast models relying on input derived from NWP models.

Hence, data points digressing severely from the underlying power curve in wind turbine nacelle anemometer readings vs.

power production scatter plots are attributed to icing and removed from the dataset, see [20] for further details on the

processing of the wind farm data. As mentioned in the introduction, GFS forecasts are available with a∼5 hour delay from

forecast initialisation time operationally, and the recursive and adaptive WPPT generates forecasts every hour accounting

for the latest wind farm measurements in a computationally efficient manner (recursive) and applying recent data with

exponentially decaying weight as a function of temporal distance to the current time stamp (adaptive). With the additional

lag due to unavailability of NWP model forecasts issued every hour, the upper forecast leadtime consistently evaluatable

(no missing data points for each hourly power forecast) is limited to hour 30 ahead of wind power forecast initialisation.

Furthermore, the first three months are discarded as WPPT spinup (unreliable output during initial WPPT parameter

estimation) and hence the yearly period evaluated for wind speed becomes subyearly for wind power, yet fully covering

the most productive part of the year for the sites studied; Northern Hemisphere autumn, winter and spring.

Table V shows the impact of temporal smoothing by Eq. (3) applied to wind speed forecasts (i.e. local zero order

polynomial smoothing, cf. Figure 4a) in terms of wind power forecast accuracy. A small improvement is observed for

GFS data, available at three-hourly resolution, and for WRF model data resolved as 10 minute output, and averaged

to hourly data, the impact almost consistently (except for HR/SR MAE; likely due to the spatial smoothing for high-

resolution WRF model grids for these sites, cf. [35, 20]) increases with weather model resolution. This substantiates the

idea of severe performance penalty from slight phase errors and temporal dilation, as Figure 3 hints, in otherwise largely

correct descriptions of atmospheric dynamics. As noted last in Section 3.1 alternative forecast evaluation w.r.t. wind energy

scheduling is carried out in the Part II of this work [39].
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Figure 5. Forecast performance post processing according to Eq. (5) for six z candidates.

3.3. Potential forecast performance increase from conditional parametric modelling

As an extension to the multiple linear regression framework underlying MOS, cf. e.g. the work cited in the brief literature

review opening Section 3.2, potential wind speed forecast value from accounting for nonlinear coupling to other LAM

variables is here considered. The governing equations for atmospheric dynamics as represented in the WRF model involve

complex mathematical relations between the prognostic and diagnostic variables of the discretised NWP formulation, and

sub-grid scale parameterised processes such as e.g. atmospheric turbulence; composed of heat-, moisture- and momentum

fluxes [51].

In traditional regression modelling for prediction purposes, estimates of intercept and coefficients are inferred from

a model training dataset and coefficients such as θ in Eq. (1) are considered unknown constants, whereas conditional

parametric modelling frameworks allow for θ dependencies. The conditional parametric analogue to Eq. (1) considered
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Site
Comp. Root mean square error improvement [%] Mean absolute error improvement [%]

grid PBLH P T M TKE MOL PBLH P T M TKE MOL

30 km 0.32 0.73 0.89 0.92 0.39 0.40 0.24 0.77 1.00 1.02 0.42 0.35

10 km 0.44 0.63 0.90 0.56 0.32 0.24 0.37 0.69 0.91 0.75 0.36 0.18

3.3 km 0.40 0.65 1.17 0.65 0.40 0.26 0.44 0.65 1.04 0.66 0.47 0.21
HR

1.1 km 0.52 0.62 0.95 0.66 0.43 0.22 0.64 0.58 0.91 0.74 0.48 0.18

30 km −1.04 0.69 −0.41 −0.66 −0.96 −1.06 −1.49 −0.15 −1.57 −2.02 −1.50 −2.09

10 km −0.62 1.67 −0.37 −0.47 −0.28 −0.66 −0.95 0.68 −1.38 −1.76 −0.83 −1.35

3.3 km −0.82 1.98 −0.13 −0.33 −0.37 −0.46 −1.22 0.97 −1.12 −1.49 −0.76 −1.12
RH

1.1 km −0.86 1.67 −0.10 −0.48 −0.16 −0.37 −1.38 0.59 −1.20 −1.74 −0.60 −0.99

30 km 0.93 1.24 0.80 0.67 2.13 2.03 0.93 1.20 1.08 1.00 1.94 2.06

10 km 1.60 0.87 1.53 0.74 2.40 2.22 1.41 0.59 1.58 0.86 2.31 2.17

3.3 km 1.74 0.80 1.84 1.18 1.94 1.44 1.68 0.75 1.87 1.12 1.92 1.43
SR

1.1 km 1.52 0.91 1.77 1.05 1.38 1.17 1.50 0.84 1.86 0.89 1.41 1.15

Table VI. Wind power forecast performance improvement from Eq. (5) preprocessed wind speed forecasts for WRF model derived z

candidates PBL height (PBLH), surface pressure (P), temperature 2m AGL (T), moisture 2m AGL (M), turbulent kinetic energy (TKE),
and Monin-Obukhov length (MOL). As in Table V the (12,30] h leadtime is considered and the first three months of the dataset are
discarded as spinup of the WPPT setup for GFS/WRF input. N.b. that the standard WPPT setup involves a handfull NWP sources.

here,

W = xθ(z) + ε, (5)

involves the additional predictor z, on which θ is assumed to depend smoothly. Based on analytical θ(z) estimates [52],

corresponding to OLS θ estimates for Eq. (1), the extent to which each prognostic or diagnostic LAM variable z couples

to wind speed forecast error is gauged by means of local polynomial regression smoothing [33] for construction of a

lookup table mapping z to θ. Note that the procedure applied does not allow for a constant intercept, cf. c in Eq. (1),

so LLS wind speed is substituted for x rather than raw wind speed forecast data in order to avoid WRF model bias

thwarting inference on z predictor value. A broad range of WRF model aspects of potential systematic explanatory value

for advection predictability are studied, a brief description of the particular variables considered ensues.

In WRF model version 3.4.1 potential temperature and water vapour mixing ratio are prognostic variables, while Monin-

Obukhov length (MOL) and turbulent kinetic energy (TKE) are respectively examples of a surface layer parameterisation

diagnostic [53] and an additional prognostic variable introduced via the MYNN PBL parameterisation; cf. Table I

and references therein. Potential temperature is nonlinearly coupled to thermodynamic (or absolute) temperature via

atmospheric pressure, and the PBL height is a diagnostic of the MYNN scheme.

PCC improvement resulting from separate Eq. (5) fits for each of these z candidates is shown in Figure 5, illustrating

systematic coupling to wind speed forecast error in the WRF model configuration employed. Zero, first, and second order

local polynomial smoothing yields similar PCC improvement as a function of the nearest neighbour fraction bandwidth

(not shown), cf. the alternative fixed-distance bandwidth of Eq. (3). Zero order local polynomial smoothing is employed,

and the nearest neighbour fraction producing peak performance underlies results in Figure 5 and Table VI.

Cross validating [54] the modelling approach, e.g. according to the special case of reserving one year of data for model

training (in-sample) and using data for the subsequent year for prediction (i.e. out-of-sample evaluation), is nontrivial

since all possible z values must be covered during θ(z) fitting, although realtime remapping to z lookup table boundary

values could provide a technical fix. However, with a relatively short single-year dataset and due to support found in the

literature [55] pro an in-sample evaluation strategy for assessment of linear regression model predictive ability, inference

on z value for wind speed forecast processing by Eq. (5) is based on training and testing on the same, full-year dataset,

which entails that results shown in Figure 5 and Table VI reflect the upper bound on attainable performance increase for

Eq. (5) assessment based on this particular dataset.

Note, in Figure 5, that the relative improvement from statistical modelling by Eq. (5) generally increases with forecast

leadtime, and that prognostic WRF model variables appear to contribute more corrective value than do variables derived
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from sub-grid scale parameterisations. Inland, at the SR site, the relative improvement is larger for coarser WRF model

resolutions. A curious discrepancy is observed for the coastal site, RH, in that Figure 5 suggests an Eq. (5) enhancement

factor in between HR and SR, while all z candidates – except pressure – deteriorate forecast performance in terms of wind

power, cf. Table VI. A key challenge in the WPPT, as in other statistical wind power forecast models [37], is to model

accurately the relation between atmospheric flow and wind turbine generation. Figure 5 and Table VI together indicate

that non-pressure z predictors in Eq. (5) result in inflated scatter around the RH wind farm power curve, thus impeding

accurate power curve modelling which is most sensitive in the steep region for ∼7–10 m/s wind speeds (non-summer

months), while the adverse wind speed spread is dominated by the explanatory effect for the in-sample assessment of wind

speed forecast performance in Figure 5 (full year dataset).

4. CONCLUSION

For the offshore and coastal wind farms studied, the LAM configuration used is found to deteriorate forecast performance

relative to that of the GCM providing initialisation and LBCs. In contrast, consistent LAM forecast improvement is found

for the wind farm inland for each consequetive spatio-temporal resolution increase, superior to the forcing GCM data at

the highest LAM resolutions. However, this picture is not preserved when assessing performance in terms wind power

subject to operational conditions. Though, with temporal smoothing of forecasts, performance inland is found to leverage

scalar accuracy metrics for the high-resolution LAM data beyond GCM performance, while LAM performance remains

inferior to that of the GCM offshore and on the coast. Note, however, that proper comparative GCM/LAM performance

assessment should be subject to an additional LAM forecast leadtime lag, depending on the wall-clock time attainable for

the particular limited area forecasting system in question. Finally, conditional parametric modelling of nonlinear coupling

of simulated atmospheric variables to the wind speed forecast error indicates that the prognostic variables considered –

temperature and moisture – are most promising for offshore wind power forecast enhancement, while only surface pressure

modelling has non-deteriorating impact for the coastal site. Inland, TKE and MOL appear more promising as predictors

w.r.t. semi-parametric MOS modelling for wind energy scheduling.

GCM data represents the atmospheric fluid spanning the globe, and simulated meteorological fields are plausibly off

by a few km in any geographical location now and then, as further substantiated e.g. in Part II of this work [39]. To

improve upon LAM predictability by scalar accuracy metrics of interest in wind energy scheduling, studies of the extent

to which realtime assimilation of atmospheric measurements to initialise forecasts for the target region should be carried

out, as doing this would serve to nudge GCM forcing data towards the spatio-temporal trajectories observed locally, when

translated to LAM grids.
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ABSTRACT

Aspects of the simulated wind speed fluctuations are assessed for different model resolutions in terms of spectra, phase,

atmospheric stability, ramp events, and predictability of uncertainty, based on a year’s twice-daily 48 hour forecasts for

three wind farm sites offshore, coastal and inland. Forecast time series are generated using the Weather Research and

Forecasting (WRF) model forced by Global Forecast System (GFS) data. Modelled fluctuation spectra are found to

approach spectra based on measurements as WRF model resolution increases, yet it is also shown that wind speed forecasts

lag behind measurements as a function of model integration time. In terms of the Critical Success Index ramp event forecast

performance improves with WRF model resolution, and wind speed uncertainty is shown to relate near-linearly to the

logarithm of forecasted wind speed variability offshore and on the coast, albeit not inland. Copyright c© 2015 John Wiley

& Sons, Ltd.
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1. INTRODUCTION

The feasibility of wind energy as the power supply backbone of the future hinges on day ahead predictability of this

renewable resource [1]. Point forecasts for wind energy scheduling concern power predictions based on numerical weather
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prediction (NWP) data, and knowledge of the associated forecast uncertainty constitute valuable input for efficient trading

of green energy on spot markets [2], modelling of necessary power reserves for the electrical grid [3], and optimal power

auction bidding strategies [4]. Extensive reviews of different strategies for associating point forecasts of wind power with

uncertainty estimates can be found in [5, 6, 7], involving e.g. the concepts of an uncertainty risk index [8], probabilistic

prediction [9], and wind power production scenarios [10]. In this work, the potential of forecasted wind speed variability

as a wind power uncertainty predictor is established, and the performance of high-resolution limited area forecasting of

wind speed found quantified in [11] in terms of scalar accuracy metrics is readdressed in terms of wind speed ramp

object evaluation — another forecasting aspect of interest for wind energy scheduling. In the past, the adverse impacts of

such events were less important, though with the present day large average wind farm capacities onshore, and offshore in

particular, the wind power feed into the electrical grid can suddenly increase or decrease by several GW [7].

The analysis strategy outlined in Section 3 starts out with a framework for preliminary probing of NWP model

deficiency, before discussing wind speed ramp objects and forecast uncertainty in more detail. Results are presented in

Section 4, followed by the conclusion in Section 5.

2. DATA

The dataset studied is described in detail in [11], a brief outline ensues. Two configurations of the Weather Research and

Forecasting (WRF) model [12] focus on 1) two Danish wind farms; Horns Rev (HR) and Rejsby Hede (RH), and 2) a wind

farm in central Sweden; Stor-Rotliden (SR), and forecasts are validated against wind farm averaged turbine anemometer

readings from the three sites, respectively. Aside from slightly differing numbers of horizontal grid points and geographical

regions covered, the two WRF model configurations are identical. The separate configurations have four computational

grids, each with 40 vertical levels covering up to 50 mb altitude (∼20 km above ground level), propagating dynamics one-

way from the outermost domain at 30 km horizontal resolution to a finer grid of 10 km, onwards to a grid of 3.3 km, to the

innermost grid at 1.1 km horizontal resolution. As the horizontal resolution, the governing equations are integrated with

a time step that increases by a factor of three for each WRF model nesting level; from 2 minutes on 30 km grids down to

∼4 s for the 1.1 km grid. 48 hour WRF model forecasts for 00 and 12 UTC are initialised daily from operational Global

Forecast System (GFS) [13] forecasts, and the two 30 km computational domains are forced laterally every three hours

with GFS forecast data. WRF model output is saved at 10 minute temporal resolution.

The WRF model configuration employed in this study parameterises sub-grid scale planetary boundary layer processes

according to the Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5 local closure scheme [14, 15], which extends the

governing equations of the WRF model core [12] with an additional prognostic equation describing the evolution of the

turbulent kinetic energy in the atmosphere. Cf. e.g. [16] for a concise overview and application of different closures.

WRF model output analysed in this study is outlined in Table I.

VERTICAL LEVEL METEOROLOGICAL VARIABLE

For each vertical WRF model layer Wind speed
For each vertical WRF model layer Wind speed standard deviation based on data points at each integration step between output times

Characterising vertical profile of surface layer flow Monin-Obukhov Length derived from the MYNN surface layer parameterisation

Table I. Subset of WRF model variables extracted every 10th minute.

3. PRACTICAL ASPECTS OF WIND SPEED VARIATION — AN ANALYSIS STRATEGY

Variability and uncertainty can be viewed as two aspects of variation [17]. Throughout this work,

2 Wind Energ. 2015; 00:1–18 c© 2015 John Wiley & Sons, Ltd.
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• wind speed variability is taken to refer to spectral, dichotomous, and standard deviation measures of temporal

fluctuations in forecast and observation data separately, whereas

• wind speed uncertainty refers to the extent to which forecasts are accurate, as quantified by the standard deviation

of the forecast error.

Sections 3.1 through 3.3 concern variability only and extends the forecast performance assessment based on scalar metrics

in [11] by evaluation in terms of spectra and a meteorological object type of interest for wind energy scheduling; ramp

events. Last, Section 3.4 addresses whether simulated variability can predict forecast uncertainty, cf. Section 1.

3.1. Decomposition of temporal variability in terms of spectral properties

Power spectral density for each forecast is estimated in order to probe the extent to which fluctuation frequency and

amplitude of simulated wind speed time series matches observations. Such discrete spectra are termed periodograms [18],

here denoted P , and the evaluation in the present context relies on interpretation of wind speed datasets for individual

forecasts, with temporal resolution t spanning the time period T covered by leadtime hours 12 to 48, as truncated (infinite)

stationary signals (i.e. periodicity is assumed), each with N = T
t

wind speed data points. For each of these datasets the

unitary discrete Fourier transform (DFT),

F(ωk) = N−
1
2

N−1∑

n=0

xn exp (−iωktn) with ωk =
2πk

Nt
, tn = tn, and k = 0, 1, . . . , N − 1 (1)

is evaluated for each spectral data point counter (i.e. fluctuation frequency index) k. That is, the DFT quantifies the

similarity of the wind speed time series xn to sinusoid waves with angular frequencies ωk, respectively, cf. e.g. the

underlying mathematics of the sample Pearson correlation coefficient (PCC; r) for measured mn and forecasted fn wind

speed;

r =

N∑
n=1

(
fi − f

)(
mi −m

)

√
N∑
n=1

(
fi − f

)2
√

N∑
n=1

(
mi −m

)2

widely employed for forecast performance assessment in [11]. With Eq. (1) evaluation by the fast Fourier transform

algorithm [19], periodograms for individual-forecast datasets of observed and forecasted wind speed can be estimated,

cf. e.g. [20] (n.b. only a single signal segment is considered in this context);

P(ωk) = |F(ωk)|2, F(ωk) ∈ CN , (2)

and power spectral densities for observed and forecasted wind speed datasets are estimated by averaging individual spectra

for complete measurement-forecast dataset pairs. Note that the discrete spectrum resulting from Eq. (2) evaluation is

equivalent to the DFT of the autocovariance corresponding to the respective xn time series.

3.2. Forecast phase offset relative to measurements as a function of weather model integration time

The extent to which the WRF modelled fluctuation timing reflects observed fluctuations is assessed based on PCC

calculation for forecasts vs. measurements subject to measurement time stamp displacement by±3 hours. The investigation

is supplemented with inspection of the modelled boundary layer stability (see e.g. [21]), as quantified in terms of the

Monin-Obukhov length [22];

L = − u3
∗Tv

κg w′T ′v
(3)
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with u∗ denoting the friction velocity, Tv average virtual potential temperature, κ the von Kármán constant, and w′T ′v
the surface virtual potential temperature flux; i.e. the covariance of Tv with vertical velocity w, the upper single quote ′

denoting perturbations from the mean quantities T v and w = 0, respectively. The classification employed is displayed in

Table II

Monin-Obukhov length Classication of the boundary layer

0 < L < 500 stable
|L| > 500 neutral

−500 < L < 0 unstable

Table II. Classification of atmospheric stability.

Roughly put, atmospheric stability pertains to the balance between downwards mechanically hurled turbulent flow due

to friction induced by topography-dependent surface drag on horizontal advection, and upwards directed turbulent flow

forced by thermal buoyancy as daytime heating of the ground is re-emitted as infrared radiation. When the former prevails

over the latter the atmospheric boundary layer is said to be stable and surface processes have little effect on wind speeds

aloft, while dominating thermal buoyancy characterises unstable conditions during which laminar flow aloft is disrupted

to a greater extent. In neutral conditions the two vertical forcings approximately cancel such that an air parcel at a certain

height will by and large remain at said height as a function of time. Hence, any dependence of simulated L on WRF model

integration time may provide additional insight.

3.3. Predictability of ramp type fluctuations with implications for wind energy scheduling

In this work ramp refers to a temporally steady wind speed increase (up-ramp) or decrease (down-ramp), occuring within

a time span of up to eight hours duration. Ramps traversing parts of the steepest region of typical wind farm power

curves (i.e.∼5–12 m/s) pose a critical challenge for transmission system operators (TSOs) and stakeholders alike, and day

ahead knowledge of ramp events constitutes valuable input for wind energy scheduling and hence supports power grid

stability [7]. A study related to this work [23], likewise employing the WRF ARW core [12] for wind energy scheduling

applications, indicates that the MYNN 2.5 order local closure parameterisation is among the PBL schemes best capable of

representing fast ramp events as observed in practice; a contributing factor to the selection of this scheme in the present

study.

Based on ideas and empirical parameter choices put forth in previous work, a ramp detection algorithm is here developed

and evaluated for the dataset at hand, in order to extend with object-based verification the scalar accuracy metric assessment

of WRF model forecast value presented in [11]. Features of the approach employed are highlighted as bullet points. One

study [24] restricts ramp event duration to 2 hours and find no consistent superiority of the computationally higher resolved

MM5 model (the WRF model predecessor) forecasts in detecting ramps accurately in their hourly dataset. Upon relaxing

the requirement of exact temporal overlap the high-resolution forecasts’ performance improved for both meridional and

zonal wind speed components.

• In the context of this work, observed and forecasted ramps must occur within a margin of a few hours apart as prior

knowledge of ramps much off in time of occurence are of little use in operational wind energy scheduling.

Furthermore, the study [24] employs separate MM5 model runs for performance comparison of different resolutions.

• Resolution comparison here is based on WRF configurations with one-way interacting nested computational

domains, cf. Section 2.

This ensures that the exact same GFS forcing is applied at the lateral boundaries of the outermost domains of the WRF

model configurations. Another study [25] defines a wind power ramp object as a change of more than 50 % of full wind

farm capacity within 4 hours, while a third study [26] specifies a change of 75 % within a 3 hours time span.
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• The aim here is not to evaluate ramp forecast performance for particular end-user requirements, e.g. by strictly

confining attention to ramps of a singly-defined duration. Rather, a more broad insight is pursued by validating

ramp object simulation across several spatio-temporal WRF model resolutions for a range of ramp durations.

Further sophistication in the form of having the ramp wind speed threshold scale with the event duration, as in the

approaches taken e.g. in [27, 28], would entail selection of a suitable scaling parameter and is therefore avoided. The

fixed change of 50 % wind farm capacity used e.g. in [25, 29] is adopted here as this appears to be a common threshold

choice. Based on power curves derived from historical nacelle measurements of wind speed and power production for the

three wind farms studied here,

• a ramp threshold of 5 m/s is employed, which roughly corresponds to a power change of at least 50 % of full wind

farm capacity within the finite-slope power curve regime.

Where [24] used the wind speed difference between end-points of sliding time-windows 2 hours wide to identify ramp

objects, an alternative approach is employed here due to the following technical implications. For a sinus curve signal

sin(ω) spanning ω ∈ [0, π], a window width differing from π
2

would detect no ramp objects of threshold 1, while for

window width π
2

an up-ramp and a down-ramp would be identified for sin(ω), provided the time series has a data point

exactly at π
2

. In theory, the precise ramp-duration filtering of the end-points approach employed in [24] is an unambiguous

advantage, though in this study of relatively high (10 minute) temporal resolution fluctuations near the ramp beginning and

end may lead to identification of multiple ramp objects closely spaced in time, in practice representing the same event.

Which temporal distance should be used to infer whether ramp events occuring temporally close are in fact the same event?

Given that durations of such forecasted ramp objects do not temporally match exactly, which one applies in the event of

only a single observed corresponding ramp? Should an observed ramp object of 2 hours duration be considered missed

by a forecasted ramp occuring at overlapping time stamps, yet of 3 hours duration? In order to simplify the complexity

entailing the end-points approach, an idea implemented e.g. in [27] is pursued here;

• rather than letting the sliding ramp-screening window end-points define ramp bounds, the difference between

maximum and minimum wind speed values instead defines the ramp magnitude and is compared to the threshold

defined to determine whether it is an event of interest.

This choice of ramp definition consequently relaxes the precise ramp-duration filtering exercised in the end-points approach

to inclusion of all ramps of duration up till the specified time window width. However, the issues discussed in the previous

paragraph vanish, in that multiple forecasted ramps for a single observed event can no longer occur and a forecasted ramp

of 3 hours duration covering the temporal span of an observed ramp of only 2 hours duration is now recorded as a correct

forecast, in contrast to the case subject to the end-points classification algorithm. Despite these theoretical concerns, a

study evaluating the end-points and maximum/minimum methods, albeit with ramp threshold scaling with event duration,

arrived at similar results for the two ramp definitions applied to a dataset of 5-minute wind power time series [30]. That

said, many authors do seem to prefer the definition involving detection of a maximum/minimum above the end-points

definition for wind energy ramp research [25, 31, 26, 27].

One way to determine whether an observed ramp event is forecasted is to assign a single time stamp to the observed

ramp and any forecasted ramps, respectively, and determine the temporal distance(s), ∆t, between forecasted events and

the observed event. Hence, an empirical choice must be made with regard to the magnitude of ∆t. Furthermore, if the ramp

durations of observed and forecasted ramps are different the long-duration object median time stamp may be far from that

of the short duration object, despite overlapping time stamps prior to single-time stamp assignment. Alternatively, using

the intersection of observed and forecasted ramp event time stamps spanning each object avoids the need for an empirical

∆t choice as well as ramp duration dependencies. Hence,

• an observed ramp is assessed correctly forecasted if the time stamps constituting the object reccur in a forecasted

ramp object, provided observed and forecasted ramps are both either up- or down-ramps.
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The forecast assessment in terms of ramp object data is summarised as dichotomous tri-category counts according to

the procedure outlined in Table IV, cf. Table III.

OBSERVED NOT OBSERVED

FORECASTED Hits False alarms
NOT FORECASTED Misses Correct misses (n/a)

Table III. Contingency table of dichotomous categories employed for ramp object forecast performance assessment.

The results are further assessed in terms of Eqs. (4-6).

Accuracy =
Hits

Hits + False alarms
(4)

Capture =
Hits

Hits + Misses
(5)

Critical Success Index

(a.k.a. Threat Score)
=

Hits
Hits + False alarms + Misses

(6)

Data: Wind speed dataset @10 minute resolution:
• Wind farm average of turbine anemometer readings
• WRF model forecasts @ horizontal resolutions 30 km, 10 km, 3.3 km, and 1.1 km

Result: Quantification of ramp object hits, misses, and false alarms, cf. Table III

function A: IDENTIFY RAMP TIME STAMPS(input time series, screening-window width, threshold=5 m/s)
Assess for each data point, ± the nearest-neighbour data points within and including a temporal distance
of half the screening-window width, whether the absolute value of maximum minus minimum wind speed
exceeds the specified threshold, distinguishing up- and down-ramps with separate labels.
return time stamps for which ramps are identified

end function
function B: COLLAPSE OBSERVED COHERENT RAMP TIME STAMPS TO THEIR MEDIAN(function A output)

Time stamps spanning observed ramps can extend across the temporal forecast limits at leadtime hours 12 and 48.
Hence, this function is used in function C to determine whether the forecast in question contains the majority of
an observed ramp object; i.e. whether the function A output should be assigned occurence within the leadtime hour span
12 to 48 of said forecast. If not, the observed ramp object is disregarded when the forecast in question is assessed.
function B is also applied in function C during ramp object classification as hit, miss or false alarm, cf. Table III.
return assignment of a single time stamp to coherent ramp time stamps

end function
function C: ASSIGN DICHOTOMOUS CATEGORIES FOR RAMP OBJECT DATASETS(function A output)

Based on function A output for the full-year wind speed measurements sliced to match the 36-hour
(leadtime hours 12 to 48) time span covered by function A output for an individual-forecast dataset,
determine whether an observed ramp object shares time stamps with a forecasted object (hit) or not (miss),
and whether each forecasted ramp object has no time stamp in common with any observed objects (false alarm), cf. Table III.
Once this has been determined, function B is applied to assign a single time stamp to the event based on the
corresponding observed ramp time stamps (hits and misses) or forecasted ramp time stamps (false alarms).
return output from function A condensed to a dataset of dichotomously categorised events

end function
loop over a range of ramp object screening-window widths spanning 1 hour to 8 hours

. . .
end loop
function D: POSTPROCESS THE RESULTING DATASET(output from loop over function C)

Count the number of ramp object hits, misses, and false alarms and
evaluate the corresponding accuracy, capture, and threat scores, cf. Eqs. (4-6).
return output from function A condensed to a dataset of dichotomously categorised events

end function

Table IV. Algorithm for assessment of wind speed ramp object predictability
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Note that the nomenclature for these quantities varies in the literature; e.g. the terminology for Eqs. (4-5) is also

employed in [25], while [32] denotes these quantities precision and recall, respectively. More sophisticated skill scores

focus e.g. on separating events from non-events, like the Hanssen and Kuiper skill score [33], while the Equitable Threat

Skill Score [34] used e.g. in [24]; a study related to this work, extents Eq. (6) to account for all four Table III categories

(n.b. [35]). However, such scores are not applicable here as there is no reasonable way to define a non-event, i.e. the lower

right element in Table III, within the presented framework.

3.4. Quantification of uncertainty predictability in terms of forecasted variability

Wind power prediction uncertainty modelling adds additional sophistication to the decision-maker toolbox for trading wind

energy on markets such as the day ahead Elspot auction [36], facilitating operational power trading across borders in several

northern European countries. Wind speed forecast uncertainty is here defined as the standard deviation of the forecast

error, cf. the introductory paragraph of Section 3. The corresponding sample standard deviation based on forecasted and

measured time series reads

sε =

√√√√ 1

n− 1

n∑

i=1

(εi − ε̄), with εi = mi − fi and ε̄ =
1

n

n∑

i=1

εi, (7)

forecast error ε representing deviation of forecasted (f ) from measured (m) wind speed, and n denoting the number of

time series data points, in contrast to the case in Section 3.1 where n was a data point index (to avoid i or j confusion with√
−1). Deviation between measurements and model estimates of the same continuous variable can reasonably be assumed

Gaussian and hence ε is taken to represent forecast error samples from a normal populationN
(
µε,σ2

ε

)
. With the additional

assumption of ε data point independency, it can be shown that the quantity (n−1)s2ε
σ2
ε

follows a χ2 distribution with n− 1

degrees of freedom. By the traditional frequentist approach to estimating confidence intervals [37], the (1− α)100%

confidence interval for sε can be estimated by

sε

√
n− 1

χ2
α/2

< σε < sε

√
n− 1

χ2
1−α/2

, (8)

see e.g. [38]. The variance of a χ2 distributed variable with k degrees of freedom is 2k, hence

Var
[

(n− 1)s2ε
σ2
ε

]
= 2(n− 1)

m

Var
[
s2ε
]

=
2σ4

ε

n− 1
,

i.e. the variance of s2ε is inversely proportional to the number of data points n, which implies that the confidence interval

becomes narrower as n increases. Figure 1 illustrates the rate with which the sε factor
√

n−1
χ2
x

of the (8) limits approach 1

asymptotically as a function of n from below
(
x = α

2

)
and above

(
x = 1− α

2

)
, and shows that the 95% confidence band

for uncertainty estimates by Eq. (7) for individual forecasts of only 216 data points (the dashed white line; corresponds to

10-minute resolution for leadtime hours 12 to 48) is 10–20 times wider in terms of
√

n−1
χ2
x

than if a full year of 10-minute

data points (solid white line) are used to assess sε. This, in turn, roughly implies that uncertainty estimation of individual

forecasts by Eq. (7) are 10–20 times more noisy than estimates based on a full year’s data, and hence any underlying

uncertainty coupling to a potential predictor will be much less thwarted when Eq. (7) estimates are based upon a long

dataset. In addition, the data point autocorrelation is not negligible as assumed in (8) and followingly the effective number

of data points (and thus degrees of freedom) is smaller than n. Therefore the confidence bandwidth factors
√

n−1
χ2
x

for

n = 216 and n = 52560 are in fact wider than sketched in Figure 1.
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Figure 1. The confidence interval (8) bandwidth in terms of the sε factor
√
n−1

χ2
x

as a function of the number of data points n, for a

95% (α = 0.05) confidence band, i.e. within (8) interval limits χ2
x = χ2

0.025 and χ2
x = χ2

0.975. Data point count n = 216 is marked with
a white dashed line, n = 24 · 365 = 8760 is marked with a dotted line, and n = 6 · 24 · 365 = 52560 is marked with a solid white line.

Intuitively, the temporal volatility of NWP modelled wind speed plausibly relates systematically to wind speed

uncertainty in terms of Eq. (7). One metric pursuing this notion is the ‘meteo-risk index’ (MRI) proposed in [8], quantifying

current wind power prediction uncertainty based on a weighted sum of the population standard deviation of the deviation

between a subset of the current wind speed forecast and corresponding time stamp values from previous wind speed

forecasts. Although demonstrated to be a powerful tool [8], the reliability of the MRI arguably depends on the frequency

of NWP model initialisations available and the forecast subset-interval of interest. In this work, the feasibility of an

alternative approach is investigated, relying only on current forecast data and providing uncertainty predictions at point

forecast temporal resolution. As hinted in the Section title, the uncertainty predictor examined is the WRF modelled wind

speed variability. This method does, however, involve customisation of the NWP model source code such that wind speed

variability is added as a model output variable (not a part of standard output), that is; the sample standard deviation of

wind speed values at WRF model time integration resolution is evaluated at each 10 minute output time. The algorithm

first proposed in [39] is employed;

Mi =Mi−1 +
wi −Mi−1

i
, Si = Si−1 + (wi −Mi−1)(wi −Mi), i = 2, 3, . . . , n,

withMi denoting running-mean of forecasted wind speed wi for the ith data point, withM1 = w1 and S1 = 0. At each

10 minute output time the standard deviation is then estimated as

sw =

√
Si
i− 1

.

The integration time step employed for each of the computational grids must coincide with the 10 minute output time,

increasing with a factor of three, as do the spatial resolution, with each nesting level. Denoting the outer domain (30 km)

D = 0, the first nest (10 km) D = 1, the second nest (3.3 km) D = 2 and the innermost nest (1.1 km) D = 3; the number

of data points constituting 10 minute forecast variability is given by

n = 5 · 3D. (9)

As Eq. (9) indicates, integration of the WRF discretisation of the governing equations is performed at 2 minute temporal

resolution for the outermost computational domain, cf. Section 2, corresponding to 5 data points over a 10 minute period,

etc. by Eq. (9) for the nested domains.

For wind energy scheduling purposes, the hourly-mean wind speed and power is typically of interest, cf. e.g. the

discussion on the Elspot market for day ahead energy trading in [40]. In order to expand the 10-minutely variability

forecasts to hourly values, observe that for N groups with n data points (of variable w) in each group, the total sum of
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(a) Offshore; HR.
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(b) On the coast; RH.
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(c) Inland; SR.
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Figure 2. Wind speed periodograms for three wind farms based on 580, 475, and 531 forecasts, respectively. Out of the total 719
forecasts no time stamp in these forecast datasets contains any missing wind speed measurements, and for each of the NWP
computational domains the respective 580, 475 and 531 individual spectra are averaged. Forecast leadtime hours 12 to 48 are

considered, hence the longest wave length of 36 hours corresponding to the fundamental fluctuation frequency.

squares;

N∑

i=1

n∑

j=1

(wij − w)2 =
N∑

i=1

n∑

j=1

(wij − wi + wi − w)2,

=

[
N∑

i=1

n∑

j=1

(wij − wi)2
]

+ n

[
N∑

i=1

(wi − w)2
]

+ 2

[
N∑

i=1

n∑

j=1

(wij − wi)
︸ ︷︷ ︸

=0

(wi − w)

]
.

Hence, the sample standard deviation of wind speed time series blocks,wij , at WRF model integration time step resolution,

spanned by N consequetive groups each with the same number of data points (n), is

Sw =

√∑N
i=1(n− 1)s2w,i + n(wi − w)2

nN − 1
(10)

when expressed in terms of the corresponding group mean w̄, as well as the mean w̄i and standard deviations si for

individual i groups, each of which containing n data points. That is, to obtain hourly wind speed variability (Sw) from

10 minute wind speed (wi) and variability (sw,i) forecast time series with data point index i, Eq. (10) is evaluated with

N = 6.

4. RESULTS

In this section, the analysis strategy outlined in Section 3 is applied to the dataset described in Section 2.

4.1. Variability spectra and phase errors

Figure 2 shows the estimated power spectral density spectra for each wind farm site, cf. Section 3.1. N.b. that approximately

one third of the forecasts spanning the study period are excluded due to missing measurements and 11 unavailable GFS

forecasts, though inspection of the included forecasts verify that the yearlong dataset period is covered fairly evenly

for all three sites (not shown). Hence, the Figure 2 indication that wind speed forecast spectra monotonously approach
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corresponding observations for all three sites suggests that the WRF 1.1 km runs do indeed reproduce the observed spectral

intensity of wind speed, in spite of the – cf. [11] – inferior performance in terms of scalar accuracy metrics. In general, the

WRF modelled amplitude of low frequency modes is overpredicted for all wind farm sites. Performance in terms of PCC

is evaluated for the three augmented horizon groups described and investigated in [11]. In Figure 3 optimal WRF model

performance appears to be shifting right as the leadtime increases, indicating that atmospheric dynamics as simulated in

this particular configuration of the WRF model is gradually lagging behind observed dynamics as time integration proceeds

away from forecast initialisation time. The lag appears to be introduced in the coarsest WRF model computational domain

and is then gradually corrected as resolution increases; see e.g. WRF 30 km and 1.1 km for horizon group (12,24] h in

Fig. 3a, or the same resolutions for horizon group (24,36] h in Fig. 3c. Note in Table V that the atmospheric conditions

migrate consistently from neutral to unstable for HR forecasts as a function of leadtime, while for the land-based sites

the trend is rather from stable to neutral. Held together with Figure 3, this could indicate that thermally driven buoyancy

gradually dominates downward momentum flux as the WRF model simulations progress (increased stability), either due

to slowing advection as Figure 3 seems to suggest or due to thermal flux overprediction. However, the WRF modelled

wind speed bias (overprediction) steadily increases by 0.08–0.15 m/s (not shown; SR is in between extremes ∼0.08 m/s

for RH and ∼0.15 m/s for HR) for each horizon group into the future, contradicting advection slowdown and hence the

gradually increasing phase lag in Figure 3 and transition towards unstable conditions in Table V is instead partly attributed

to erroneous vertical fluxes due to overheating of the ground that accumulates with each time integration step in the WRF

model simulations.

4.2. Predictability of rapid changes in atmospheric flow intensity

The algorithm of Table IV is applied to the dataset outlined in Section 2 in order to assess the WRF model configurations’

ability to reproduce a class of meteorological events of interest for wind energy scheduling; ramp objects.

Table VI shows the number of ramps observed vs. screening window-width. In a wind energy scheduling context, ramp

events spanning up to ∼3–4 hours are usually considered [26, 25], though longer durations are included here in order to

illustrate a drawback of the approach due to merging events. Note, in Table VI, e.g. event counts for ramp durations 6 and

7 hours for HR ramp events in the Autumn; the decrease of 3 up-ramp events when expanding the screening window-width

from 6 to 7 hours cannot be explained solely by conversion to down-ramp events in that only 2 additional down-ramp

events are counted when going from 6 to 7 hours max. ramp duration. Rather, the issue is that same-sign events closely

spaced in time will overlap for wide enough durations such that the Table IV procedure cannot distinguish the events and

consequently assign these a single time stamp. This ramp-merging issue is arguably less pronounced for shorter ramp

durations of 1–4 hours, as is commonly studied in the wind energy research literature; cf. e.g. [26, 25, 30, 28, 27].

Figure 4 demonstrates that false alarms, as a function of WRF model resolution, outweight the count of correctly

forecasted ramp objects for the Danish sites, and hence the accuracy consistently worsens as WRF model resolution

increases. However, for SR the accuracy for each computational grid is more similar, though still with slightly inferior

Site
Leadtime Data point percentage unstable [%] Data point percentage neutral [%] Data point percentage stable [%]

horizon [hours] 30km 10km 3.3km 1.1km 30km 10km 3.3km 1.1km 30km 10km 3.3km 1.1km

(12,24] 63.0 63.9 64.5 64.6 14.0 15.2 14.6 14.3 23.0 20.9 20.9 21.2

(24,36] 64.5 65.5 65.5 65.8 14.1 14.6 14.3 14.1 21.4 19.9 20.2 20.1HR
(36,48] 66.0 66.2 67.1 67.2 12.5 13.7 13.1 13.1 21.5 20.1 19.8 19.8

(12,24] 28.3 25.5 24.2 25.6 31.7 35.7 40.7 35.7 39.9 38.8 35.1 38.7

(24,36] 29.0 26.1 25.8 27.5 33.6 38.1 41.9 37.2 37.5 35.8 32.3 35.3RH
(36,48] 27.9 25.7 25.2 26.6 35.6 38.8 43.4 38.5 36.5 35.6 31.4 34.9

(12,24] 27.3 25.9 21.7 19.8 41.8 43.1 47.0 52.4 30.9 31.0 31.3 27.8

(24,36] 27.9 27.4 22.5 20.1 43.2 44.3 47.6 54.3 28.9 28.2 29.9 25.6SR
(36,48] 26.9 27.3 22.8 20.0 44.7 45.0 48.8 55.0 28.5 27.6 28.4 25.0

Table V. Data point percentage for which the WRF modelled Monin-Obukhov length indicates unstable, neutral, and stable weather
conditions, respectively, cf. Eq. (3) and Table II.

10 Wind Energ. 2015; 00:1–18 c© 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/we

Prepared using weauth.cls



M. H. Rosgaard et al. Limited area forecasting for wind energy scheduling II: Predictability of wind speed variability and uncertainty

(a) Offshore; HR.
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Figure 3. Forecast performance in terms of PCC vs. temporal displacement of wind farm measurements for the three sites.

performance of the finest resolutions. On the other hand, note that high-resolution forecasts better capture observed

ramps for all sites. Figure 5 summarises ramp object forecast performance and shows that the WRF model configurations
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Site
Maximum DOWN-RAMPS UP-RAMPS

duration Spring Summer Autumn Winter In total Spring Summer Autumn Winter In total

1 hour 2 12 33 16 63 1 6 33 10 50

2 hours 9 15 55 26 105 9 17 58 20 104

3 hours 21 22 70 33 146 24 36 72 43 175

4 hours 28 31 77 36 172 35 51 76 54 216

5 hours 37 39 76 45 197 38 57 85 58 238

6 hours 41 45 88 57 231 43 60 92 55 250

7 hours 55 45 90 58 248 59 63 89 54 265

HR

8 hours 59 52 91 54 256 63 56 82 59 260

1 hour 3 16 36 9 64 3 19 41 8 71

2 hours 8 20 59 23 110 10 32 69 24 135

3 hours 19 32 77 40 168 19 40 70 34 163

4 hours 23 35 85 41 184 27 45 87 46 205

5 hours 36 47 88 48 219 41 52 80 53 226

6 hours 40 65 83 55 243 47 59 84 61 251

7 hours 46 65 74 57 242 52 57 74 61 244

RH

8 hours 49 67 66 56 238 54 64 71 69 258

1 hour 1 3 0 0 4 4 4 3 0 11

2 hours 3 7 5 2 7 6 8 6 5 25

3 hours 12 11 6 7 36 11 11 12 10 44

4 hours 15 15 12 10 52 18 18 31 18 85

5 hours 22 22 18 19 81 29 18 29 23 99

6 hours 22 27 27 20 96 32 25 29 28 114

7 hours 28 27 27 23 105 32 28 33 30 123

SR

8 hours 31 28 32 28 119 31 30 37 33 131

Table VI. Number of ramp events identified from application of functions A and B of Table IV to 10 minute wind farm data as a function
of the four seasons.

consistently improve predictions with each WRF model nesting level, when assessed in terms of the Critical Success Index

Eq. (6).

Upon restricting (i.e. increasing) the wind speed change threshold for forecasted ramp objects, while keeping the

threshold for observed ramps fixed at 5 m/s, generally reduces the number of false alarms more effectively than the number

hits, such that accuracy by Eq. (4) improves for high-resolution forecasts in particular (not shown). On the other hand,

the capture ratio Eq. (5) decreases for all WRF model resolutions as observed ramps are now missed to a greater extent.

By the same token, temporal smoothing cf. [11] dramatically reduces the number of false alarms relative to the number

of hits, again improving accuracy and reducing capture slightly (not shown). Finally, artificially extending the ramp time

stamps identified by function A of Table IV by a extended tolerance of e.g. 30 minutes or a few hours at the start and

end of coherent ramp time stamps consistently improves all three performance metrics; Eqs. (4–6) (not shown). The three

suggested methods can be used to tune Algorithm IV towards the criteria of interest to the ramp forecast end-user assessing

ramp forecast performance.

4.3. Forecasted variability as an uncertainty predictor

Figure 6 hints the extent to which there is an underlying near-linear relation between the logarithm of WRF modelled wind

speed variability and wind speed uncertainty expressed by Eq. (7). Notice how the fairly well-separated dependency traces

for each horizon group becomes more “noisy” when the raw 10 minute data is transformed to hourly in Figure 7, by Eq.

(10) and hour-averaged ε input for Eq. (7). Keep in mind that this corresponds to one sixth (8760) of the 10 minute dataset

n (52560), cf. Figure 1, and hence the sε evaluation within each 10-percentile WRF model variability bin, based on n

equal to one tenth of 8760/52560 (hourly/10-min. data), becomes less confident accordingly. The ε mean is fairly constant

across the 10-percentile bins (not shown), which in turn enables fair comparison of sε estimates between bins. That is; the

ε̄bin offset for ε deviation within each bin is comparable between bins.

Overall, the offshore site HR exhibits the strongest relation between forecasted wind speed variability and forecast

uncertainty, while the sought-after connection is more questionable for the inland SR site. For the high-variability
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(a) Offshore; HR.
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(b) On the coast; RH.
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(c) Inland; SR.
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Figure 4. Count of wind speed ramp object forecast misses, false alarms and correct forecasts, along with derived forecast accuracy
and capture ratios; Eqs. (4-5).
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Figure 5. The Critical Success Index, Eq. (6), for wind speed ramps at (a) HR, (b) RH, (c) SR.

5. CONCLUSION

The work presented here supplements the traditional bulk metric performance assessment and enhancement studies

for limited area NWP forecasts based on the WRF model [12], as carried out in [11] for four different WRF model

resolutions, by alternative quantification of forecast value in terms of wind speed ramp objects and predictability of

wind speed uncertainty by forecasted variability. Subject to simplifying assumptions discussed in detail, the simulated

wind speed fluctuation intensity within the day ahead leadtimes typically of interest for energy trading [36]; hours 12–48

beyond forecast initialisation time, is found to gradually approach the spectra for observed fluctuations as WRF model

resolution increases. However, temporally offsetting measured wind speed relative to corresponding forecast data shows

that atmospheric dynamics represented by the WRF model configuration employed in this work tends to temporally fall

behind observed dynamics. Inspection of simulated atmospheric stability as a function of forecast leadtime reveals a

gradual shift from stable towards unstable conditions. The GFS data forcing the WRF model forecasts laterally exhibits

less severe leadtime-dependent phase lag.

A generic approach for wind speed ramp event detection is developed and WRF model forecasts assessed based on a

year of data, rather than limiting attention to a few case studies. Ramp forecast performance is found to improve with WRF

model resolution for all three sites studied when quantified in terms of the Critical Success Index. It is noted that higher

accuracy can achieved, at the expense of the number of ramp events captured in forecasts, by increasing the wind speed

threshold in the ramp definition, or by smoothing wind speed forecasts temporally cf. [11]. Furthermore, the authors remark

that all ramp performance metrics can be tuned with artificial temporal dilation of ramp event durations, thus controlling

the phase error tolerance.

Finally, wind speed forecast uncertainty is defined and the predictive ability of this quantity by WRF modelled wind

speed variability is established, based on yearlong datasets for two wind farm sites offshore and on the coast. However,

for the third site in complex terrain inland, the log-linear relation established for – namely the high-resolution forecasts
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Figure 6. Wind speed uncertainty in terms of Eq. (7) vs. WRF modelled wind speed variability based on the raw 10 minute datasets
for (a) HR, (b) RH, (c) SR.

of – the former two sites is not as evident. As such, the uncertainty study constitutes a precursor for future integration of

NWP modelled wind speed variability as a predictor in wind power uncertainty forecasting models, and suggests that this

endeavour will be most feasible for sites offshore or in flat terrain.
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Figure 7. Wind speed uncertainty in terms of Eq. (7), with hourly-averaged ε, vs. WRF modelled wind speed variability scaled to
hourly resolution, cf. Eq. (10), for (a) HR, (b) RH, (c) SR.

REFERENCES

1. Pinson P. Wind energy: Forecasting challenges for its operational management. Statistical Science 2013; 28:564–585.

2. Usaola JG, Angarita JM. Combining hydro-generation and wind energy. Electric Power Systems Research 2007;

77:393–400.

3. Doherty R, O’Malley M. A new approach to quantify reserve demand in systems with significant installed wind

capacity. IEEE Transactions on Power Systems 2005; 20:587–595.

4. Pinson P, Chevallier C, Kariniotakis G. Trading wind generation from short-term probabilistic forecasts of wind

power. IEEE Transactions on Power Systems 2007; 22:1148–1156.

5. Pinson P, Nielsen HA, Madsen H, Lange M, Kariniotakis G. Methods for the estimation of the uncertainty of wind

power forecasts. Technical Report, ANEMOS project workpackage 3 deliverable. March 2007.

6. Monteiro C, Bessa R, Miranda V, Botterud A, Wang J, Conzelmann G. Wind power forecasting: State-of-the-art

2009. Technical Report ANL/DIS-10-1, Argonne National Laboratory. November 2009.

16 Wind Energ. 2015; 00:1–18 c© 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/we

Prepared using weauth.cls



M. H. Rosgaard et al. Limited area forecasting for wind energy scheduling II: Predictability of wind speed variability and uncertainty

7. Giebel G, Brownsword R, Kariniotakis G, Denhard M, Draxl C. The state of the art in short-term prediction of

wind power: A literature overview, 2nd edition (p. 60). Technical Report DELIVERABLE D-1.2, ANEMOS.plus and

Safewind projects, sponsered by the European Commission. January 2011.

8. Pinson P, Kariniotakis G. On-line assessment of prediction risk for wind power production forecasts. Wind Energy

2004; 7:119–132.

9. Nielsen HA, Madsen H, Nielsen TS. Using quantile regression to extend an existing wind power forecasting system

with probabilistic forecasts. Wind Energy 2006; 9:95–108.
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The objective in this article is twofold. On one hand, a postprocessing framework for
improved operational numerical weather prediction (NWP) of wind speed is described,
developed and evaluated. On the other hand, the approach explored hints potential
formulation issues in an operational NWP model generating global weather forecasts
four times daily, with numerous users worldwide. The analysis is based on two years
of hourly wind speed time series measured at three locations; offshore, in coastal and
flat terrain, and inland in complex topography, respectively. Based on the statistical
model candidates inferred from the data, the lifted index diagnostic is consistently found
among the NWP model predictors of the best performing statistical models across sites.

Key Words: numerical weather prediction; statistical forecasting; wind energy scheduling; general linear modelling;
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1. Introduction

Modern-day studies of the atmosphere heavily rely upon data
produced by numerical weather prediction (NWP) models and the
study of systematic deviations of weather simulations from the
observed atmosphere contributes to the continued improvement
of NWP model formulations, which in turn better enables
researchers to make candid statements on issues relating to climate
and weather. Many forecast users worldwide depend critically
on the accuracy of operational NWP models, with implications
for a diverse range of applications from natural disaster risk
assessment to efficient integration of renewable energy sources in
the electrical grid.

As the governing equations describing the spatio-temporal
continuum of observed atmospheric dynamics must be discretised
in practice to enable temporal integration such that future
atmospheric states can be inferred, Judd et al. (2008) argue that
NWP models can be viewed as occupying a phase space of
much lower dimensionality than the observed atmosphere. Leith
(1974) distinguishes the subaspect of inadequate representation
of atmospheric dynamics on numerically unresolved scales
as a separate issue, further comminuted e.g. by Holton and
Hakim (2013) into key physical process classes pertaining
to 1) radiation, 2) clouds and precipitation, and 3) turbulent
mixing and exchange, respectively. With the insight gained from
the pioneering work of Courant et al. (1928, 1967), among
others, Charney (1947, 1948, 1949) recognised, from the very
outset of NWP on electronic computers, the need to filter
solutions to the coupled nonlinear partial differential equations
describing the temporal evolution of the atmosphere. Inadequate
representation of dynamics on the sub-grid scale in NWP models,
in addition to filtering of the governing equations for atmospheric
dynamics, may spur systematic deviation between simulated
time series for atmospheric quantities and corresponding

observations. Furthermore, each numerical discretisation scheme
has implications for prediction accuracy and numerical stability,
e.g. Bénard (2003) finds stability properties of time-integration
schemes commonly employed for NWP to be highly dependent
on fundamental choices, such as the vertical coordinate.

This article concerns detection of systematic coupling of
various NWP modelled quantities to atmospheric flow, and to
this end outlines a postprocessing methodology for assessing
explanatory value within a Model Output Statistics (MOS)
framework, cf. Glahn and Lowry (1972). Systematic error in
NWP models is usually quantified in terms of forecast variable
bias, which is formally defined as the expectation of the forecast
error; see e.g. Dee and Da Silva (1998) for a description of a
theoretical framework for bias estimation. In practice, bias is
estimated as the average error for a sufficiently long historical
dataset of NWP model simulations and observations, while Dee
(2005) relaxes the definition somewhat by accepting running-
mean error approaches for short time periods as estimators of bias.
E.g. Hacker and Rife (2007) adopt this definition in constructing
and evaluating a running-mean algorithm for estimation of
systematic errors for near-surface temperature on a limited area
NWP model (LAM) grid, and for another LAM Sweeney and
Lynch (2011) compare running-mean window lengths spanning
the previous 3 and 28 days, respectively, to a Kalman (1960)
filter approach, and a weighted combination of the three, as
statistical postprocessing methods for wind speed NWP data. In
a subsequent study, Sweeney et al. (2013) increase the resolution
of the LAM domains and evaluate performance of seven
different postprocessing approaches, including linear regression
(MOS), running-mean bias correction, Kalman filtering, artificial
neural networks, as well as forecasting techniques involving
wind direction dependency, diurnal effects, and mean and
variance nudging. They find none of these superior, and that

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls [Version: 2013/10/14 v1.1]
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it is difficult to improve performance beyond simple running-
mean bias correction. Stensrud and Yussouf (2005) find bias
correction forecast performance competitive or better than MOS
for their NWP multimodel ensemble approach, using data from
the previous 12 days for bias correction, though Cheng and
Steenburgh (2007) arrive at general MOS superiority in their
comparison to running-mean and Kalman filter techniques, using
data from 145 observation stations scattered across the western
United States of America, except during a persistent cold air
pool event in February 2005 where the Kalman filter approach
is found to perform better. In the study by Hart et al. (2004) MOS
forecasts based on coarsely resolved LAM data outperform high-
resolution data from the same LAM configuration. Thorarinsdottir
and Gneiting (2010) introduce wind speed as response variable
in extension to the nonhomogeneous Gaussian regression
forecasting approach first suggested by Gneiting et al. (2005),
and find substantial improvement relative to reference forecasts.
Pinson (2012) proposes another single-model NWP ensemble
MOS approach for wind forecasting, namely adaptive and
recursive Maximum Likelihood (ML) estimation of parameters
in bivariate models for wind component ensemble mean and
variance, and demonstrate better deterministic and probabilistic
scores upon applying the method on a three-year dataset. Wilks
(2014) describes a framework for multivariate ensemble MOS
using empirical copulas and examines how recently proposed
variations of these nonparametric functions, linking multivariate
distribution functions to their constituent univariate marginal
distributions, perform when the method is applied for probalistic
heat wave forecasting. Statistical postprocessing that accounts for
multivariate joint forecast distributions are not pursued here, albeit
this would be a natural extension of the study presented in the
event the problem extension or reformulation at hand warrants a
multivariate approach.

The article is organised as follows. Section 2 outlines the
dataset on which the regression modelling framework presented
in Section 3 is applied. In particular, Section 3 specifies the
underlying rationale for each step in the construction of statistical
model candidates. Section 4 describes the findings, and the
conclusion follows in Section 5.

2. Data

Kanamitsu (1989) describes an early version of the Global
Forecast System (GFS), one in a handfull spectral NWP
models used to generate global forecasts operationally, developed
and maintained by the National Centers for Environmental
Prediction (NCEP) in the United States of America. Four GFS
forecast initialisations are available daily on a 0.5◦ global
grid, downloadable with a few hours delay. Since the model
upgrade 27 July 2010 the time integration of the governing
equations was carried out at horizontal resolution T574, which
roughly corresponds to a 27 km horizontal distance between
computational grid points, though 14 January 2015 the horizontal
resolution of operational GFS forecasts was upgraded to T1534
(13 km), and the number of vertical model layers increased
from 64 to 90. Forecasts at the locations studied in this work
are operational T574 GFS datasets spanning October 2012
through September 2014, and hence derive from the static model
formulation available in a realtime setting during the time period
5 September 2012 up till 14 January 2015. Results presented in
Section 4 thus reflect forecast improvement, achievable in practice
operationally. A two-year dataset is also considered e.g. in Cassola
and Burlando (2012); Sweeney et al. (2013); two studies related
to this work.

Geographical locations of the three wind farm sites studied are
sketched in Figure 1. The wind speed reference data underlying

Figure 1. Geographical locations of the three wind farm sites studied, each marked
with a white symbol. Horns Rev (bullet), Rejsby Hede (X), Stor-Rotliden (star).

results presented in Section 4 are based on the spatial average
of wind speed time series recorded at the wind turbine nacelles
of Horns Rev, Rejsby Hede and Stor-Rotliden wind farms,
respectively. That is; the wind speed forecast reference datasets
represent ∼ 1× 2 km2 (Rejsby Hede) and ∼ 4× 5 km2 (Horns
Rev and Stor-Rotliden) horizontal wind speed fields. Wind power
is usually traded on an hourly-mean basis, cf. e.g. Jónsson et al.
(2014), and forecasts and measurements are hence analysed as
hour-averaged time series, respectively, thus further smoothing
rapid fluctuations in atmospheric flow intensity measurements not
resolved explicitly in any NWP model. An overview of the dataset
is given in Table I.

Forecasted wind components and temperature 80 m above
ground level (AGL) are used for Horns Rev as this is near the
height above mean sea level of the wind turbine anemometers
recording the wind speed, while 100 m AGL forecasts are relevant
for comparison to Stor-Rotliden data. Rejsby Hede wind turbine
hub-height is 45 m AGL so 10 m AGL and 80 m AGL wind
speed forecasts are vertically interpolated to this height based on

Table I. Statistics for wind speed measurement time series used for model
training and evaluation at Horns Rev (HR), Rejsby Hede (RH), and Stor-
Rotliden (SR). Wind farm acronyms are followed by the year number,
separated by slash. Year 1: October 2012 till October 2013. Year 2: October
2013 till October 2014. Complete pairs refers to the percentage of datapoints
for which both observation and forecast is nonmissing. Other quantities are
in m s−1. Wind speed time series mean is denoted µ̂, the median m̂, and
standard deviation σ̂. The usual meteorological bias sign convention applies,
i.e. forecast minus observation.

Site/ Complete OBSERVATIONS FORECASTS Biasyear pairs [%] µ̂ m̂ σ̂ µ̂ m̂ σ̂

HR/1 96.0 8.55 8.25 3.74 8.85 8.42 3.96 0.30
HR/2 97.7 9.30 9.07 4.25 9.52 9.21 4.60 0.25
RH/1 92.4 5.87 5.35 3.19 7.39 7.06 3.28 1.68
RH/2 95.4 6.46 5.98 3.51 7.97 7.68 3.72 1.66
SR/1 93.5 6.55 6.46 2.39 5.63 5.45 2.55 -0.94
SR/2 92.6 6.67 6.43 2.76 5.94 5.59 2.92 -0.76

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls



Correction of NWP model deficiencies by statistical postprocessing 3

the logarithmic wind profile relation according to Monin (1970),
assuming neutral atmospheric stability conditions and vanishing
zero plane displacement (the terrain is flat cropland with a few
scattered patches of trees and houses nearby). Wind direction
and temperature are linearly interpolated. Forecast data from the
closest four computational grid points is bilinearly interpolated
horizontally to the coordinates of the three wind farm centres,
respectively. GFS predictions of pressure, the friction velocity at
the surface, and measures of air mass rotation in the atmospheric
boundary layer and the rest of the troposphere are included in the
analysis, as well as heat fluxes, different indicators of atmospheric
stability, and variables relating to humidity and precipitation.
Also, a scalar estimate of the local geopotential height gradient at
700 mb, quantified by the sum of gradient magnitudes in the two
horizontal dimensions, is included to approximate dependence
on the geostrophic wind in the modelling framework. In this
respect, the geopotential height anomaly – here understood to
be the deviation from the average over time, cf. e.g. Yuan et al.
(2008) – may contribute explanatory value, effectively coupling
synoptic scale weather system dynamics to local conditions. The
surface pressure tendency is closely coupled to this quantity and
is used in the model development, alas the available GFS output
is temporally coarse.

3. Method

The MOS approach outlined in the following sections is based
on general linear modelling, which involves mathematically
relating one (univariate modelling), two (bivariate) or several
(multivariate) dependent variable(s) mathematically to one or
more independent variables assumed to explain variation observed
for the dependent variable(s). The terminology of denoting a
dependent variable the model response, as employed e.g. in
Hastie et al. (2009); Olsson (2001); Madsen and Thyregod
(2010) is adopted here. Alternatively, the response is also
known as predictand in Termonia and Deckmyn (2007); Wilks
(2011); Warner (2011) or outcome in Pawitan (2001), while

an explanatory variable is usually termed regressor denoting
continuous data only, or predictor which is a broader term also
denoting e.g. categorical data, etc. In contrast to the case for
deterministic models, e.g. weather and climate models, statistical
models account for the possibility that a relationship is not
perfectly as modelled by allowing for unexplained (stochastic)
response variation ε for which independence across observations
and a distribution is typically assumed for model coefficient
estimation and inference purposes. Deviation between statistical
model predictions from corresponding observations are usually
termed model residuals, denoted ε in this article.

In the present context, the basic premise is that measured
wind speed can be univariately modelled as linearly dependent on
additive forecast variable interaction terms. That is; in a multiple
linear regression framework the response is related to a sum of
predictor terms, each with an unknown coefficient to be estimated
analytically by the method of ordinary least squares (OLS), cf. e.g.
Hayashi (2000), based on a sufficiently large dataset of response
and predictor variables. Statistically modelled quantities are in
upper case to distinguish these stochastic variables from their
corresponding realisations, which are in lower case. The study is
based on the general linear model for hourly wind speed W,

W = wLLS Θ(x) + ε, with Θ(x) = [ 1 xT ]θ, (1)

where ε denotes the model error, θ is a column vector containing
the coefficients to be estimated based on NWP data and
measurements w for the sites studied, cf. Section 2, and x is a
column vector containing quantities derived from NWP modelled
quantities. Termonia and Deckmyn (2007) propose to infer viable

predictors based on direct inspiration from NWP formulation and
sub-grid scale parameterisations, yet in this work the choice of x
elements in Eq. (1) is more vaguely guided by physical intuition,
thus placing the MOS predictor range considered here somewhere
in between the mechanistic-inspired strategy of Termonia and
Deckmyn (2007) and purely empirical (data mining) statistical
modelling, cf. e.g. Pawitan (2001) p. 5 on the respective merits of
scientific formula and empirical models. Physical characteristica
of x element candidates are briefly outlined last in Section 2;
n.b. x is understood to represent continuous as well as derived
categorical (binary only) variables, coded as dummy variables
cf. e.g. Olsson (2001) pp. 12–21. The central predictor of Eq.
(1), wLLS , denotes forecasted wind speed after removal of bias
and scaling errors, as recommended by Fritsch et al. (2000) and
employed e.g. in Woodcock and Engel (2005); Engel and Ebert
(2007, 2012), i.e. wLLS data points are linear least square (LLS)
predictions from the model

WLLS =
[

1 w
] [ θ0

θ1

]
+ ε, (2)

with raw forecasted wind speed w, cf. e.g. Sweeney et al. (2013)
from which the LLS acronym is adopted in this article. With all
additive terms proportional to wLLS the Eq. (1) modelled wind
speed approaches zero when wLSS approaches zero.

In contrast to the binning approach employed in Sweeney et al.
(2013), forecasted wind direction is here implemented in Eq. (1)
as Fourier expansion terms

f(wd) =

N∑

k=1

ak cos(kwd) + bk sin(kwd), wd ∈ (−π, π] (3)

up to 5th order; N = 5, to approximate wind speed dependence on
a periodic function of forecasted wind direction wd. Parameters
ak and bk are estimated as θ coefficients in Eq. (1), i.e. cos(kwd)

and sin(kwd) are x elements, respectively.

3.1. Forecast performance assessment

One of the two key purposes of the study is to explore the
extent to which NWP model forecasts can be postprocessed
empirically to advance efficient operational integration of wind
energy in the electrical grid. Madsen et al. (2005) discuss two
commonly employed scalar metrics for wind power prediction
accuracy assessment, namely the mean absolute error (MAE) and
the root mean square error (RMSE), each addressing slightly
different aspects of forecast accuracy. As the expansion of
the OLS acronym suggests, the procedure for estimation of θ
elements in Eq. (1) involves minimisation of the squared residuals
ε2. Hence, the modelling framework is tuned towards RMSE
minimisation. Compared to RMSE, the MAE accuracy metric is
less sensitive to severe forecast errors and is therefore arguably
more relevant if the assessment should reflect normal operational
conditions for day ahead wind energy scheduling. When used for
performance evaluation along with RMSE, the MAE constitutes a
baseline for inference on the variation in the magnitude of errors.
Since both systematic and random errors contribute to MAE and
RMSE, these metrics are sensitive to NWP model bias in raw
(unprocessed) forecasts. In contrast, the absolute value of the
Pearson correlation coefficient (PCC) is invariant under linear
transformations of one or both constituent variables and hence not
sensitive to bias and scaling errors.

As mentioned, RMSE and, to a lesser extent, MAE are
commonly used for wind speed and power forecast performance
assessment, cf. e.g. Madsen et al. (2005); Pinson (2012); Sweeney
et al. (2013); Müller (2011), though e.g. Ranaboldo et al. (2013)
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also include the PCC for evaluation of wind power predictions.
Although rarely employed in wind energy forecasting, the
inclusion of the PCC as estimator of forecast performance for the
statistical models developed here – alongside MAE and RMSE
– is indirectly motivated by the work of Murphy (1988). He
meticulously highlights the deficiency of the PCC squared as a
weather forecast assessment metric when used by itself, in that he
demonstrates that forecast skill (in terms of mean square error) can
be broken into a sum of the squared PCC and two bias-sensitive
terms. Murphy (1988) argues that the PCC squared resemble
potential skill attainable post elimination of systematic errors,
while bias-sensitive performance metrics such as the RMSE and
MAE describe actual performance. Due to wind speed forecast
bias-removal cf. Eq. (2) prior to inclusion in Eq. (1), RMSE
and PCC will exhibit the same relative performance between Eq.
(1) model candidates studied for a given site, yet between sites
the balance between “potential skill indicator” PCC and actual
performance in terms of MAE/RMSE approximately emphasises
differences in atmospheric flow distortion at each site, a feature in
part subject to the local terrain due to the distinct surroundings of
the offshore, coastal and inland sites selected in the experimental
design. This picture is approximate as the interpretation above is
subject to viewing Θ(x) in Eq. (1) as an ordinary linear model
coefficient, i.e. disregarding the x-dependence. It then follows
from the definition of the coefficient of determination for Eq. (1)
– which is in fact equal to the PCC squared and usually denoted
R2 cf. e.g. Olsson (2001) p. 5 – that

∑

all i

ε2i =
(

1−R2
)∑

all i

(wi − w)2 , (4)

in which RMSE squared times the number of time series data
points represents the left hand side, and the sum on the right hand
side represents the variation in wind speed measurements, i.e. w
denotes the average of wind speed measurements. The superposed
bar retains this denotation in the following.

Hence, by including PCC alongside RMSE (and MAE) in the
results pertaining to wind speed, presented in Figure 6, the reader
is indirectly reminded of the site statistics of Table I, namely σ̂.
However, with regard to wind power only RMSE and MAE are
applied in Table III, as is customary cf. Madsen et al. (2005).

3.2. Model development strategy

The dataset available spans two years, cf. Table I. Where e.g.
Müller (2011); Sweeney and Lynch (2011) use moving window
recursive approaches for one-year datasets, the first year of data
is here reserved for model development, while data for the second
year is solely used to assess performance of the final wind speed
model candidates based on the structure outlined in Eq. (1) —
a special case of the cross validation technique, cf. e.g. Efron
and Gong (1983). This stategy substantiates out-of-sample any
systematic wind speed forecast error coupling to GFS variables
identified in-sample. Furthermore, all seasons are represented
in both of the datasets for model development and evaluation,
respectively, and the results presented are therefore more generic
than if a subyearly period, sensitive to seasonal effects, had
instead been analysed. The dataset is binned according to forecast
leadtime groups of width equal to the time period between NWP
model forecast initialisations. Data within each forecast leadtime
group is then augmented such that all wind speed measurement
data points occur exactly once in each group. In this way all
hours of the day are represented in each forecast performance
metric evaluation and inference on forecast performance leadtime
dependency is thus readily assessed.

As mentioned in Section 2, forecasts are issued four times
daily, and wind energy scheduling typically concerns the forecast

leadtime horizon from 12 to 48 hours ahead, depending on
application requirements and the latency with which forecast
data can be obtained. E.g. Messner et al. (2013) consider
forecast leadtime hours 12 to 48 for studying forecasted wind
speed transformation to wind turbine power production, a topic
briefly considered in Section 4.4. To simplify execution of the
final, empirical model development step explained in Section
3.5 only two daily forecast initialisations are included in the
model development phase, namely Coordinated Universal Time
(UTC) midnight and noon forecast initialisations. Thus, for each
site Eq. (1) modelling cf. sections 3.4 and 3.5 is carried out
separately for the three sites considered and forecast leadtime hour
groups 12↔ 24, 24↔ 36 and 36↔ 48, respectively, and hence
all wind speed measurements of the resulting nine datasets are
represented exactly once, respectively. For the evaluation of the
NWP postprocessing framework in Section 4 all four daily GFS
initialisations are employed.

Before carrying out the Eq. (1) development steps described
in sections 3.4 and 3.5 separately for the nine datasets, the GFS-
derived quantities included in the analysis, cf. the last paragraph
of Section 2 and the Eq. (1) description first in Section 3, are
preliminarily screened for explanatory value subject to the Eq. (1)
framework in Section 3.3. As noted above, the procedure outlined
in sections 3.3, 3.4, and 3.5 is based on year 1 data, cf. Table I.

3.3. Preparatory screening of predictor candidates

This section describes a few diagnostic steps to be carried out for
the dataset used for model structure identification and coefficient
estimation (year 1; Table I) in order to preprocess the numeric
predictor candidates for modelling. In accordance with the model
development strategy outlined in Section 3.2, the quantification
of the wLLS data used in Eq. (1) model development is based on
forecast data spanning leadtime hours 12 to 48. That is, Eq. (2) fits
are based on data for GFS forecast hours 12 to 48 in this section.

Following a standard regression model building approach one
may choose to plot Eq. (2) model residuals against potential
additional explanatory variables, i.e. wLLSx terms — n.b. that
said residuals; w − wLLS , are henceforth referred to as LLS error.
However, each Eq. (1) model predictors can be written wLLS(x−
x) + wLLSx, and note that the latter term introduces variation
purely due to wLLS . Therefore, the Eq. (2) model residuals
are instead plotted against wLLS(x− x̄). In the event a linear
relation appears a plausible approximation to the underlying GFS
intervariable coupling to advection, the corresponding Eq. (1)
term is kept unchanged as a quantitative predictor. Local linearity
within regimes divided by a wLLSx-threshold is accommodated
by adding separate linear terms that mutually excludes one-
another depending on a threshold value. That is, depending on the
value ofwLLSx one or the other term is active, always one of them
and never both. Finally, if no linear relation is evident, though a
regime-like distribution can be inferred from the scatter density
plot, or perhaps more clearly from a histogram for the numeric
values of the wLLSx term, the predictor candidate is included as
a categorical variable with regime-dividing values inferred from
the scatter plot, cf. wLLSx regime-dependent linear relationships
discussed before. In case the threshold value differs considerably
for the three reference data sites studied the predictor term is
discarded to keep the methodology generic across terrain types.

Continuous NWP modelled quantities describe different
aspects of the the atmosphere via a set of coupled partial
differential equations and sub-grid scale parameterisations,
and are hence correlated to some extent. The degree of
multicollinearity in the Eq. (1) model is examined by inspection
of the PCC matrix for the predictor terms, which provides a
rough estimate of the extent to which redundant information is
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included in the model. Since the PCC is only sensitive to linear
relationships, the interpredictor PCC matrix is supplemented by
inspection of interpredictor scatter density plots in order to infer
whether systematic nonlinear relations between wLLSx terms are
present. However, as noted e.g. by Williams et al. (2013) the
adverse effects of multicollinearity are typically not severe in a
prediction context, as pertains to this work.

3.4. Model reduction based on Maximum Likelihood criteria

Eq. (1) predictor terms containing the least explanatory value are
removed sequentially according to a stepwise process known as
backward elimination, e.g. in Wilks (2011), or backward stepwise
selection in Hastie et al. (2009). The backward elimination
strategy is employed as the full model is thus subject to study,
in contrast to the case for forward stepwise selection, where
each predictor is added and tested sequentially. Note that both
techniques have advantages and drawbacks, depending on the
modelling task and the dataset at hand. Cf. Section 3.3, scatter
density plots of LLS error against wLLSx terms can indicate
linear coupling for certain variables, while others may look less
promising as explanatory variables in the assumed response-
relation structure Eq. (1). The objective is then to identify
and exclude redundant information to avoid suboptimal and
inconsistent model coefficient estimates, as discussed e.g. in Birgé
(2006); Bahadur (1958).

The Akaike Information Criterion (AIC), first proposed by
Akaike (1974), and the Bayesian Information Criterion (BIC),
Schwarz (1978), are two penalised ML criteria, both dependent on
the number of coefficients to estimate and the latter also explicitly
depends on the number of data points available for estimation;

AIC = −2`(W) + 2n, BIC = −2`(W) + n log(N),

where `(W) denotes the maximised value of the log-likelihood
function for the model specified by Eq. (1), n is the number
of coefficients θ to be estimated, and N is the number of
observations. As e.g. pointed out in Olsson (2001) p. 3,
OLS estimation of Eq. (1) coefficients corresponds to ML
estimation if the errors ε are assumed independent and zero-
mean normal distributed, which in turn enables the AIC and BIC
as Eq. (1) model reduction tools. Results discussed in Section
4.2 motivates the Gaussian-ε assumption, while the issue of
finite autocorrelation in part motivates the choice of backward
elimination scheme, cf. the next paragraph. The AIC and BIC
are common tools for model selection within various scientific
disciplines, see e.g. Kuha (2004); Alfaro and Huelsenbeck (2006);
Jones (2011); Vrieze (2012), while alternatives such as bootstrap
criteria, cross validation criteria, Mallow’s Cp, etc. are also found
in the literature, see e.g. Hastie et al. (2009); Zucchini (2000);
Bulteel et al. (2013); Birgé (2006). Vrieze (2012) argues that the
BIC is consistent under certain assumptions, i.e. this criterion
will asymptotically select the “true” model, given that this is a
subset of the full model space investigated, whereas the AIC is
not consistent. Hastie et al. (2009) p. 135 notes that the BIC
is more strict in that it penalises the inclusion of redundant
model predictors more severely than the AIC. However, given
that the full true model is not a part of the model space studied
the AIC is said to be efficient in that it will asymptotically
choose the model that minimises the mean square error, while
the BIC is not efficient if the true model is not a subset of the
investigated model space. Model selection based on the AIC is
always subject to the risk of selecting too large a model (i.e. with
redundant information) regardless of the number of observations
in the model development dataset, while the corresponding risk
when applying the BIC is very small given a sufficient number
of observations are available. On the other hand, the risk of

selecting too small a model is higher with the BIC than with the
AIC, regardless of the number of observations. The merits of the
two model selection criteria can roughly be summarised in the
following points.

• If a false negative finding is considered more misleading
than a false positive, the AIC is preferable.

• If a false positive finding is considered more misleading
than a false negative, the BIC is preferable.

Inclusion of redundant information in the coefficient estimation
process can lead to poor predictive ability for the Eq. (1) model
candidates when applied for postprocessing of future NWP data.
Furthermore, measured wind speed and NWP modelled quantities
are time series of smoothly varying atmospheric dynamics
aspects and as such exhibit finite autocorrelation, which suggests
that Eq. (1) model errors are not chronologically independent.
Therefore the effective number of (independent) data points is
lower than the actual number of data points N . Since the width
of confidence intervals for Eq. (1) coefficient estimates scales
inversely with

√
N , the test statistic used to accept/reject the

null-hypothesis stating non-value for individual predictor terms
is prone to attribute significance (rejection of null-hypothesis)
to terms for which the test statistic would otherwise infer non-
significance, subject to the effective number of independent
observations. Thus, more predictor terms may survive the
backward elimination process than warranted according to the
assumption of independent observations. Hence, the BIC employs
stricter predictor-penalisation than the AIC and the former is
therefore preferred for backward elimination of Eq. (1) predictor
terms. With the assumption of zero-mean Gaussian Eq. (1) errors
ε with variance σ2

ε , Hastie et al. (2009) p. 233 note that the BIC
can be expressed in terms of the Eq. (1) residual mean ε,

BIC =
Nε

σ2
ε

+ n log(N)

Since the BIC, although more restrictive than the AIC, may yet
keep too near-redundant predictor terms in Eq. (1), the model
reduction process is extended with additional model selection
criteria inferred from the models resulting from BIC reduction.

The BIC model reduction process allows for elimination of the
standalone wLLS term in Eq. (1), in which case the predictor is
reinstated posthumously as the quantity corresponds directly to
the model response. Likewise, not all Eq. (1) predictor involving
wind direction terms, cf. Eq. (3), are found significant post BIC
model reduction, and all wind direction terms up to the highest
Fourier expansion order surviving the BIC reduction process are
reinstated if eliminated during the process.

3.5. Further model reduction based on empirical assessment

Statistical significance of a predictor identified cf. the Eq. (1)
model development approach outlined in Section 3.4 is no
guarantee for notable influence on model predictions. E.g. the
discussed issue of model residual autocorrelation may lead to
exaggerated significance attribution for some predictors, which
in turn increases the risk of sustaining a predictor set subject to
severe multicollinearity. Hence, the Eq. (1) model development
approach outlined in Section 3.4 is extended with assessment
of the contribution of each predictor term to model prediction
variation. This is done by inspecting distribution histograms
for xθ̂ values, i.e. each element-wise xθ̂-product between GFS
predictor candidates and the coefficient estimate corresponding to
the relevant wLLSx predictor term in Eq. (1). The final Eq. (1)
model development step is based on 95 % quantile ranges for said
histograms. Based on this method, 1) the explanatory value for
each predictor is gauged directly, and 2) any potential adverse
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Figure 2. Scatter density plots for examples of GFS variables included as (a) binary categorical in modelling based on Horns Rev data,(b) two-regime linear regressor at
Rejsby Hede, and (c) ordinary linear regressor for the Stor-Rotliden site.

effects of severe multicollinearity may be detected. The latter
point is elaborated upon in the following paragraph.

Provided two or more predictor terms are highly correlated, the
model design matrix M , containing predictors along the column
dimension and observations along the row dimension, multiplied
with it’s transpose, is near-degenerate since M itself is near-
degenerate; det(MTM ) = det(MT)·det(M ). The OLS estimator
for Eq. (1) coefficients

θ̂ =
(
MTM

)−1
MTw (5)

has covariance

Cov
[
θ̂
]

= σ2
ε

(
MTM

)−1
(6)

cf. e.g. Pawitan (2001) p. 151. Model coefficient estimates
become uncertain, cf. e.g. Valentine (1969), and hence the precise
effect of a predictor severely collinear with one or more other
predictors is thwarted. Recall from Section 3.3 that the overall fit
of the model is not affected cf. e.g. Williams et al. (2013), though
for this to remain true for varying degrees of uncertainty in model
coefficient estimates a scenario with relatively large coefficient
estimates – of opposite sign – being attributed to two strongly
correlated predictors is plausible, in spite of the fact that neither
term contains explanatory value. As modelling is carried out
separately for each of the nine datasets discussed in Section 3.2,
severe multicollinearity may result in pairwise wide xθ̂ histograms
for some datasets subject to two strongly collinear terms, while in
other cases the impact may be modest or said terms may have been
eliminated in the BIC reduction process.

In order to effectively detect and deal with such illusive
explanatory value signals, xθ̂ variation histograms and associated
quantile ranges are supplemented by ordering according to
PCC forecast performance reduction due to removal of a given
predictor. That is; the predictor term causing the most severe
reduction in prediction performance when removed from the
model is at the top of the hierarchy, and so forth as the
adverse performance impact from predictor removal decreases. If
a predictor with a relatively wide 95 % quantile range assumes
a low ranking this indicates strong interpredictor coupling that
may be confirmed from the interpredictor correlation matrix and
scatter density plots motivated in the last paragraph in Section
3.3. Valentine (1969) proposes to substitute the individual terms
with a single linear combination of the collinear predictors, though
also emphasises the entailing challenge of choosing appropriate
weights for each term. Hence, his other suggestion of simply
leaving out one of the collinear predictors is applied here.

As a very last screening for true explanatory value all predictor
terms remaining at this point are left out by turn, the model

re-assessed, and severety-ranking of adverse impact on model
prediction performance is established in a final attempt to root
out predictors of deceptive value for Eq. (1) model predictions.
Inconsistency between xθ̂-variation contribution vs. the same
terms ranking leads exclusion of said predictor.

4. Results

This section describes the assessment of the models resulting from
carrying out the Eq. (1) predictor reduction steps of Section 3 for
the dataset presented in Section 2. As prescribed in Section 3.3,
the exploratory data analysis outlined in Section 4.1 preprocesses
the data for the backward elimination of Eq. (1) predictor terms.
The model predictor reduction process described in sections 3.4
and 3.5 is executed in Section 4.2, leading to the final model
candidates evaluated in sections 4.3 and 4.4.

Note that sections 4.1 and 4.2 concern only 00 and 12 UTC
forecast initialisations pertaining to year 1 of Table I, cf. the model
development strategy laid out in Section 3.2, while all four daily
GFS forecast initialisations are used in sections 4.3 and 4.4.

4.1. Exploratory data analysis prior to statistical modelling

Provided Eq. (1) holds, scatter density plots of LLS error against
wLLSxc terms constitute approximate guidance as to whether
the predictor term should be 1) excluded, 2) included as a
binary categorical variable, further substantiated by predictor
term histograms cf. Section 3.3, 3) as a x-regime dependent
term, or 4) as an ordinary regressor. Figure 2 includes examples
of GFS-derived quantities processed as categorical, two-regime
regressors, and ordinary continuous regressors prior to Eq. (1)
predictor reduction based on the BIC carried out in Section 4.2.

1) The thermal buoyancy, and hence atmospheric stability,
in the lowest part of the boundary layer arguably depends on
variables such as daily sunshine duration and downward short
wave radiation. Though based on scatter density plots cf. Section
3.3 these GFS quantities are excluded in the further analysis,
as inclusion as neither categorical, regime-dependent linear, nor
ordinary regressor appear suitable due to fairly evenly spread-out
scatter with no hint of linear trends (not shown).

2) Figure 2a indicates for Horns Rev – as for the other two sites
(not shown) – that convective available potential energy (CAPE)
is likely not suitable for inclusion as continuous x in an Eq.
(1) type predictor term, as no linear relation is evident from the
scatter density plot. However, viewing the horizontal axis as a
histogram – i.e. data points per wLLSx bin (not shown) – further
highlights a tendency already apparent in Figure 2a for values to
be either concentrated around zero or with values far exceeding
zero, with approximately half the data points belonging to each
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(a) Eq. (1) predictor wLLS and standalone x variables.
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(b) Eq. (1) predictors wLLS and wLLSx.

Figure 3. PCC matrices for the set of continuous GFS-derived x candidates included in the modelling process for the coastal Rejsby Hede site. As a correlation matrix
is symmetric the lower diagonal is transformed to display visually interpretative PCC objects. Hence, colour coded representation substitutes numeric values in the lower
diagonal; fading gradually from red (inverse linear relation), over white (no linear relation), to blue (linear relation).

binary class. From a physical point of view, whether potential
energy of a parcel of air is present is one indicator of atmospheric
stability, with implications for the vertical wind profile, and hence
the GFS variables CAPE and the related convective inhibition
(CIN) are implemented as binary categorical variables in the
modelling process of Section 4.2. Forecast variables related to
precipitation are indicators of water phase shift in the atmosphere,
potentially associated with weather fronts, and are processed in a
similar manner due to CAPE/CIN-like scatter density plot traits.
Respective data point counts in the two binary factor levels are
ensured to be distributed somewhere in between 30–70 % and 50–
50 %; if one factor level is sparsely populated the Eq. (1) model
coefficient estimation becomes unreliable and may crash if the
design matrix M becomes singular, cf. Eqs. (5–6).

3) Moving on to Eq. (1) predictor terms based on regime-
dependent x, Figure 2b shows the scatter density plot for latent
heat flux simulated by the GFS. This variable, along with
the related sensible heat flux, has a natural threshold at zero;
separating condensation from evaporation for the former and
vertical propagation direction for the latter.

4) Finally, the GFS-simulated lifted index vs. LLS error
displayed in Figure 2c do suggest a linear relation, in contrast to
the case for variables like CAPE and latent heat flux. Similarly, the
scatter density plots for all GFS-derived quantities appearing in
Figure 3 indicate no processing necessary, and these are therefore
included as continuous x in the Eq. (1) model.

Figure 3a quantifies the linear coupling between the various
quantities predicted from the GFS formulation of the governing
equations for atmospheric dynamics. As all Eq. (1) predictor
terms involve proportionality to LLS wind speed severe
multicollinearity is expected and verified in Figure 3b, namely
for temperature and mean sea level pressure. Notice that these
terms are, in fact, correlated with LLS wind speed to two
digits precision — and are hence likely not adding value to
Eq. (1) prediction accuracy, though neither deteriorating model
performance in-sample cf. e.g. Williams et al. (2013). Out-of-
sample model performance consequences of inclusion of these
terms are assessed in Section 4.3. As the final modelling step of

Section 3.5 involve direct assessment of the influence of individual
predictor terms on the model, all the GFS-derived quantities listed
in Figure 3 are included in the backward elimination process of
Section 4.2. The PCC matrices corresponding to Figure 3b for the
offshore Horns Rev and inland Stor-Rotliden sites exhibit similar
behaviour for all predictor terms (not shown here, though see
Figure 7 for Stor-Rotliden). As remarked in Section 3.3 the PCC
is only an estimator of linear dependence, though no conspicuous
nonlinear relations are identified when inspecting interpredictor
scatter density plots (not shown).

4.2. Backward elimination of Eq. (1) predictor terms

As prescribed in Section 3.2, the Eq. (1) predictor reduction
based on the BIC is carried out separately for each of the nine
datasets considered, each of which including all wind speed
measurement data points exactly once. Which of the resulting
predictor candidates to preserve in the final models is determined
from combining the information obtained in the nine separate
studies.

However, first the assumptions underlying the method proposed
in Section 3.4 need to be substantiated. In order to employ the ML
framework on which model predictor reduction using the BIC is
based, Eq. (1) errors ε must be approximately normal distributed.
Quantile-quantile plots for the nine datasets indicate fairly
symmetrical distributions, yet a bit heavy-tailed (not shown).
There are alternative approaches for nonnormal theory models,
see e.g. Yuan and Bentler (1999), though the QQ-plots are not
severely discouraging and hence the model development proceeds
according to Section 3.4. The assumption that the ε distribution
can be parameterised by two constants (the mean population error,
µε = 0, and standard deviation σε), which also underlies Eq. (5) –
i.e. OLS estimation – implies homoscedasticity. In order to infer
the extent to which this assumption is met, scatter density plots of
model residuals against predictions are inspected (not shown), and
no apparent dependence is found. Also, the cumulative squared
model residuals are computed for the three sites studied. If σ2

ε

is constant
∑N
i=1 ε

2
i vs. the time stamp will have near-constant

slope. As data for the offshore site, Horns Rev, exhibits the most

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls



8 M. H. Rosgaard et al.

severe sudden ε2 increases disrupting this picture, the cumulative
ε2 for this site is shown in Figure 4, along with two examples
of weather events underlying the ε2-jumps; storms. Note that
removing the two 24-hour storm periods results in what looks
like a steady, constant-slope development which in turn implies
homoscedasticity. However, removing the 4–5 events for which
cumulative ε2 exhibits sudden increase with time in Figure 4c has
no impact on the final model candidates arrived at later in this
section, and the impact on OLS estimates for θ elements of Eq.
(1) only influence model predictions up to the fourth decimal in
the Section 4.3 analysis.

As argued for in Section 3.5, additional model reduction upon
having BIC-reduced the nine Eq. (1)-type models separately
based on the nine datasets described last in Section 3.2, is
likely necessary to achieve consistent results. Thus quantile
ranges displayed in Figure 5c, and similar plots for the other
eight datasets (not shown), are used in order to better secure
that out-of-sample performance (second year data) is consistent
with in-sample performance (first year data). Cf. the discussion
in Section 3.5 this information is applied as a tool for direct
assessment of explanatory value of predictor terms remaining post
backward elimination processing of Eq. (1) for the nine datasets.
The xθ̂ histogram width, cf. Figure 5b, quantifies the extent of
influence on the model response. Note that in comparison with
Figure 5a the lifted index (x) histogram is wider than the model
response coefficient histogram. This apparent discrepancy can
be understood in light of Figure 3a, exhibiting similar traits as
the corresponding PCC matrix for the Stor-Rotliden site, in that
specific humidity is inversely correlated with lifted index and
hence acts to counter the stronger influence of the lifted index.
Thus the specific humidity histogram (not shown) is enveloped by
the histogram for lifted index and acts to “contract” the variation

(a) Winter storm.
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(c) The adverse effects of (a) and (b) on the σε-constancy assumption.
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Figure 4. Quantitative illustration of how two poor storm event forecasts for Horns
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(c) Variation of model and predictor xθ̂.

Figure 5. (a) and (b) show histograms of the coefficient estimates for the full Eq.
(1) model and the fitted predictor term xθ̂ with greatest variation contribution (∼
widest histogram), respectively. (c) shows quantile ranges for all predictor terms
considered for this particular dataset, which is forecast leadtime hour group 12 to
24 for the Stor-Rotliden site.

of the lifted index. The variation histogram for temperature is
narrower than that for specific humidity, cf. Figure 5c, and
centered in the far negative around −1.6 (not shown). The lifted
index variation, mainly of positive sign, is also balanced by the
4-layer lifted index (not shown), looking like a narrower mirror
image around zero – i.e. of opposite sign – of the lifted index
variation histogram.

The empirical reduction steps proposed in Section 3.5 and
executed here conclude with recursively leaving one predictor out
of the model in order to quantify the negative impact and construct
a predictor-hierarchy of explanatory value. A clear example of
the adverse effect of multicollinearity arise when including both
pressure at the surface and at the mean sea level in the model
development. For some of the nine datasets modelled, cf. the last
paragraph in Section 3.2, both appear to be dominating predictors
in terms of Figure 5-like histogram width, while for other datasets
they do not even survive BIC-reduction. In the former case,
inspection of the θ estimates reveals very large values of opposite
sign — the two corresponding predictor terms all but cancel when
added in the full model. Or put differently, subject to severe
predictor multicollinearity the framework presented in this article
may provide false assessment of true explanatory value if this
important step is omitted.

Section 3 frames the general guidelines for the analysis steps,
though at this point model candidates must be inferred from the
data based on the preliminary results. The modelling process
produces nine quantile range plots cf. Figure 5c, and in the final
screening predictor terms are tested according to the hierarchy-
listing approach sketched above in order to rule out false signals.
As a final criteria, at least 0.1 variation within the 95 % xθ̂-
quantile range is required for one or more of the nine datasets; see
the dashed vertical line in Figure 5c. When multiplying xθ̂ with
wLLS this corresponds to a 95 % quantile bandwidth of ∼1 m s−1

for LLS wind speeds around ∼10 m s−1. The resulting model is
denoted Model 2 in Table II of Section 4.3.

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls
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Figure 6. Top row: Forecast performance in terms of PCC. Bottom row: Forecast performance in terms of RMSE superposed by forecast performance in terms of MAE
(bold type). (a) Horns Rev, (b) Rejsby Hede, (c) Stor-Rotliden.

4.3. Model performance assessment

In contrast to the case during model development steps carried out
in sections 4.1 and 4.2, all four daily GFS initialisations; 00, 06,
12, and 18 UTC, are included in Section 4.3 as the 12 hours wide
forecast leadtime groups were enforced to reduce the complexity
of the empirical assessment by variation of quantile ranges. As
such, the nine datasets visually assessed cf. Figure 5 would have
been split in twice as many 6 hours wide leadtime group datasets if
all four daily GFS initialisations had been included, and the benefit
would arguably be negligible. In this section, the θ elements of
the final model candidates are estimated based on year 1 data and
model performance evaluated based on year 2 data, cf. Table I.
Thus the dependence of performance on the forecast leadtime is
resolved twice as fine as in datasets underlying construction of the
model candidates, while staying within the forecast performance
assessment framework of Section 3.2.

As mentioned last in Section 4.2, the model arrived at there
is denoted Model 2. A few additional model candidates are
evaluated in order to nuance the performance investigation. A
natural baseline is, of course, the LLS model, Eq. (2), which
corrects for wind speed bias (see Table I) and scaling errors. This
is the aptly named Model 1, a prerequisite for the other models
in that Model 1 predictions are essential for modelling by Eq. (1).
An additional perspective on performance in the present context;
Model 3, could be to assess the effect of adding wind direction as
is typically, if not always, done in statistical wind power prediction
models. It turns out that, besides wind direction, the only other x
variables present in all nine models post BIC-reduction are the
lifted index and hub-height temperature, the further addition of
which makes Model 4. Model 5 predictions quantify the effect of
leaving out the wind direction from Model 4, while Model 6 and
7 assess the individual contribution to Model 4 of temperature and
lifted index, respectively.

Model performance results are shown in Figure 6. Recall cf. Eq.
(4) that the high forecast accuracy in terms of PCC and relatively

poor RMSE in Figure 6a, compared to the corresponding metric
balance in Figure 6c, highlights severe fluctuations in atmospheric
flow off the Danish west coast relative to corresponding weather
conditions in central Sweden, cf. Table I. Leaving out the
wind direction (Model 1 and 5) has relatively severe impact on
performance for the two Danish sites, while Model 7 for the inland
Swedish site suffer a minor penalty gradually diminishing with
leadtime until Model 5 achieves Model 4 performance around
30 hours. This is in line with expectation as namely the coastal
site is situated ∼ 1–2 km from the Danish west coast and thus
experience winds from the North Sea for westerly flow and
winds subject to heterogenous land surface drag for easterly
flow, which in turn makes direction-dependent forecast errors
plausible. In fact, Model 5 (4 without wind direction) performs
inferior to Model 1 (LLS wind speed) for the coastal site, i.e.
the inclusion of temperature and lifted index deteriorates the out-
of-sample wind speed prediction at this location. The Swedish
site is situated on the top of a hill and surrounded by terrain
of some heterogeneity, and hence the wind represented on the
coarse ∼ 27 km horizontal computational grid of the GFS is more

Table II. Overview of models evaluated. Wind direction, Eq. (3), includes up
to four Fourier expansion terms. Wind speed, wind direction, and temperature
are at wind turbine nacelle hub-height, specific humidity is at 2 m AGL. †
superscript denotes Eq. (2) modelling, while ‡ marks an Eq. (1) type model.

Model # Constituent GFS-derived quantities included in predictor terms

Model 1† Raw wind speed
LLS wind speed, wind direction, temperature, lifted index,
4-layer lifted index, specific humidity, friction velocity,Model 2‡

planetary boundary layer height
Model 3‡ LLS wind speed, wind direction
Model 4‡ LLS wind speed, wind direction, temperature, lifted index
Model 5‡ LLS wind speed, temperature, lifted index
Model 6‡ LLS wind speed, wind direction, temperature
Model 7‡ LLS wind speed, wind direction, lifted index

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls
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undisrupted by the topography in the simulation than is observed
surface winds. This hypothesis is supported by the fact that Model
2 quickly drops to Model 1 performance as a function of leadtime,
i.e. forecasted wind direction do not contribute much explanatory
value here. Note also that Model 3 appears to be on par with,
and occasionally better than, Model 6. And for the coastal site, in
particular, it is even an advantage to further leave out temperature
(Model 5). For the Swedish site Model 4 and 5 start out with
similar performance, though temperature (Model 6) gradually
drops as the leadtime increases, while the lifted index (Model 5)
sustains the leading position.

Given that two or more models perform equivalently well the
one with the least complexity is preferable. In that respect, the
wind direction model (Model 3) appears to be the best candidate
(yet cf. Section 4.4) for the coastal site, while slightly surpassed
by Model 2 for the offshore site. Inland, Model 4 consistently
outperforms the other model candidates, though approximately
one day into the forecast temperature contributes very little
explanatory value as Model 7 (Model 4 without temperature)
performance merges with that of Model 4. Overall, predictability
in terms of MAE and RMSE drops more rapidly for the offshore
site than for the onshore sites and the former starts out better and
ends up poorer, performancewise. Also, the relatively high PCC
for the offshore site, albeit similar MAE/RMSE across sites, may
indicate that severe GFS wind speed magnitude errors influence
offshore prediction to a greater extent than weather system phase
errors relative to locations on land, cf. Section 3.1 and the
discussion on conditional (scaling errors) and unconditional (bias)
contributions to forecast skill in Murphy (1988).

4.4. Practical implications for renewable energy feasibility

Motivation for considering all available forecast data up to 48
hours ahead is given first in Section 4.3. By the same token, the
four daily GFS initialisations are applied in Section 4.4 where
coefficient estimation is instead recursive and adaptive. Also, the
focus on forecast leadtime resolution is relaxed in order to recast
the dataset underlying the conclusion given in Section 5, and
for the sake of a more summarising (clear-cut) comparison of
model candidates within an alternative framework for coefficient
estimation than the cross validation, cf. e.g. Efron and Gong
(1983), employed in Section 4.3.

In this section explanatory value of the GFS-derived quantities
summarised in Table II is quantified in terms of wind power
forecast improvement for the three sites studied. Nielsen et al.
(2001, 2012) describe the Wind Power Prediction Tool (WPPT)
to estimate the collective electric power production of wind
farm turbines, transforming kinetic energy in the moving air into
electricity, for use in operational planning of wind energy on
a daily basis. The stochastic simulation process in the WPPT
involves wind direction dependent power curve modelling and
the interested reader is referred to e.g. Lydia et al. (2014) for a
recent overview of the topic. As Orths and Eriksen (2012) remark
in their description of the world’s largest day ahead market for
trading power, the relevant forecast leadtime span for wind energy
scheduling is 12–36 hours ahead of the auction deadline. In a
realtime setting the four daily GFS forecasts are available with a
5 hours delay and this is accounted for in the statistical modelling
underlying results in Table III, showing relative improvement
in WPPT forecasts issued each hour, based on the GFS-derived
quantity sets underlying models 2, 4, 6 and 7 of Table II,
respectively.

By virtue of the pronounced differences in the rationales
underlying the two employed evaluation strategies, results of
Figure 6 and Table III indicate that modelled lifted index may
be key to understanding formulation deficiencies in the GFS,

Table III. Performance of wind power forecasts by the WPPT, adapted to
include the four predictor sets of Table II models 2, 4, 6 and 7 (referred
to as post additional modelling), and the corresponding change ∆ relative
to performance of the standard WPPT setup for GFS (prior to additional
modelling) relying on NWP data for wind speed and wind direction alone.
Performance evaluation is based on forecast leadtime between hours 12 to 36
ahead of initialisation for year 2 data, cf. Table I. Horns Rev is abbreviated HR
and has capacity 160 MW (80 wind turbines), Rejsby Hede is RH with capacity
23.4 MW (39), and Stor-Rotliden is denoted SR and has 77.8 MW (40). RMSE
and MAE are given as percentage of respective wind farm capacities. N.b. in
the standard WPPT setup input from multiple NWP models is employed; the
pure GFS-based setup performs inferior by 10–15 %.

Site Model # RMSE [%] MAE [%]
Prior Post ∆ Prior Post ∆

2 16.14 −0.36 11.18 −0.23
4 16.08 −0.42 11.14 −0.27
6 16.23 −0.27 11.24 −0.17

HR

7

16.50

16.23 −0.27

11.41

11.24 −0.17

2 11.97 −0.42 8.25 −0.26
4 11.92 −0.47 8.21 −0.30
6 12.05 −0.34 8.29 −0.22

RH

7

12.39

12.01 −0.38

8.51

8.25 −0.26

2 16.12 +0.31 11.90 +0.24
4 15.50 −0.31 11.48 −0.18
6 15.96 +0.15 11.85 +0.19

SR

7

15.81

15.54 −0.27

11.66

11.52 −0.14

as this variable contains systematic information to consistently
reduce advection forecast error based on two years of hourly
data. Note, for this site also, that the inclusion of predictor terms
involving temperature and friction velocity, both of which exhibit
severe collinearity with LLS wind speed cf. Figure 7, results
in forecast performance reduction relative to the performance
of the WPPT setup for GFS input. This prompts a review of
the fundamental difference between model coefficient estimation
techniques underlying results of Figure 6 and Table III. The sharp
division of fixed training and test datasets employed to arrive at
the results of Figure 6 is – as mentioned in the first paragraph
of this section – replaced by recursive and adaptive coefficient
estimation in the WPPT. Recursive in the sense that coefficient
estimates are updated in a computationally efficient manner as
wind farm measurements and forecast data becomes available,
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Absolute vorticity @ 500mb

Storm relative helicity
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Figure 7. GFS intervariable PCC matrix for the inland site, Stor-Rotliden, post
multiplication with LLS wind speed, cf. Figure 2b.
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and adaptive due to exponentially decaying weight on previous
data points as a function of the temporal distance to the current
time stamp. In the WPPT configuration employed here, coefficient
estimates for all models are based on fewer data points than in the
Section 4.3 approach, and namely the poorly performing Model 2
and Model 6 are subject to strong collinearity with the standalone
LLS wind speed predictor, which in turn renders the coefficient
estimation unreliable cf. Eqs. (5–6). While all wind direction
inclusive models perform similarly for Rejsby Hede, cf. Figure 6b,
all GFS-derived quantities improve wind power forecasts for this
coastal site relative to the standard WPPT configuration, which
can roughly be viewed as representing Model 3 (the one with
only LLS wind speed and wind direction). This may indicate
strong seasonal dependence of the model coefficients which is
accommodated for in the WPPT, though thwarted in the full-year
model training dataset determining the model coefficient estimates
underlying subsequent-year model predictions in Figure 6.

5. Conclusion

The purpose of a model is to provide a basis for understanding
data and, namely in a weather forecasting context, to predict
future measurements. The feasibility of various approximations
to the governing equations for atmospheric dynamics, numerical
discretisations for dynamical cores, and physical process schemes
have been investigated since the dawn of the scientific discipline
of computer-aided NWP 65 years ago, and new research to
improve the status quo is continually carried out. As a tool for
supporting this endeavour, the work presented in this article offers
a methodology for indirectly diagnosing weather and climate
model deficiency and improving prediction accuracy.

Provided assumptions 1) and 2) below are somewhat satisfied,
the method of Section 3 holds for any model based on a
set of coupled hyperbolic partial differential equations. That
is, the practical implications of mathematical relations for
prognostic and diagnostic variables can be explored based on the
methodology framed in sections 3 and 4. In particular, inference
on systematic model variable coupling to an observed quantity
of interest is facilitated, and quantification of explanatory value
for individual predictor candidates is discussed. However, the
applied univariate modelling framework is subject to the following
assumptions: 1) A physically reasonable general linear model
relation between an observed response and simulated predictor
candidates can be established, 2) approximate Gaussianity,
homoscedasticity, and vanishing autocorrelation can be assumed
for the statistical model error. A careful analysis of the extent to
which 2) holds constitutes an essential component in such studies.
For nonnormal response characteristics alternative statistical
modelling techniques may be more suitable.

With access to the source code practically all weather and
climate model aspects can be investigated in the quest for
model consistency with atmospheric measurements of interest.
Conducting the study on NWP model forecasts rather than
reanalysis data exposes leadtime-dependent features – such as
the here uncovered departure between explanatory value of lifted
index vs. temperature for the inland site as a function of leadtime
– that would otherwise not be disclosed, hence adding a temporal
dimension to the model deficiency analysis. Thus, one gets a peek
inside the numerics engine of a complex system of discretised
partial differential equations, for which less-obvious numerical
scheme and formulation deficiencies can be hard to detect.

The study suggests that statistical modelling of forecasted lifted
index and wind direction, by the approach described in Section 3
and executed in Section 4, contributes additional accuracy to GFS
predictions of wind speed in all terrain types. For the offshore
and coastal sites excluding the lifted index predictor achieves

equivalent performance cf. Figure 6, though it is important to
note that lifted index inclusion does not deteriorate the out-of-
sample prediction at any leadtime. This is, however, not the
case for the coastal site when excluding the wind direction
predictor terms, leading to inferior performance of including
lifted index and temperature relative to the pure LLS wind
speed model. That wind direction in NWP models has systematic
influence on wind speed forecast error is perhaps not surprising. In
contrast, the fact that the NWP modelled lifted index contributes
∼0.1 m s−1 better MAE and RMSE than the pure wind direction
model for complex terrain data is more interesting, namely when
considering the equivalent performance of surface temperature for
short leadtimes deteriorating for forecast hours beyond ∼12 hours
ahead. However, the wind power forecast results of Table III
substantiate the explanatory value of the lifted index for all sites
and hence hint a strong seasonal model coefficient dependency,
namely for the offshore and coastal sites, both of which are in
proximity to the North Sea.

The lifted index, first proposed by Galway (1956) as a predictor
of latent instability (severe weather), is traditionally defined as the
temperature difference between the NWP modelled temperature
at the 500 mb level minus the ditto simulated surface layer
midpoint temperature adiabatically raised to this pressure level.
The relatively significant performance impact from including this
predictor in Eq. (1) could hint moisture-dependent bias in the GFS
simulation of surface layer winds, cf. e.g. Bénard et al. (2000),
which in turn points toward inadequate surface and planetary
boundary layer parameterisations and/or land surface scheme.

The high PCC and similar RMSE performance offshore,
relative to the coastal and inland sites, is via the theoretical
link between these accuracy metrics approximately shown to
derive from the more volatile weather conditions in the North
Sea. However, the discrepancy may in part be attributed
inferior representation of the influence of the ocean surface on
atmospheric flow. I.e. if the simulation of large scale weather
systems is fairly well temporally correlated with observed
dynamics (as the high PCC suggests), the severe wind speed error
magnitude penalty expressed by the MAE/RMSE relative to the
PCC, compared to the other sites, could adhere to NWP model
lower boundary condition issues. Hence, the authors speculate
that efforts toward improving the simulation of offshore surface
layer dynamics in the GFS would be feasible for efficient offshore
wind energy integration in the power grid, as well as for other
applications depending critically on wind speed forecast accuracy
at sea.
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