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Abstract

This study presents a method to adapt existing hydronic systems in buildings to take advantage of low
temperature district heating (LTDH). Plate radiators connected to double string heating circuits were considered
in an optimization procedure, based on supply and return temperatures, to obtain the required logarithmic mean
temperature difference (LMTD) for a low temperature heating system. The results of the analysis are presented
as the average reduction of LMTD over the heating season compared to the base case design conditions. Two
scenarios were investigated based on the assumption of a likely cost reduction in the end users’ energy bills of
1% for each 1 °C reduction of return and average supply and return temperatures. The results showed possible
discounts of 14% and 16% respectively, due to more efficient operation of the radiators. These were achieved
without any intervention in the thermal envelope or to the heating systems, through simply adjusting the
temperatures according to demand and properly controlling the plate radiators with thermostatic radiator valves
(TRVS).
Keywords: Low temperature district heating, hydraulic radiators, modelling, temperature optimization
Highlights

e Application of low operating temperatures to existing hydraulic radiators

¢ Method to investigate and plan the connection of existing buildings to low temperature district heating

e Investigation to calculate performance of hydraulic radiator element

e Method to optimize supply and return temperatures in low temperature district heating system



1  Introduction

In the EU households, heating for space heating (SH) and domestic hot water (DHW) consumes 79% of the total
final energy use (192.5 Mtoe), representing one of the largest carbon emitting sectors of the economy [1][2]. As
a consequence, decarbonizing the heat sector is being considered central to the EU energy policy to foster a
carbon neutral society and achieve the reduction in the greenhouse emission of 40% and 80% by 2030 and 2050
respectively to the level of 1990 [3]-[5]. Currently, heat supply in buildings in the EU is mainly provided by
individual heat sources installed in buildings or alternatively through district heating (DH) networks. The latter
are widely used in Scandinavian, Eastern European countries and Russia. District heating offers high flexibility
for the integration of renewable heat sources, though still faces the technical challenge of matching different heat
sources’ supply temperature and demand. Driven by the need to use low carbon heat sources, the current focus is
to develop low temperature district heating systems, referred to as 4th generation district heating (4GDH) [6].
One key design parameter in the development of 4GDH is the reduction of supply and return temperatures from
the current standard of 80/40 °C to load dependent temperatures with a target of 50/20 °C. As DH in general
covers the demand for SH and DHW, the limit for the supply temperature of 50 °C is imposed to avoid health
problems due to Legionnaires' disease in sanitary water [6], [7]. Recent studies show that buildings can be
maintained at comfortable temperature levels with low supply temperatures for the majority of the heating
season and using a 4GDH system with flexibility to adjusting the temperatures according to heat demand during
extreme low outdoor temperatures. This would improve the overall efficiency of heat generation and reduce heat
losses in the network [8]-[10]. Therefore, one of the issues in the implementation of low temperature district
heating (LTDH) is the calculation of the optimal combination of supply and return temperature to operate the
heating systems according to heat demand. In fact, reducing supply temperature to 50 °C poses few technical
problems in regard to the capability of existing heating systems to guarantee the same thermal comfort.
Commensurate with low-energy buildings, which use efficient heat emitters such as low-temperature radiators or
underfloor heating, water supply temperatures of 50 °C or even lower would technically be adequate to meet SH

demand all year round [11]-[13]. Hence, the challenge is to adapt the existing large building stock and the



already installed hydronic heating systems for the applicability of LTDH, without any major design and
construction intervention, yet adjusting water temperatures to heat demand.

1.1 Aim

The aim of the work presented in this paper was to develop a method to investigate and plan the introduction of
LTDH to existing hydraulic radiator systems in existing buildings. The scope of this work was to express the
heat demand as a function of logarithmic mean temperature difference (LMTD) between the water of the
hydraulic radiator and the heated building zone. The results of the investigation are expressed as an average
reduction in LMTD over the heating season compared to the design conditions. The needed LMTD can be
reached by numerous combinations of supply and return temperatures to the radiator; these have different
economic benefits and therefore an optimization process to define the best combination of supply and return
temperatures is needed. Hence, two different scenarios for double string plate radiators were used to test the
developed method and outline the strategy to connect existing buildings to LTDH.

1.2 Modelling performance of different types of heating elements for low temperature operation

Lower return temperatures are beneficial for DH technology, by reducing the network distribution losses and
mass flow rates, as well as improving the efficiency of energy generation [14]-[17]; this is even more important
for the LTDH concept, where return temperatures have to be cooled to almost indoor temperature. In mature DH
markets such as in Denmark, Sweden and Finland, LTDH has been successfully applied and tested in real
projects. Good results proved the concept in case of low-energy buildings [8], [18], [19] and further
investigations have been carried out for existing buildings at different levels of refurbishment [20], [21].
However, none of these articles includes an optimization process, based on the economic value of lower supply
and return temperatures for DH companies and end users, to define the optimal operating temperatures in the
implementation of LTDH to existing buildings with radiator based heating systems. Hence, to correctly address
the challenge of operating existing hydraulic radiators with low water supply temperatures, necessary
considerations must be given both to the design of the heat emitting radiators (hardware) and the modelling

analysis to optimize the performance.



1.2.1 Hardware part — type of heating systems

Hardware considerations include the different types of heating elements, the way they are operated and
controlled in order to efficiently perform. Commonly, flat panel radiators are manufactured by combining up to
three flat plates and incorporating fins to augment the heat transfer area [22], [23]; they can have a high or low
profile. By far the most used hydraulic configuration for radiators is the double string system, consisting of two
pipes, one for supply and one for return. Typically, hot water is supplied to the top of a radiator to let the water
flow diagonally downwards and cool gradually before leaving from the opposite bottom corner [24]. Although
low level panel radiators are used in some cases, especially if there are space restrictions, they can lead to
slightly higher return temperatures compared to taller ones, due to the reduced height; hence particular attention
is necessary during the selection of the element if low return temperatures have to be attained. Another possible
hydraulic configuration for radiators is the one string system, characterized by only one pipe for both supply and
return; the radiators are connected in a way that a fraction of the water flow in the main string runs through the
radiator and exits back to the main string. The temperature though is gradually reduced as this enters to each
successive radiator. This solution fosters the system to work with higher mass flow rates and lower temperature
difference (AT). If carefully designed by increasing the size of each successive radiator [25], as reported in this
study published by the Swedish DH association [26], return temperatures can be as low as in double string
systems in typical DH networks. Nonetheless, as difficult to properly control, it is common to experience higher
return temperatures and smaller AT in the substation, hence this reduced their attractiveness in comparison to
double string systems, in particular when connected to district heating [27]. Similar to the radiators with single
string hydraulic configuration, heat convectors lead to higher return temperatures due to high flow rate and low
AT. They are characterized by heat transfer to the surrounding mainly by convection and the most common
layout consists of a finned long tube, which generally follows the perimeter of exposed walls and/or windows
[22]-[24], [28], [29]. These heating elements — likewise water radiators with single string layout — still can be

found in existing buildings, but they are not recommended for DH in general and in particular not for LTDH



applications, where return temperatures close to room temperatures have to be achieved. Central to hardware
discussion is also the way radiator elements are controlled, typically by thermostatic radiator valves (TRVS).
TVRs are passive water flow regulating devices that maintain set-point room temperature; this guarantees the
required indoor comfort in an efficient way as well as the expected cooling of return temperatures. It also allows
the heat output to modulate and compensate for emitters that can be over-dimensioned during some periods of
the heating season [30]-[32]. However, it is quite common in real applications for TRVs to operate poorly and
negatively affect the overall system efficiency. The work of Ziao et al. [33] found that in hydronic radiator
systems, although TRVs were installed in almost all the systems surveyed, in 65% of the cases they were
performing poorly, mostly due to occupants misuse, and generating thermal discomfort and wasted energy.
Therefore it is important to limit the side effect of human behavior on the effectiveness of TRVs [34], as these
have a decisive role in overall system efficiency and in the cooling of return temperatures. This was further
highlighted by the investigations of Monetti et al. [35], Xu et al. [36] and McNamara [37] who showed that
properly installed and controlled TRVs can lead to savings of 10%, 12.4% and 15% respectively, with relatively
low-cost retrofitting investment and short payback periods.

1.2.2 Modelling part — calculation of heating demand of rooms and heating power of radiators

The thermal performance of existing hydraulic radiator systems operating at lower temperature should comply
with current EU design practices and standards and computer modelling allows accurate prediction of water
temperature profiles in the radiator and heating capacity [38], [39]. It is important that the emitters are correctly
sized and operated to deliver the heat needed; thus the challenge is to outline the optimal temperature of supply
and return to meet the heat demand. Hydronic systems are typically sized based on the worst case scenario of
steady-state heat output that meets winter design conditions and do not consider sources of heat gains. This leads
to over-sizing systems and guarantees a larger surface area, in the case of radiators, and a positive effect when
lowering temperatures [14], [15], [21], [40]. Lauenburg [41] showed that heating systems sized for design
temperatures only required full load during a short period when outdoor temperatures are very low,

demonstrating that for most of the heating season consistently lower water supply temperatures can be



appropriate to meet the heat demand. The reliability of software outputs is crucial because it provides a powerful
tool for professionals at the time of investigating and foreseeing the use of low temperatures to existing
hydraulic radiators. It is important to choose an adequate radiator element and correctly define the physical
characteristics of the heating element, including control by TRV. For instance, the open-source EnergyPlus, one
of the most used and powerful software for energy simulations, only gives the user the option of a ‘hot water
baseboard heater with radiation and convection’ [42], [43]. This element has both radiative and convective
components as with a radiator, but in reality is a convector. Therefore, the user can still perform accurate
dynamic energy simulations for the building in analysis, but the accuracy could be affected if the focus of the
investigation is specifically related to the cooling of the return temperatures in existing hydraulic radiator
elements at time of lowering the operating temperatures of the system. From this perspective, the paper adds new
knowledge by developing an alternative method to investigate and plan the application of LTDH to existing
buildings, outlining an optimization strategy to define the best combination of supply and return temperatures to
operate existing hydraulic radiators.
2 Methodology
2.1 Hardware part — type of heating system
The investigation related to the application of LTDH to existing buildings with a characterization of heating
systems with respect to the type of heating loop and heating elements. The characterization mainly addressed the
possibilities of operating the systems with low return temperatures. An example of a system with low return
temperature is a double string system with panel radiator, whereas the examples of systems with high return
temperature are:

1. single string with all type of heating elements

2. double string or single string with convectors
2.2 Modelling part — calculation of heating demand of rooms and heating power of radiators
The method used in the investigation is based on modelling in a number of steps and illustrated with a specific

case as follows.



2.2.1 Step a: calculation of part load duration curve

This is to define the part load duration curves for each room of the building considered. The starting point was

the characterization of the design conditions of the heating system: this was made for the case study by

performing steady-state simulations to outline the design heat load for each room according to Danish standards

[44], assuming no heat gains and the design winter temperature of -12 °C. Once the design conditions were

defined, detailed dynamic simulations were performed to outline the realistic heat load distribution for an entire

year using a weather file for Copenhagen based on a 20 year historical database; this allowed the specific part

load duration curves to be obtained for each room on an hourly basis.

2.2.2  Step b: calculation of the relationship between part load and logarithmic mean temperature difference of
the hydraulic radiator elements

This is to calculate for each room how the hydraulic radiators have to be operated to meet the heat demand

outlined in step a. This was established for this study by associating to each part loads the specific LMTD for the

specific radiator size of the room.

2.2.2.1 Hydraulic radiator formulation

The empirical formula used to evaluate radiator performance and the capacity of cooling the return water

temperatures is based on analysis of the heat emitted as a function of the LMTD between water and room

temperature. The general formula is described by Equation 1 [38], [39]:

B (LMTD )” )
¢ =\Lmrp,) %°

where ¢ and oo present the heating power at operating temperatures and design conditions (W), LMTD and
LMTDy denote the logarithmic mean temperature difference between radiator and surroundings at the operating
temperatures and design conditions (°C), whereas n is the radiator exponent and describes the exponential
relationship between the mean temperature difference and the heat emitted from the radiator — 1.3 is the typical
value for hydraulic radiators [12].

The logarithmic mean temperature distribution, included in the Danish standard [45], is expressed by Equation 2.
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where Ts is the supply temperature (°C), Tr the return temperature (°C) and T; is the indoor operative

LMTD =

temperature (°C).
2.2.3  Step c: calculation of the duration curve of logarithmic mean temperature difference
Given the hourly heat load duration curve in step a and the relation of part load and LMTD obtained in step b, in
step ¢ the duration curve of LMTD has to be calculated. The application of the method allows calculation of the
LMTD duration curves for each room and all buildings in the analysis of an area in the process of being
connected to LTDH. Within all the curves, the worst cases represented by the highest LMTD duration curves
have to be carefully assessed and possibly excluded from the analysis. These cases may represent typical errors
in radiator design, undersized systems or unheated rooms; therefore they need to be investigated separately and
improved by reducing heating demand or increasing heating capacity of radiators in order to operate more
efficiently and guarantee the expected cooling of return temperatures. However, this part is not included in the
results as the case in this study is with one room and one building. The full application of the method will be part
of a future project.
2.2.4 Step d: calculation of the optimal supply and return temperature to provide the necessary logarithmic
mean temperature difference
Step d is the calculation of the optimal combination of supply and return temperatures to provide the necessary
LMTD obtained from step c. The optimal combinations of supply and return temperatures have to be presented
for all relevant LMTD. The goal of the optimization is to minimize the operating supply and return temperatures
in order to assess the capability of existing hydraulic radiators to be operated with lower temperatures without
any intervention to the building or to the heating system, in the prevision of being connected to LTDH. This was
addressed by formulating the optimization problem based on the objective function and constraints. These vary

according to the different scenarios investigated and each of them is illustrated in details in section 4.



3 Description of the case study building

3.1 Danish single family house

The method was tested by the use of a specific case based on a typical Danish single-family house from the
1930s, sited in Copenhagen. A model was created in the dynamic simulation software IDA-ICE [46] as
presented in Fig.1. The software has been validated in accordance with standard DS/EN 15265, which describes
dynamic simulation of energy performance of buildings [47], [48].

The building is made of red brick cavity walls, red tile roof and a basement. Typical of Danish buildings from
1930s, old windows and radiators have been replaced, as well as improvement to roof insulation. Table 1 shows
the main properties of the house.

The presence of occupants and their use of equipment was modelled on weekly schedules. Compared to average
Danish values for heat gains in domestic building environments [49], conservative values of 0.81 and 1.55 W/m?
were assumed respectively for heat gains from occupants and equipment [50]. The natural ventilation was
assumed to be fixed at 0.3 I/s per m? of floor area, which corresponds to the standard ventilation required in the
Danish Building Code [46], and includes infiltration from opening of windows and doors in the winter time.

3.2 Example of hydraulic radiator return temperatures based on the radiator formula

A comparison was made between real measurements and the simulations’ outputs to identify the capacity of
IDA-ICE to correctly model the cooling of return temperatures. The analysis was performed considering the
radiators installed in the single family house presented in section 3.1. The radiator formula is used as model for
the heating element performance in the simulation program IDA-ICE. The house was examined and the size and
type of radiators in all rooms was measured and checked; the number and the location of each radiator are shown
in the plans of Fig. 1. In addition, indoor temperatures, heating system temperatures and heating consumption
over the course of one month, between 10" March and 13" April 2015, were monitored and collected on an
hourly basis. During the monitored period, the energy demand for SH and DHW was provided by a condensing
natural gas boiler, placed together with a hot water tank of 110 litres in the basement. The building was switched

to district heating during the following June, after the measurements in the house had been taken. The heating



system consists of double string hydraulic radiators and electric floor heating is installed in both bathrooms. The
existing radiators in the house were simulated using their correct dimensions, nominal design conditions, exact
location, and a TRV was set for each of them. In order to accurately model the operating conditions of the
hydronic system and achieve reliable results, the simulations were run using the real hourly weather data for the
period in analysis; the recordings were obtained from measurements taken by the Danish Meteorological
Institute, whereas the diffuse and direct solar radiation were collected at the nearby weather station of the
Technical University of Denmark [52]. Also, the performance of the heating elements available in the software
were evaluated by running the simulations using the supply temperature curve obtained from the measurements,
and the simulated results for the return temperatures out of the radiators in selected rooms were compared to the
measured ones on an hourly basis. The average supply temperatures in the period recorded for the SH demand
was 45 °C and it was enough to guarantee the expected indoor comfort; the mean outdoor temperature was 5.3
°C and the lowest value registered was -2.5 °C.

The comparison between the IDA-ICE outputs and the real return temperatures collected from the radiators over
24 hours, using dedicated temperature sensors, is presented in Fig. 2 for two selected rooms. The importance of
comparing the results over an interval of 24h was driven by the necessity of testing the accuracy of the software
to reflect the influence that all the dynamic variables involved have on the performances of the radiators
throughout a typical day. The results obtained show a good match between the simulations and the real
measurements of the return temperatures for the period considered. The average return temperatures calculated
by the software were 22.0 °C and 22.9 °C for the kitchen and hall respectively, whereas the average data
collected were 22.4 °C and 22.5 °C. Therefore, the hydraulic radiator unit available in IDA-ICE provides robust
results and can efficiently model the cooling of the return temperatures. It is also important to notice how the real
data collected shows how existing hydraulic radiators can be operated with low temperatures and connected to

LTDH, guaranteeing the expected indoor comfort.



4 Results and discussion

4.1 Hardware part — type of heating system

Two scenarios were investigated to test the application of the method developed considering a heating system

with double string plate radiators. For both of them it was assumed a direct connection to the heating systems

without any heat exchanger. However, the performed analysis can also include the presence of heat exchangers

by accounting for their efficiency.

4.2 Modelling part — calculation of heating demand of rooms and heating power of radiators in double string
system

The developed method was intended to be applied to an area in the process of being connected to DH and it was

supposed that the building chosen, in the scenario with double string with plate radiators, was representative of

the urban area in analysis. The application of the method was tried on one selected room, the hall of Fig. 1, and

the results for the four steps described in the methodology are presented as follows.

4.2.1 Step a: calculation of part load duration curve

According to the steady-state simulations based on the Danish standard [44], the design heat load calculated for

the specific room was 884 W. Also, the dynamic simulation outputs are presented in Fig. 3 and depict the part

load duration curve for the room in analysis on an hourly basis for the entire year.

4.2.2 Step b: calculation of the relationship between part load and logarithmic mean temperature difference

of the hydraulic radiator elements

The results for step b presented in Fig. 4 illustrate the relationship between each part load and the specific

LMTD, expressing how the radiators need to be operated. It was assumed that the radiators in the double string

configuration at design conditions were operated with supply and return temperatures of 80/40 °C. In addition, to

correctly perform the calculations of LMTD per each part load using Equation 1, n was assumed to be 1.3, ¢,

was the design heat load of 884 W, whereas LMTD, was obtained from Equation 2 using the design

temperatures of 80/40 °C and set indoor temperatures of 20 °C.



4.2.3  Step c: calculation of the duration curve of logarithmic mean temperature difference
The part load duration curve presented in Fig. 3a and the general relation between the part load and LMTD in
Fig. 3b allowed calculation of the duration curve of LMTD on an hourly basis as described in Fig. 3c. The
graphical combination of the curves of Fig. 3, 4 and 5 provides a tool to clearly identify the number of hours per
each range of part load or per each degree °C difference of LMTD, hence the exact amount of energy necessary
to guarantee the expected indoor comfort through the radiators. These curves and in particular the curve of fig.
3c can be used to compare different buildings and different rooms, helping to define the conditions and the
boundaries to be investigated for implementing LTDH in an urban area.
4.2.4  Step d: calculation of the optimal supply and return temperature to provide the necessary logarithmic
mean temperature difference
Two different scenarios, A and B, were investigated and consequently the formulation of the optimization
problem followed two different strategies. Both scenarios assess the impact that different DH markets have on
the definition of the optimal combination of supply and return temperatures to operate the same hydraulic
radiators. The results are presented in Fig. 6 and 8 and illustrate on one hand the technical and economic factors
affecting the selection of the optimal temperatures; on the other hand, to which extent temperatures can be
lowered without any intervention to the thermal envelop of the building or to the heating system.
4.2.4.1 Scenario A: typical Danish DH network
In Danish DH market more than 70% of heat is produced taking advantage of CHP technology and the price of
heat unit only includes all the necessary costs related to supply heating, as DH companies are not allowed to
make any profits [53]. Also, as lower supply and return temperatures reduces the costs associated to heat
generation and distribution losses, typically DH companies incentivize their customers through motivation tariffs
to reduce their temperatures in exchange of a discount in their energy bills. These are normally customized
according to the specific characteristics of DH systems and relative end-users connected. From this perspective,
Scenario A was designed assuming the figures of a real motivation tariff related to an existing Danish DH

company [54], where the heat generation is based on a biomass boiler with flue gas condenser. For the



considered DH network, the company is able to guarantee to end users a discount of 1% in their energy bill (up
to a maximum of 20%) for each °C lower in their return temperatures compared to the reference DH yearly
average return temperature. The assumed reference average yearly supply and return temperatures were 80/40 °C
as typical for Danish DH networks. The discount offered is compensated by the savings made by the DH
company due to the lower supply and return temperatures. In fact, at actual market conditions, according to their
cost analysis [54], lower return temperatures have higher economic value due to the savings in buying energy at
the generation point, compared to the reduction in the distribution heat losses due to lower supply and return
temperatures. Hence, the strategy of the optimization was based on the minimization of the supply and return
temperatures of Equation 2 set equal to the specific LMTD for each value of the duration curve presented in Fig.
6.

The strategy followed three different paths clearly delimited by the breaking points related to LMTD of 14 °C
and 23 °C corresponding to the change in the gradient of the optimized supply and return curves calculated — i.e.
Fig. 3d. The objective functions and relative constraints are presented for all specific LMTD as follows:

i. ForLMTD<14°C:

minimize (Tg), for LMTD = Ts—Tr 3)
in(73=5)
Subject to:
T = 50 °C @)
< 1 ©)
ii.  Forl4°C<LMTD <23°C:
minimize (Ts), for LMTD = TST_Tﬁ_ (6)
()
Subject to:
Ty = 25 °C @)

m < m, (8)



iii. For LMTD > 23 °C

minimize (Tg), for LMTD = —S—& )
in(72=7)
Subject to:
Ts = 80 °C (10)
m < 1y (11)

where Ts is the supply temperature (°C), Tr is the return temperature (°C), Ti is the indoor operative temperature
(°C) - fixed at 20 °C, m is the mass flow rate associated to the generic combination of Ts and Tr (kg/h) and 1,
is the max mass flow rate at design conditions (kg/h).
The max mass flow rate of 19 kg/h was obtained from Equation 12:

o = 3600 -mg-cp, - (Ts .0 — Tr.0) (12)
where ¢, presents the nominal heating power at design conditions (W), m, is the max mass flow rate (kg/h), Ts o
is the supply temperature at design conditions (°C), Tr o is the return temperature at design conditions (°C) and
Cp is the specific heat capacity of water (J/kg °C).
In the resolution of the optimization problem all the combinations of temperatures fulfilled the constraints’
criteria. The lower supply temperature limit of 50 °C is imposed by national standards to avoid the risk of
Legionnaires' disease in DHW [6], [7] and it was assumed that supply and return temperatures of 50/20 °C out of
the heating season were enough to meet the DHW demand. The upper limit of 80 °C instead was assumed as the
maximum inlet temperature according to the specific DH network. In addition, according to normal operation
practices of radiators, a target return temperature of 25 °C was set as a realistic value given the indoor room
temperature of 20 °C. This was in fact one of the constraints in the minimization of the supply temperatures for
all LMTD included in the range between 14 °C and 23 °C. These two points, corresponding to the change in the
gradient of the optimized curves proposed, illustrate that for LMTD lower than 14 °C, due to the combination of
low heat demand and low mass flow rates, the return temperatures were always below the target temperature of

25 °C and supply temperatures could be set as low as 50 °C; contrarily, for a LMTD higher than 23 °C the



combination of high heat loads and high mass flow rates led to return temperatures always higher than 25 °C and
supply temperatures were fixed to 80 °C to guarantee the expected indoor comfort and avoid unnecessary high
return temperatures. Comparing to other studies where LTDH concept was applied to low-energy buildings [8],
[18], [19] and to existing buildings at different levels of refurbishment [20], [21], the outcomes presented in Fig.
6 show for this scenario that existing heating system based on double string radiators, if properly controlled, can
be operated more efficiently and achieve low return temperatures for each LMTD without any intervention to the
building, but simply adjusting temperatures to heat demand. Thus, the calculated combination of supply and
return temperatures can be used by the district heating company to efficiently operate the network, controlling
the supply temperatures according to the optimal level. To this extent, Fig. 7 presents the relationship between
the optimized supply/return and outdoor temperatures. This outlines the strategy to be followed by the DH
company to meet the heat demand for the hypothesized urban area, assuming that the building and the room
chosen were representative.

The curves were calculated by finding the hourly peak load from the heat load profile of Fig. 3 for each °C of the
outdoor temperatures and associating for specific LMTD the optimal temperature combination from the results
presented in Fig. 6. The use of hourly peak loads for each °C of outdoor temperature is a conservative choice
that guarantees the temperatures would deliver the heat demand in all conditions. Different approaches
considering more realistic peak values, based on daily, 12 or 6 hour averages, are possible, but the evaluation has
to be linked to the characteristic of the network in analysis and its capacity to adjust temperatures and pressures
to the customers connected and to the use of weather forecasts. Therefore, operating the DH network and the
radiators as proposed would lead to implementing lower temperatures in the area and result in a possible
discount of 14% in end users’ energy bill according to the assumed motivation tariff, due to the lower return
temperatures achievable compare to the reference yearly average of 40 °C assumed.

4.2.4.2 Scenario B: future DH market

In the second scenario, the importance of integration of renewable and low carbon heat sources for future DH

markets was evaluated. Lowering supply temperatures compared to the present market would increase the



economic benefit for DH companies. Furthermore, lower supply temperatures allow heat sources such as heat
pumps to operate more efficiently by increasing the COP, to recover waste heat, to connect solar plants with
seasonal storage and to reduce the impact of distribution losses [5]. These future conditions were integrated in
the analysis of this scenario, by assuming a motivation tariff where the DH company would guarantee a discount
of 1% to end users in their energy bill (up to a maximum of 20%) for each °C lower in the average of supply and
return temperatures compared to the reference DH average supply and return. This was assumed as 80/40 °C for
this case study. Therefore, the key element of the optimization was expressed as the minimization of the average
of supply and return temperatures of Equation 2 set equal to the specific LMTD for each value of the duration

curve defined in Fig. 5. The objective function and constraints are presented as follows:

i. Forall LMTD:
minimize (Average (Ts; Tg)), for LMTD = Ts Tk (13)
e=5
Subject to:
50°C < Tg < 80 °C (14)
m < 1y (15)

For this scenario the indoor temperature T;was set at 20 °C and max mass flow rate 1, from equation 12 was 19
kag/h. Each combination of supply and return temperatures fulfilled the constraints’ criteria for hydraulic and
supply temperature limits. As presented in Fig. 8, even in this case, well-controlled double string radiators can
achieve low return temperatures, without any intervention to the thermal envelop of the building.

However, compared to scenario A, the outcomes illustrate that the optimal strategy to operate the radiators
resulted in a reduction of the supply temperatures and an increased return temperature profile for each LMTD.
This was related to the higher economic value associated to the supply temperatures in this scenario. A critical
analysis of the curves presented in Fig. 6 and 8 shows for LMTD up to 14°C the optimal supply and return
temperatures are identical for both cases; above that value the curves show the higher the supply temperatures

the lower the return ones for each LMTD. This clearly indicates the compromise to decide whether and to which



extent lowering supply and return temperatures is strictly related to the economic benefit that those have for the
specific DH system in analysis. To this extent, the strategy to operate the DH network in this scenario and
deliver the heat demand in the area by controlling the supply temperatures according to the optimal level is
described in Fig. 9.

The curves show the relationship between the optimal supply and return temperatures linked to the hourly peak
load associated to each 1 °C of outdoor temperature as described in section 4.2.4.1. Hence, operating the DH
network and the radiators as proposed in Fig. 8 and 9 would define the strategy to implement LTDH in the area.
In fact, as presented in study [8], LTDH is described as a system operating with supply temperature of 50-55 °C
and return of 25-30 °C with the capability of increasing supply to 60-70 °C and return of 40 °C when necessary
according to heat demand. Hence, the new operation of the heating system would guarantee to end users a
discount of 16% in their energy bills according to the assumed motivation tariff due to lower average supply and
return temperatures compared to the reference scenario. The results for the two scenarios, comparing the
possible cost savings and average supply and return temperatures achievable, are presented in Table 3.

5 Conclusion

The developed methodology was used to investigate and plan the application of LTDH to hydraulic radiators in
existing buildings. The results related to the double string scenarios showed the optimal operation of the existing
plate radiators, properly controlled through TRVs and DH network, by adjusting the supply temperatures to the
optimal level, achieved low return temperatures. This would allow existing buildings to be connected to LTDH
without any intervention in the thermal envelope, through simply adjusting the temperatures according to
demand, and obtain cost savings in the end users’ energy bills. The strategy proposed for both scenarios A and B
illustrated that a possible discount of 14% and 16% respectively could be achieved in annual energy bills.
Furthermore, the design curves suggest the strategy to be followed for lowering supply and return temperatures
has to be related to the economic impact those have in the DH network in analysis.

Due to the promising results obtained the focus is now to expand the investigation by implementing it in a real

DH case study. Finally, it is central in the discussion to stress the importance of having well-controlled hydraulic



radiators and limiting the impact of occupants misuse of equipment in order to efficiently operate the heating

system and reach the expected cooling of return temperatures.
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List of Tables

Table 1: List of symbols and acronyms

List of symbols and acronyms

DH
LTDH
LMTD

LMTDo
AT
TRV

SH

DHW

District heating
Low-temperature district heating
Logarithmic mean temperature difference (°C)

Logarithmic mean temperature difference at design condition (°C)
Delta T between supply and return temperature

Thermostatic radiator valve
Space heating

Domestic hot water



() Heating power at operating temperatures (W)
®o Nominal heating power at design conditions (W)
n Radiator exponent
m Mass flow rate (kg/h)
mg Max mass flow rate (kg/h)
Cp Specific heat capacity of water (J/kg °C)
Ts Supply temperature (°C)
Ts.o Supply temperature at design conditions (°C)
Tr Return temperature (°C)
Tro Return temperature at design conditions (°C)

Table 2: Key data and construction elements

General parameters

Number of occupants 2

Total floor area /basement area (m?) 320/118
Heated part of basement [m?] 47

Annual heating consumption [MWh] 20

Design winter temperature (°C) -12
Building construction elements U-value (W/m?K)
External wall — insulated cavity brick wall 0.78

Roof -Tiles, wood beams and insulation 0.15



Windows — 2 pane energy efficient glazing

1.55

Table 3: Cost savings for optimized operations of double string radiators

Double string

Reference DH scenario Scenario A Scenario B
Average return temperature (°C) 40 26 32
Average supply temperature (°C) 80 79 56
End-users energy bills’ savings (%) - 14 16
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Fig. 1: Floor plans, radiators (in red) and IDA-ICE model [46]
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