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Abstract 

A common problem with Chinese district heating systems is that they supply more heat than the 

actual heat demand. The reason for this excess heat supply is the general failure to use control 

devices to adjust the indoor temperature and flow in the building heating systems in accordance 

with the actual heat demand. This results in 15–30% of the total supplied heat being lost. This 

paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-

set thermostatic radiator valves combined with automatic balancing valves. Those devices 

establish hydraulic balance, and stabilize indoor temperatures. The feasibility and the energy 

consumption reduction of this approach were verified by means of simulation and a field test. By 

moving the system from centrally planned heat delivery to demand-driven heat delivery, excess 

heat loss can be significantly reduced. Results show that once the hydraulic balance is achieved 

and indoor temperatures are controlled with this integrated approach, 17% heat savings and 

42.8% pump electricity savings can be achieved. The energy savings will also have a positive 

environmental effect with seasonal reductions of 11kg CO2, 0.1g SO2, and 0.03g NOx per heating 

square meter for a typical case in Harbin.  

Key words: district heating, excess heat supply reduction, pre-set thermostatic radiator valves, 

automatic balancing valves, hydraulic balance, differential pressure control 

1. Introduction 

Research has shown that district heating (DH) is playing an important role in the societal goal of 

realizing an effective and sustainable energy system [1][2][3][4][5]. Along with the rapid growth 

of urbanization and industrialization, China has become one of the largest DH markets in the 

world in the last two decades. Statistics indicate that the total DH production in 2013 amounted to 

3,197,032 TJ [6]. This number is still increasing steadily due to the process of rapid urbanization, 

expansion of the building area, enhancement of building services, and increases in comfort level. 

On the other hand, according to a World Bank report in 2012, the consumption of heating energy 

in China per square metre of floor area is almost twice that in developed countries at the same 
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latitude. Nevertheless, the resulting room thermal comfort in China is still unsatisfactory [7]. 

Furthermore, the 2011 Annual Report on China Building Energy Efficiency [8] reports that 15% -

30% of the total heat is being lost due to excess heat supply in northern China’s DH systems. 

These high losses are primarily due to a failure to use control devices to control the heating 

supply in accordance with the actual heating demand. There is an urgent need to apply 

appropriate technical approaches to improve the Chinese DH efficiency to create the maximum 

synergy between energy supply security and air pollution abatement, which are the two most 

important challenges for China today [9]. 

Chinese DH systems are very different from European DH systems. Structurally, a typical 

Chinese DH system is like this: pressurized hot water as the heat medium is produced in the 

central heat source and distributed to a few area substations (the primary side of the DH system). 

Each area substation then serves a number of multi-storey or high-rise buildings (the secondary 

side of the DH system). The heat entrance is the interface connecting the large-area substation to 

the building heating system (see Figure 1). It is usually equipped with shut-off valves, and 

measurement devices like thermometers, pressure gauges and heat meters, etc. [10].  

Figure 1. Typical district heating system used in China 

In terms of temperatures, China’s national design code [11] states that the DH primary side 

network should be designed with supply temperatures of 115 ºC~130 ºC and return temperatures 

of 50~80 ºC. The design code does not state any minimum design temperature difference. For the 

radiator space heating (SH) systems, the design supply/return temperatures are recommended as 

75/50 ºC or 80/60 ºC [12]. In practice, DH systems generally operate with different temperatures 

based on various conditions for the particular DH systems.  

In terms of heat sources, the main heating production facilities are the coal-fired boilers and 

Combined Heat and Power (CHP) plants. For instance, in 2013, 48% of DH came from coal-fired 

boilers, 42% CHP plants, 8% gas-fired boilers, and the remaining 2% came from scattered and 

individual heating facilities. Furthermore, coal is the dominant DH fuel in China [13]. Statistics 

show that 91% of the total energy supply to DH systems came from coal in 2008 [14]. 

Moreover, unlike European DH systems where DH supply covers both SH and Domestic Hot 

Water (DHW), approx. 90% of Chinese DH systems supply SH without DHW [15].  



 

 

These important characteristics make it possible to understand why excess heat supply occurs in 

typical Chinese DH systems.  

From the perspective of temperature control, room temperature regulation and control functions 

are not available in approx. 84% of the total heating area in China [16]. According to the national 

code [12], 18 °C is the standard room temperature for heat consumers in northern China to 

evaluate whether the heating effect is up to the required standard. The DH utility usually 

increases the secondary circulation flow rate until at least critical consumers attain this standard, 

which often result in the systems operating with large volume flow and small temperature 

differences between the supply and return streams. Moreover, once the heat demands of the 

critical consumers are fulfilled, the secondary flow rate often remains constant, with the varying 

SH demand being met by adjusting the secondary side supply temperature. Furthermore, there is a 

lack of automatic weather compensation control in some cases at substation level. Manual 

adjustment may be applied. e.g., tentatively adjusting the opening of the control valve installed on 

the primary side of the DH system, which is eventually reflected in changes in secondary supply 

temperatures. Such manual operation is based on the experience of past years and the level of 

complaints from critical users of the system, and the purpose of adjusting the supply temperature 

is to correlate the heat supply with the outdoor air temperature. Consequently, when the supply 

temperature to the SH system is higher than required, consumers will open windows to get 

comfortable indoor temperatures. In some cases, TRVs are installed in the DH systems. However, 

they are typically left fully open. Due to the fixed heating charges based on heating area, not 

actual heat consumption, there is no incentive for consumers to consciously reduce the TRV 

settings in an oversupply situation. They would generally regulate the indoor temperature by 

opening the windows. All these factors mean that consumers are either unable to control their 

room heating supply or lack motivation for energy conservation, which means excess heat 

supplied is wasted. 

From the perspective of flow control in the secondary DH network and at building level, there are 

no automatic flow control devices, which results in an uneven flow distribution in the secondary-

side DH network. Buildings close to the substation receive more flow than needed and become 

overheated, whereas buildings located in distal parts of the network receive less flow than 

required and are unable to fulfil their heating requirements. There is a lack of hydraulic balance 

inside the buildings. Specifically, the secondary side of Chinese DH systems generally operates 

on a constant flow and pressure basis. The pressure head at the pump is controlled to maintain 

constant differential pressure at area-substations. In addition, the constant flow operation 

principle makes the pumps run at constant speed. Although there are some variable-speed pumps, 

they are mainly used to correct the deviation between the design and operation conditions in 

terms of the pressure head and flow rate. Large volume flow leads therefore to higher than 

necessary electricity consumption in circulation pumps, small temperature differences, high 

return temperatures, and network heat losses. 

In summary, it can be said that the general failure to use temperature and flow control devices in 

Chinese DH systems is the direct cause of excess heat loss, which subsequently compromises the 

efficiency of Chinese DH systems.  



 

 

Studies have investigated how to improve the efficiency of Chinese DH systems by focusing on 

various DH elements [17][18][19][20][21][22][23][24][25][26][27][28]. With the heat reform in 

2006 in China, 16% of the total heating area in China was given a heat metering retrofit [16] to 

install Thermostatic Radiator Valves (TRVs) by the year 2012. A lot of research has been carried 

out on TRV application in Chinese heating systems [29][30][31][32][33][34][35]. For instance, 

Xu et al. [33] investigated how hydraulic performance and energy consumption in individual 

apartments and the whole system were influenced when TRVs were regulated and when windows 

were opened. Xu et al. [34] developed a dynamic model and simulated the thermal and hydraulic 

behaviour of SH systems employing TRV-controlled radiators in multi-family buildings. Liu et al. 

[35] analysed the heat metering methods currently available in China and proposed a new method 

for metering the heat consumption of individual households in accordance with the accumulated 

on-time as well as the floor space of each household.  

However, when we examine the previous research mentioned above, there is still a lack of 

expertise or knowledge on optimizing building heating systems by correctly using the flow 

control and temperature control functions of TRVs, including their inherent relationship with 

energy consumption reduction and indoor temperature improvement.  

In this paper, an integrated approach has been developed and applied to a real project in northern 

China. The technical feasibility is shown and the advantages are quantified. This could give 

enhanced understanding and guidance for renovating future Chinese DH systems.  

2. Methodology 

The research objects in this study were the building heating systems. The central hypothesis of 

this study rests on the idea that the flow and temperature control functions of TRVs combined 

with differential pressure management can reduce the excess heat supply experienced in current 

Chinese DH systems while reducing their energy consumption. This idea is reflected in the 

research question: how large is the potential for reducing excess heat consumption by using 

temperature and flow control in the heating system of buildings?  

Chinese energy statistics usually use the unit “metric tons of standard coal equivalent” (tce) 

because the primary energy source for DH systems in China is coal, and one tce equals 29.31 GJ. 

Burning 1 ton Chinese standard coal (29.3GJ/tce) releases about 2600 kg CO2, 24 kg SO2, and 

7kg NOx [36]. If the proposed controls were applied in Chinese DH systems, energy consumption 

reduction would be achieved which would have considerable positive environmental impacts due 

to the heavy reliance on coal as DH fuel in China. 

To show the inter-relationship between excess heat supply, overheating of rooms, and the 

hydraulic imbalance, we analysed the data from two real cases, Case-Beijing-A and Case-Harbin, 

and proposed a technical approach to solve the excess heat supply. 

We performed a two-step analysis. Firstly, a field test was made to demonstrate the technical 

feasibility of the approach. The field test was carried out in a high-rise building in Beijing (Case-

Beijing-B), which is structurally similar to Case-Beijing-A. Secondly, simulations for scenarios 

analysis were carried out using building simulation software: IDA Indoor Climate and Energy 

[37]. The prototype of the building model is one of the multi-storey residential buildings in Case-



 

 

Harbin. The linear fit-to-metered secondary supply temperatures from Case-Harbin were used as 

input for the model to run the simulation. The flowchart shown in Figure 2 illustrates the 

integrated design approach in this paper. 

 

Figure 2. Flowchart of methods used in the study 



 

 

2.1 Current situation from real cases  

First, the data from two real cases were analysed to present the excess heat supply experienced in 

Chinese DH systems.  

Case-Beijing-A refers to a DH system in Beijing. The data from a residential high-rise building 

heating system were used to indicate the link between hydraulic imbalance and excess heat 

supply. Case-Harbin refers to a DH system in Harbin. The data from the secondary side of one 

substation were obtained to verify the causal link between overheated rooms and excess heat loss.  

2.1.1 Case-Beijing-A: Hydraulic imbalance and excess heat loss  

To understand the hydraulic situation in high-rise building heating systems, the volume flow data 

from a 21-floor residential building in Case-Beijing-A were obtained. The DH water from an area 

substation flows into the building via the heat entrance, where manual balancing valves are used 

as the only flow control device to manage the flow distribution among the connected buildings. 

DH utilities usually use a flow index to determine the required volume flow of each building in 

accordance with the heating area served. The manual balancing valves are set at the beginning of 

the heating season according to the estimated flow and differential pressure across the controlled 

loop. After initial commissioning is finalized, the setting values of these manual balancing valves 

are kept for the whole heating season, except for minor adjustments.  

In this high-rise building, each floor had the same heating area. The instantaneous volume flows 

per square metre along one of vertical supply risers were measured by using a hand-held 

ultrasonic flow meter. The volume flows along the risers were measured on the 1st, 6th, and 13th 

floors and on the 14th, 18th, and 20th floors, as shown in Figure 3. The results show how the 

volume flow per square metre decreased along the supply water direction.  

 

Figure 3. Flow measurement of a high-rise building in Beijing 



 

 

The top floor should have a higher heat demand because of its larger exterior surface, but in 

reality, it was supplied with the least volume flow. Even though the volume flow per square metre 

on the top floor was less than 1/3
rd

 that of the first floor, few thermal comfort complaints were 

reported. As a complaint over the phone is the most common way for Chinese heat consumers to 

inform the DH utilities about the heat effects, it can therefore be assumed that the floors below 

the top floor were receiving a higher volume flow than they actually required. These floors would 

be overheated. This case illustrates the excess heat supply caused by hydraulic imbalance in a 

building heating network where no flow control devices were used. 

2.1.2 Case-Harbin: Overheated rooms and excess heat supply 

To understand the relation between the overheated rooms and excess heat supply, the data from 

one of the area-substations of Case-Harbin were obtained. The data included the supply and 

return temperatures of the area substation and the corresponding outdoor temperatures. The data 

covered the entire heating period from 20 October 2013 to 20 April 2014. This area substation 

supplied heat to 14 multi-storey buildings with a heating area of 124,150 m
2
.  

The control situation in this case was that no indoor temperature control devices were applied in 

the SH system. In addition, automatic weather compensation control was not available at the 

substation, and the system was operating under constant flow rate. The secondary supply 

temperature was manually adjusted based on the average daily outdoor temperatures from 

metrological data and past years’ experience in relation to the level of complaints from heat 

consumers. 

The data presented in Figure 4 reveals the relationship between the supply temperature and 

outdoor air temperature being scattered when the manual control was applied. For the same 

outdoor temperature, the temperature differences between supply and return varied a lot. 

According to the records of the DH utility, very few complaints were received from the occupants 

during the heating period, and this implies that most consumers had room temperatures above 

18 °C. This also implies that, for a given outdoor temperature, the lowest temperature difference 

has met the heat demand. All other temperature differences higher than the lowest values imply 

the buildings were overheated, since the constant flow principle was being applied in the 

secondary DH network. All heat supplied in excess of the lowest value can be regarded as heat 

loss due to excess heat supply. Due to the lack of the individual control for the indoor terminal 

heat units, overheated rooms inevitably leads to window opening, which also explains why 

several different temperature differences exist under the same outdoor temperature.  



 

 

 

Figure 4. Supply and return temperatures of a substation in Case-Harbin during the 2013–2014 heating period 

2.2 The proposed approach 

To reduce the excess heat supply, an integrated approach was introduced that included the control 

devices: TRVs with pre-setting function, and automatic balancing valves. The SH systems 

considered in this paper are two-pipe radiator systems, and all the apartments have their own 

heating loops. A schematic configuration of the apartment heating loop applied in the integrated 

approach is illustrated in Figure 5. The number of the radiator might be different based on the 

particular apartment. 

 



 

 

Figure 5. Schematic configuration of the apartment heating loop 

TRVs consist of a thermostat and a radiator valve. The radiator valve is a flow control device. 

The degree of valve opening determines how much water flows through the valve into the 

radiator. This is controlled by the thermostat, which reacts to changes in room temperature.  

The radiator valve with integrated pre-setting is a flow-limiting device that is fitted into the valve 

body to pre-set the maximum water flow through the radiator. The pre-setting values correspond 

to the scales marked on the radiator valve and the range is from 1 to 7 and N, which represent 

gradually increasing maximum flow limits [38], see Figure 6. The pre-setting values can be set in 

accordance with the requested design flow through the radiator and the pressure drop across the 

valve. To ensure the optimal regulation of the radiator valve and quiet operation, it is important to 

achieve the desired differential pressure across the valve. According to EN 215 [25], a differential 

pressure setting of 10 kPa is commonly used for radiator applications. Automatic balancing 

valves were therefore also applied in this approach to ensure the optimum operation of the 

radiator valve. 

 

Figure 6. Pre-setting scales of radiator valve [38] 

Automatic balancing valves consist of a self-acting differential pressure (DP) controller and an 

associated partner valve. The valves are linked to each other by a capillary tube. In this case, the 

partner valve was designed to shut off the pipe flow, and the DP controller was designed to 

maintain a constant differential pressure across a loop. The constant differential pressure across 

the controlled loop protects downstream control valves from excess pressures and offsets the 

effects of pressure variations caused by the movement of the control valves in other branches. By 

installing automatic balancing valves, all the controlled loops become pressure-independent zones 

[39]. This eliminates any problems caused by high or excess system pressures, including noise 

from the valves and poor control of room temperature. 

Pre-setting radiator valves combined with automatic balancing valves equalize the flow 

distribution among the radiators and establish hydraulic balance at peak load. The thermostat 

function stabilizes the indoor temperature with regard to weather variations and free heat gains. 

By moving the system from centrally planned heat delivery to demand-driven heat delivery, the 

excess heat supply can be reduced, which can consequently reduce the energy consumption of 

Chinese DH systems and lead to positive environmental impacts. 



 

 

2.3 Verification of the proposed approach  

The technical feasibility of this approach and the improvements in indoor temperature control 

were verified by means of a field test (Case-Beijing-B) and building simulation software IDA 

Indoor Climate and Energy (IDA-ICE) 4.6.2 [37].  

2.3.1 Field test in Beijing for flow control 

The basic idea of the field test was to examine the flow control effect of using the radiator valve 

in combination with automatic balancing valves. With these two devices, the hydraulic balance is 

established and the flow distributed to each radiator can be controlled around the design value.  

2. 3.1.1 Configuration of the field test  

This field test (Case-Beijing-B) was carried out in a new 18-storey high-rise residential building 

in Beijing, which is structurally similar to Case-Beijing-A. The building’s appearance is shown in  

Figure 7 (left). The heating installation configuration for each apartment is illustrated in  

Figure 7 (right). Details of the devices used are listed in Table 1. It should be mentioned that the 

radiator valves and the automatic balancing valves either need to be pre-set, or set during 

commissioning when the heating season starts, so that the radiators can achieve the required 

design flow under peak load. The set values of these two devices would be kept throughout the 

heating season or slightly adjusted if necessary. This field test focuses on the flow control effect 

of using these two devices, so the thermostats were removed for the experiment. In addition, 

automatic weather compensation control was applied at substation level for Case-Beijing-B to 

control the supply temperature, and variable speed pumps were available on the secondary-side of 

this DH system.  

Table 1. Details of the relevant devices installed in tested apartment 

Device name Type Dimension  

Radiator valve RA-N[21] DN15 (mm) 

Auto balancing 

valves 

DP controller ASV-PV[23] DN20 (mm) 

Partner valve ASV-M[23] DN20 (mm) 

Ultrasonic energy meter SONOMETER 1100[24] DN20 (mm) 

 

The radiator valves were mounted on the radiator pipework. All the other devices mentioned above were installed in 

the staircase/hall (see  

Figure 7 (right)), which was the location of the heat entry point for the apartment heating systems.  

 



 

 

 

Figure 7. Real test case for the flow control approach 

2. 3.1.2 Implementation of the field test  

The field test consisted of two parts: Test I considered three apartments as test objects and 

focused on the pressure control function of the DP controller. Test II considered one apartment as 

the test object and focused on the flow limitation function of the radiator valve pre-setting 

function. Throughout the test, the other apartments’ heating systems in this building were 

operating normally. 

In Test I, three apartments with identical heating areas were chosen as the test objects. They were 

located on the right-hand side of the 2
nd

 floor (201), the left-hand side of the 2
nd

 floor (202), and 

the right-hand side of the 17
th
 floor (1701). During the test, all the radiator valves were pre-set to 

N, i.e. the radiator valves were fully open.  

The apartment loop flows were measured for apartments 201, 202, and 1701 when the DP 

controllers were in turn set at 5, 10, 15, 20, and 25 kPa. The ultrasonic energy meter of each 

apartment was used to measure the flow and investigate: 1) the hydraulic situation along the 

vertical pipe; 2) the flow changes in one apartment loop resulting from changing the set points of 

the DP controller at random or completely shutting off the loop flow of the other two apartments. 

In Test II, one of the apartments was chosen as the test object. The aim of Test II was to 

investigate how the pre-setting function of the radiator valve controls the flow rate of the heating 

system. This apartment had five rooms with their own radiators and was located on the 2
nd

 floor. 

Basic data about the apartment are given in Table 2. Each radiator was equipped with a radiator 

valve with pre-setting function. Test II was performed with the DP controller set at 10 kPa in 

accordance with EN 215 [25]. The design parameters of this heating system (supply/return/indoor 

temperature) were 75/60/18 °C. The design flow for each radiator could therefore be calculated 

and is given in Table 2. Based on the pressure drop of the heating loop and the design flow of the 

radiator, the pre-set scales of the radiator valve were determined and are listed in Table 2. The 

DP controller 

Energy meter 

Partner valve 

 

Capillary tube  

 

Supply pipe 

 

Return pipe 

 

Supply riser 

 

Return riser 

 



 

 

schematic configuration of the apartment-heating loop is illustrated in Figure 5. A Testo 925 [40] 

was used for measuring the indoor temperature. 

Table 2. Basic information about the apartment tested 

Room name 
Floor area 

(m2) 
Heat load (W) 

Desired operating 

temperature 

difference (°C) 

Desired flow 

(l/h) 

Pre-set values 

of the radiator 

valve 

Living Room 18 810 15 46.4 3 

Bedroom A 14.5 654 15 37.5 2.5 

Bedroom B 8.7 391 15 22.5 1.5 

Bathroom 3.4 168 15 9.6 1 

Kitchen 4 180 15 10.3 1 

Total 48.6 2203 
 

126  

 

2.3.2 IDA-ICE simulation for indoor temperature control 

For the indoor temperature control investigation, a simulation model of an eight-storey residential 

building was developed using IDA-ICE 4.2.6 [37]. To develop this building model, the building 

layout and building materials of one of the buildings in Case-Harbin were used. The building 

envelope properties and the thermal characteristics were as specified in China’s energy 

conservation design standard JGJ26-95 [41]. One of the apartments was modelled as a multi-zone 

model. Each room in the apartment was a separate zone. The room height was 2.7 m. This multi-

zone model contained five heated zone areas: Bedroom N (north), Bathroom, Bedroom S (south), 

Kitchen, and Living Room, as well as three non-heated balconies and a non-heated staircase/hall 

(see Figure 8). The outdoor heating design temperature was -26 °C for Harbin and the indoor 

design room temperature was 18 °C. Based on the information, we run the multi-zone model 

equipped with ideal radiators, and obtained the peak heat load of each zone. 



 

 

 

Figure 8. Multi-zone model 

We dimensioned the radiators in accordance with Chinese standard [10]. In each zone, an M132-

type radiator [42] was modelled as the room heating unit as in Case-Harbin. The design 

parameters of the SH system were the same as those for Case-Harbin: 80/60/18 °C 

(supply/return/indoor air temperatures). Correction factors were derived to correct for the actual 

output of each radiator. Accordingly, the maximum power of each radiator was determined, and 

the design flow limitation through the radiators and the design heat load for the SH system were 

defined.  

Linear fit-to-metered supply temperatures were chosen in relationship to the outdoor temperatures 

shown in Figure 4. Here the secondary supply temperature is assumed to have been optimized by 

applying the weather compensation control at the substation and variable speed pumps in the 

secondary network of this system. To reflect the real conditions, an internal heat gain of 5.0 W/m
2
 

was considered
 
[41]. Real weather data in Harbin city in 2014 was used to estimate the energy 

consumption for heating using EnergyPlus [43]. Two scenarios were considered: 1) without 

TRVs fitted to the radiators, which is the most common situation in Chinese SH systems; and 2) 

with TRVs fitted to the radiators to adjust the indoor temperature by setting the thermostat of the 



 

 

TRVs. The room temperature of each zone, the energy consumption including heat consumption, 

and the electricity consumption of the pumps as well as the volume flow of the heating system 

were all compared based on the simulation results. 

3. Results and Discussion 

3.1 Field test in Beijing 

3.1.1 Test I: Differential pressure control of the apartment heating loop 

The test objects for Test I were three apartments 201, 202, and 1701.  

The first aim of the investigation was to test whether the three test heating loops had the same 

distributed flow when the set points of the DP controllers were the same. The measurement 

results are shown in Figure 9. When the DP controllers of the three apartments loop were given 

the same set point (separately set at 5, 10, 15, 20, and 25 kPa), the three loops had a similar 

volume flow as expected. The deviation of the individual loop flow from the average flow of 

these three loops at the same set points was within ±15% (see Figure 9). This deviation can be 

considered as acceptable, because the set points of the DP controllers were adjusted by manually 

turning the spindle and there were no pressure gauges in the supply and return pipes to measure 

the pressure drop of the loops directly. Moreover, mechanical hysteresis influences the variations 

and causes a difference in the measured flow rates. The 2
nd

 floor and 17
th
 floor have identical 

floor heating areas, so theoretically the distributed flow could be the same. It can therefore be 

concluded that the hydraulic imbalance along the vertical riser was reduced after the installation 

of the DP controllers. 

 

Figure 9. Deviations from the average flows of 201, 202, and 1701 at various set values of the DP controllers 

The second aim of Test I was to test whether one of the heating loops was pressure-independent 
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when the differential pressure of the other two heating loops changed. The results show that when 

the differential pressure of the other two tested heating loops was changed by adjusting the set 

points of the DP controllers or by completely shutting off the loops, the other apartments’ heating 

systems kept operating normally and the flow of the third tested loop was not influenced or 

changed. This means that the automatic balancing valves were able to separate each heating loop 

as an independent pressure zone, and maintain the constant differential pressure in the controlled 

loop. It also implies that the DP controller controls the differential pressure across the controlled 

loop, which will ensure an optimal differential pressure across the downstream control valves. In 

this way, the flow within the controlled loop would not be affected by any system load changes, 

and noise would be avoided. 

3.1.2 Test II: The pre-setting function of the radiator valves 

For Test II, the test object was one apartment.  

The apartment loop’s mass flow, the supply and return temperatures, and the indoor temperature 

were measured with the set point of the DP controller at 10 kPa. The measurements were first 

carried out without radiator valves pre-set, and after that with them all pre-set. The mass flow 

measurement results (see Table 3) showed that after the radiator valves were pre-set, the total 

flow supplied to the apartment was reduced to 1/3, from 557l/h with no pre-setting to 181 l/h with 

pre-set. This implies that the flow rate through each radiator was limited dramatically by the pre-

setting function. The flow rate in the case of pre-setting was close to the design flow rate of 126 

l/h. This indicates that flow control by pre-setting the radiator valves on the terminal heat units is 

effective. The temperature measurement results showed that the temperature difference of the 

controlled loop increased by nearly 100% with the radiator valves pre-set, changing from 9 ºC to 

17.3 ºC. Test II focused on the hydraulic control effect of pre-setting the radiator valves. The 

results clearly show that the large flow and small temperature difference problem which is typical 

in Chinese DH systems has been significantly relieved. This is the most important result that the 

test aimed to get. It also reflects the great energy-saving potential if the excess flow can be 

controlled. 

In addition, at the start of the test, when there was no pre-setting of the radiator valves, the room 

temperature was 22.6 ºC (see Table 3), with heating power of 5.8 kW. The design capacity is 2.2 

kW for -9 ºC outdoor air temperature. Due to lack of individual controls, the tenants regulate the 

room temperature by opening windows, which explains why the room temperature was no higher. 

After the pre-setting of the radiator valves, the delivered capacity was 3.6 kW and the room 

temperature went down to 22 ºC within two hours. A further decrease might be expected, but the 

3.6 kW would be more than enough to sustain 18 ºC room temperature, seen in relation to the 

design capacity. 

Table 3. Temperature measurement comparison between with and without pre-setting in Test II 

Parameter of tested apartment loop No pre-setting Pre-setting 

Total flow of apartment loop (l/h) 557 181 

Supply temperature (°C) 62.6 62 

Return temperature (°C) 53.6 44.7 

Delta T (°C) 9 17.3 



 

 

Average indoor temperature (°C) 22.6 22 

Outdoor temperature (°C) -4 -4 

 

The field test showed that pre-setting radiator valves combined with the automatic balancing 

valves could control the loop flow close to the design level. Within the apartment loop, pre-

setting the radiator valves limited the maximum flow of each radiator and created the right 

balance among the radiators. Flow limitation for each terminal heat unit prevented insufficient 

flow at distal units and excess flow at proximal ones. It reduces the total supplied flow and 

consequently the pump electricity consumption.  

The differential pressure limitation of the automatic balancing valves provided the appropriate 

pressure drop over the radiator valves. The hydraulic imbalance along the vertical riser was 

reduced, and it guaranteed to set the thermostat properly to adjust the indoor temperature. At the 

same time, the noise from the radiator valves was avoided. Further adjustments of the room 

temperature towards the desired temperature could be achieved by adding a thermostat to the 

radiator valve, which would adjust the valve depending on the deviation from the set-point 

temperature of the TRVs. 

In this field test, a dynamic hydraulic balance was created in the heating system by using pre-set 

radiator valves combined with automatic balancing valves. Every loop received the required flow 

and excess flow and insufficient flow were avoided. Every room received the required heat. Flow 

limitation improved the efficiency of the pump, and increased the temperature drop across the 

radiator. This field test indicates that the excess heat loss can be reduced through establishing 

dynamic hydraulic balancing in the building heating system. 

3.2 IDA-ICE simulation 

3.2.1 Model validation 

The radiator heating system in the multi-zone model was designed in accordance with the 

Chinese design standard. The “linear fit-to-metered supply temperature” from CASE-Harbin (see 

Figure 4) defined the supply temperatures of the simulated heating system during the heating 

period. As shown in Figure 10 , the simulated return temperatures were compared with the linear 

fit-to-metered return temperatures from Case-Harbin. The results show that the deviation between 

the simulation results and the linear fit-to-return temperatures from Case-Harbin was on average 

about 2 ºC. It should be mentioned that the measurements from Case-Harbin were acquired at the 

area substation and were the average return temperatures from all the connected buildings. The 

deviation between the model outputs and the measured return temperatures were therefore 

considered to be acceptable and the model was considered valid. 



 

 

 

3.2.2 IDA-ICE simulation results 

A simulation was carried out for the heating period in Harbin for two scenarios: radiators without 

TRVs and with TRVs. Several factors were considered in the simulation: room temperatures, heat 

consumption, pump electricity consumption, and the flow rate in the heating system.  

Firstly, in terms of the room temperatures, the general results showed that without TRVs the 

room temperatures in all the zones were much higher than 18 ºC except for a few hours at the 

beginning of the heating period. The average room temperatures in all five zones over the entire 

heating period were around 22 ºC. With TRV control, the room temperatures in all the zones were 

constant at around 18 ºC. There are some minor deviations between the set temperature and the 

simulated room temperature, due to the 0.5 ºC proportional band (P-band). Because TRVs are 

proportional temperature controllers, they respond to any deviation from the set temperature by 

increasing or decreasing the flow into the radiators until the required room temperature is 

achieved. Figure 11shows the simulation results for two typical rooms in the multi-zone model: 

the northern room ‘Bedroom N’ and the largest room the ‘Living Room’, which reflects these 

small variations particularly clearly. The indoor air temperature can also be seen to have lagged a 

few days behind outdoor temperatures changes because of the thermal inertia of the building 

envelope materials.   

 

 

Figure 10. Supply and return temperatures for the model of the SH system 



 

 

 

 

Figure 11. Zone room temperature of Bedroom N and the Living Room during the heating period 

As shown in the simulation results, the application of TRVs provides the practical possibility for 

the room occupants to adjust the room temperature. When the rooms are overheated, the indoor 

temperature can be adjusted by setting the thermostat rather than opening the windows. Thermal 

comfort can imply multiple factors like indoor temperature, humidity, and draught [44]. But in 

the heating supply context, thermal comfort mainly refers to the indoor room temperature. In an 

unbalanced system, the thermal discomfort means excess heating for users close to the substation 

and insufficient heating for users far away from the substation. Through the implementation of 

the technical approach presented here, the indoor temperatures for rooms in different locations are 

balanced and close to the design room temperatures. We therefore conclude that the indoor 

thermal comfort is improved.  

Correct use of TVRs has the potential to achieve great energy-saving effects. In some cases, heat 

consumers might not know how to use the TRVs correctly and might simply use the maximum 

set point, which will compromise the energy savings potential. The set points can be protected 

and locked by inserting the pins on the dial, and an energy-saving type of TRV can be used with a 

maximum set point of 20 ºC [45].  

Secondly, the monthly heat consumption and pump electricity consumption were compared for 

the two scenarios, and the results are shown in Figure 12. Since the heating season is fixed in 

Harbin city and does not include May to September, no data were collected for those months. In 

terms of annual energy consumption, which was obtained by accumulating the monthly energy 

consumption over the heating season, the results imply that applying TRVs can reduce annual 



 

 

heat consumption by 17% and annual pump electricity consumption by 42.8% for this particular 

apartment. Here it should be noted that the pump energy consumption is very small compared to 

the heating energy consumption, only 0.1% of the heat energy delivered.  

 

Figure 12. Heat consumption comparison between the scenarios with and without TRV control 

Coal is the dominant DH fuel, and the dominant fuel for Chinese power plants. Burning coal is 

one of the main causes of air pollution in China [46]. Hydraulic balance can achieve 17% heat 

savings and 42.8% pump electricity savings. This will result in positive environmental impacts. In 

Case-Harbin, the total heating area in 2013-2014 heating season was 442,340 m
2
. The measured 

seasonal heat consumption per m
2
 was 0.7GJ/m

2
, and the seasonal pump electricity consumption 

was 2.1 kWh/m
2
. This reflects the currently unbalanced system situation. With hydraulic balance, 

the simulation results show that the seasonal heat consumption could be reduced by 0.12 GJ/m
2
, 

and the seasonal pump electricity consumption could be reduced by 0.9kWh/m
2
. The results 

imply that the total emission reduction for Case-Harbin could have been 4837 ton of CO2, 44.7 

tons of SO2, and 13 tons of NOx in the 2013-2014 heating season if hydraulic balance had been 

achieved. Therefore, the seasonal environmental impacts would reflect the reduction of 11kg CO2, 

0.1g SO2, and 0.03g NOx per heating square metre. 

Moreover, with regard to the system’s operation, it is important to note that applying TRVs 

changes the SH system from constant flow to variable flow (see Figure 13).  



 

 

 

Figure 13. Total mass flow comparison between scenarios with and without TRV control 

According to the results from the field test and the IDA-ICE simulation, the excess heat loss can 

be reduced by achieving hydraulic balance and optimizing indoor air temperature control at the 

building level. 

In this study, the research object was the building heating system. Energy reduction at the 

building level will inevitably impact the whole DH system, reducing the amount of heat that area-

substations have to deliver to a group of buildings and that the heat source plants have to deliver 

to the area-substations.  

Dynamic hydraulic balancing ensures the apartment heating loops distribute the requested flow, 

with neither excess flow nor inadequate flow. Moreover, it means that the apartment heating loops 

are not influenced by each other if adjustments are made. Temperature control stabilizes the room 

temperature at comfort levels and avoids the room overheating. The integrated technical approach 

therefore reduces excess heat supply and excess heat loss. This means lower fuel consumption 

and less polluting emissions due to the fossil fuels heavily used in China. The economic benefits 

and environmental effects achieved will be considerable. 

In the future, along with the energy consumption reduction in space heating systems, it is 

expected that Chinese DH systems will transition from the current centrally planned heat supply 

to demand-driven heat generation, which will also give increased comfort for users. In addition to 

this improvement in quality of life, DHW could also be integrated into DH systems to supply hot 

water in the future. This would be possible because the reduction in excess heat supply will result 

in large energy savings.  



 

 

The high building density in Chinese’ cities and the continuously expanding heating areas with 

rapid urbanization mean that there will be significant heat demands that need to be fulfilled. This 

emphasizes the significance of the kind of reductions in energy consumption in Chinese DH 

systems discussed in this paper. 

4. Conclusions  

To conclude, the proposed approach of combining the use of TRVs with an integrated pre-setting 

function and automatic balancing valves has been shown to be both feasible and effective in 

practice.  

Firstly, a field test showed that pre-setting radiator valves combined with automatic balancing 

valves can establish dynamic hydraulic balance in a building heating system. Each controlled 

loop becomes an independent zone. The pre-setting of the radiator valve is an important function 

to equalize the flow distribution among the terminal heating units. Moreover, automatic balancing 

valves enable the radiator valves to work at optimum differential pressure level. As a result, the 

problems of excess flow and insufficient flow are avoided in the heating system. At the same time, 

the return temperature was decreased, and the temperature drop across the radiator was increased. 

Secondly, IDA-ICE simulation results indicate that TRVs stabilize the room temperature. Wide 

use of TRVs in Chinese buildings can reduce heat consumption by 17% and pump electricity 

consumption by 42.8%, compared to a scenario without TRV control. In addition, adjusting TRVs 

transform the system from constant flow to variable flow. Variable speed pumps can be applied 

with variable flow rate. As coal is the dominant fuel for DH plants and power plants in China, the 

savings on both heat consumption and pump electricity consumption imply the positive 

environmental impacts. 

Traditional Chinese DH systems seldom have control at the consumer end. By moving the control 

close to the end users, it is possible to bring the heating supply into line with the heating demand. 

The integrated assessment method and field test show that a well-balanced DH system can 

improve consumer thermal comfort and at the same time save significant pumping power. A well-

balanced DH system allows heat users to pay less if the heating is charged on the basis of the real 

consumption. The heat users are satisfied also due to the improved room temperature control. At 

the same time, it would also be cost-effective for DH utilities, who could increase their profits by 

avoiding excess heat loss.  

The developed integrated approach will help the decision makers and stakeholders to plan new or 

renovated district heating projects to be more energy efficient and cost effective. It would make a 

considerable contribution to energy supply security and air pollution abatement for Chinese 

society by giving smart control to district heating systems. 
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Abstract 

A common problem with Chinese district heating systems is that they supply more heat than the 

actual heat demand. The reason for this excess heat supply is the general failure to use control 

devices to adjust the indoor temperature and flow in the building heating systems in accordance 

with the actual heat demand. This results in 15–30% of the total supplied heat being lost. This 

paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-

set thermostatic radiator valves combined with automatic balancing valves. Those devices 

establish hydraulic balance, and stabilize indoor temperatures. The feasibility and the energy 

consumption reduction of this approach were verified by means of simulation and a field test. By 

moving the system from centrally planned heat delivery to demand-driven heat delivery, excess 

heat loss can be significantly reduced. Results show that once the hydraulic balance is achieved 

and indoor temperatures are controlled with this integrated approach, 17% heat savings and 

42.8% pump electricity savings can be achieved. The energy savings will also have a positive 

environmental effect with seasonal reductions of 11kg CO2, 0.1g SO2, and 0.03g NOx per heating 

square meter for a typical case in Harbin.  

Key words: district heating, excess heat supply reduction, pre-set thermostatic radiator valves, 

automatic balancing valves, hydraulic balance, differential pressure control 

1. Introduction 

Research has shown that district heating (DH) is playing an important role in the societal goal of 

realizing an effective and sustainable energy system [1][2][3][4][5]. Along with the rapid growth 

of urbanization and industrialization, China has become one of the largest DH markets in the 

world in the last two decades. Statistics indicate that the total DH production in 2013 amounted to 

3,197,032 TJ [6]. This number is still increasing steadily due to the process of rapid urbanization, 

expansion of the building area, enhancement of building services, and increases in comfort level. 

On the other hand, according to a World Bank report in 2012, the consumption of heating energy 

in China per square metre of floor area is almost twice that in developed countries at the same 
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latitude. Nevertheless, the resulting room thermal comfort in China is still unsatisfactory [7]. 

Furthermore, the 2011 Annual Report on China Building Energy Efficiency [8] reports that 15% -

30% of the total heat is being lost due to excess heat supply in northern China’s DH systems. 

These high losses are primarily due to a failure to use control devices to control the heating 

supply in accordance with the actual heating demand. There is an urgent need to apply 

appropriate technical approaches to improve the Chinese DH efficiency to create the maximum 

synergy between energy supply security and air pollution abatement, which are the two most 

important challenges for China today [9]. 

Chinese DH systems are very different from European DH systems. Structurally, a typical 

Chinese DH system is like this: pressurized hot water as the heat medium is produced in the 

central heat source and distributed to a few area substations (the primary side of the DH system). 

Each area substation then serves a number of multi-storey or high-rise buildings (the secondary 

side of the DH system). The heat entrance is the interface connecting the large-area substation to 

the building heating system (see Figure 1). It is usually equipped with shut-off valves, and 

measurement devices like thermometers, pressure gauges and heat meters, etc. [10].  

Figure 1. Typical district heating system used in China 

In terms of temperatures, China’s national design code [11] states that the DH primary side 

network should be designed with supply temperatures of 115 ºC~130 ºC and return temperatures 

of 50~80 ºC. The design code does not state any minimum design temperature difference. For the 

radiator space heating (SH) systems, the design supply/return temperatures are recommended as 

75/50 ºC or 80/60 ºC [12]. In practice, DH systems generally operate with different temperatures 

based on various conditions for the particular DH systems.  

In terms of heat sources, the main heating production facilities are the coal-fired boilers and 

Combined Heat and Power (CHP) plants. For instance, in 2013, 48% of DH came from coal-fired 

boilers, 42% CHP plants, 8% gas-fired boilers, and the remaining 2% came from scattered and 

individual heating facilities. Furthermore, coal is the dominant DH fuel in China [13]. Statistics 

show that 91% of the total energy supply to DH systems came from coal in 2008 [14]. 

Moreover, unlike European DH systems where DH supply covers both SH and Domestic Hot 

Water (DHW), approx. 90% of Chinese DH systems supply SH without DHW [15].  



 

 

These important characteristics make it possible to understand why excess heat supply occurs in 

typical Chinese DH systems.  

From the perspective of temperature control, room temperature regulation and control functions 

are not available in approx. 84% of the total heating area in China [16]. According to the national 

code [12], 18 °C is the standard room temperature for heat consumers in northern China to 

evaluate whether the heating effect is up to the required standard. The DH utility usually 

increases the secondary circulation flow rate until at least critical consumers attain this standard, 

which often result in the systems operating with large volume flow and small temperature 

differences between the supply and return streams. Moreover, once the heat demands of the 

critical consumers are fulfilled, the secondary flow rate often remains constant, with the varying 

SH demand being met by adjusting the secondary side supply temperature. Furthermore, there is a 

lack of automatic weather compensation control in some cases at substation level. Manual 

adjustment may be applied. e.g., tentatively adjusting the opening of the control valve installed on 

the primary side of the DH system, which is eventually reflected in changes in secondary supply 

temperatures. Such manual operation is based on the experience of past years and the level of 

complaints from critical users of the system, and the purpose of adjusting the supply temperature 

is to correlate the heat supply with the outdoor air temperature. Consequently, when the supply 

temperature to the SH system is higher than required, consumers will open windows to get 

comfortable indoor temperatures. In some cases, TRVs are installed in the DH systems. However, 

they are typically left fully open. Due to the fixed heating charges based on heating area, not 

actual heat consumption, there is no incentive for consumers to consciously reduce the TRV 

settings in an oversupply situation. They would generally regulate the indoor temperature by 

opening the windows. All these factors mean that consumers are either unable to control their 

room heating supply or lack motivation for energy conservation, which means excess heat 

supplied is wasted. 

From the perspective of flow control in the secondary DH network and at building level, there are 

no automatic flow control devices, which results in an uneven flow distribution in the secondary-

side DH network. Buildings close to the substation receive more flow than needed and become 

overheated, whereas buildings located in distal parts of the network receive less flow than 

required and are unable to fulfil their heating requirements. There is a lack of hydraulic balance 

inside the buildings. Specifically, the secondary side of Chinese DH systems generally operates 

on a constant flow and pressure basis. The pressure head at the pump is controlled to maintain 

constant differential pressure at area-substations. In addition, the constant flow operation 

principle makes the pumps run at constant speed. Although there are some variable-speed pumps, 

they are mainly used to correct the deviation between the design and operation conditions in 

terms of the pressure head and flow rate. Large volume flow leads therefore to higher than 

necessary electricity consumption in circulation pumps, small temperature differences, high 

return temperatures, and network heat losses. 

In summary, it can be said that the general failure to use temperature and flow control devices in 

Chinese DH systems is the direct cause of excess heat loss, which subsequently compromises the 

efficiency of Chinese DH systems.  



 

 

Studies have investigated how to improve the efficiency of Chinese DH systems by focusing on 

various DH elements [17][18][19][20][21][22][23][24][25][26][27][28]. With the heat reform in 

2006 in China, 16% of the total heating area in China was given a heat metering retrofit [16] to 

install Thermostatic Radiator Valves (TRVs) by the year 2012. A lot of research has been carried 

out on TRV application in Chinese heating systems [29][30][31][32][33][34][35]. For instance, 

Xu et al. [33] investigated how hydraulic performance and energy consumption in individual 

apartments and the whole system were influenced when TRVs were regulated and when windows 

were opened. Xu et al. [34] developed a dynamic model and simulated the thermal and hydraulic 

behaviour of SH systems employing TRV-controlled radiators in multi-family buildings. Liu et al. 

[35] analysed the heat metering methods currently available in China and proposed a new method 

for metering the heat consumption of individual households in accordance with the accumulated 

on-time as well as the floor space of each household.  

However, when we examine the previous research mentioned above, there is still a lack of 

expertise or knowledge on optimizing building heating systems by correctly using the flow 

control and temperature control functions of TRVs, including their inherent relationship with 

energy consumption reduction and indoor temperature improvement.  

In this paper, an integrated approach has been developed and applied to a real project in northern 

China. The technical feasibility is shown and the advantages are quantified. This could give 

enhanced understanding and guidance for renovating future Chinese DH systems.  

2. Methodology 

The research objects in this study were the building heating systems. The central hypothesis of 

this study rests on the idea that the flow and temperature control functions of TRVs combined 

with differential pressure management can reduce the excess heat supply experienced in current 

Chinese DH systems while reducing their energy consumption. This idea is reflected in the 

research question: how large is the potential for reducing excess heat consumption by using 

temperature and flow control in the heating system of buildings?  

Chinese energy statistics usually use the unit “metric tons of standard coal equivalent” (tce) 

because the primary energy source for DH systems in China is coal, and one tce equals 29.31 GJ. 

Burning 1 ton Chinese standard coal (29.3GJ/tce) releases about 2600 kg CO2, 24 kg SO2, and 

7kg NOx [36]. If the proposed controls were applied in Chinese DH systems, energy consumption 

reduction would be achieved which would have considerable positive environmental impacts due 

to the heavy reliance on coal as DH fuel in China. 

To show the inter-relationship between excess heat supply, overheating of rooms, and the 

hydraulic imbalance, we analysed the data from two real cases, Case-Beijing-A and Case-Harbin, 

and proposed a technical approach to solve the excess heat supply. 

We performed a two-step analysis. Firstly, a field test was made to demonstrate the technical 

feasibility of the approach. The field test was carried out in a high-rise building in Beijing (Case-

Beijing-B), which is structurally similar to Case-Beijing-A. Secondly, simulations for scenarios 

analysis were carried out using building simulation software: IDA Indoor Climate and Energy 

[37]. The prototype of the building model is one of the multi-storey residential buildings in Case-



 

 

Harbin. The linear fit-to-metered secondary supply temperatures from Case-Harbin were used as 

input for the model to run the simulation. The flowchart shown in Figure 2 illustrates the 

integrated design approach in this paper. 

 

Figure 2. Flowchart of methods used in the study 



 

 

2.1 Current situation from real cases  

First, the data from two real cases were analysed to present the excess heat supply experienced in 

Chinese DH systems.  

Case-Beijing-A refers to a DH system in Beijing. The data from a residential high-rise building 

heating system were used to indicate the link between hydraulic imbalance and excess heat 

supply. Case-Harbin refers to a DH system in Harbin. The data from the secondary side of one 

substation were obtained to verify the causal link between overheated rooms and excess heat loss.  

2.1.1 Case-Beijing-A: Hydraulic imbalance and excess heat loss  

To understand the hydraulic situation in high-rise building heating systems, the volume flow data 

from a 21-floor residential building in Case-Beijing-A were obtained. The DH water from an area 

substation flows into the building via the heat entrance, where manual balancing valves are used 

as the only flow control device to manage the flow distribution among the connected buildings. 

DH utilities usually use a flow index to determine the required volume flow of each building in 

accordance with the heating area served. The manual balancing valves are set at the beginning of 

the heating season according to the estimated flow and differential pressure across the controlled 

loop. After initial commissioning is finalized, the setting values of these manual balancing valves 

are kept for the whole heating season, except for minor adjustments.  

In this high-rise building, each floor had the same heating area. The instantaneous volume flows 

per square metre along one of vertical supply risers were measured by using a hand-held 

ultrasonic flow meter. The volume flows along the risers were measured on the 1st, 6th, and 13th 

floors and on the 14th, 18th, and 20th floors, as shown in Figure 3. The results show how the 

volume flow per square metre decreased along the supply water direction.  

 

Figure 3. Flow measurement of a high-rise building in Beijing 



 

 

The top floor should have a higher heat demand because of its larger exterior surface, but in 

reality, it was supplied with the least volume flow. Even though the volume flow per square metre 

on the top floor was less than 1/3
rd

 that of the first floor, few thermal comfort complaints were 

reported. As a complaint over the phone is the most common way for Chinese heat consumers to 

inform the DH utilities about the heat effects, it can therefore be assumed that the floors below 

the top floor were receiving a higher volume flow than they actually required. These floors would 

be overheated. This case illustrates the excess heat supply caused by hydraulic imbalance in a 

building heating network where no flow control devices were used. 

2.1.2 Case-Harbin: Overheated rooms and excess heat supply 

To understand the relation between the overheated rooms and excess heat supply, the data from 

one of the area-substations of Case-Harbin were obtained. The data included the supply and 

return temperatures of the area substation and the corresponding outdoor temperatures. The data 

covered the entire heating period from 20 October 2013 to 20 April 2014. This area substation 

supplied heat to 14 multi-storey buildings with a heating area of 124,150 m
2
.  

The control situation in this case was that no indoor temperature control devices were applied in 

the SH system. In addition, automatic weather compensation control was not available at the 

substation, and the system was operating under constant flow rate. The secondary supply 

temperature was manually adjusted based on the average daily outdoor temperatures from 

metrological data and past years’ experience in relation to the level of complaints from heat 

consumers. 

The data presented in Figure 4 reveals the relationship between the supply temperature and 

outdoor air temperature being scattered when the manual control was applied. For the same 

outdoor temperature, the temperature differences between supply and return varied a lot. 

According to the records of the DH utility, very few complaints were received from the occupants 

during the heating period, and this implies that most consumers had room temperatures above 

18 °C. This also implies that, for a given outdoor temperature, the lowest temperature difference 

has met the heat demand. All other temperature differences higher than the lowest values imply 

the buildings were overheated, since the constant flow principle was being applied in the 

secondary DH network. All heat supplied in excess of the lowest value can be regarded as heat 

loss due to excess heat supply. Due to the lack of the individual control for the indoor terminal 

heat units, overheated rooms inevitably leads to window opening, which also explains why 

several different temperature differences exist under the same outdoor temperature.  



 

 

 

Figure 4. Supply and return temperatures of a substation in Case-Harbin during the 2013–2014 heating period 

2.2 The proposed approach 

To reduce the excess heat supply, an integrated approach was introduced that included the control 

devices: TRVs with pre-setting function, and automatic balancing valves. The SH systems 

considered in this paper are two-pipe radiator systems, and all the apartments have their own 

heating loops. A schematic configuration of the apartment heating loop applied in the integrated 

approach is illustrated in Figure 5. The number of the radiator might be different based on the 

particular apartment. 

 



 

 

Figure 5. Schematic configuration of the apartment heating loop 

TRVs consist of a thermostat and a radiator valve. The radiator valve is a flow control device. 

The degree of valve opening determines how much water flows through the valve into the 

radiator. This is controlled by the thermostat, which reacts to changes in room temperature.  

The radiator valve with integrated pre-setting is a flow-limiting device that is fitted into the valve 

body to pre-set the maximum water flow through the radiator. The pre-setting values correspond 

to the scales marked on the radiator valve and the range is from 1 to 7 and N, which represent 

gradually increasing maximum flow limits [38], see Figure 6. The pre-setting values can be set in 

accordance with the requested design flow through the radiator and the pressure drop across the 

valve. To ensure the optimal regulation of the radiator valve and quiet operation, it is important to 

achieve the desired differential pressure across the valve. According to EN 215 [25], a differential 

pressure setting of 10 kPa is commonly used for radiator applications. Automatic balancing 

valves were therefore also applied in this approach to ensure the optimum operation of the 

radiator valve. 

 

Figure 6. Pre-setting scales of radiator valve [38] 

Automatic balancing valves consist of a self-acting differential pressure (DP) controller and an 

associated partner valve. The valves are linked to each other by a capillary tube. In this case, the 

partner valve was designed to shut off the pipe flow, and the DP controller was designed to 

maintain a constant differential pressure across a loop. The constant differential pressure across 

the controlled loop protects downstream control valves from excess pressures and offsets the 

effects of pressure variations caused by the movement of the control valves in other branches. By 

installing automatic balancing valves, all the controlled loops become pressure-independent zones 

[39]. This eliminates any problems caused by high or excess system pressures, including noise 

from the valves and poor control of room temperature. 

Pre-setting radiator valves combined with automatic balancing valves equalize the flow 

distribution among the radiators and establish hydraulic balance at peak load. The thermostat 

function stabilizes the indoor temperature with regard to weather variations and free heat gains. 

By moving the system from centrally planned heat delivery to demand-driven heat delivery, the 

excess heat supply can be reduced, which can consequently reduce the energy consumption of 

Chinese DH systems and lead to positive environmental impacts. 



 

 

2.3 Verification of the proposed approach  

The technical feasibility of this approach and the improvements in indoor temperature control 

were verified by means of a field test (Case-Beijing-B) and building simulation software IDA 

Indoor Climate and Energy (IDA-ICE) 4.6.2 [37].  

2.3.1 Field test in Beijing for flow control 

The basic idea of the field test was to examine the flow control effect of using the radiator valve 

in combination with automatic balancing valves. With these two devices, the hydraulic balance is 

established and the flow distributed to each radiator can be controlled around the design value.  

2. 3.1.1 Configuration of the field test  

This field test (Case-Beijing-B) was carried out in a new 18-storey high-rise residential building 

in Beijing, which is structurally similar to Case-Beijing-A. The building’s appearance is shown in  

Figure 7 (left). The heating installation configuration for each apartment is illustrated in  

Figure 7 (right). Details of the devices used are listed in Table 1. It should be mentioned that the 

radiator valves and the automatic balancing valves either need to be pre-set, or set during 

commissioning when the heating season starts, so that the radiators can achieve the required 

design flow under peak load. The set values of these two devices would be kept throughout the 

heating season or slightly adjusted if necessary. This field test focuses on the flow control effect 

of using these two devices, so the thermostats were removed for the experiment. In addition, 

automatic weather compensation control was applied at substation level for Case-Beijing-B to 

control the supply temperature, and variable speed pumps were available on the secondary-side of 

this DH system.  

Table 1. Details of the relevant devices installed in tested apartment 

Device name Type Dimension  

Radiator valve RA-N[21] DN15 (mm) 

Auto balancing 

valves 

DP controller ASV-PV[23] DN20 (mm) 

Partner valve ASV-M[23] DN20 (mm) 

Ultrasonic energy meter SONOMETER 1100[24] DN20 (mm) 

 

The radiator valves were mounted on the radiator pipework. All the other devices mentioned above were installed in 

the staircase/hall (see  

Figure 7 (right)), which was the location of the heat entry point for the apartment heating systems.  

 



 

 

 

Figure 7. Real test case for the flow control approach 

2. 3.1.2 Implementation of the field test  

The field test consisted of two parts: Test I considered three apartments as test objects and 

focused on the pressure control function of the DP controller. Test II considered one apartment as 

the test object and focused on the flow limitation function of the radiator valve pre-setting 

function. Throughout the test, the other apartments’ heating systems in this building were 

operating normally. 

In Test I, three apartments with identical heating areas were chosen as the test objects. They were 

located on the right-hand side of the 2
nd

 floor (201), the left-hand side of the 2
nd

 floor (202), and 

the right-hand side of the 17
th
 floor (1701). During the test, all the radiator valves were pre-set to 

N, i.e. the radiator valves were fully open.  

The apartment loop flows were measured for apartments 201, 202, and 1701 when the DP 

controllers were in turn set at 5, 10, 15, 20, and 25 kPa. The ultrasonic energy meter of each 

apartment was used to measure the flow and investigate: 1) the hydraulic situation along the 

vertical pipe; 2) the flow changes in one apartment loop resulting from changing the set points of 

the DP controller at random or completely shutting off the loop flow of the other two apartments. 

In Test II, one of the apartments was chosen as the test object. The aim of Test II was to 

investigate how the pre-setting function of the radiator valve controls the flow rate of the heating 

system. This apartment had five rooms with their own radiators and was located on the 2
nd

 floor. 

Basic data about the apartment are given in Table 2. Each radiator was equipped with a radiator 

valve with pre-setting function. Test II was performed with the DP controller set at 10 kPa in 

accordance with EN 215 [25]. The design parameters of this heating system (supply/return/indoor 

temperature) were 75/60/18 °C. The design flow for each radiator could therefore be calculated 

and is given in Table 2. Based on the pressure drop of the heating loop and the design flow of the 

radiator, the pre-set scales of the radiator valve were determined and are listed in Table 2. The 

DP controller 

Energy meter 

Partner valve 
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Return pipe 

 

Supply riser 

 

Return riser 

 



 

 

schematic configuration of the apartment-heating loop is illustrated in Figure 5. A Testo 925 [40] 

was used for measuring the indoor temperature. 

Table 2. Basic information about the apartment tested 

Room name 
Floor area 

(m2) 
Heat load (W) 

Desired operating 

temperature 

difference (°C) 

Desired flow 

(l/h) 

Pre-set values 

of the radiator 

valve 

Living Room 18 810 15 46.4 3 

Bedroom A 14.5 654 15 37.5 2.5 

Bedroom B 8.7 391 15 22.5 1.5 

Bathroom 3.4 168 15 9.6 1 

Kitchen 4 180 15 10.3 1 

Total 48.6 2203 
 

126  

 

2.3.2 IDA-ICE simulation for indoor temperature control 

For the indoor temperature control investigation, a simulation model of an eight-storey residential 

building was developed using IDA-ICE 4.2.6 [37]. To develop this building model, the building 

layout and building materials of one of the buildings in Case-Harbin were used. The building 

envelope properties and the thermal characteristics were as specified in China’s energy 

conservation design standard JGJ26-95 [41]. One of the apartments was modelled as a multi-zone 

model. Each room in the apartment was a separate zone. The room height was 2.7 m. This multi-

zone model contained five heated zone areas: Bedroom N (north), Bathroom, Bedroom S (south), 

Kitchen, and Living Room, as well as three non-heated balconies and a non-heated staircase/hall 

(see Figure 8). The outdoor heating design temperature was -26 °C for Harbin and the indoor 

design room temperature was 18 °C. Based on the information, we run the multi-zone model 

equipped with ideal radiators, and obtained the peak heat load of each zone. 



 

 

 

Figure 8. Multi-zone model 

We dimensioned the radiators in accordance with Chinese standard [10]. In each zone, an M132-

type radiator [42] was modelled as the room heating unit as in Case-Harbin. The design 

parameters of the SH system were the same as those for Case-Harbin: 80/60/18 °C 

(supply/return/indoor air temperatures). Correction factors were derived to correct for the actual 

output of each radiator. Accordingly, the maximum power of each radiator was determined, and 

the design flow limitation through the radiators and the design heat load for the SH system were 

defined.  

Linear fit-to-metered supply temperatures were chosen in relationship to the outdoor temperatures 

shown in Figure 4. Here the secondary supply temperature is assumed to have been optimized by 

applying the weather compensation control at the substation and variable speed pumps in the 

secondary network of this system. To reflect the real conditions, an internal heat gain of 5.0 W/m
2
 

was considered
 
[41]. Real weather data in Harbin city in 2014 was used to estimate the energy 

consumption for heating using EnergyPlus [43]. Two scenarios were considered: 1) without 

TRVs fitted to the radiators, which is the most common situation in Chinese SH systems; and 2) 

with TRVs fitted to the radiators to adjust the indoor temperature by setting the thermostat of the 



 

 

TRVs. The room temperature of each zone, the energy consumption including heat consumption, 

and the electricity consumption of the pumps as well as the volume flow of the heating system 

were all compared based on the simulation results. 

3. Results and Discussion 

3.1 Field test in Beijing 

3.1.1 Test I: Differential pressure control of the apartment heating loop 

The test objects for Test I were three apartments 201, 202, and 1701.  

The first aim of the investigation was to test whether the three test heating loops had the same 

distributed flow when the set points of the DP controllers were the same. The measurement 

results are shown in Figure 9. When the DP controllers of the three apartments loop were given 

the same set point (separately set at 5, 10, 15, 20, and 25 kPa), the three loops had a similar 

volume flow as expected. The deviation of the individual loop flow from the average flow of 

these three loops at the same set points was within ±15% (see Figure 9). This deviation can be 

considered as acceptable, because the set points of the DP controllers were adjusted by manually 

turning the spindle and there were no pressure gauges in the supply and return pipes to measure 

the pressure drop of the loops directly. Moreover, mechanical hysteresis influences the variations 

and causes a difference in the measured flow rates. The 2
nd

 floor and 17
th
 floor have identical 

floor heating areas, so theoretically the distributed flow could be the same. It can therefore be 

concluded that the hydraulic imbalance along the vertical riser was reduced after the installation 

of the DP controllers. 

 

Figure 9. Deviations from the average flows of 201, 202, and 1701 at various set values of the DP controllers 

The second aim of Test I was to test whether one of the heating loops was pressure-independent 

-15% 

-10% 

-5% 

0% 

5% 

10% 

15% 

5kPa 10kPa 15kPa 20kPa 25kPa 

D
ev

ia
ti

o
n

s 
fr

o
m

 a
v
er

ag
e 

fl
o
w

 

201 202 1701 



 

 

when the differential pressure of the other two heating loops changed. The results show that when 

the differential pressure of the other two tested heating loops was changed by adjusting the set 

points of the DP controllers or by completely shutting off the loops, the other apartments’ heating 

systems kept operating normally and the flow of the third tested loop was not influenced or 

changed. This means that the automatic balancing valves were able to separate each heating loop 

as an independent pressure zone, and maintain the constant differential pressure in the controlled 

loop. It also implies that the DP controller controls the differential pressure across the controlled 

loop, which will ensure an optimal differential pressure across the downstream control valves. In 

this way, the flow within the controlled loop would not be affected by any system load changes, 

and noise would be avoided. 

3.1.2 Test II: The pre-setting function of the radiator valves 

For Test II, the test object was one apartment.  

The apartment loop’s mass flow, the supply and return temperatures, and the indoor temperature 

were measured with the set point of the DP controller at 10 kPa. The measurements were first 

carried out without radiator valves pre-set, and after that with them all pre-set. The mass flow 

measurement results (see Table 3) showed that after the radiator valves were pre-set, the total 

flow supplied to the apartment was reduced to 1/3, from 557l/h with no pre-setting to 181 l/h with 

pre-set. This implies that the flow rate through each radiator was limited dramatically by the pre-

setting function. The flow rate in the case of pre-setting was close to the design flow rate of 126 

l/h. This indicates that flow control by pre-setting the radiator valves on the terminal heat units is 

effective. The temperature measurement results showed that the temperature difference of the 

controlled loop increased by nearly 100% with the radiator valves pre-set, changing from 9 ºC to 

17.3 ºC. Test II focused on the hydraulic control effect of pre-setting the radiator valves. The 

results clearly show that the large flow and small temperature difference problem which is typical 

in Chinese DH systems has been significantly relieved. This is the most important result that the 

test aimed to get. It also reflects the great energy-saving potential if the excess flow can be 

controlled. 

In addition, at the start of the test, when there was no pre-setting of the radiator valves, the room 

temperature was 22.6 ºC (see Table 3), with heating power of 5.8 kW. The design capacity is 2.2 

kW for -9 ºC outdoor air temperature. Due to lack of individual controls, the tenants regulate the 

room temperature by opening windows, which explains why the room temperature was no higher. 

After the pre-setting of the radiator valves, the delivered capacity was 3.6 kW and the room 

temperature went down to 22 ºC within two hours. A further decrease might be expected, but the 

3.6 kW would be more than enough to sustain 18 ºC room temperature, seen in relation to the 

design capacity. 

Table 3. Temperature measurement comparison between with and without pre-setting in Test II 

Parameter of tested apartment loop No pre-setting Pre-setting 

Total flow of apartment loop (l/h) 557 181 

Supply temperature (°C) 62.6 62 

Return temperature (°C) 53.6 44.7 

Delta T (°C) 9 17.3 



 

 

Average indoor temperature (°C) 22.6 22 

Outdoor temperature (°C) -4 -4 

 

The field test showed that pre-setting radiator valves combined with the automatic balancing 

valves could control the loop flow close to the design level. Within the apartment loop, pre-

setting the radiator valves limited the maximum flow of each radiator and created the right 

balance among the radiators. Flow limitation for each terminal heat unit prevented insufficient 

flow at distal units and excess flow at proximal ones. It reduces the total supplied flow and 

consequently the pump electricity consumption.  

The differential pressure limitation of the automatic balancing valves provided the appropriate 

pressure drop over the radiator valves. The hydraulic imbalance along the vertical riser was 

reduced, and it guaranteed to set the thermostat properly to adjust the indoor temperature. At the 

same time, the noise from the radiator valves was avoided. Further adjustments of the room 

temperature towards the desired temperature could be achieved by adding a thermostat to the 

radiator valve, which would adjust the valve depending on the deviation from the set-point 

temperature of the TRVs. 

In this field test, a dynamic hydraulic balance was created in the heating system by using pre-set 

radiator valves combined with automatic balancing valves. Every loop received the required flow 

and excess flow and insufficient flow were avoided. Every room received the required heat. Flow 

limitation improved the efficiency of the pump, and increased the temperature drop across the 

radiator. This field test indicates that the excess heat loss can be reduced through establishing 

dynamic hydraulic balancing in the building heating system. 

3.2 IDA-ICE simulation 

3.2.1 Model validation 

The radiator heating system in the multi-zone model was designed in accordance with the 

Chinese design standard. The “linear fit-to-metered supply temperature” from CASE-Harbin (see 

Figure 4) defined the supply temperatures of the simulated heating system during the heating 

period. As shown in Figure 10 , the simulated return temperatures were compared with the linear 

fit-to-metered return temperatures from Case-Harbin. The results show that the deviation between 

the simulation results and the linear fit-to-return temperatures from Case-Harbin was on average 

about 2 ºC. It should be mentioned that the measurements from Case-Harbin were acquired at the 

area substation and were the average return temperatures from all the connected buildings. The 

deviation between the model outputs and the measured return temperatures were therefore 

considered to be acceptable and the model was considered valid. 



 

 

 

3.2.2 IDA-ICE simulation results 

A simulation was carried out for the heating period in Harbin for two scenarios: radiators without 

TRVs and with TRVs. Several factors were considered in the simulation: room temperatures, heat 

consumption, pump electricity consumption, and the flow rate in the heating system.  

Firstly, in terms of the room temperatures, the general results showed that without TRVs the 

room temperatures in all the zones were much higher than 18 ºC except for a few hours at the 

beginning of the heating period. The average room temperatures in all five zones over the entire 

heating period were around 22 ºC. With TRV control, the room temperatures in all the zones were 

constant at around 18 ºC. There are some minor deviations between the set temperature and the 

simulated room temperature, due to the 0.5 ºC proportional band (P-band). Because TRVs are 

proportional temperature controllers, they respond to any deviation from the set temperature by 

increasing or decreasing the flow into the radiators until the required room temperature is 

achieved. Figure 11 shows the simulation results for two typical rooms in the multi-zone model: 

the northern room ‘Bedroom N’ and the largest room the ‘Living Room’, which reflects these 

small variations particularly clearly. The indoor air temperature can also be seen to have lagged a 

few days behind outdoor temperatures changes because of the thermal inertia of the building 

envelope materials.   

 

 

Figure 10. Supply and return temperatures for the model of the SH system 



 

 

 

 

Figure 11. Zone room temperature of Bedroom N and the Living Room during the heating period 

As shown in the simulation results, the application of TRVs provides the practical possibility for 

the room occupants to adjust the room temperature. When the rooms are overheated, the indoor 

temperature can be adjusted by setting the thermostat rather than opening the windows. Thermal 

comfort can imply multiple factors like indoor temperature, humidity, and draught [44]. But in 

the heating supply context, thermal comfort mainly refers to the indoor room temperature. In an 

unbalanced system, the thermal discomfort means excess heating for users close to the substation 

and insufficient heating for users far away from the substation. Through the implementation of 

the technical approach presented here, the indoor temperatures for rooms in different locations are 

balanced and close to the design room temperatures. We therefore conclude that the indoor 

thermal comfort is improved.  

Correct use of TVRs has the potential to achieve great energy-saving effects. In some cases, heat 

consumers might not know how to use the TRVs correctly and might simply use the maximum 

set point, which will compromise the energy savings potential. The set points can be protected 

and locked by inserting the pins on the dial, and an energy-saving type of TRV can be used with a 

maximum set point of 20 ºC [45].  

Secondly, the monthly heat consumption and pump electricity consumption were compared for 

the two scenarios, and the results are shown in Figure 12. Since the heating season is fixed in 

Harbin city and does not include May to September, no data were collected for those months. In 

terms of annual energy consumption, which was obtained by accumulating the monthly energy 

consumption over the heating season, the results imply that applying TRVs can reduce annual 



 

 

heat consumption by 17% and annual pump electricity consumption by 42.8% for this particular 

apartment. Here it should be noted that the pump energy consumption is very small compared to 

the heating energy consumption, only 0.1% of the heat energy delivered.  

 

Figure 12. Heat consumption comparison between the scenarios with and without TRV control 

Coal is the dominant DH fuel, and the dominant fuel for Chinese power plants. Burning coal is 

one of the main causes of air pollution in China [46]. Hydraulic balance can achieve 17% heat 

savings and 42.8% pump electricity savings. This will result in positive environmental impacts. In 

Case-Harbin, the total heating area in 2013-2014 heating season was 442,340 m
2
. The measured 

seasonal heat consumption per m
2
 was 0.7GJ/m

2
, and the seasonal pump electricity consumption 

was 2.1 kWh/m
2
. This reflects the currently unbalanced system situation. With hydraulic balance, 

the simulation results show that the seasonal heat consumption could be reduced by 0.12 GJ/m
2
, 

and the seasonal pump electricity consumption could be reduced by 0.9kWh/m
2
. The results 

imply that the total emission reduction for Case-Harbin could have been 4837 ton of CO2, 44.7 

tons of SO2, and 13 tons of NOx in the 2013-2014 heating season if hydraulic balance had been 

achieved. Therefore, the seasonal environmental impacts would reflect the reduction of 11kg CO2, 

0.1g SO2, and 0.03g NOx per heating square metre. 

Moreover, with regard to the system’s operation, it is important to note that applying TRVs 

changes the SH system from constant flow to variable flow (see Figure 13).  



 

 

 

Figure 13. Total mass flow comparison between scenarios with and without TRV control 

According to the results from the field test and the IDA-ICE simulation, the excess heat loss can 

be reduced by achieving hydraulic balance and optimizing indoor air temperature control at the 

building level. 

In this study, the research object was the building heating system. Energy reduction at the 

building level will inevitably impact the whole DH system, reducing the amount of heat that area-

substations have to deliver to a group of buildings and that the heat source plants have to deliver 

to the area-substations.  

Dynamic hydraulic balancing ensures the apartment heating loops distribute the requested flow, 

with neither excess flow nor inadequate flow. Moreover, it means that the apartment heating loops 

are not influenced by each other if adjustments are made. Temperature control stabilizes the room 

temperature at comfort levels and avoids the room overheating. The integrated technical approach 

therefore reduces excess heat supply and excess heat loss. This means lower fuel consumption 

and less polluting emissions due to the fossil fuels heavily used in China. The economic benefits 

and environmental effects achieved will be considerable. 

In the future, along with the energy consumption reduction in space heating systems, it is 

expected that Chinese DH systems will transition from the current centrally planned heat supply 

to demand-driven heat generation, which will also give increased comfort for users. In addition to 

this improvement in quality of life, DHW could also be integrated into DH systems to supply hot 

water in the future. This would be possible because the reduction in excess heat supply will result 

in large energy savings.  



 

 

The high building density in Chinese’ cities and the continuously expanding heating areas with 

rapid urbanization mean that there will be significant heat demands that need to be fulfilled. This 

emphasizes the significance of the kind of reductions in energy consumption in Chinese DH 

systems discussed in this paper. 

4. Conclusions  

To conclude, the proposed approach of combining the use of TRVs with an integrated pre-setting 

function and automatic balancing valves has been shown to be both feasible and effective in 

practice.  

Firstly, a field test showed that pre-setting radiator valves combined with automatic balancing 

valves can establish dynamic hydraulic balance in a building heating system. Each controlled 

loop becomes an independent zone. The pre-setting of the radiator valve is an important function 

to equalize the flow distribution among the terminal heating units. Moreover, automatic balancing 

valves enable the radiator valves to work at optimum differential pressure level. As a result, the 

problems of excess flow and insufficient flow are avoided in the heating system. At the same time, 

the return temperature was decreased, and the temperature drop across the radiator was increased. 

Secondly, IDA-ICE simulation results indicate that TRVs stabilize the room temperature. Wide 

use of TRVs in Chinese buildings can reduce heat consumption by 17% and pump electricity 

consumption by 42.8%, compared to a scenario without TRV control. In addition, adjusting TRVs 

transform the system from constant flow to variable flow. Variable speed pumps can be applied 

with variable flow rate. As coal is the dominant fuel for DH plants and power plants in China, the 

savings on both heat consumption and pump electricity consumption imply the positive 

environmental impacts. 

Traditional Chinese DH systems seldom have control at the consumer end. By moving the control 

close to the end users, it is possible to bring the heating supply into line with the heating demand. 

The integrated assessment method and field test show that a well-balanced DH system can 

improve consumer thermal comfort and at the same time save significant pumping power. A well-

balanced DH system allows heat users to pay less if the heating is charged on the basis of the real 

consumption. The heat users are satisfied also due to the improved room temperature control. At 

the same time, it would also be cost-effective for DH utilities, who could increase their profits by 

avoiding excess heat loss.  

The developed integrated approach will help the decision makers and stakeholders to plan new or 

renovated district heating projects to be more energy efficient and cost effective. It would make a 

considerable contribution to energy supply security and air pollution abatement for Chinese 

society by giving smart control to district heating systems. 
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Figure 1. Typical district heating system used in China 
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Figure 5. Schematic configuration of the apartment heating loop 
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Figure 6. Pre-setting scales of radiator valve [38] 
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Figure 7. Real test case for the flow control approach 
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Figure 9. Deviations from the average flows of 201, 202, and 1701 at various set values of the DP controllers 
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Figure 12. Heat consumption comparison between the scenarios with and without TRV control 

 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0 

500 

1000 

1500 

2000 

2500 

1 2 3 4 5 6 7 8 9 10 11 12 

H
ea

ti
n

g
 c

o
n

su
m

p
ti

o
n

 (
k
W

h
) 

Heat consumption without TRV control 

Heat consumption with TRV control 

Pump electricity consumption without TRV control 

Pump electricity consumption with TRV control 

P
u

m
p

 e
le

ct
ri

ci
ty

 c
o

n
su

m
p

ti
o

n
 (

k
W

h
) 

Month 

Figure



0 20 40 60 80 100 120 140 160 180
Heating period of Harbin (day)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
ot

al
 m

as
s 

fl
ow

 (
kg

/s
)

Mass flow of the SH system with TRV control
Mass flow of the SH system without TRV control

Figure



Table 1. Details of the relevant devices installed in tested apartment 

Device name Type Dimension  

Radiator valve RA-N[21] DN15 (mm) 

Auto balancing 

valves 

DP controller ASV-PV[23] DN20 (mm) 

Partner valve ASV-M[23] DN20 (mm) 

Ultrasonic energy meter SONOMETER 1100[24] DN20 (mm) 

 

 

Table



Table 2. Basic information about the apartment tested 

Room name 
Floor area 

(m2) 
Heat load (W) 

Desired operating 

temperature 

difference (°C) 

Desired flow 

(l/h) 
Pre-set values  

Living Room 18 810 15 46.4 3 

Bedroom A 14.5 654 15 37.5 2.5 

Bedroom B 8.7 391 15 22.5 1.5 

Bathroom 3.4 168 15 9.6 1 

Kitchen 4 180 15 10.3 1 

Total 48.6 2203 
 

126  
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Table 3. Temperature measurement comparison between with and without pre-setting in Test II 

Parameter of tested apartment loop No pre-setting Pre-setting 

Total flow of apartment loop (l/h) 557 181 

Supply temperature (°C) 62.6 62 

Return temperature (°C) 53.6 44.7 

Delta T (°C) 9 17.3 

Average indoor temperature (°C) 22.6 22 

Outdoor temperature (°C) -4 -4 

 

Table


