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Abstract. For optimal design most parameters may be classified in size, shape and topol-

ogy, such as simple density variables and parameters for surface description. Density and

surface can be rather directly visualized. Extending the design to material design in

sense of design of distributions of constitutive matrices, a practical visualization is more

complicated but may be based on classical laminate analysis. In rotational transforma-

tion of constitutive matrices, some practical quantities are often termed invariants, but

the invariance relates to an unchanged reference direction. Rotating this reference direc-

tion, the practical quantities do change and this point is clarified with derived rotational

transformation for these practical quantities.

The theoretical and numerical background for design of optimal anisotropic consti-

tutive matrices are presented. Then design results are applied in a 2D visualization of

optimized constitutive matrices that are distributed in a finite element (FE) model where

each element has a specific reference direction. The visualized distributions of physical

quantities are stiffest material direction, material stiffest longitudinal constitutive com-

ponent, level of anisotropy, absolute or relative shear stiffness and test of orthotropy.
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1 Introduction

In free material optimization (FMO), the components of the constitutive matrices are

optimized and they change in the space of a finite element (FE) model, i.e., they are

distributed. The constraints for the non-dimensional description of these matrices are

symmetry, positive definite and normalized to unit trace. The optimized constitutive

matrices should be visualized, but this is not an easy task and different techniques are

applied in the literature. From the authors point-of-view the visualization should be

related to the most important physical quantities, and for 2D problems the traditional

lamina analysis is found valuable.

In recent research simple formulas for design of constitutive matrices are obtained, re-

lated to different static as well as to eigenfrequency optimal design problems. It is shown

that for quite different design objectives, the elastic energy density plays a major role

and the results are expressed directly by the current strains, with unit matrix norms and

separated from the local amount of material. In optimal design the name optimality crite-

rion is used for a mathematical necessary condition for optimality. Two such criteria are

involved in the present paper. Firstly a criterion for the components of non-dimensional

constitutive matrices, describing the local anisotropy. This criterion gives directly the

components, based on a current strain field. A second criterion for the density variables,

i.e., for the material distribution among the elements. This criterion is the basis for a

numerical redesign procedure that fulfills the criterion where size limits are not active.

Visualization of fields of 3 × 3, symmetric, positive definite constitutive matrices of
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unit norms are based on formulations from laminate theory. From laminate analysis, the

formulation for rotational transformation of constitutive matrices is applied and is found

useful. Practical parameters which usual are stated as invariants are an important part of

this formulation but the notion invariants needs to be discussed, because the parameters

depend on a specific reference direction. The visualized distributions of physical quantities

are stiffest material direction, material stiffest longitudinal constitutive component, level

of anisotropy, absolute or relative shear stiffness and orthotropy test.

Analysis and optimization may be performed without rotational transformations in

a common coordinate system with the x-direction as reference (for 2D). However, the

visualizations of the optimized results involve rotational transformation of material be-

havior, i.e., of the constitutive matrices. For each element in a FE model, the direction of

stiffest material direction is taken as reference direction with stiffest direction defined as

the direction of largest longitudinal components in an optimal constitutive matrix, here

termed (α1111)θ with θ being the angle counter-clockwise from the common x-direction to

a direction termed the θ-direction.

The traditional lamina formulas are well suited for localizing θ for a specific element.

With θ, (α1111)θ determined for all elements the available further physical information is

calculated, applying practical parameters (α2, α3, α6, α7)θ as evaluated for element e in

the specific reference direction θe. In the present paper the non-dimensional, normalized

practical quantities are given notation α, as alternative to the often preferred notation Q

for corresponding dimensional quantities.

Although written in relation to 2D constitutive matrices, the approach is also valid for

2D structural stiffness matrices [S], 2D structural flexibility matrices [F ], and 2D strength

matrices in stress space [H] or in strain space [G]. Also laminate stiffness sub-matrices

3



and laminate flexibility sub-matrices may be visualized similarly.

The main readers in mind are researchers with interest in laminate formulation, but

it is found necessary to give an introduction in Sections 2 and 3 to optimal constitutive

matrices, before the application of laminate formulation is detailed in Section 4. Especially

the discussion on ”invariant” parameters should be noted. Finally, fields for constitutive

matrices are exemplified with a suggested visualization for an optimal constitutive design

obtained in [1].

2 Separation of a non-dimensional constitutive ma-

trix

from the local amount of material

The distribution of material in a continuum is separated in two: firstly how much material

to be used in a reference volume Ve ? and secondly how this local material should be used

to obtain an optimal local constitutive matrix ? By this separation a clear measure of the

total amount of material/volume is possible.

The total amount of material volume V is constrained and this constraint is assumed

to be active, i.e., all material is assumed to be used. This assumption is essential for

the obtained optimality criteria. With ρe as local, non-dimensional design parameters for
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density, this constraint is written

∑

e

ρeVe = V

with size limits

0 < ρmin ≤ ρe ≤ ρmax ≤ 1

and the major constraint is written

g =
∑

e

ρeVe − V = 0 ⇒ ∂g/∂ρe = Ve (1)

The theory and procedures for iterative optimization to obtain the densities ρe are shortly

presented in Section 3.

The separated local (element e) constitutive matrix [Ce] is

[Ce] = ρeE0[C̃e] = ρeE0




(C̃1111)e (C̃1122)e
√
2(C̃1112)e

(C̃1122)e (C̃2222)e
√
2(C̃2212)e

√
2(C̃1112)e

√
2(C̃2212)e 2(C̃1212)e




(2)

where E0 is a fixed value of modulus, ρe a current local, non-dimensional density and [C̃e]

is a non-dimensional matrix, normalized to unit trace as well as to unit Frobenius norm.

The discussion of this matrix is of primary interest.

2.1 Constraint for the non-dimensional constitutive components

The non-dimensional constitutive matrices are constrained to be symmetric and positive

semi-definite and furthermore normalized such that the Frobenius norm Fe = F ([C̃e]) is

equal to 1 for all elements, here stated in terms of the squared norm F 2
e

he = F 2
e − 1 = 0 (3)

With a design objective Φ and only the constraint (3), the necessary condition for

optimality of the matrix components for [C̃e] is proportionality between the gradients of
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the objective and the gradients of the constraint

∂Φ

∂(C̃ijkl)e
= λ

∂he

∂(C̃ijkl)e
(4)

where for 2D problems (C̃ijkl)e is one of the six independent components of the constitutive

matrix and λ is a common factor for all six of these components, related to a specific

constitutive matrix.

With F 2
e defined as the sum of the squared components of the matrix [C̃e] in (2)

F 2
e = (C̃2

1111)e + (C̃2
2222)e + 4(C̃2

1212)e + 2(C̃2
1122)e + 4(C̃2

1112)e + 4(C̃2
2212)e (5)

and the gradients of the constraint he = F 2
e − 1 = 0 are

∂he

∂(C̃1111)e
= 2(C̃1111)e,

∂he

∂(C̃2222)e
= 2(C̃2222)e,

∂he

∂(C̃1212)e
= 8(C̃1212)e,

∂he

∂(C̃1122)e
= 4(C̃1122)e,

∂he

∂(C̃1112)e
= 8(C̃1112)e,

∂he

∂(C̃2212)e
= 8(C̃2212)e (6)

The gradients of the objective, i.e. the left hand side of (4) for specific optimization

objectives are derived subsequently.

2.2 Compliance or total elastic energy as objective

Compliance is, for design independent loads, equal to the total elastic energy U (twice the

total strain energy) and a gradient of U , say with respect to the constitutive components

(C̃ijkl)e, can be determined in a fixed strain field (fixed displacements field), see [2]

∂U

∂(C̃ijkl)e
= −(

∂U

∂(C̃ijkl)e
)fixed strain = −VeρeE0(

∂ũe

∂(C̃ijkl)e
)fixed strain (7)

where Ve is the volume in which we have constant strains {ǫ}e and the constant constitutive

matrix [C̃]e. Expanding the non-dimensional matrix product ũe = {ǫ}Te [C̃]e{ǫ}e with
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strain vector {ǫ}Te = {ǫ11ǫ22
√
2ǫ12}e gives

ũ =(C̃1111)e(ǫ
2
11)e + (C̃2222)e(ǫ

2
22)e + 4(C̃1212)e(ǫ

2
12)e+

2(C̃1122)e(ǫ11)e(ǫ22)e + 4(C̃1112)e(ǫ11)e(ǫ12)e + 4(C̃2212)e(ǫ22)e(ǫ12)e (8)

and the gradients are

∂U

∂(C̃1111)e
= ρeVeE0(ǫ11)e(ǫ11)e,

∂U

∂(C̃2222)e
= ρeVeE0(ǫ22)e(ǫ22)e,

∂U

∂(C̃1212)e
= 4ρeVeE0(ǫ12)e(ǫ12)e,

∂U

∂(C̃1122)e
= 2ρeVeE0(ǫ11)e(ǫ22)e,

∂U

∂(C̃1112)e
= 4ρeVeE0(ǫ11)e(ǫ12)e,

∂U

∂(C̃2212)e
= 4ρeVeE0(ǫ22)e(ǫ12)e (9)

2.3 Multiple load cases and resulting optimality criterion

for compliance optimizations

With multiple load cases, all design independent, numbered n = 1, 2, ... the gradients (9)

hold for each load case. The corresponding strains (ǫ11)n, (ǫ22)n and (ǫ12)n are all deter-

mined in the same coordinate system. Therefore, the simple optimization of minimizing

a linear combination of compliances, expressed in the energies for each load case Un, is

Minimizing U =
∑

n

ηnUn for he = F 2
e − 1 = 0 (10)

for given weight factors ηn, say with
∑

n ηn = 1.

The design for the multiple load case that satisfies the optimality criterion is

(C̃ijkl)e = λ
∑

n

ηn((ǫij)e(ǫkl)e)n (11)

a simple optimal design result with λ as a normalization factor. The case of a single load

case is further simplified

(C̃ijkl)e = λ(ǫij)e(ǫkl)e (12)
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as seen directly by inserting (6) and (9) in (4). The extension from (12) to (11) follows

directly with (9) interpreted for the specific load cases. For further detail see [2].

2.4 Gradients and resulting optimality criterion

for single eigenfrequency optimization

The local gradient of the Rayleigh quotient with respect to the components of the local

constitutive matrix is simple when the mass distribution is unchanged (kinetic energies T

and Te unchanged), here with hat notation as an alternative to extended index of fixed

displacements or fixed strains, see [3]

∂ω2

∂(C̃ijkl)e
=

∂(U/T )

∂(C̃ijkl)e
=

̂∂(U/T )

∂(C̃ijkl)e
=

̂∂(Ue/Te)

∂(C̃ijkl)e
=

1

Te

∂̂Ue

∂(C̃ijkl)e
=

ρeVeE0

Te

∂̂ũe

∂(C̃ijkl)e

with fixed strains in ũe = {ǫ}Te [C̃]e{ǫ}e (13)

From the final relation in (13) then follows

∂ω2

∂(C̃1111)e
=

ρeVeE0

Te

(ǫ11)e(ǫ11)e,
∂ω2

∂(C̃2222)e
=

ρeVeE0

Te

(ǫ22)e(ǫ22)e,

∂ω2

∂(C̃1212)e
= 4

ρeVeE0

Te

(ǫ12)e(ǫ12)e,
∂ω2

∂(C̃1122)e
= 2

ρeVeE0

Te

(ǫ11)e(ǫ22)e,

∂ω2

∂(C̃1112)e
= 4

ρeVeE0

Te

(ǫ11)e(ǫ12)e,
∂ω2

∂(C̃2212)e
= 4

ρeVeE0

Te

(ǫ22)e(ǫ12)e (14)

that except for a factor is identical to (9).

From (11), (12) and (14) it is seen that the optimality criterion for the discussed

different 2D plane problems is for all of them similar to

(C̃ijkl)e =
(
ǫijǫkl/(ǫ

2
11 + ǫ222 + 2ǫ212)

)
e

(15)

now written with the appropriate normalization, but without the weight factors ηn in

(11).
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2.5 Multiple load cases fully stressed

for strength optimizations

For strength design with free material subjected to multiple load cases, see details in [4].

A practical approach that is closely related to ”fully stressed iterations” is chosen. The

iteratively updated non-dimensional constitutive matrix is chosen as

[C̃e] =
∑

n

(
(ηe)n[C̃e]n

)
with (ηe)n =

(ue)n∑
n(ue)n

⇒
∑

n

(ηe)n = 1 (16)

where the weight factors for element e are chosen by the relative elastic energy density

(ue)n in load case n, and each [C̃e]n are derived by optimality criteria and expressed in

principal strains, see [5]. The heuristic procedure rapidly converges towards a design with

an optimized strength that is measured by the maximum elastic energy density over the

specified load cases and over the full continuum space.

2.6 Proof of unit norms

The result (15) shows that [C̃e] is described by a dyadic product [C̃e] = {α}{α}T . Then

by definitions of trace and Frobenius norms follows, that the values of trace and Frobenius

norms are always equal and [C̃e] is semi-positive definite.

trace[C̃e] = Frobenius[C̃e] = {α}T{α}

where {α}T{α} > 0 for {α} 6= {0} (17)

Omitting the index e for element we proceed the discussion of the obtained constitutive

matrix as described directly by the corresponding strain state(s). Although a constitutive

matrix is not necessary obtainable as a dyadic product, this will be the case for the optimal

constitutive matrix, where the important result in 2D plane problems with normalization

9



to unit norms is

[C̃] = {α}{α}T with {α}T = {ǫ11 ǫ22
√
2ǫ12}/

√
ǫ211 + ǫ222 + 2ǫ212 (18)

That the optimal constitutive matrix of unit norms in 2D is described by only three

parameters (the strain components) limits the possibilities for a matrix with normally up

to 6 independent parameters.

Numerically the rate of change of the constitutive matrices are in each redesign of an

optimization process limited by a non-dimensional step parameter 0 ≤ β ≤ 1 similar to

the design approach for strength optimization in [4] where β = 0.5 and β = 0.1 were used,

i.e.,

[C̃]new = β[C̃]from (18) + (1− β)[C̃]old (19)

The design approach is initiated with [C̃]0 = [I]/3, i.e., zero Poisson’s ratio isotropic

material, positive definite, non-dimensional and normalized. It is concluded that for a

given strain state the optimized non-dimensional constitutive matrix is known with unit

trace and Frobenius norm. Note, that with initial positive definite [C̃] it will for β < 1 stay

positive definite through the redesign iterations. Numerical value β = 0.2 is applied for

the visualized example in Section 5, and even with this rather low β value fast convergence

is obtained.

3 Optimality criteria for density variables

by design gradients

For a design problem with the objective Φ to be minimized or maximized, subject to only

one constraint g = 0 for the optimized density design variables ρe (index e referring to
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element e), the necessary optimization criterion now involves the constraint g = 0 in (1).

γe =
∂Φ

∂ρe
/
∂g

∂ρe
=

∂Φ

∂ρe
/
1

Ve

= γ (20)

where the factor γ is the same for all ρe that are not at prescribed size limits.

The problems treated in the present paper are

• Minimum compliance C = Minimum elastic energy U .

• Minimum linear combination of elastic energy for multiple load cases U =
∑

n ηnUn.

• Maximum of first eigenfrequency (squared) = ω2.

• Maximum strength = Minimum of the maximum elastic energy density in a contin-

uum applied to a number of load cases n = 1, 2, ...

For single load compliance design the optimality criterion is uniform elastic energy

density, throughout the model, i.e. γe = ue = u. Note, that for this most simple case

the strength, as measured by the maximum elastic energy density, is simultaneously op-

timized.

The result for single load case extends directly for multiple load cases with linear

combination compliance design with weight factors ηn for each load case specified, i.e.,

γe =
∑

n ηn(ue)n = ûe = û, see [2].

For multiple loads, strength design are assumed being obtained by uniform (umax)e,

i.e., by a fully stressed design, except at prescribed size limits. For isotropic material

this is closely related to uniform von Mises stresses, see [4]. For anisotropic materials the

elastic energy density is taken as a simple strength measure.

For eigenvalue related design as in free vibrations, the optimality criterion is uniform

values of a weighted squared local frequency, i.e., γe =
1
ρe

Te

T
(ω2

e − ω2) = γ, see [3].

With these shortly stated results, the goal of the paper is to
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• Present practical iteration procedure that in ≃ 10 iterations (≃ 10 finite element

(FE) analyses) can determine designs of constant optimality criteria for all elements

not at a size limit.

• Present a method for visualization of optimized design and response, with focus on

the designed distributions of constitutive matrices.

• Described the mathematical tool for this visualization, based on classical laminate

analysis.

3.1 Numerical design procedure for density variables

Assumed that a given design is specified by ρe and analyzed to obtain Φ and ∂Φ
∂ρe

. The

individual ratios for γe = ∂Φ
∂ρe

1
Ve

are different, and the numerical procedure for redesign

should converge towards more uniform values of γe.

In cases with only positive values γe > 0 a redesign is based on the weighted mean

value γ̄ > 0

γ̄ =
∑

e

ρeVeγe/
∑

e

ρeVe (21)

and the redesign is from experience chosen to

(ρe)new = (ρe)old

(
γe
γ̄

)q

F (22)

with q = 0.8 and F in an inner iteration determined such that the total volume constraint

is satisfied, see [2] for details on the inner iterations.

In cases with negative as well as positive ratios 0 > (γe)min ≤ γe ≤ (γe)max > 0, which

is actual for the eigenfrequency optimization, the following heuristic procedure has been
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applied

For positive gradients (ω2
e − ω2 > 0)

(ρe)new = (ρe)current(1 + 4.0γe/γmax)
0.8F

For negative gradients (ω2
e − ω2 < 0)

(ρe)new = (ρe)current(1− 0.8γe/γmin)
0.8F (23)

where the values of γmin < 0, γmax > 0 are determined during the evaluation of the

gradients. The specific values in (23) 4.0, 0.8, 0.8 are chosen from experience, acting

as a kind of move-limits and influence the number of recursive redesigns (number of

eigenvalue analysis). Again with F in an inner iteration determined such that the total

volume constraint is satisfied.

In general for both procedures (22) and (23) the size limits of the non-dimensional

density variables

0 < ρmin ≤ ρe ≤ ρmax ≤ 1 (24)

are satisfied iteratively in an ”inner” iteration loop without further analysis and sensitivity

analysis. The factor F thereby satisfy both the size limits (24) and the specified total

amount of material/volume V by
∑

e ρeVe = V .

4 Visualization of field of constitutive matrices

Visualization of fields of 3 × 3, symmetric, positive definite constitutive matrices of unit

norms are based on formulations from laminate theory. Practical parameters that often

are termed invariants are valuable, but there seems to be a need for discussion of the

property ”invariant”.
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4.1 Use of laminate formula

For anisotropic material the anisotropy should be visualized, but without going into all

details of the six 2D components. A 2D material non-dimensional constitutive matrix [C̃]

is given in a global x, y coordinate system with the x-direction as the reference direction

by

[C̃] =




α1111 α1122

√
2α1112

α1122 α2222

√
2α2212

√
2α1112

√
2α2212 2α1212



x

(25)

with the assumed condition that [C̃] is positive definite and the trace of the positive

diagonal elements is normalized to unity, i.e.,

α1111 + α2222 + 2α1212 = 1 (26)

These conditions then hold in any rotated coordinate system. A physical description

of the constitutive matrix is of major interest, so the direction of largest longitudinal

material stiffness must be located.

According to laminate theory α1111 as a function of rotation, termed (α1111)θ, is given

by the six components in the x reference coordinate system, here chosen in a form linear

in trigonometric factors,

(α1111)θ =(α1111 + α2222)x/2 + (α2)x cos(2θ)− (α3)x(1− cos(4θ))+

(α6)x2 sin(2θ) + (α7)x sin(4θ) (27)

14



where the practical parameters are defined by

(α2)x = (α1111 − α2222)x/2

(α3)x = (α1111 + α2222 − 2(α1122 + 2(α1212))x/8

(α6)x = (α1112 + α2212)x/2

(α7)x = (α1112 − α2212)x/2 (28)

For orthotropic materials α6 = α7 = 0 in specific directions, but for the free material

this will not always be the case, so we analyze the more general case. Several extrema

for (α1111)θ may exist in the interval 0 ≤ θ < π. To locate the maximum of (α1111)θ,

the function (27) is numerically evaluated at a number of θ values (here chosen with

increments ∆θ = π/1800). This can be done for each elements and θe is then the angle

for the largest value (α1111)θ. The values of (α1111)θ has an upper bound of 1 and a lower

bound of 1/3. This follows from the trace being 1, and having positive eigenvalues in this

interval. This then also follows for the non-dimensional longitudinal stiffness. For high

values of (α1111)θ a single fiber direction is approached and for lower values of (α1111)θ an

isotropic material with zero Poisson’s ratio material is approached.

Similar to (27) the remaining constitutive components with the θ-direction as reference

direction may be evaluated by

(α2222)θ =(α1111 + α2222)x/2− (α2)x cos(2θ)− (α3)x(1− cos(4θ))−

(α6)x2 sin(2θ) + (α7)x sin(4θ)

(α1122)θ =(α1122)x + (α3)x(1− cos(4θ))− (α7)x sin(4θ)

(α1212)θ =(α1212)x + (α3)x(1− cos(4θ))− (α7)x sin(4θ)

(α1112)θ =(α2)x sin(2θ)x/2− (α3)x sin(4θ)) + (α6)x cos(2θ) + (α7)x cos(4θ)

(α2212)θ =(α2)x sin(2θ)x/2 + (α3)x sin(4θ)) + (α6)x cos(2θ)− (α7)x cos(4θ) (29)
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all this well known from laminate theory.

4.2 Discussion on ”invariant” parameters

The definitions of (α2)θ, (α3)θ, (α6)θ), (α7)θ with reference to a specific θ-direction is de-

fined by

(α2)θ = (α1111 − α2222)θ/2

(α3)θ = (α1111 + α2222 − 2(α1122 + 2(α1212))θ/8

(α6)θ = (α1112 + α2212)θ/2

(α7)θ = (α1112 − α2212)θ/2 (30)

and their numerical values may be different from the parameters in (28). The following

relations are derived by inserting (27) and (29) in (30)

(α2)θ = (α2)x cos(2θ) + (α6)x2 sin(2θ) ((α2)θ = (α2)x for θ = 0 and π)

(α3)θ = (α3)x cos(4θ) + (α7)x sin(4θ) ((α3)θ = (α3)x for θ = 0 and π)

(α6)θ = (α6)x cos(2θ)− (α2)x sin(2θ)/2 ((α6)θ = (α6)x for θ = 0 and π)

(α7)θ = (α7)x cos(4θ)− (α3)x sin(4θ) ((α7)θ = (α7)x for θ = 0 and π) (31)

Therefore the practical parameters α2, α3, α6, α7 are not only material parameters but

also depend on the reference axis chosen. Note especially the sign change (α3)θ = −(α3)x

for θ = π
4

and 3π
4
, implying that for each element, reference axes always exit with both

positive and negative α3 (being zero for the isotropic case).

Material orthotropy imply zero of the following parameter combinations, expressed
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both with reference to x and θ as main axis

zx = (α7)x(α2)
2
x − 4(α7)x(α6)

2
x − 4(α6)x(α3)x(α2)x

zθ = (α7)θ(α2)
2
θ − 4(α7)θ(α6)

2
θ − 4(α6)θ(α3)θ(α2)θ (32)

If zx is zero, then the material is orthotropic and zθ is then also zero, because the condition

(32) holds in any coordinate system. The derived functions (31) fulfills this, by setting

(α6)x = (α7)x = 0.

The conclusion from the present analysis is that the parameters (30) as well as (28)

should be termed practical parameters instead of invariant parameters.

4.3 Important anisotropy quantities

It is suggested for the constitutive matrices of an optimized design to present the following

five distributions

• Largest longitudinal stiffness by (α1111)θe for all elements e in a color plot, noting

the limits 1/3 ≤ (α1111)θe ≤ 1 with 1/3 for isotropy with zero Poisson’s ratio and

with 1 for unidirectional fiber.

• Direction of largest longitudinal stiffness by directional lines, noting the limits 0 ≤

θe ≤ π. May be combined with the color plot above.

• Level of anisotropy by 2(α2)θe = (α1111)θe−(α2222)θe for all elements e in a color plot,

noting the limits 0 and 1 with 1 for high level of anisotropy and 0 for symmetry.

• Relative importance of shear stiffness by 8(α3)θe for all elements e in a color plot.

High shear stiffness corresponds to negative values of 8(α3)θe, i.e. 4α1212 > α1111 +

α2222 − 2α1122, as seen in (30). Alternatively, α1212 may be directly visualized.
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• Test for material orthotropy by ze for all elements e in a color plot. Only places

with ze = 0 have orthotropic material. The color plot relates to a scaled, squared

test quantity with a lower limit to identity orthotropy.

4.4 Other matrices with similar rotational transformations

The visualizations of the present paper written in relation to 2D constitutive matrices,

are also valid for 2D structural stiffness matrices [S], 2D structural flexibility matrices

[F ], and 2D strength matrices in stress space [H] or in strain space [G]. Also laminate

stiffness sub-matrices and laminate flexibility sub-matrices may be visualized similarly.

5 Visualization of example from optimal anisotropy

In [1] a cantilever (with fixed material at the tip) is optimized to maximize the first eigen-

frequency. Without specifying here the details of analysis and optimization by iterative

redesign, we visualize in Figure 1 the obtained constitutive matrices, as suggested above

in Section 4.3.

Some clarifying comments to Figure 1 must be given. At the tip a strip of full material

density is prescribed in order to have a meaningful model. Close to this strip the optimal

density reach the minimum density, this area being the same for all four figures is shown in

white. This might be a little misleading relative to Figure 1d, because here white is used

to indicate material classified as orthotropic (no material/low density is also orthotropic).

The black direction lines in Figure 1a are intented to be illustrative. The model has 16384

elements with individual directions and limitations to a reasonable number of continuous

lines are necessary. The lines in Figure 1a are therefore only for illustration and in [1] for

two examples, they are shown more clearly on a white background.
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a) Largest longitudinal stiffness by (α1111)θ b) Level of anisotropy by 2(α2)θ

c) Relative shear stiffness by 8(α3)θ d) Orthotropic material, only if z
2

θ
= 0

Figure 1: Visualization of distributions for constitutive matrices added direction of largest

longitudinal stiffness in Figure 1a. The white spots near the tip of fixed material are places

of minimum material density, being the same in all Figures 1a-d. The further white areas

in Figure 1d contains materials classified as orthotropic.
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Note, that the quantities in Figures 1a-c are measured in individual rotated coordinate

systems which reference axes are visualized by the direction lines in Figure 1a.

For largest longitudinal stiffness in Figure 1a we see blue color (close to the value

0.85) at the upper and lower boundaries, yellow color (close to 0.45) at the ”beam axis”

and green color between these zones. All this as expected in relation to the simplest

bending eigenmode. For direction of largest longitudinal stiffness added in Figure 1a, the

45 degrees at the ”beam axis” and parallel to the upper and lower boundaries also agree

with simple bending of a cantilever.

The distribution of level of anisotropy is visualized by 2(α2)θ in Figure 1b and show

small relative values of (α2222)θ by blue color close to upper and lower boundaries, i.e.,

high level of anisotropy. Close to symmetry (α2222)θ ≃ (α1111)θ by red color close to the

”beam axis”.

The relative importance of shear stiffness is visualized by distribution of 8(α3)θ in

Figure 1c. For high shear stiffness, relative to a chosen reference main axis, this quantity

will be negative. For the present case only positive values are found with the reference

axes corresponding to θe, i.e., with the directions of largest longitudinal stiffness.

The distribution of possible orthotropy is visualized by a scaled z2θ in Figure 1d, where

the zero limit is set to 0.001. The white areas (away from the tip) are thus areas of

material orthotropy, without showing the directions of orthotropy.

6 Conclusion

Visualization of results from optimal design may not be too complicated in traditional size,

shape or topology design, but in free material optimization (FMO) constitutive matrices

in the continuum or structural space are part of the obtained design. A visualization
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of such distribution of matrices for 2D problems with 6 different matrix components is

demonstrated.

From laminate analysis, the formulation for rotational transformation is applied and

is found useful. Practical parameters that usual are stated as invariants are an important

part of this formulation , but the notion invariants needs to be discussed, because it only

relates to a specific reference direction. The visualized distributions of physical quantities

are stiffest material direction, material stiffest longitudinal constitutive component, level

of anisotropy, absolute or relative shear stiffness and orthotropy test.

Optimal design of material distribution is often effectively obtained by design iterations

based on a stated optimality criterion. It is recently found that the optimal constitutive

matrices (the anisotropy) are simply related to the actual strain field(s). Since this is not

well known, it is chosen to shortly describe the theory behind this result as an introductory

to the visualization aspects. Although four different optimization problems are involved,

the theoretical results and the numerical applied procedures are rather similar. In all

cases the constitutive components are directly given by strain states that in redesigns are

iteratively determined. The constitutive matrix may for optimized solutions be written

as a dyadic product. The density distributions follow for the three static problems by

optimality criteria of uniform elastic energy density that may be weighted in relation to

multiple load cases. For strength optimization this can be interpreted as fully stressed

designs.
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