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Abstract 25 

Functional traits, rather than taxonomic identity, determine the fitness of individuals 26 

in their environment: traits of marine organisms are therefore expected to vary across the 27 

global ocean as a function of the environment. Here, we quantify such spatial and seasonal 28 

variations based on extensive empirical data and present the first global biogeography of key 29 

traits (body size, feeding mode, relative offspring size and myelination) for pelagic copepods, 30 

the major group of marine zooplankton. We identify strong patterns with latitude, season, and 31 

between ocean basins that are partially (approximately 50%) explained by key environmental 32 

drivers. Body size, for example, decreases with temperature, confirming the temperature-size 33 

rule, but surprisingly also with productivity, possibly driven by food-chain length and size-34 

selective predation. Patterns unrelated to environmental predictors may originate from 35 

phylogenetic clustering. Our maps can be used as a test-bed for trait-based mechanistic 36 

models and to inspire next generation biogeochemical models. 37 

  38 
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Introduction 39 

Studying the distribution and abundance of organisms is the key task in ecology 40 

(Begon et al. 2006). In recent decades, the growing availability of observational data and 41 

empirical models has increasingly allowed the pursuit of this task on large spatial scales. In 42 

particular the distribution patterns of individual species and their links to the physical 43 

environment have been studied intensively (Elith & Leathwick 2009). However, a major 44 

challenge for such macro-scale studies is the mechanistic linking of the observed patterns to 45 

the processes that drive them (Keith et al. 2012). One powerful way to identify such links is 46 

the trait-based approach, because the functional traits of an organism, rather than its 47 

taxonomic identity, determine its fitness in a given environment. The trait-based approach 48 

assumes that organism fitness is based on success in the fundamental life missions feeding, 49 

survival and reproduction, and that the outcome of each of those missions depends on a few 50 

key traits. These key traits are interrelated through trade-offs and their optimal expression is 51 

determined by the environmental conditions (Litchman et al. 2013).  52 

The trait-based approach in biogeography is well established for primary producers 53 

but its potential for animals has rarely been exploited. The trait-based approach has a long 54 

tradition in plant ecology (e.g., Westoby et al. 2002) and has also been used to describe the 55 

distributions of phytoplankton (e.g., Edwards et al. 2013). Besides providing ecological 56 

insight, trait biogeographies have fostered a more realistic incorporation of primary producers 57 

into global vegetation and ocean circulation models and thus have advanced biogeochemistry 58 

and climate science research (Scheiter et al. 2013; Brix et al. 2015). However, trait 59 

biogeographies for animals are uncommon, although they may be equally valuable. This is 60 

particularly evident for marine zooplankton, and their dominant members, the copepods 61 
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(Barton et al. 2013b). Marine copepods are ubiquitous, typically dominate the biomass of 62 

zooplankton communities, and play a key role in pelagic food webs (Verity & Smetacek 63 

1996). For this group traits and associated trade-offs are relatively well understood (Kiørboe 64 

2011) and comparably rich observational data exists (O’Brien 2010). 65 

Key traits for copepods include body size, feeding mode, relative offspring size, and 66 

myelination of the nerves, determining both their fitness and their impact on the ecosystem. 67 

Body size governs most vital rates and biotic interactions (Kiørboe & Hirst 2014) and affects 68 

marine food webs and carbon fluxes (Turner 2002; García-Comas et al. 2016), feeding mode 69 

determines feeding efficiency and associated predation risk (Kiørboe 2011), relative offspring 70 

size determines the success in recruitment in a given environment (Neuheimer et al. 2015), 71 

and myelination of the nerves is one aspect of predator defense (Lenz 2012) (Box 1). 72 

The aim of this study is to establish large-scale copepod trait biogeographies, 73 

including the first ever global analyses. In addition, we tested two hypotheses: (H1) Between-74 

community trait variation is structured in space and time, i.e., trait distributions can be largely 75 

described by assuming that they are more similar to neighboring communities than to distant 76 

communities. (H2) These spatiotemporally dependent structures form in response to key 77 

environmental drivers including food availability, temperature, water transparency, and 78 

seasonality, as suggested in Box 1. We combined information on traits for hundreds of 79 

marine pelagic copepod taxa with two of the most extensive sets of observational data for 80 

copepods, covering the North Atlantic and the global ocean. We demonstrate distinct 81 

spatiotemporal trait biogeographies for most traits that can be partly explained by 82 

environmental drivers, and partly, such as in the case of differences between ocean basins, as 83 

a result of other structuring processes.  84 
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Methods 85 

Overview 86 

The analyses consisted of two steps. Firstly, we combined copepod trait information 87 

with field observations of copepod occurrences, defined communities, and summarized those 88 

using summary statistics. We combined trait information with two observational datasets with 89 

different resolutions in space and time: the North Atlantic with seasonal resolution, and the 90 

global ocean without temporal resolution. Secondly, we used statistical models to test our 91 

hypotheses, to investigate the spatial/spatiotemporal patterns of trait distributions, and to 92 

analyze their relationship with the environment. 93 

Trait data 94 

Trait data originated from a collection of literature information on functional traits for 95 

marine copepods (Brun et al. 2016). Where multiple measurements were available per 96 

species, we took species-specific averages. We used body size measurements from adults 97 

irrespective of the life stage of the observed individuals and thus estimated an upper 98 

boundary of potential body size. In the global analysis, information on mixed feeding was not 99 

sufficient to characterize the communities, and we therefore only distinguished between 100 

active feeders and passive feeders, considering mixed feeding taxa as active feeders. 101 

Observational data 102 

North Atlantic 103 

Data from the Continuous Plankton Recorder (CPR) survey was used to estimate the 104 

spatiotemporal distributions of North Atlantic copepods. The CPR survey is a large-scale 105 
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monitoring program of North Atlantic plankton, particularly copepods, diatoms and 106 

dinoflagellates (Richardson et al., 2006). The CPR is towed by ships of opportunity at 107 

approximately 7 m depth. Each CPR sample corresponds to 10 nautical miles and around 3 108 

m
3
 of seawater filtered onto a 270 µm-sized silk gauze. We used roughly 49 000 observations 109 

of 67 copepod taxa resolved into abundance classes that have been classified by the CPR 110 

survey between 1998 and 2008 (Johns 2014, Appendix A).  111 

Observations of CPR taxa were matched with taxon-specific trait estimates. Not all 112 

taxa sampled in the CPR were resolved to the species level. Traits for higher order taxa were 113 

represented by the traits of the most common species in that group, as reported in Richardson 114 

et al. (2006). Where no information about the most common species was available, we 115 

averaged traits of all species in the taxon that have been repeatedly observed in the study 116 

area, according to the OBIS database (www.iobis.org, Appendix A). Available trait 117 

information largely covered the estimated biomass of observed taxa in the North Atlantic 118 

(Table 1). 119 

Global 120 

For the global analysis we used data from the Coastal and Oceanic Plankton Ecology, 121 

Production and Observation Database (COPEPOD), which contains abundance information 122 

for various plankton groups (O’Brien 2010). This data is compiled from a global collection of 123 

cruises, projects, and institutional holdings. Data for copepods consisted of roughly one 124 

million observations distributed across the global ocean. We updated the taxonomic 125 

classification of the observations according to the most recent online taxonomy 126 

(http://www.marinespecies.org/copepoda/) and utilized only data with abundance information 127 

and taxonomic resolution at the genus level or higher. In a few cases, we also included pooled 128 

observations for two genera, describing their traits based on the first genus mentioned. 129 
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Furthermore, we filtered for observations taken in the top 200 meters of the water column and 130 

excluded parasitic taxa. While the absolute number of observations lost through the filtering 131 

was minor, observations were removed from most of the Pacific, particularly because of 132 

lacking taxonomic resolution of data from this area.  133 

Observations were matched with corresponding trait information. Traits at the genus 134 

level were estimated as means of the available estimates for their species. For all traits, 135 

match-ups were possible for most of the estimated abundance (Table 1). 136 

COPEPOD data were spatially binned and an expected abundance was estimated for 137 

the taxa present. Unlike the CPR data, COPEPOD observations do not have a homogeneous 138 

sampling design and no standardized catalogue of taxa was targeted. We therefore split the 139 

global ocean into roughly 5000 polygons of similar area, and estimated trait-statistics 140 

polygon-wise. For each polygon, we used geometrical means to estimate the relative 141 

abundance of each taxon present for which trait information existed.  142 

Summarizing community traits 143 

Community traits were summarized by mass-weighted means and, for body size, also 144 

by the Shannon size diversity index. Biomass-weighted means were estimated by using the 145 

cubed body length estimates as biomass proxies. In addition, we quantified body-size 146 

diversity in copepod communities using the Shannon size diversity index. Body-size diversity 147 

characterizes the diversity of size classes within a community, which has been related to 148 

food-web properties (García-Comas et al. 2016). Furthermore, it indicates whether copepod 149 

communities are affected by environmental filtering. The Shannon size diversity index (𝜇) is 150 

analogue to the Shannon diversity index but computed on the probability-density function of 151 

a continuous-random variable (Quintana et al. 2008). It is estimated as  152 
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𝜇 = − ∫  𝑝𝑥(𝑥)𝑙𝑜𝑔2 𝑝𝑥(𝑥)𝑑𝑥
+∞

0
  1 153 

where  𝑝𝑥(𝑥) represents the probability density function of size 𝑥. 154 

We estimated 𝜇 non-parametrically with the Monte Carlo kernel estimation technique 155 

(Quintana et al. 2008). Shannon size diversity was calculated for all polygons with at least 5 156 

observed taxa. The corresponding probability density functions were estimated by weighting 157 

the body sizes with the mass fractions of the species present. The Shannon size diversity 158 

index is primarily suitable for comparisons between communities. 159 

Environmental data 160 

Environmental variables considered are proxies for the key factors of temperature, 161 

available amount of food, prey size, seasonality, and water transparency (Box 1). For 162 

temperature, we used the monthly sea surface temperature (SST) data HadISST1 from the 163 

Hadley Centre for Climate Prediction and Research, Meteorological Office (Rayner et al. 164 

2003). Available amount of food was characterized with satellite-derived monthly estimates 165 

of net primary productivity (NPP) obtained from 166 

http://www.science.oregonstate.edu/ocean.productivity based on the VGPM algorithm 167 

(Behrenfeld & Falkowski 1997). Median phytoplankton cell diameter (MD50) was used as 168 

proxy for prey size, prey motility, and food quality including lipid content. Flagellates of 169 

intermediate size typically have a higher motility and lipid content than large-celled diatoms 170 

or small bacterioplankton (Kleppel 1993; McManus & Woodson 2012). Although not all 171 

copepods feed solely on phytoplankton, phytoplankton cell size has a strong impact on the 172 

entire food web (Barnes et al. 2011). MD50 was estimated based on empirical relationships 173 

with SST and chlorophyll a concentration (CHL) (Barnes et al. 2011; Boyce et al. 2015), 174 

where we used the monthly GlobColour CHL1 product (http://www.globcolour.info/) to 175 

http://www.science.oregonstate.edu/ocean.productivity
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represent CHL. Seasonality manifests itself in various ways including photoperiod, 176 

temperature, and available diet. For copepods the most immediate impact of seasonality is 177 

arguably the food availability. We therefore characterized seasonality by the seasonal 178 

variation in chlorophyll a concentration, applying the Shannon size diversity index on the 179 

CHL data (as this index is suitable to estimate the diversity of any non-negative, continuous 180 

variable). Water-column transparency was approximated by Secchi Depth (ZSD), represented 181 

by the monthly GlobColour ZSD product. For NPP, data from the period 2003-2008 was 182 

considered; for all other predictors, the period considered was 1998-2008. 183 

Environmental variables were aggregated to match the resolution of the copepod 184 

communities. For the North Atlantic analysis we produced 1°×1° monthly means for each 185 

year for SST, MD50, and ZSD. Since we did not have a complete temporal coverage for NPP, 186 

we matched the observations with monthly averages based on the years 2003-2008. CHL 187 

seasonality was calculated for each year independently and matched with all months of that 188 

year. For the global models, we aggregated the predictors by the polygons used to define the 189 

copepod communities, including the entire time-span of data availability. For computational 190 

efficiency, and to avoid numerical problems, all environmental variables were discretized to 191 

200 equally-spaced steps, normalized and standardized. Note that particularly on the global 192 

scale, some of the predictors showed significant Pearson correlation coefficients (r) up to 193 

r=0.86 for SST and MD50 (Appendix B). However, the analyses performed here are largely 194 

insensitive to collinearity (Dormann et al. 2012).  195 

Statistical modelling  196 

The integrated nested Laplace approximation (INLA) approach is a novel and 197 

computationally-efficient Bayesian statistical tool that is particularly powerful in handling 198 
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spatial and spatiotemporal correlation structures (Rue et al. 2009; Blangiardo & Cameletti 199 

2015). We used the INLA approach to model each trait for both observational datasets as a 200 

function of i) space (and season), ii) environmental predictors, and iii) as a combination of i) 201 

and ii). We modeled the continuous traits (body size, body-size diversity, and relative 202 

offspring size) assuming t- and normal-distributions for the North Atlantic and the global 203 

models, respectively. The categorical traits (feeding modes and myelination) were modeled 204 

assuming beta-binomial and binomial distributions, respectively, both of which require a 205 

number-of-trials parameter. For the North Atlantic models we defined the numbers of trials 206 

by the total counts of individuals per sample and the number of positives was estimated by 207 

the weight fraction of these counts showing the trait in question. In the global models, the 208 

number of trials was held constant at one. The fitted models were used to map the trait 209 

distributions, investigate the relationships between traits and environmental predictors, and to 210 

compare the amount of variance explained by the three model set-ups. 211 

Spatial and spatiotemporal models 212 

Spatial and spatiotemporal models were constructed assuming distributions of traits to 213 

have a spatially- and temporally-dependent structure. We assumed trait distributions to be 214 

isotropic, stationary Gaussian Fields which are approximated with discrete meshes in INLA 215 

(Blangiardo & Cameletti 2015). We constructed a spatial mesh for each domain and an 216 

additional seasonal mesh for the North Atlantic (Appendix C). Furthermore, we 217 

complemented the North Atlantic models with a random effect correcting for variations 218 

between the years analyzed.  219 

Environmental models 220 
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The environmental modeling approach used is equivalent to ecological niche models, 221 

but applied to community properties rather than individual species. For each trait and both 222 

observational datasets we fitted models for all possible combinations of the candidate 223 

predictors. The predictors were fitted as smooth, non-linear effects using second-order 224 

random-walk models (Rue et al. 2009), an approach similar to common generalized additive 225 

models (GAMs; Wood 2006) where the non-parametric response form of each predictor is 226 

determined by the data. Based on these models we assessed the best predictor combination 227 

for each trait according to the minimum Watanabe-Akaike information criterion (WAIC), a 228 

modified version of the Akaike Information Criteria that is appropriate for use with mixed-229 

effects models (Gelman et al. 2014). We further used the univariate environmental models to 230 

investigate trait-environment relationships: univariate models were chosen over multivariate 231 

models to prevent distortions due to collinear predictors (Dormann et al. 2012). 232 

Combined models 233 

“Combined” models were created by adding spatial/spatiotemporal structures to the 234 

best environmental models (Blangiardo & Cameletti 2015).  235 

Evaluation of hypotheses 236 

Both of our hypotheses focused on between-community variance of traits. The 237 

existence of such variance was confirmed in a preliminary assessment (Appendix D). 238 

Hypothesis H1 (community traits are spatially structured) was then tested by quantifying the 239 

fraction of variance explained (R
2
) by spatial/spatiotemporal models, and hypothesis H2 240 

(spatial structure is explained by key environmental drivers) was evaluated by comparing the 241 

R
2
 of the best environmental models with the R

2
 of the combined models. 242 
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  243 
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Results 244 

Evaluation of hypotheses 245 

All traits examined showed distinct structure in space and time, both globally (no 246 

temporal resolution) and in the North Atlantic, confirming our hypothesis H1. Our spatial and 247 

spatiotemporal models could explain substantial fractions of the between-community trait 248 

variance based on the spatial dependency assumption. This was particularly true for global 249 

patterns, where R
2
 of spatial models ranged from 0.36 for active feeding to 0.75 for body size 250 

(Figure 1a). In the North Atlantic, the spatiotemporal models were somewhat less efficient 251 

for the more finely-resolved communities of the CPR observations and ranged from R
2
=0.32 252 

for body-size diversity to R
2
=0.48 for body size (Figure 1b).  253 

Our second hypothesis, that we can explain these spatial patterns with key 254 

environmental drivers, proved partially valid. On average, environmental models (green bars 255 

in Figure 1c,d) reached approximately half of the R
2
 of combined models (yellow bars in 256 

Figure 1c,d), indicating that about half the patterns in the investigated traits could be 257 

explained by the environmental predictors hypothesized to be important. The ratio between 258 

R
2
 for environmental models and R

2
 for combined models was somewhat higher in the global 259 

domain and peaked at 78% for the global myelination model. Similarly, body size and body-260 

size diversity could be explained relatively well by the environment, with corresponding 261 

percentages well above the 50% in both domains. For active feeding, on the other hand, 262 

environmental models performed relatively poorly and could only explain minor fractions of 263 

the identified patterns.  264 

Trait distributions  265 
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Seasonal variation in trait distributions in the North Atlantic 266 

All traits examined showed seasonally-varying distribution patterns. Mean community 267 

body size varied substantially and mainly ranged between 1 and 5 mm in the North Atlantic 268 

(Figure 2a-d), corresponding to a two order-of-magnitude variation in body mass. 269 

Communities with the largest mean body size occurred from spring to autumn in the 270 

northwestern North Atlantic, in particular in the Labrador Sea (Figure 2b-d). Smallest 271 

community-averaged body size was observed in the central and eastern part of the 272 

investigated area, mainly during summer (Figure 2c). From spring to autumn, steep spatial 273 

gradients in body size existed while the distribution was mostly uniform during winter.  274 

The diversity of body size in copepod communities was estimated to be highest in 275 

winter when values were evenly distributed throughout most of the investigated domain 276 

(Figure 2e). In spring and autumn, body-size diversity was similarly high in the central North 277 

Atlantic, but smaller in the coastal areas in the east and the west (Figure 2f,h). Lowest body-278 

size diversity was found in summer in the entire investigated area, except for the 279 

northwestern North Atlantic around the Labrador Sea (Figure 2g). 280 

Active feeding was estimated to be the dominant feeding mode in the North Atlantic. 281 

This was particularly true for winter and spring, where, apart from a few exceptions along the 282 

coasts, the communities consisted of at least 66% active feeders (Figure 2i,j). In the eastern 283 

part of the investigated area, including the northwestern European coasts, this dominance of 284 

active feeders was reduced during summer and autumn and often replaced by a co-dominance 285 

of mixed and active feeders (Figure 2k,l).  286 

Myelinated copepods dominated the communities in the North Atlantic overall, yet 287 

there was considerable spatiotemporal variation. In winter, myelinated and amyelinated 288 
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fractions were roughly in balance, except for the northern central part of the investigated area, 289 

where the communities were almost exclusively amyelinated (Figure 2m). The patterns 290 

changed markedly in spring when the dominance of myelinated copepods was the greatest, 291 

foremost in the northern part of the investigated area (Figure 2n). In summer, and particularly 292 

in autumn, the fraction of amyelinated copepods increased again, mainly along the coasts and 293 

in the southern and eastern part of the investigated area (Figure 2o,p). 294 

On the community level, egg-size varied on average between about 4.5% and 7.5% of 295 

the body size of adult females in the North Atlantic. Highest relative offspring size was 296 

observed during winter months in the central part of the investigated area (Figure 2q). In 297 

spring, relative offspring size was smaller, in particular in the northwestern North Atlantic, 298 

while it gradually increased toward the southeastern part of the investigated area (Figure 2r). 299 

In summer and autumn relative offspring size showed a patchy distribution with less variation 300 

(Figure 2s,t). 301 

Global trait distributions 302 

The traits investigated also showed clear spatial patterns on the global scale. Mean 303 

body size mainly ranged between 1.5 and 7 mm for communities observed in the global 304 

ocean (polygons in Figure 3). Largest body sizes were found at high latitudes above 50°, 305 

except for the North Atlantic where communities with intermediate body size extended 306 

somewhat further northward (Figure 3a). According to the best environmental model, the 307 

latitudes with the smallest body size were found in the subtropics while around the equator 308 

the mean body size was slightly larger. The smallest body sizes were found in the subtropical 309 

central Atlantic, 2-3 mm, whereas communities at similar latitudes in the Indian Ocean 310 

tended to have larger mean body sizes, around 3-4 mm. Myelination was distributed similarly 311 

to body size (pixel to pixel Spearman correlation coefficient, rspearman=0.84) but with more 312 
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small-scale variation (Figure 3b): at high latitudes myelinated copepods dominated, while at 313 

low and intermediate latitudes myelinated and amyelinated taxa were similarly abundant. 314 

Again, the central Atlantic differed from the Indian Ocean with a lower fraction of 315 

myelinated organisms. Relative offspring size was inversely proportional to body size 316 

(rspearman=-0.69) and myelination (rspearman=-0.65). In the global ocean relative egg sizes 317 

varied between about 3% and 8%, with the relatively largest eggs at low latitudes and the 318 

relatively smallest eggs at high latitudes (Figure 3c). 319 

Trait-environment relationships 320 

Environmental responses of most traits were comparable between the global ocean 321 

and the North Atlantic analyses (Figure 4), although they tended to be weaker in the North 322 

Atlantic. Highest body size was found at low NPP, intermediate phytoplankton cell size and 323 

low SST (Figure 4a-c). While globally only intermediate chlorophyll seasonality favored 324 

copepod communities with large body size, in the North Atlantic these communities were 325 

also found at low CHL seasonality (Figure 4d). Communities with high body-size diversity 326 

were most common in environments with low NPP, CHL seasonality and phytoplankton cell 327 

size (Figure 4e,f,h). Furthermore, high body-size diversity was found at the high and the low 328 

end of the temperature spectrum, while temperatures around 10°C were associated with the 329 

lowest diversity (Figure 4g). On the global scale, the best model for body-size diversity did 330 

not include CHL seasonality. The weight fraction of myelinated copepods was highest in 331 

environments with low NPP, and intermediate Secchi Depth (Figure 4i-k). In the global 332 

ocean the fraction of myelinated copepods increased with phytoplankton cell size, while in 333 

the North Atlantic it peaked at a median cell size of around 6 µm and rapidly decreased with 334 

larger phytoplankton. Finally, relative offspring size was smallest for low NPP, intermediate 335 

phytoplankton cell size and relatively short Secchi Depths of 5-25 m (Figure 4l-n). The best 336 
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global model for relative offspring size did not include Secchi Depth. WAIC values for all 337 

model combinations of traits and environmental predictors can be seen in Appendix G. 338 

  339 
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Discussion 340 

Our analysis of copepod trait distributions revealed a wealth of strong patterns along 341 

several spatial and temporal gradients. Most of these patterns were consistent with the 342 

literature or comparable to the trait distributions of other organism groups, yet there were 343 

some surprising findings too. Several traits showed considerable latitudinal variation. For 344 

example, mean body size was clearly larger at high latitudes than at low latitudes, while it 345 

was smallest in the subtropics, and slightly larger around the equator. This pattern is 346 

equivalent to the distribution of phytoplankton cell size, and, along the Atlantic Meridional 347 

Transect, to the distribution of body size of total zooplankton (San Martin et al. 2006; Boyce 348 

et al. 2015). Relative offspring size also changed significantly with latitude and was highest 349 

in the subtropics and tropics, paralleling the distribution of seed mass in terrestrial plants 350 

(Moles & Westoby 2003). Trait distributions also showed strong seasonal dynamics. For 351 

example, body size in the North Atlantic varied considerably throughout the season with 352 

largest copepods in March and April. Similar dynamics have been found for diatoms in the 353 

same area, with the largest mean cell size between January and March (Barton et al. 2013a). 354 

More unexpected were the clear differences between the central Atlantic and the Indian 355 

Ocean found in all traits investigated. This difference was unrelated to the known 356 

environmental parameters and has not been found in phytoplankton trait distributions (Barnes 357 

et al. 2011).  358 

A substantial fraction of the spatial and temporal patterns could be linked to the 359 

environmental predictors investigated. While temperature seemed to affect copepod traits 360 

directly, productivity may influence them in more complex ways. It is well established for 361 

both terrestrial and aquatic organisms that within species, body size is inversely related to 362 
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temperature (Forster et al. 2012), and this also applies to copepods (Horne et al. 2016). Our 363 

results demonstrate that this relationship also holds on the community level. However, body 364 

size changed relatively little with increasing temperature when compared to its steep decline 365 

with increasing productivity. A negative relationship between body size and productivity is 366 

surprising: many groups of marine fish and terrestrial mammals grow larger in areas of higher 367 

productivity (Huston & Wolverton 2011), and the same was found for copepods in laboratory 368 

experiments (Berggreen et al. 1988). For copepods in the field this may be different due to 369 

size-selective predation by planktivorous fish (Brucet et al. 2010), which are particularly 370 

abundant in productive ecosystems like upwelling regions (Cury et al. 2000). Furthermore, in 371 

oligotrophic open ocean areas planktonic food chains tend to be longer (Boyce et al. 2015). 372 

Thus, although copepods at the same trophic level may be smaller in areas with low 373 

productivity, the mean body size of the entire copepod community may be larger.  374 

In contrast to body size, relative offspring size was positively correlated with NPP, 375 

possibly in response to stronger biotic interactions. Large offspring size is often seen as an 376 

adaptation to harsh environments (Segers & Taborsky 2011), and therefore a positive 377 

correlation between relative offspring size and productivity may seem surprising at first sight. 378 

However, few offspring and comparably high investments in each individual are also 379 

characteristics of K-selected species, which live in densely populated communities 380 

(MacArthur & Wilson 1967). In this case, relatively larger offspring may be better in 381 

competing for resources and avoiding predation, as has been found for fish: fish fry from 382 

large eggs are more tolerant to starvation, avoid predation risks more consequently, and have 383 

larger reaction distances to potential predators (Miller et al. 1988; Segers & Taborsky 2011). 384 

Similarly in terrestrial plants, seed mass is positively correlated to NPP (Moles & Westoby 385 

2003).  386 
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About half of the identified spatiotemporal patterns could not be explained by the 387 

environmental predictors, but arose from other structuring processes. Some of these 388 

unexplained patterns occurred on large spatial scales, where the most-pronounced and 389 

surprising differences occurred between the central Atlantic and the Indian Ocean. On these 390 

scales evolutionary history may affect trait distributions. The distribution range of copepod 391 

species is limited by their ability to maintain viable populations (Norris 2000), although, in 392 

principle, water parcels can travel between any pair of locations in the global ocean within a 393 

decade (Jönsson & Watson 2016). Patterns unexplained by the environmental predictors also 394 

occurred on smaller spatial scales in the North Atlantic. On these scales other trait-395 

environment interactions, for example, success in overwintering, may play a role, as well as 396 

transportation by ocean currents (Melle et al. 2014). Finally, sampling bias may have caused 397 

some unexplained patterns, in particular in the global dataset, where sampling methods and 398 

taxonomic detail may have differed somewhat between sampling efforts in different areas. 399 

Besides identifying potential drivers of trait distributions, our results, particularly the 400 

distribution of body size, also provide insight into how copepod communities affect marine 401 

ecosystems and carbon fluxes. The distribution of body size in copepod communities has 402 

implications for the fate of the primary production, and determines whether it is recycled in 403 

the upper ocean, transported to the sea floor via fecal pellets, or channeled toward higher 404 

trophic levels. Copepod fecal pellets may contribute a significant but highly variable (0-100 405 

%) fraction to the vertical material fluxes in the ocean (Turner 2002), and body size of 406 

copepods appears to be the main determinant of this fraction (Stamieszkin et al. 2015): small 407 

copepods produce small fecal pellets that are mainly recycled in the upper ocean, while large 408 

copepods produce large pellets that rapidly sink to the seafloor. Body-size diversity of 409 

mesozooplankton communities, which are typically dominated by copepods (Verity & 410 
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Smetacek 1996), is furthermore positively correlated with the transfer efficiency of primary 411 

production to higher trophic levels (García-Comas et al. 2016): the optimal prey size of 412 

primary consumers depends on their body size, and therefore communities of primary 413 

consumers with diverse body sizes feed efficiently on a range of prey sizes and harvest the 414 

phytoplankton communities more exhaustively. Similarly, changes in phyto- and zooplankton 415 

community body size composition have been shown to affect the spatial distribution and 416 

temporal dynamics of planktivorous fish. In upwelling areas worldwide, spatial distribution 417 

and multi-decadal fluctuations of sardine and anchovy stocks have been explained by 418 

climate-driven changes in the physical environment and their impact on plankton body size 419 

(e.g., Lindegren et al. 2013). Smaller-sized plankton promote filter-feeding fish species with 420 

fine gill rakes (e.g., sardine) while larger plankton support particulate-feeders with coarse gill 421 

rakes (e.g., anchovy) (van der Lingen et al. 2006). 422 

Focusing on the large-scale spatial and temporal patterns of copepod trait distributions 423 

is necessarily crude and ignores conditions specific to certain regions, especially in data-424 

scarce systems like the open ocean. Particularly with our global approach we defined 425 

communities in a simplistic way, included some coarse taxonomic groups, and ignored 426 

intraspecific variation in continuous traits such as body size. Our observational data were not 427 

evenly distributed in the global ocean, and, especially in the Pacific, data with the required 428 

quality were largely lacking. Furthermore, our analysis was biased toward large copepods, as 429 

it was based on traditional observational data that were mostly taken with mesh sizes of 200 430 

µm or coarser (O’Brien 2010). These meshes may not capture one third of the copepod 431 

biomass in the small size fractions (Gallienne & Robins 2001), which is particularly rich in 432 

passive feeding taxa like Oithona - a potential explanation for the small fractions of passive 433 

feeders we identified in this study (Figure 2, Appendix E). 434 
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Some of these uncertainties could be reduced by employing approaches that measure 435 

traits directly in the field rather than indirectly via taxonomic classification and subsequent 436 

merging with trait information from the literature. In-situ imaging may be one way to do so 437 

(Picheral et al. 2010). Taking images of plankton communities with cheap, automated 438 

devices carried by commercial ships similar to the Continuous Plankton Recorder 439 

(Richardson et al. 2006) could greatly speed-up the sampling and improve data coverage. 440 

Imaging may be particularly suitable to measure body size compositions (García-Comas et al. 441 

2016), but with the rapid development of algorithm-based image recognition, it may soon be 442 

possible to also measure other traits such as sac-spawning or swimming behavior. 443 

Nevertheless, our trait biogeographies showed substantial spatial and temporal 444 

structure that was consistently linked to environmental predictors for two independent 445 

observational datasets, highlighting the relevance of the trait-based approach to describe 446 

copepod biogeography. We demonstrated the value of these biogeographies to test and 447 

develop new hypotheses about the drivers of the distribution of zooplankton. Furthermore, 448 

our results may be used as a test-bed for trait-based mechanistic models. Ultimately we hope 449 

our work will contribute to the development of next generation global models of the 450 

dynamics of planktonic ecosystems and their reaction to future climate change. 451 

  452 



 

23 

 

 453 

Acknowledgements 454 

We acknowledge the Villum foundation for support to the Centre for Ocean Life and 455 

the European Union 7th Framework Programme (FP7 2007–2013) under grant agreement 456 

number 308299 (NACLIM). Likewise, we wish to thank the many current and retired 457 

scientists at SAHFOS whose efforts over the years helped to establish and maintain the 458 

Continuous Plankton Recorder survey.  459 

  460 



 

24 

 

References 461 

 462 

1.Barnes, C., Irigoien, X., De Oliveira, J.A.A., Maxwell, D. & Jennings, S. (2011). Predicting 463 

marine phytoplankton community size structure from empirical relationships with remotely 464 

sensed variables. J. Plankton Res., 33, 13–24. 465 

 466 

2.Barton, A.D., Finkel, Z. V., Ward, B. a., Johns, D.G. & Follows, M.J. (2013a). On the roles 467 

of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities. 468 

Limnol. Oceanogr., 58, 254–266. 469 

 470 

3.Barton, A.D., Pershing, A.J., Litchman, E., Record, N.R., Edwards, K.F., Finkel, Z. V, et 471 

al. (2013b). The biogeography of marine plankton traits. Ecol. Lett., 16, 522–534. 472 

 473 

4.Begon, M., Townsend, C.R. & Harper, J.L. (2006). Ecology: From Individuals to 474 

Ecosystems. 4th edn. Blackwell Publishing, Malden, MA. 475 

 476 

5.Behrenfeld, M.J. & Falkowski, P.G. (1997). Photosynthetic rates derived from satellite-477 

based chlorophyll concentration. Limnol. Oceanogr., 42, 1–20. 478 

 479 

6.Berggreen, U., Hansen, B. & Kiørboe, T. (1988). Food size spectra, ingestion and growth of 480 

the copepodAcartia tonsa during development: Implications for determination of copepod 481 

production. Mar. Biol., 99, 341–352. 482 

 483 

7.Blangiardo, M. & Cameletti, M. (2015). Spatial and Spatio-temporal Bayesian Models with 484 

R-INLA. 1st edn. Wiley, Chichester, West Sussex, United Kingdom. 485 

 486 

8.Boyce, D.G., Frank, K.T. & Leggett, W.C. (2015). From mice to elephants: overturning the 487 

“one size fits all” paradigm in marine plankton food chains. Ecol. Lett., 18, 504–515. 488 

 489 

9.Brix, H., Menemenlis, D., Hill, C., Dutkiewicz, S., Jahn, O., Wang, D., et al. (2015). Using 490 

Green’s Functions to initialize and adjust a global, eddying ocean biogeochemistry general 491 

circulation model. Ocean Model., 95, 1–14. 492 

 493 

10.Brucet, S., Boix, D., Quintana, X.D., Jensen, E., Nathansen, L.W., Trochine, C., et al. 494 

(2010). Factors influencing zooplankton size structure at contrasting temperatures in coastal 495 

shallow lakes: Implications for effects of climate change. Limnol. Oceanogr., 55, 1697–1711. 496 



 

25 

 

 497 

11.Brun, P., Payne, M.R. & Kiørboe, T. (2016). A trait database for marine copepods. Earth 498 

Syst. Sci. Data Discuss., 1–33. 499 

 500 

12.Cury, P., Bakun, A., Crawford, R.J.M., Jarre, A., Quinones, R.A., Shannon, L.J., et al. 501 

(2000). Small pelagics in upwelling systems: patterns of interaction and structural changes in 502 

“wasp-waist” ecosystems. ICES J. Mar. Sci., 57, 603–618. 503 

 504 

13.Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2012). 505 

Collinearity: a review of methods to deal with it and a simulation study evaluating their 506 

performance. Ecography (Cop.)., 36, 27–46. 507 

 508 

14.Edwards, K.F., Litchman, E. & Klausmeier, C.A. (2013). Functional traits explain 509 

phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecol. 510 

Lett., 16, 56–63. 511 

 512 

15.Elith, J. & Leathwick, J.R. (2009). Species Distribution Models: Ecological Explanation 513 

and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst., 40, 677–697. 514 

 515 

16.Forster, J., Hirst, A.G. & Atkinson, D. (2012). Warming-induced reductions in body size 516 

are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. U. S. A., 109, 19310–4. 517 

 518 

17.Gallienne, C.P. & Robins, B.D. (2001). Is Oithona the most important copepod in the 519 

world’s oceans? J. Plankton Res., 23, 1421–1432. 520 

 521 

18.García-Comas, C., Sastri, A.R., Ye, L., Chang, C., Lin, F., Su, M., et al. (2016). Prey size 522 

diversity hinders biomass trophic transfer and predator size diversity promotes it in 523 

planktonic communities. Proc. R. Soc. B Biol. Sci., 283, 20152129. 524 

 525 

19.Gelman, A., Hwang, J. & Vehtari, A. (2014). Understanding predictive information 526 

criteria for Bayesian models. Stat. Comput., 24, 997–1016. 527 

 528 

20.Hansen, B., Bjørnsen, P.K. & Hansen, P.J. (1994). The size ratio between planktonic 529 

predators and their prey. Limnol. Oceanogr., 39, 395–403. 530 

 531 

21.Hopcroft, R.R., Roff, J.C. & Chavez, F.P. (2001). Size paradigms in copepod 532 

communities: a re-examination. Hydrobiologia, 453/454, 133–141. 533 

 534 



 

26 

 

22.Horne, C.R., Hirst, A.G., Atkinson, D., Neves, A. & Kiørboe, T. (2016). A global 535 

synthesis of seasonal temperature-size responses in copepods. Glob. Ecol. Biogeogr., 1–12. 536 

 537 

23.Huston, M.A. & Wolverton, S. (2011). Regulation of animal size by eNPP, Bergmann’s 538 

rule, and related phenomena. Ecol. Monogr., 81, 349–405. 539 

 540 

24.Johns, D.G. (2014). Raw data for copepods in the North Atlantic (25-73N, 80W-20E) 541 

1998-2008 as recorded by the Continuous Plankton recorder. Doi: 10.7487/2014.344.1.138 542 

 543 

25.Jönsson, B.F. & Watson, J.R. (2016). The timescales of global surface-ocean connectivity. 544 

Nat. Commun., 7, 11239. 545 

 546 

26.Keith, S.A., Webb, T.J., Bohning-Gaese, K., Connolly, S.R., Dulvy, N.K., Eigenbrod, F., 547 

et al. (2012). What is macroecology? Biol. Lett., 8, 904–906. 548 

 549 

27.Kiørboe, T. (2011). How zooplankton feed: mechanisms, traits and trade-offs. Biol. Rev., 550 

86, 311–339. 551 

 552 

27.Kiørboe, T. (2011). How zooplankton feed: Mechanisms, traits and trade-offs. Biol. Rev. 553 

 554 

28.Kiørboe, T. (2013). Attack or Attacked: The Sensory and Fluid Mechanical Constraints of 555 

Copepods’ Predator-Prey Interactions. Integr. Comp. Biol., 53, 821–831. 556 

 557 

29.Kiørboe, T. & Hirst, A.G. (2014). Shifts in Mass Scaling of Respiration, Feeding, and 558 

Growth Rates across Life-Form Transitions in Marine Pelagic Organisms. Am. Nat., 183, 559 

E118–E130. 560 

 561 

30.Kleppel, G. (1993). On the diets of calanoid copepods. Mar. Ecol. Prog. Ser., 99, 183–562 

195. 563 

 564 

31.Lenz, P.H. (2012). The biogeography and ecology of myelin in marine copepods. J. 565 

Plankton Res., 34, 575–589. 566 

 567 

32.Lindegren, M., Checkley, D.M., Rouyer, T., MacCall, A.D. & Stenseth, N.C. (2013). 568 

Climate, fishing, and fluctuations of sardine and anchovy in the California Current. Proc. 569 

Natl. Acad. Sci., 110, 13672–13677. 570 

 571 



 

27 

 

33.van der Lingen, C., Hutchings, L. & Field, J. (2006). Comparative trophodynamics of 572 

anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: are 573 

species alternations between small pelagic fish trophodynamically mediated? African J. Mar. 574 

Sci., 28, 465–477. 575 

 576 

34.Litchman, E., Ohman, M.D. & Kiørboe, T. (2013). Trait-based approaches to zooplankton 577 

communities. J. Plankton Res., 35, 473–484. 578 

 579 

35.MacArthur, R. & Wilson, E.O. (1967). The Theory of Island Biogeography. Theory Isl. 580 

Biogeogr. Princeton University Press. 581 

 582 

36.McManus, M.A. & Woodson, C.B. (2012). Plankton distribution and ocean dispersal. J. 583 

Exp. Biol., 215, 1008–16. 584 

 585 

37.Melle, W., Runge, J., Head, E., Plourde, S., Castellani, C., Licandro, P., et al. (2014). The 586 

North Atlantic Ocean as habitat for Calanus finmarchicus: Environmental factors and life 587 

history traits. Prog. Oceanogr., 129, 244–284. 588 

 589 

38.Miller, T.J., Crowder, L.B., Rice, J. a. & Marschall, E. a. (1988). Larval Size and 590 

Recruitment Mechanisms in Fishes: Toward a Conceptual Framework. Can. J. Fish. Aquat. 591 

Sci., 45, 1657–1670. 592 

 593 

39.Moles, A.T. & Westoby, M. (2003). Latitude, seed predation and seed mass. J. Biogeogr., 594 

30, 105–128. 595 

 596 

40.Neuheimer, A.B., Hartvig, M., Heuschele, J., Hylander, S., Kiørboe, T., Olsson, K.H., et 597 

al. (2015). Adult and offspring size in the ocean over 17 orders of magnitude follows two life 598 

history strategies. Ecology, 96, 3303–3311. 599 

 600 

41.Norris, R.D. (2000). Pelagic species diversity, biogeography, and evolution. Paleobiology, 601 

26, 236–258. 602 

 603 

42.O’Brien, T.D. (2010). COPEPOD: The Global Plankton Database. An overview of the 604 

2010 database contents, processing methods, and access interface. US Dep. Commerce, 605 

NOAA Tech. Memo NMFS-F/ST-36, 28 pp. 606 

 607 

43.Picheral, M., Guidi, L., Stemmann, L., Karl, D.M., Iddaoud, G. & Gorsky, G. (2010). The 608 

Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of 609 

particle size spectra and zooplankton. Limnol. Oceanogr. Methods, 8, 462–473. 610 



 

28 

 

 611 

44.Quintana, X.D., Brucet, S., Boix, D., López-Flores, R., Gascón, S., Badosa, A., et al. 612 

(2008). A nonparametric method for the measurement of size diversity with emphasis on data 613 

standardization. Limnol. Oceanogr. Methods, 6, 75–86. 614 

 615 

45.Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L. V., Rowell, D.P., 616 

et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air 617 

temperature since the late nineteenth century. J. Geophys. Res., 108, 4407. 618 

 619 

46.Richardson, A.J., Walne, A.W., John, A.W.G., Jonas, T.D., Lindley, J. a., Sims, D.W., et 620 

al. (2006). Using continuous plankton recorder data. Prog. Oceanogr., 68, 27–74. 621 

 622 

47.Rue, H., Martino, S. & Chopin, N. (2009). Approximate Bayesian inference for latent 623 

Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B 624 

(Statistical Methodol., 71, 319–392. 625 

 626 

48.San Martin, E., Harris, R.P. & Irigoien, X. (2006). Latitudinal variation in plankton size 627 

spectra in the Atlantic Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr., 53, 1560–1572. 628 

 629 

49.Scheiter, S., Langan, L. & Higgins, S.I. (2013). Next-generation dynamic global 630 

vegetation models: learning from community ecology. New Phytol., 198, 957–969. 631 

 632 

50.Segers, F.H.I.D. & Taborsky, B. (2011). Egg size and food abundance interactively affect 633 

juvenile growth and behaviour. Funct. Ecol., 25, 166–176. 634 

 635 

51.Stamieszkin, K., Pershing, A.J., Record, N.R., Pilskaln, C.H., Dam, H.G. & Feinberg, 636 

L.R. (2015). Size as the master trait in modeled copepod fecal pellet carbon flux. Limnol. 637 

Oceanogr., 60, 2090–2107. 638 

 639 

52.Turner, J. (2002). Zooplankton fecal pellets, marine snow and sinking phytoplankton 640 

blooms. Aquat. Microb. Ecol., 27, 57–102. 641 

 642 

53.Verity, P. & Smetacek, V. (1996). Organism life cycles, predation, and the structure of 643 

marine pelagic ecosystems. Mar. Ecol. Prog. Ser., 130, 277–293. 644 

 645 

54.Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002). Plant 646 

Ecological Strategies: Some Leading Dimensions of Variation Between Species. Annu. Rev. 647 

Ecol. Syst., 33, 125–159. 648 



 

29 

 

 649 

55.Wood, S. (2006). Generalized Additive Models: An Introduction with R. CRC Press, Boca 650 

Raton, Florida. 651 

  652 



 

30 

 

Tables 653 

Table 1: Trait data coverage for taxa included in observational datasets: covered 654 

fractions of taxonomic diversity and biomass/abundance are shown for the North Atlantic and 655 

the global ocean. Biomass fractions could be estimated for the North Atlantic using cubed 656 

total length as mass proxies, since data on total length was available for all taxa. For the 657 

global ocean this was not the case and we therefore report percentages of abundance (number 658 

of individuals). North Atlantic data stems from the Continuous Plankton Recorder; global 659 

data stems from the Coastal and Oceanic Plankton Ecology, Production and Observation 660 

Database. 661 

Trait 
North Atlantic (67 taxa) Global (607 taxa) 

Diversity Biomass Diversity Abundance 

Body size 100% 100% 95% 99% 

Feeding mode 99% 100% 78% 96% 

Myelination 100% 100% 100% 100% 

Relative offspring size 55% 99% 23% 70% 

  662 
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Figure captions 663 

Figure 1: Fraction of variance explained by INLA models for each trait based on 664 

spatial/spatiotemporal predictors (red), environmental predictors (green), and both types of 665 

predictors (yellow). Results are shown for global models (left panels) and North Atlantic 666 

models (right panels). Combined and environmental models for the North Atlantic were run 667 

on a subset of the observations used for the spatiotemporal models due to missing 668 

environmental data (satellite observations during winter months). R
2
 of spatiotemporal 669 

models can thus be slightly higher than corresponding R
2 

combined models.  670 

Figure 2: Seasonal succession of community traits in the North Atlantic 1998-2008. 671 

Estimated trait distributions are shown for the beginning of January, April, July, and October 672 

(columns) for body size, body-size diversity, feeding modes, myelination and relative 673 

offspring size (columns). Displayed are only pixels with a maximum distance of 400 674 

kilometers from observations in every season. Estimates of spatial and temporal 675 

autocorrelation of trait distributions in the North Atlantic are shown in Appendix F. 676 

Figure 3: Global distributions of community mean traits for body size (a), myelination 677 

(b), and relative offspring size (c). Polygons on the maps represent simulated communities. 678 

Colored polygons are data-based estimates; polygons in gray scales are predictions with the 679 

best environmental models. The panels on the right show trait distributions per latitude. 680 

Median model predictions (lines) and 90% confidence intervals (polygons) are shown in 681 

grey. Data-based trait patterns are superimposed in orange, including median (circles), inter 682 

quartile range (thick lines), and 90% confidence intervals (thin lines). Global maps for further 683 

traits can be seen in Appendix E. Estimates of spatial autocorrelation lengths of global trait 684 

distributions are shown in Appendix F. 685 
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Figure 4: Responses of trait distributions to environmental predictors of hypothetical 686 

importance based on single-predictor models. Traits include body size, body-size diversity, 687 

myelinated fraction, and relative offspring size (rows). Responses for fractional traits are 688 

shown on the logit scale. Environmental predictors are net primary production (left row), 689 

phytoplankton cell diameter (second row from left), sea surface temperature (second row 690 

from right), seasonality of chlorophyll a concentration (right row top), and Secchi Depth 691 

(right row bottom). Lines in dark blue represent global models, lines in cyan represent North 692 

Atlantic models. Shaded areas surrounding the lines illustrate 95% confidence intervals. 693 

Dashed lines represent predictors not included in the best environmental models of the 694 

corresponding trait and domain. Responses for active feeding are shown in Appendix H. 695 
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Figures 697 
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Text boxes 710 

Box1: Traits considered and their hypothesized dependence on the environment 711 

Body size 712 

Body size is a master trait affecting all major life missions of an organism, i.e., 713 

feeding, survival, and reproduction (Litchman et al. 2013). It can be considered a proxy for 714 

several other essential properties such as most vital rates, mobility, and prey size. Here, body 715 

size is represented by the total length of adults. We hypothesize that mean body size in 716 

copepod communities decreases with increasing temperatures. Such a relationship is known 717 

to occur within copepod species, potentially due to oxygen limitation of large organisms at 718 

warm temperatures (Forster et al. 2012). Furthermore, we expect copepod body size to be 719 

positively correlated to productivity, as has been shown for many animal groups (Huston & 720 

Wolverton 2011). Larger body size has also been shown to be beneficial for copepods to cope 721 

with seasonal environments (Maps et al. 2014), and we thus expect body size to be positively 722 

related to the intensity of the seasonal cycle. Finally, we hypothesize that copepod body size 723 

is positively related to the size of the local prey, as feeding efficiency in copepods is a 724 

function of the predator to prey size ratio (Hansen et al. 1994). 725 

Feeding mode 726 

We distinguish between three different feeding modes: passive feeding, active 727 

feeding, and mixed feeding (Kiørboe 2011). Passive feeding includes mainly ambush feeding 728 

but also particle feeding copepods. The former copepods wait for prey to pass within their 729 

perceptive range, while the latter feed on large particles of marine snow. Active strategies 730 

comprise cruise feeding and feeding current feeding, where the copepod either moves 731 



 

38 

 

through the water or generates a feeding current. Most taxa exclusively use either an active or 732 

a passive feeding behavior, but some taxa are able to alternate (called mixed feeders in this 733 

paper). Ambush feeders rely on motile prey for feeding and therefore we hypothesize that 734 

passive feeders are more common in areas with more motile phytoplankton like flagellates. 735 

Furthermore, we expect passive feeders to be less common in unproductive areas as they 736 

have lower feeding rates (Kiørboe 2013) and may struggle more with low prey 737 

concentrations. Lastly, we hypothesize mixed feeding to be a trait that is beneficial in 738 

seasonal environments with varying prey types and concentrations. 739 

Relative offspring size 740 

Some copepod species have relatively larger (and fewer) eggs than others, suggesting 741 

differences in the investment made per offspring. We estimate these differences as relative 742 

offspring size, the ratio between egg diameter and the length of the adult female. We do not 743 

study absolute egg diameters here, as they scale positively with body size (Neuheimer et al. 744 

2015): according to our data the corresponding Pearson correlation coefficient is r=0.84 745 

(n=166), while r for relative offspring size versus body size is -0.19 (n=164). We expect large 746 

relative offspring size to be beneficial in harsh environments (Segers & Taborsky 2011) with 747 

low productivity, low quality of food but also low predation pressure. 748 

Myelination 749 

Copepods can be grouped into myelinated and amyelinated taxa (Lenz 2012). Myelin 750 

is a membranous sheath that surrounds the axons of neurons and greatly enhances the speed 751 

of signal transmission. Myelinated copepods are more efficient in escaping predators and 752 

need less energy to maintain their nervous systems, but they rely on a more lipid-rich diet 753 
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(Lenz 2012). We hypothesize that myelination to common in areas where predation pressure 754 

is high, where productivity is low, and where food quality is high (Lenz 2012).  755 
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Appendix A: CPR taxa considered  756 

CPR taxa considered in the North Atlantic copepod community and species, based on 757 

which traits were estimated. 758 

CPR taxon Species considered for trait estimate 

Acartia spp. (unidentified)
a
 A. clausi 

Acartia danae A. danae 

Acartia longiremis A. longiremis 

Aetideus armatus A. armatus 

Anomalocera patersoni A. patersoni 

Calanoides carinatus C. carinatus 

Calanus finmarchicus C. finmarchicus 

Calanus glacialis C. glacialis 

Calanus helgolandicus C. helgolandicus 

Calanus hyperboreus C. hyperboreus 

Calocalanus spp.
b
 C. contractus, C. pavo, C. plumulosus, C. styliremis, C. tenuis 

Candacia armata C. armata 

Candacia ethiopica C. ethiopica 

Candacia pachydactyla C. pachydactyla 

Paracandacia simplex C. simplex 

Centropages bradyi C. bradyi 

Centropages chierchiae 

eyecount C. chierchiae 

Centropages hamatus C. hamatus 

Centropages typicus C. typicus 

Centropages violaceus C. violaceus 

Clausocalanus spp.
b
 C. arcuicornis, C. furcatus, C. paululus, C. pergens 

Corycaeus spp.
a,b

 C. speciosus, Ditrichocorycaeus anglicus 

Ctenocalanus vanus C. vanus 

Eucalanus spp.
b
 (Unidentified) E. elongatus, Pareucalanus attenuatus 

Eucalanus hyalinus E. hyalinus 

Euchaeta acuta E. acuta 

Euchaeta marina E. marina 

Euchirella rostrata E. rostrata 

Heterorhabdus norvegicus H. norvegicus 

Heterorhabdus papilliger H. papilliger 

Isias clavipes I. clavipes 

Labidocera spp.
b
 (Unidentified) L. acutifrons, L. aestiva, L. wollastoni 

Lucicutia spp.
a
 L. flavicornis 

Mecynocera clausi M. clausi 

Mesocalanus tenuicornis M. tenuicornis 
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Metridia longa M. longa 

Metridia lucens M. lucens 

Harpacticoida Total Traverse
a,b

 Microsetella norvegica, Microsetella rosea 

Nannocalanus minor N. minor 

Neocalanus gracilis N. gracilis 

Oithona spp.
b
 

O. atlantica, O. linearis, O. nana, O. plumifera, O. robusta, O. 

setigera, O. similis 

Oncaea spp.
b
 O. media, O. mediterranea, O. ornata, O. venusta 

Para-Pseudocalanus spp.
b
 

Paracalanus parvus, Pseudocalanus elongatus, Pseudocalanus 

minutus 

Paracandacia bispinosa P. bispinosa 

Paraeuchaeta gracilis P. gracilis 

Paraeuchaeta hebes P. hebes 

Paraeuchaeta norvegica P. norvegica 

Parapontella brevicornis P. brevicornis 

Pleuromamma abdominalis P. abdominalis, P. indica 

Pleuromamma borealis P. borealis 

Pleuromamma gracilis P. gracilis 

Pleuromamma piseki P. piseki 

Pleuromamma robusta P. robusta 

Pleuromamma xiphias P. xiphias 

Pontellina plumata P. plumata 

Scolecithricella spp.
b
 P. ovata, S. dentata, S. minor, S. vittata 

Rhincalanus nasutus R. nasutus 

Scolecithrix danae S. danae 

Subeucalanus crassus S. crassus 

Subeucalanus monachus S. monachus 

Temora longicornis T. longicornis 

Temora stylifera T. stylifera 

Tortanus discaudatus T. discaudatus 

Undeuchaeta major U. major 

Undeuchaeta plumosa U. plumosa 

Undinula vulgaris U.vulgaris 

Urocorycaeus spp.
b
 U. furcifer, U. lautus, U. longistylis 

a
Most common species in taxon according to (Richardson et al. 2006) was considered for trait information. 759 

b
Trait estimates for genus based on arithmetic mean of species common in the North Atlantic according to 760 

www.iobis.org. 761 

  762 
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Appendix B: Correlation analysis of environmental 763 

variables 764 

Pearson correlation coefficients between all pairs of environmental predictors used: 765 

values in italic indicate correlation coefficients for observations in the North Atlantic; non-766 

italic values indicate values on the global scale. Grey color represents variable combinations 767 

which are never used in the models (ZSD and CHL seasonality). Fields highlighted in yellow 768 

represent combinations used in the models with correlation coefficients higher than 0.7.  769 

 

SST
a 

ZSD
b
 NPP

c
 CHL seasonality

d
 MD50

e
 

SST 
1 0.47 -0.06 -0.52 -0.86 

1 0.48 -0.15 -0.49 -0.58 

      

ZSD 
0.47 1 -0.78 -0.92 -0.82 

0.48 1 -061 -0.6 -0.79 

      

NPP 
-0.06 -0.78 1 0.77 0.5 

-0.15 -0.61 1 0.37 0.4 

      

CHL seasonality 
-0.52 -0.92 0.77 1 0.86 

-0.49 -0.6 0.37 1 0.59 

      

MD50 
-0.86 -0.82 0.5 0.86 1 

-0.58 -0.79 0.42 0.59 1 

a
Sea surface temperature; 

b
Secchi Depth; 

c
net primary productivity; 

d
seasonality in chlorophyll a concentrations; 770 

e
median diameter of phytoplankton cells 771 

  772 
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Appendix C: Spatial and temporal meshes for INLA 773 

North Atlantic 774 

Models for the North Atlantic were constructed including both, a spatial and a 775 

seasonal mesh. The spatial mesh covered the North Atlantic and was constrained by the 776 

coastlines (islands with an area smaller than 100 000 km
2
 were ignored). The maximum 777 

distance between mesh points was chosen to be about 300 km (Figure C1). The seasonal 778 

mesh had nodes at the beginning of January, April, July, and October and was cyclic at its 779 

boundaries. 780 

 781 

Figure C1: Delaunay triangulation of the North Atlantic domain. Points (intersections) 782 

of the field are used to estimate the spatial dependencies in INLA models. We projected the 783 

coordinates onto a sphere in order to realistically represent the spatial distances. 784 

Global 785 

Spatial models of global trait distributions were modeled based on a spherical, global 786 

mesh defined with a maximum distance of about 500 km between the points and constrained 787 

by coarse continental borders (again, islands with an area smaller than 100 000 km
2
 were 788 

ignored) (Figure C2).  789 
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 790 

 791 

Figure C2: Delaunay triangulation of the global domain. Points (intersections) of the 792 

field are used to estimate the spatial dependencies in INLA models. We projected the 793 

coordinates onto a sphere in order to realistically represent the spatial distances. 794 

 795 

  796 
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Appendix D: Verification of the existence of between-797 

community trait variance 798 

We found clear variation between communities in all traits of both the North Atlantic 799 

and the global domain. The existence of variation was assessed using a bootstrapping 800 

approach on the variance of the summary statistics (see Methods). We tested whether the 801 

variance among communities of these summary statistics differed from zero. To this end we 802 

resampled each summary statistic in of both domains 1000 times with replacement. For each 803 

of these 1000 pseudo-samples of communities we then calculated the variance. The 804 

histograms for these variances are shown in Figure D1. For all traits and both domains we 805 

could clearly confirm our hypothesis that a significant variation of traits exists between 806 

copepod communities. 807 

 808 

Figure D1: Histograms of standard deviations for body size (a), relative offspring size 809 

(b), the logit transformed fraction of myelinated copepods (c), the logit transformed fraction 810 

of active feeding copepods (d), and body-size diversity (e). Variance estimates for the North 811 
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Atlantic domain are shown in cyan and variance estimates for global domain are shown in 812 

dark blue.  813 

814 
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Appendix E: Further global traits  815 

 816 

Global distributions of community mean traits for body-size diversity (a) and active 817 

feeding (b). Polygons on the maps represent simulated communities. Colored polygons are 818 

data-based estimates; polygons in gray scales are predictions with the best environmental 819 

models. The panels on the right show latitudinal trait variation. Median model predictions 820 

(lines) and 90% confidence intervals (polygons) are shown in grey. Data-based trait patterns 821 

are superimposed in orange, including median (circles), inter quartile range (thick lines), and 822 

90% confidence intervals (thin lines).  823 

  824 
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Appendix F: Spatial and temporal correlations 825 

Table F1: Spatial and temporal autocorrelation of trait distributions in the North 826 

Atlantic obtained from spatiotemporal models. Depicted are means and standard deviations. 827 

Temporal autocorrelation is defined as Pearson correlation coefficients between subsequent 828 

seasons; spatial autocorrelation length is defined as the distance at which the Pearson 829 

correlation coefficients between points fall below about 0.13. 830 

Trait 
Temporal autocorrelation (between 

seasons) 

Spatial autocorrelation 

length (km) 

Body size 0.511 ± 0.054 810 ± 87 

Relative offspring 

size 
0.277 ± 0.082 1017 ± 85 

Myelination 0.243 ± 0.073 998 ± 90 

Active feeding 0.406 ± 0.069 1074± 127 

Mixed feeding 0.522 ± 0.066 970 ± 88 

Passive feeding 0.153 ± 0.085 675 ± 83 

Body-size 

diversity 
0.250 ± 0.074 634 ± 6 

 831 

Table F2: Spatial autocorrelation length of trait distributions in the global ocean 832 

obtained from spatial models. Depicted are means and standard deviations. Spatial 833 

autocorrelation length is defined as the distance at which the Pearson correlation coefficients 834 

between points fall below about 0.13. 835 

Trait Spatial autocorrelation length (km) 

Body size 5575 ± 1286 

Relative offspring size 4117 ± 787 

Myelination 30 745 ± 22 955 
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Active feeding 2549± 5 

Body-size diversity 1721 ± 316 

 836 

  837 
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Appendix G: Skill of environmental models with all 838 

predictor combinations 839 

Table G1: Model skill in terms of deviance information criterion (DIC), Wanatabe-840 

Akaike information criterion (WAIC), and explained variance (R
2
) of global environmental 841 

models. Best models for each trait are highlighted in yellow. 842 

Response Predictors DIC WAIC R
2
 Best 

model 

Feeding_mode.Active  521.80 521.01  0 

Feeding_mode.Active diverCHL 520.73 519.18 0.02 0 

Feeding_mode.Active meanNPP 507.63 505.99 0.11 0 

Feeding_mode.Active medianPhyto 523.12 521.56 0.00 0 

Feeding_mode.Active diverCHL & medianPhyto 521.52 519.13 0.03 0 

Feeding_mode.Active meanNPP & diverCHL 502.49 500.07 0.13 1 

Feeding_mode.Active meanNPP & medianPhyto 507.36 504.93 0.10 0 

Feeding_mode.Active meanNPP & diverCHL & 

medianPhyto 
503.62 500.35 0.14 0 

Myelination  1103.57 1102.82  0 

Myelination meanNPP 1088.48 1086.95 0.08 0 

Myelination meanZSD 1087.71 1084.27 0.12 0 

Myelination medianPhyto 1083.23 1081.79 0.11 0 

Myelination meanNPP & medianPhyto 1029.80 1027.42 0.31 0 

Myelination meanZSD & meanNPP 1024.59 1022.14 0.34 0 

Myelination meanZSD & medianPhyto 1048.60 1044.45 0.26 0 

Myelination meanZSD & meanNPP & 

medianPhyto 
1019.67 1016.37 0.36 1 
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OffspringSize  2652.67 2655.54  0 

OffspringSize meanNPP 2575.61 2574.39 0.11 0 

OffspringSize meanZSD 2563.92 2563.02 0.12 0 

OffspringSize medianPhyto 2450.52 2452.46 0.22 0 

OffspringSize meanNPP & medianPhyto 2325.52 2328.54 0.33 1 

OffspringSize meanZSD & meanNPP 2380.24 2380.92 0.29 0 

OffspringSize meanZSD & medianPhyto 2347.13 2349.12 0.32 0 

OffspringSize meanZSD & meanNPP & 

medianPhyto 
2331.31 2331.70 0.33 0 

Size  2748.86 2749.15  0 

Size diverCHL 2663.16 2667.00 0.10 0 

Size meanNPP 2621.78 2621.75 0.15 0 

Size meanSST 2316.70 2324.12 0.41 0 

Size medianPhyto 2530.59 2533.88 0.24 0 

Size diverCHL & medianPhyto 2363.88 2367.20 0.38 0 

Size meanNPP & diverCHL 2294.15 2295.89 0.42 0 

Size meanNPP & medianPhyto 2265.79 2266.23 0.44 0 

Size meanSST & diverCHL 2197.55 2203.25 0.50 0 

Size meanSST & meanNPP 2160.57 2168.47 0.52 0 

Size meanSST & medianPhyto 2174.24 2182.39 0.51 0 

Size meanNPP & diverCHL & 

medianPhyto 
2241.91 2242.00 0.46 0 

Size meanSST & diverCHL & 

medianPhyto 
2134.15 2145.48 0.53 0 

Size meanSST & meanNPP & 

diverCHL 
2147.14 2156.90 0.52 0 

Size meanSST & meanNPP & 

medianPhyto 
2130.55 2142.20 0.54 0 
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Size meanSST & meanNPP & 

diverCHL & medianPhyto 
2089.48 2106.09 0.56 1 

Size_diversity  988.22 995.21  0 

Size_diversity diverCHL 756.29 770.96 0.27 0 

Size_diversity meanNPP 624.68 631.16 0.38 0 

Size_diversity meanSST 911.16 923.45 0.11 0 

Size_diversity medianPhyto 855.45 867.05 0.16 0 

Size_diversity diverCHL & medianPhyto 751.58 761.19 0.27 0 

Size_diversity meanNPP & diverCHL 623.02 630.48 0.39 0 

Size_diversity meanNPP & medianPhyto 596.43 610.23 0.41 0 

Size_diversity meanSST & diverCHL 721.89 736.67 0.31 0 

Size_diversity meanSST & meanNPP 594.31 602.39 0.41 0 

Size_diversity meanSST & medianPhyto 721.33 732.50 0.31 0 

Size_diversity meanNPP & diverCHL & 

medianPhyto 
588.82 599.09 0.42 0 

Size_diversity meanSST & diverCHL & 

medianPhyto 
680.14 697.85 0.35 0 

Size_diversity meanSST & meanNPP & 

diverCHL 
597.90 605.54 0.41 0 

Size_diversity meanSST & meanNPP & 

medianPhyto 
581.59 595.75 0.43 1 

Size_diversity meanSST & meanNPP & 

diverCHL & medianPhyto 
582.21 596.36 0.43 0 

  843 
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Table G2: Model skill in terms of deviance information criterion (DIC), Wanatabe-844 

Akaike information criterion (WAIC), and explained variance (R
2
) of North Atlantic 845 

environmental models. Best models for each trait are highlighted in yellow. 846 

Response Predictors DIC WAIC R
2
 Best 

mode

l 

Feeding_mode.Active  215857 215863 0.00 0 

Feeding_mode.Active Diver_CHL 210778 210784 0.01 0 

Feeding_mode.Active NPP 208409 208410 0.02 0 

Feeding_mode.Active Phyto_size 211310 211312 0.01 0 

Feeding_mode.Active Diver_CHL & Phyto_size 210529 210536 0.04 0 

Feeding_mode.Active NPP & Diver_CHL 208143 208149 0.02 0 

Feeding_mode.Active NPP & Phyto_size 207843 207845 0.04 0 

Feeding_mode.Active NPP & Diver_CHL & 

Phyto_size 
207459 207469 0.06 1 

Myelination  242754 242757 0.00 0 

Myelination NPP 241690 241692 0.07 0 

Myelination Phyto_size 242291 242294 0.01 0 

Myelination ZSD 242179 242183 0.04 0 

Myelination NPP & Phyto_size 240331 240334 0.11 0 

Myelination NPP & ZSD 241302 241306 0.08 0 

Myelination ZSD & Phyto_size 240022 240027 0.14 0 

Myelination NPP & ZSD & Phyto_size 239348 239353 0.16 1 

OffspringSize  86733 86734 0.00 0 

OffspringSize NPP 85972 85972 0.03 0 

OffspringSize Phyto_size 86061 86062 0.02 0 
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OffspringSize ZSD 86157 86159 0.02 0 

OffspringSize NPP & Phyto_size 84842 84841 0.06 0 

OffspringSize NPP & ZSD 85256 85257 0.05 0 

OffspringSize ZSD & Phyto_size 85196 85197 0.05 0 

OffspringSize NPP & ZSD & Phyto_size 84145 84147 0.09 1 

Size  97476 97478 0.00 0 

Size Diver_CHL 92815 92823 0.04 0 

Size NPP 94444 94444 0.08 0 

Size Phyto_size 93403 93409 0.03 0 

Size SST 90243 90251 0.11 0 

Size Diver_CHL & Phyto_size 95434 95435 0.06 0 

Size NPP & Diver_CHL 92736 92735 0.12 0 

Size NPP & Phyto_size 91645 91645 0.15 0 

Size NPP & SST 89445 89444 0.21 0 

Size SST & Diver_CHL 92424 92424 0.13 0 

Size SST & Phyto_size 89597 89612 0.13 0 

Size NPP & Diver_CHL & 

Phyto_size 
91088 91086 0.17 0 

Size NPP & SST & Diver_CHL 89219 89216 0.21 0 

Size NPP & SST & Phyto_size 84696 84736 0.23 0 

Size SST & Diver_CHL & 

Phyto_size 
92156 92155 0.14 0 

Size NPP & SST & Diver_CHL & 

Phyto_size 
84477 84485 0.23 1 

Size_diversity  49562 49559 0.01 0 

Size_diversity Diver_CHL 48154 48157 0.05 0 

Size_diversity NPP 45518 45513 0.13 0 
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Size_diversity Phyto_size 49191 49188 0.02 0 

Size_diversity SST 48973 48974 0.03 0 

Size_diversity Diver_CHL & Phyto_size 48086 48086 0.05 0 

Size_diversity NPP & Diver_CHL 45267 45263 0.13 0 

Size_diversity NPP & Phyto_size 45295 45291 0.13 0 

Size_diversity NPP & SST 45379 45375 0.13 0 

Size_diversity SST & Diver_CHL 47922 47921 0.06 0 

Size_diversity SST & Phyto_size 48662 48671 0.04 0 

Size_diversity NPP & Diver_CHL & 

Phyto_size 
44943 44943 0.14 0 

Size_diversity NPP & SST & Diver_CHL 45147 45144 0.14 0 

Size_diversity NPP & SST & Phyto_size 45171 45168 0.14 0 

Size_diversity SST & Diver_CHL & 

Phyto_size 
47851 47846 0.06 0 

Size_diversity NPP & SST & Diver_CHL & 

Phyto_size 
44855 44857 0.15 1 

  847 
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Appendix H: Environmental responses of active feeding 848 

 849 

Responses of active feeding to environmental predictors of hypothetical importance, 850 

based on single-predictor models. Responses are shown on the logit scale. Environmental 851 

predictors are net primary production, seasonality of chlorophyll a concentration, and 852 

phytoplankton cell diameter (columns). Lines in dark blue represent global models, lines in 853 

cyan represent North Atlantic models. Shaded areas surrounding the lines illustrate 95% 854 

confidence intervals. Dashed lines represent predictors not included in the best models of the 855 

corresponding trait and domain. 856 


