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Summary (English)

Wind turbines within offshore wind farms spend considerable time operating in the
wake of neighboring wind turbines. An important contribution to the loads on a
wake-affected wind turbine is the slow movement of the wake from the upstream
wind turbine across the rotor of the wake-affected wind turbine. A new approach
to this so called wake meandering is proposed. Beside the advantage of higher
physical realism, the new approach also offers practical advantages compared to
the current state-of-the-art method.

An input to the new meandering approach is the time evolution of the so called
spectral velocity tensor. An improved such spectral tensor is therefore developed,
which, for neutral atmospheric stratification, predicts spatial correlations compara-
bly to the Mann spectral tensor and temporal coherence significantly better than
previously existing models, including the Mann model, which is incapable of pre-
dicting any temporal correlations beyond those that follows from the application of
Taylor’s frozen turbulence hypothesis. As part of the framework a spectral ten-
sor for Lagrangian correlations in space and time is also developed and validated
versus measurements of isotropic turbulence. Combined, the models reproduce
the cross-over point between Eulerian and Lagrangian temporal covariances. The
applications of the Lagrangian spectral tensor, e.g. in the fields of dispersion and
mixing, deserve further investigation.

The values of the input parameters of the spectral tensor are shown to be uniquely
determined by the friction velocity, the shear and the dissipation of turbulent kinetic
energy, all of them physical properties of the flow. If local equilibrium between the
turbulent kinetic energy produced by shear and the turbulent kinetic energy dissi-
pated as heat is assumed, then, for neutral atmospheric stratification, the friction
velocity and the mixing length determine the spectral tensor.

The developed spectral tensor also depends on a dimensionless quantity, which
would be beneficial to determine with higher accuracy. An experiment with this
objective, studying the ratio between different components of the cross-spectra at
known shear, is proposed. Future work could also include investigating if a Rapid
Distortion formulation that also includes a term for buoyancy effects is needed in
order to make accurate predictions for non-neutral atmospheric stratification.
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Summary (Danish)

Vindmøller i store havmølleparker tilbringer en stor del af deres tid i vindskygge
af andre vindmøller. Vindskyggens bevægelse frem og tilbage over rotoren øger
belastningen på vindmøllen. En ny måde at kvantificere denne langsomt mæan-
drerende bevægelse er foreslået. Denne nye metode er mere fysisk realistisk og
giver også praktiske fordele i forhold til de gængse metoder.

Metoden bruger Fouriertransformation af turbulensens kovariansfunktionen som
base. En ny model for denne såkaldte spektraltensor udvikles. Den nye model giver
bedre forudsigelser af korrelationer i tid end de nuværende modeller og forudsiger
korrelationer i rummet på lige fod med Manns spektraltensor. En spektraltensor for
Lagrangeske korrelationer i tid og rum foreslås også, og den valideres mod må-
linger af isotrop turbulens. Sammen forudsiger begge modeller skæringspunktet
mellem Eulerske og Lagrangeske kovarianser som funktion af tiden. Den Lagran-
geske spektraltensors anvendelsesområder, inden for f.eks spredning og blanding,
fortjener nærmere undersøgelse.

Værdierne for spektraltensorns parametre viser sig at være bestemte af friktions-
hastighed, shear og energiomdannelse til varme, som alle er fysiske egenskaber
af strømningen. Hvis nydannelse af turbulens energi og omdannelse til varme an-
tages at være i lokal ligevægt, så bestemmes spektraltensoren, ved neutral atmos-
færisk stabilitet, af shear og friktionshastigheden.

Spektraltensoren afhænger også af en dimensionsløs størrelse, der med fordel kan
bestemmes med større nøjagtighed. Der foreslås et eksperiment med dette formål,
hvor krydsspektrets komponenter sammenlignes ved kendt shear. Det fremtidige
arbejde kan også omfatte undersøgelser af, hvis en Rapid Distortion-formulering
med et opdriftsled er nødvendig for at lave forudsigelser ved ikke-neutral atmosfæ-
risk stabilitet.
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Summary (Swedish)

Vindkraftverk i stora havsbaserade vindkraftsparker tillbringar en ansenlig del av
sin tid i vindskugga av andra vindkraftverk. Vindskuggans rörelse fram och tillbaka
över rotorn ökar belastningen på vindkraftverket. Ett nytt sätt att kvantifiera denna
långsamt meandrerande rörelse föreslås. Detta nya angreppssätt är mer realistiskt
fysiskt sett och erbjuder även praktiska fördelar, jämfört med förhärskande metoder.

Angreppssättet använder Fouriertransformen av turbulensens kovariansfunktion
som bas. En ny model för denna så kallade spektraltensor utvecklas. Den nya
modellen ger bättre förutsägelser av korrelationer i tid än nuvarande modeller samt
förutsäger korrelationer i rummet i paritet med Mann’s spektraltensor. En spektral-
tensor för lagranska korrelationer i tid och rum föreslås också, och den valideras
gentemot mätningar av isotropisk turbulens. Tillsammans förutsäger de båda mo-
dellerna skärningspunkten mellan eulersk och lagransk kovarians som funktion av
tiden. Den lagranska spektraltensorns användingsområden, inom exempelvis dis-
persion och blandning, förtjänar närmare studier.

Värdena på spektraltensorns parametrar visas vara bestämda av friktionshastighe-
ten, skjuvningen och energiomvandlingen till värme, vilka alla är fysiska egenska-
per hos flödet. Om tillförseln av turbulensenergi och omvandlingen till värme antas
vara i lokal jämvikt så bestäms spektraltensorn, vid neutral atmosfärisk stabilitet,
av skjuvningen och friktionshastigheten.

Spektraltensorn beror också på en dimensionslös kvantitet som med fördel kan be-
stämmas med större noggrannhet. Ett experiment med detta ändamål föreslås, där
korsspektrets komponenter jämförs vid känd skjuvning. Kommande arbete skulle
även kunna inkludera undersökningar av om en Rapid Distortion-formulering med
en flytkraftsterm behövs för att göra förutsägelser vid icke-neutral atmosfärisk sta-
bilitet.
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Chapter 1

Introduction

Wind is driven by high and low pressure in the atmosphere. As we approach the
ground, the wind speed eventually goes to zero. As depicted in Figure 1.1 we thus
have a vertical gradient in the horizontal flow velocity, or shear. If the Reynolds
number, i.e. the flow speed times the flow depth divided by the (kinematic) viscosity,
is high enough, turbulence, i.e. chaotic fluctuations in the flow velocity, will occur.
The dimensions of the flow are so large and the viscosity of air is so low that wind
is almost always turbulent.

Turbulence can be driven by processes other than shear. One example is turbu-
lence driven by heat. This process can be observed when water being heated
starts convecting well before reaching the boiling point. In the atmosphere, shear
driven turbulence and heat driven turbulence usually occur in conjunction, and the
relative strength of these processes defines the so called atmospheric stability.
This term originates from the observation that heating of the ground magnifies the
shear driven turbulence, and the atmosphere is said to be unstable. In the opposite
situation when the ground is cooler, the resulting temperature gradient dampens
the shear driven turbulence, and the atmosphere is said to be stable. When nei-
ther stable nor unstable the atmosphere is said to be neutral. Atmospheric stability
can be quantified by the so called Monin-Obukhov length (Monin and Obukhov,
1959). We will follow Peña et al. (2010), where the Monin-Obukhov length was
used to define the stability classes Very Unstable (VU), Unstable (U), Near Unsta-
ble (NU), Neutral (N), Near Stable (NS), Stable (S) and Very Stable (VS). For an
introduction to atmospheric turbulence see e.g Stull (1988) or Wyngaard (2010).

Turbulence can be studied in the virtual world, using the Finite Volume method
where the governing equations, i.e. the Navier-Stokes equations, are discretized
and applied to a calculation domain divided into small calculation cells. For wind
turbine applications, the need to resolve the smallest scales of turbulence leads to
unmanageably large numbers of calculations cells. Large Eddy Simulations (LES)
attempts to reduce the computational requirements by resolving only the largest
eddies. The effect of the small scale eddies are instead modeled by a sub-grid
turbulence model (Wyngaard, 2010).

Turbulence can also be studied in various experimental setups, however, due to the
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Figure 1.1: The wind speed approaches zero close to the surface, giving rise to
a vertical gradient in the horizontal flow velocity (the black arrows),
i.e. shear. At sufficiently high Reynolds numbers, shear gives rise to
turbulent eddies (green).

chaotic nature of turbulence no matter how well the initial conditions are controlled
each realization of turbulence will inevitably be different, making it challenging, to
say the least, to make deterministic predictions. Statistical predictions can, how-
ever, be made, and this will be discussed next.

1.1 Describing turbulence statistically

Let us first consider a very different phenomenon, namely breaking waves at open
sea. We know that at some wind speed (usually said to be between 6 to 8 m/s)
breaking waves can be observed at the open sea. We know the equations of the
physics involved, however, even so, we cannot predict which wave will break when.
Even though we cannot predict the details in a deterministic sense, on a statistical
level we can still study it. We can determine the mean wave height as a function
of wind speed, or in more detail the expected distribution of wave height and wave
lengths. This statistical information can then, for example, be used to simulate
realistic ocean waves which in turn is useful when validating designs of offshore
structures or ships.

The situation is similar for the study of turbulence. We know the conditions when
turbulence occurs, and we know the governing equations. However, even with the
afore-mentioned Finite Volume method, we cannot predict the turbulent fluctuations
accurately for very long. But we can describe turbulence in a statistical sense, and
this statistical description can be used to generate realistic 3-dimensional wind
fields for validation of the designs of wind turbines, buildings and bridges (Mann,
1998).

It is common to assume statistical stationarity (as well as ergodicity), which means
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that the 3-dimensional flow velocity ũ(x, t) can be (Reynolds) decomposed into a
mean velocity,U(x), and a fluctuating part, u(x, t), according to ũ(x, t) = U(x)+
u(x, t). It follows that the expected value (the mean value if observed long enough)
of the fluctuating part, 〈u(x, t)〉, is 0.

After some manipulations of the Navier-Stokes equations, the expected transfer of
energy from the mean flow into turbulent kinetic energy is given by 〈−u1u3〉 ∂U1(z)

∂z
.

Introducing the friction velocity, u∗ =
√
−〈u1u3〉, the expected transfer of energy

from the mean flow into turbulent kinetic energy is u2∗
∂U1(z)
∂z

. The larger the eddy, the
more efficient it is in extracting energy from the mean shear gradient. In parallel,
due to viscosity, a portion of the turbulent kinetic energy continually transforms into
heat. The rate of this dissipation of energy, per unit mass of the fluid, is denoted ε.
This dissipation is more efficient in the small scales. The scales in between, which
are involved in the transfer of energy from the large scales (that extract energy)
to the small scales (that dissipate energy), make up the inertial subrange. For an
introduction to turbulence theory see e.g. Tennekes and Lumley (1972).

We define the coordinate system to move with a suitable velocity, U0, so that in
our coordinate system U(0) = 0. We further assume a constant and non-negative
shear, ∂U1

∂z
, such that

ũ(x, t) = U(x) + u(x, t) = (x3
∂U1

∂z
, 0, 0) + u(x, t). (1.1)

If we also assume that u(x, t) is statistically homogeneous, then we can define a
covariance tensor, Rij , which describes the covariance of the flow at x and x+ r,
and at t and t+ τ . We account for the mean velocity of the flow varying with height
by including a term U(x+ r)τ according to

(1.2)Rij(r, τ) = 〈ui(x, t) uj(x+ r +U(x+ r)τ , t+ τ)〉 .

The role of U(x+ r)τ is easiest to demonstrate for r = 0, when it causes the
right-hand side of (1.2) to denote the covariance at a point which moves with the
mean flow velocity, U(x).

Turbulence is said to consist of eddies, a concept that in practice is hard to both
define and to work with. Mathematically, it is more convenient to describe turbu-
lence in the Fourier domain, which means that the turbulent fluctuations are seen
as a super-position of sine-waves. We therefore continue by defining the spectral
velocity tensor

(1.3)R̂ij(k, τ) =
1

(2π)3

∫∫∫
Rij(r, τ) e− ik·rdr.
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An improved model for R̂ij(k, τ) is discussed in 2.4 and is one of the key contribu-
tions presented in this thesis.

1.2 Loads on offshore wind turbines

Offshore wind turbines are subjected to the full force of the sea, with waves and
perhaps ice battering the structure. The loads induced by these forces have to
be accounted for when designing especially the foundations. Additionally the wind
turbine and its foundation have to be strong enough to withstand the loads re-
sulting from the interaction with the wind. For a solitary wind turbine, these wind
induced loads are well understood and can be predicted using aero-elastic simu-
lations, which somewhat simplified can be described as simulated turbulent wind
interacting with components of the wind turbine described by beam-theory.

Light detection and ranging (lidar) systems use the Doppler shift in the laser light
that is returned from microscopic particles to remotely determine the wind speed.
Researchers are investigating whether forward-looking lidar systems can reduce
mechanical loads on wind turbines by anticipating incoming gusts (Pao and John-
son, 2011; Bossanyi et al., 2012; Mikkelsen et al., 2013). The question arises
whether the turbulent fluctuations measured upstream of the rotor would arrive un-
changed to the rotor a moment later (Bossanyi, 2013). Related questions are how
many laser beam directions (i.e. measurement points) will characterize the fluctua-
tions in an optimal way (Schlipf et al., 2013), and how the significant probe volume
of the lidar influences the measurements (Sathe and Mann, 2013). All these issues
depend on the spatial and temporal structure of sheared turbulence, the topic of
2.4.

Now, consider two wind turbines and the wind direction such that one of the tur-
bines is operating in the wake of the other. The energy extracted from the wind
by the upstream wind turbine leaves a wind speed deficit which is advected down-
stream in the direction of the ambient wind. Bingöl et al. (2010) observed that the
velocity at which the wake moves downstream differs from the mean wind speed.
A method for determining this wake transport velocity is discussed in section 2.1.

Large scale turbulence causes the wind speed deficit to meander like a river (Es-
paña et al., 2012). This meandering causes the wind speed deficit to move back
and forth over the rotor of the wake-affected turbine, and this in turn results in in-
creased loads on the wind turbine and its foundation, as is illustrated in Figure
1.2. A wind turbine in the middle of a modern offshore wind farm may very well
spend most of its life in the wake of other wind turbines. It is therefore important
for offshore wind turbine and foundation design to be able to accurately predict
wake-induced loads.
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Figure 1.2: To the left, Large Eddy Simulations of a wake from an upstream wind
turbine hitting a downstream wind turbine. To the right, the wind field
as experienced by the downstream wind turbine, as a function of time.
The movement of the wake deficit back and forth over the rotor in-
creases the loads on the wake-affected wind turbine and its founda-
tion.

1.3 The Dynamic Wake Meandering model

If wind turbines are represented in Large Eddy Simulations, loads can be calcu-
lated. This is, however, very computationally expensive and is therefore unfeasible
for many engineering applications. There is a large number of less expensive wind
turbine wake models of differing scope and complexity (Sanderse, 2009). One of
the leading engineering models for the quantification of the loads of a wind turbine
operating in the wake of another wind turbine is the Dynamic Wake Meandering
Model (DWM), (Larsen et al., 2008; Madsen et al., 2010; Keck, 2013). The model
initially calculates the wake deficit evolution as if no meandering was present. The
calculation assumes that the incoming wind field is isotropic, i.e. similar in all di-
rections and thus effects of the ground (including shear) are disregarded. The
benefit of this assumption is that the result will be circular symmetric, and thus the
(Reynolds averaged) Navier-Stokes equations only have to be solved in two spatial
dimensions. To further reduce computational complexity, steady state is assumed,
which means that the wake deficit changes with the downstream distance, but at
a fixed distance the deficit is constant in time. The solution process also employs
a number of additional simplifications, all with the aim of reducing computational
complexity.

The turbulence intensity (which is defined as the relative standard deviation of ũ1
during 10 minutes) is an input to the deficit calculation, as increased ambient turbu-
lence leads to more mixing and thus more efficient wake dissipation. The gradient
of the deficit will itself generate small scale turbulence and this wake-added turbu-
lence influences the evolution of the wake deficit. The wake-added turbulence will
not add to the meandering due to its small scale, but it still has to be accounted for
when calculating the loads of the wake-affected turbine.
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In order to account for wake meandering, the wake center is displaced according
to a time series. This time series is generated by simulating the flight-paths of
rotor-sized disc-shaped neutrally buoyant balloons advected downstream by a field
of frozen turbulence which moves with the mean wind speed. If the disc-shaped
balloons are released frequently enough their recorded horizontal and vertical dis-
placements, after traveling for a time given by the wind turbine separation divided
by the mean wind speed, will approach a continuous time series. This continuous
time series is then the meandering time series that will combine with the deficit
calculation in order to produce an input wind field to the load simulations of wake
affected turbines. Larsen et al. (2008) proposed low-pass filtering the frozen tur-
bulence field as a proxy for the disc-averaging, and defined the filter based on a
wake diameter extracted from the deficit calculation rather than the rotor diameter.
That paper also argued that the longitudinal turbulence component can be omitted
when calculating meandering, a simplification which confines each wake segment
to its own 2-dimensional plane of turbulence.

Assuming turbulence to be a frozen 3-dimensional field moving with the mean wind
speed, has been very fruitful for applications where turbulence is studied from a
stationary point. For that situation, “new” turbulence arrives continuously to the ob-
servation point. When following the flow as our disc-shaped balloons do, the frozen
turbulence assumption likely leads to the experienced turbulence being unrealisti-
cally static. This motivates the formulation of a new approach to wake meandering
which is presented in 2.3.

Wind turbine wake meandering is in DWM formulated as dispersion, analogous,
for example, to a pollutant continuously being emitted from the chimney. Such ap-
plications traditionally employ tools from a Lagrangian analysis of turbulence (as
opposed to the Eulerian approach in (1.1)), which means that turbulence is stud-
ied by following real or fluid particles released in the turbulent flow. We therefore
introduce the Lagrangian covariance tensor defined by

(1.4)RL
ij(r, τ) =

〈
ui(x, t0) uj

(
XL

t0
(x+ r, t0 + τ), t0 + τ

)〉
,

where XL
t0

(x, t) is the position at t of the fluid particle which at t0 was at x. Analo-
gously to (1.3), the Lagrangian spectral tensor is defined through

(1.5)R̂L
ij(k, τ) =

1

(2π)3

∫∫∫
RL
ij(r, τ) e− ik·rdr.

The formulation of a model for (1.5) is discussed in 2.5. This model likely has
applications also in the fields of dispersion and mixing, see Yeung (2002) and
references therein.
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The meandering time series, corresponding to some downstream distance, is com-
bined with the calculated deficit at the same downstream distance. To this, now,
meandering wake deficit, synthetic atmospheric turbulence as well as synthetic
small scale wake-added turbulence is added to form a wind field that includes
wakes. This wind field can now be used as input to the afore-mentioned aero-
elastic simulation, and loads can be calculated. The right-hand graph of Figure 1.2
gives an idea of what the DWM is aiming to accomplish.
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Chapter 2

Research topics

Meandering is a major contributor to wake dynamics, and especially so in the DWM
model, where the wake deficit calculation is time-independent. As part of the re-
search effort, different aspects of wake meandering are investigated, from the un-
derlying turbulence description, via methods of calculating meandering time series
from turbulence, to the added complication of a wake transport velocity. Chrono-
logically these topics were researched in the reverse order and, therefore, that is
the order they are presented here.

2.1 The wake transport velocity

Bingöl et al. (2010) observed that the velocity with which the wake moves down-
stream differs from the mean wind speed. We investigated this wake transport
velocity and published the result in Keck et al. (2014). The paper also contains
other results, an introduction to which can be found in Keck (2013).

Wind turbines can be represented in LES simulations in a number ways. In Keck
et al. (2014) a single wind turbine is represented by actuator lines, which models
the wind turbine blades only in terms of their resulting lift and drag forces (Trold-
borg, 2009). The wake transport velocity is investigated by studying time series
of the wake centre position at two downstream sampling planes. By shifting one
of the time series in time, it is possible to obtain the time offset which yields the
maximum correlation, see Figure 2.1. The time offset corresponds to the trans-
port time between the sampling planes, and the wake transport velocity is found
by dividing the distance between the sampling planes with this transport time. The
transport velocity for a range of cases is presented in Figure 2.2. From the figure it
is concluded that the wake transport depends on, at least, turbulence intensity.

The paper concludes that the transport velocity lies between the mean flow velocity
in the wake deficit and the ambient wind speed, and proposes using 80% of the
ambient wind speed as an approximation of the wake transport velocity for now.
The transport velocity has independently been studied in Machefaux et al. (2014).



10 Research topics

0 100 200 300 400 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t [s]

W
a
k
e
p
o
si
ti
o
n
/
R

 

 

6R
9R

0 100 200 300 400 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t [s]

 

 

6R
9R, shifted in time

Figure 2.1: The left-hand graph shows the center position of the wake deficit in
LES as a function of time, at two sampling planes, locacted 6 and 9
rotor radii, respectively, downstream of the wind turbine. The right-
hand graph shows the same time series of wake centre position, but
includes a time offset to find the best correlation between the time
series.
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Figure 2.2: The wake transport velocities. The left-hand graph shows the effect of
different ambient wind speeds at 6% turbulence intensity for different
wind speeds. The difference between the curves is likely not an effect
purely of increased wind speed, but rather an effect of the control sys-
tem of the wind turbine behaving differently at different wind speeds
(e.g. curtailing the production to rated power). The right-hand graph
shows the influence of turbulence intensity at 6 ms−1 wind speed. The
dashed lines represent the mean flow velocity in the wake and is in-
cluded for reference.
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2.2 Meandering and Atmospheric stability

Paper A accounts for the effects of atmospheric stability in the DWM model by us-
ing the turbulence description offered by Mann spectral tensor parameter values
derived from measurements. This is done under the assumption that, even though
developed for neutral conditions, the Mann spectral tensor can be used to describe
also non-isotropic turbulence. A sizable portion of Paper A investigates the ef-
fect of atmospheric stability on the wake deficit calculation. For an introduction to
this research see Keck (2013). Here we will focus on the portion of Paper A that
investigates the influence of atmospheric stability on meandering.

In Paper A the following methodology is used to generate a meandering time series

1. Based on the parameter values reported in Peña et al. (2010), the Mann
spectral tensor is used to generate random Fourier coefficients in three di-
mensions.

2. The Fourier-equivalent of disc averaging is applied to obtain "the wind field
as seen by a rotor-sized disc-shaped balloon".

3. Rotor-sized disc-shaped balloons are released at the wake-emitting wind tur-
bine at a frequency of 1 Hz. The balloons travel with a wake transport ve-
locity of 80% of the ambient wind speed (see section 2.1). The large box of
frozen turbulence travels along the flow with the ambient wind speed. Con-
sequently, the wake deficit travels at a negative speed of -20% of the ambient
wind speed relative to the frozen turbulence field.

4. At every time step, the position of each emitted balloon is updated based
on velocities in the streamwise, lateral and vertical directions, given by the
current position in the turbulence box. When a balloon has traveled for the
time given by the turbine separation divided by the wake transport velocity,
its vertical and horizontal position is recorded. The combined registrations of
all the balloons form a meandering time series for the downstream distance
in question.

5. There are always turbulent structures too large to be captured by the gener-
ated turbulence box. The final step of the algorithm is therefore to multiply
the time series by a factor that corrects for the resulting loss of meandering
variance.

The afore-mentioned method is compared with LES data provided by the National
Renewable Energy Laboratory (NREL) with wind turbines represented by actua-
tor lines. In the LES data, the wake center is detected for every time step for a
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number of downstream distances. In Figure 2.3, the resulting meandering time se-
ries is shown as the black line at downstream distances corresponding to 3 and 9
diameters, respectively.
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Figure 2.3: The graphs show wind speed extracted at two downstream distances
in Large Eddy Simulations, high wind speeds in red and lower wind
speed towards the blue end. The center point of the wake deficit is
detected, resulting in the meandering time series in black. (The graphs
are from Paper B.)

In Figure 2.4, we compare the standard deviation of the meandering time series
simulated in LES with the predicted standard deviations using the DWM method-
ology. We find that our algorithm predicts the standard deviation of meandering
well for neutral conditions (green lines), but significantly underestimates the stan-
dard deviation of the lateral meandering for the very unstable case. The observed
discrepancy may warrant further study, e.g. using a spectral tensor that includes
buoyancy effects consistently in its formulation.

2.3 A new approach to wake meandering

As detailed in the previous section, the meandering time series in the DWM model
is generated by simulating the flight-paths of disc-shaped balloons advected down-
stream by a field of frozen turbulence which moves with the mean wind speed.
We observe that releasing balloons with regular time intervals in a moving field of
frozen turbulence is exactly equivalent to releasing them all at once along a straight
line in the direction of the mean wind velocity. This observation inspired the main
assumption of Paper B: that the spatial statistics of balloons, released all at once,
can be used to approximate the statistics of an actual meandering time series also
in non-frozen turbulence. Some kind of transform has to be applied before the re-
sulting spatial statistics are interpreted as a temporal statistics, and Paper B takes
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Figure 2.4: Standard deviation of meandering simulated in LES compared with
the predicted standard deviations using the DWM methodology. We
find that the our algorithm predicts the standard deviation of meander-
ing well for neutral conditions (green lines) , but significantly underes-
timates the lateral meandering for the very unstable case (red lines).

advantage of the fact that the necessary transform can be derived from equivalence
in the frozen turbulence case.

The resulting model is presented for Mij(f, s), the expected Fourier transform of
the meandering time series, m(t, s) ,

(2.1)Mij(f, s) =

∫
〈mi(t, s) ·mj(t+ τ, s)〉 e−iτ2πfdτ .

where s denotes the observation point. Knowing Mij(f, s) we can then generate
realistic realizations of meandering time series, mi(t, s), which can be used in the
DWM model. The final model, as presented in paper B, is more complex than (2.1),
mainly due to the incorporation of the wake transport velocity.

The developed model requires knowledge of the spectral velocity tensor, R̂ij(k, τ).
However, the Mann spectral tensor, Mann (1994), provides this quantity only for
τ = 0. In Paper B, R̂ij(k, τ) is approximated by a generalized version of

(2.2)R̂iso
ij (k, τ) = R̂iso

ij (k, 0)e−
1
2
a2〈u1u1〉|k|2τ2

which was suggested by Hunt et al. (1987). In Ott and Mann (2005), (2.2) was
tested for isotropic turbulence and the value 1

2
was recommended for the constant,

a.
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In Figure 2.5 we compare the auto-spectra of the measured meandering time series
in Figure 2.3 with the developed model, (2.1), as well as with spectra calculated
using the frozen turbulence method, as described in section 2.2.
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Figure 2.5: Comparison of the developed meandering model, (2.1), with auto-
spectra calculated from the time series shown in Figure 2.3, as well
as spectra calculated using the frozen turbulence method described in
section 2.2.

The current state-of-the-art method based on frozen 3D wind fields tends to be
quite computer memory intensive. The reason is that the larger the wind field the
more of the large scale turbulent energy is represented (as indicated by the last
step in the algorithm in section 2.2). There is therefore an incentive to work with
the largest wind field the computer can handle. The proposed method on the other
hand predicts the auto-spectra of the meandering time series without generating
3D wind fields. Realizations of meandering time series can therefore be generated
with modest computing requirements. Thus, beside the theoretical advantage of
un-freezing the turbulence, the new approach also offers practical advantages.

2.4 The time evolution of turbulence

In the previous section we mentioned that Ott and Mann (2005) recommended
setting a = 1

2
in (2.2) based on measurements of isotropic turbulence. However,

in the Appendix we show theoretically that in the inertial sub-range a should ap-
proach 1. This result would favor the original formulation by Saffman (1963), more
recently also proposed by Wilczek and Narita (2012), thus contradicting the em-
pirical benchmarking effort in Ott and Mann (2005). These observations motivate
interest in the formulation of an alternative model for R̂ij(k, τ).
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Figure 2.6: The three graphs show a sequence of snapshots of conceptional tur-
bulence being distorted by shear (illustrated by the black arrows). The
two green eddies are being rapidly distorted (from circles to ellipses)
while at the same time decaying (illustrated by the shift from solid lines
to dashed lines). The thickness of the dashed lines in the right-most
graph indicates that the smaller, dark green, eddy decays faster than
the larger, light green, eddy. We also notice the new-born blue eddy in
the middle graph and the like-wise new-born red eddy in the right-most
graph.

The new model rests to a large extent on the framework developed in Mann (1994),
where isotropic turbulence is distorted by Rapid distortion theory (Moffatt, 1967;
Townsend, 1976). Figure 2.6 shows a sequence of snapshots of conceptual turbu-
lence in which Rapid Distortion theory is responsible for the circles, in the graphs,
changing into ellipses. In the graphs, the turbulent eddies are also continuously
decaying, illustrated by the shift from solid lines to dashed lines. This continuous
decay is in mathematical terms achieved by introducing a decay term to the Rapid
Distortion equation, which is then referred to as the eddy decay equation. The
decay term uses the eddy lifetime, which in Paper D is given by

τe(k) = τe(|k|) =
M
√
αK

|k|−
2
3 ε−

1
3 . (2.3)

where the quantity M has been introduced. In Paper C, M is estimated to around
3. Paper D quantifies the uncertainty of this estimate to around 20% and goes on
to suggest an experiment which may be more appropriate for determining M than
the methodology chosen in paper C.

As a contrast, instead of decaying, the eddies in Mann (1994) are subjected to
Rapid distortion according to their current age, which is set to the eddy life time.

The sequence of snapshots is continued in Figure 2.7. The dashed black lines
which illustrate the evolution in time of a sample wave number, remind us that
the model is formulated as a function of wave number. Kristensen’s longitudinal
coherence model (Kristensen, 1979) (which describes the coherence of the turbu-
lent fluctuations as measured by two meteorologically instrumented measurement
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Figure 2.7: The three graphs continue the sequence of snapshots of conceptional
turbulence in Figure 2.6. The left-most graph is identical to the last
graph of Figure 2.6, except that the shear is now illustrated by the
dashed black lines which represent a wave number evolving according
to k(τ) = (k1, k2, k3− ∂U1

∂z
τ k1). In the two right-most graphs we notice

that the blue eddy is advecting the smaller red eddy, causing it to move
relative to the illustrated wavenumber.

masts) incorporated loss of correlation due to the afore-mentioned process of eddy
decay, but also loss of correlation due to larger eddies advecting smaller ones. In
the two right-most graphs of Figure 2.7 this process, which is also referred to as
sweeping, is illustrated by the blue eddy advecting the smaller red eddy. In the new
model, the loss of correlation is due to the movement of the red eddy relative to the
illustrated wavenumber.

The detailed formulation of the model is discussed in Paper D, in which the model
is validated versus Large Eddy Simulations obtained from the National Center of
Atmospheric Research (NCAR). The validation section also includes comparisons
with the experiments presented in Ott and Mann (2005), see the left-hand graph
of Figure 2.8. The new spectral tensor is found to perform significantly better than
any of the models evaluated in that, same, paper.

2.5 A model for the Lagrangian tensor

The Lagrangian approach can be described as observing the flow by tracking fluid
particles and recording their instantaneous velocities. If we follow one of the fluid
particles within the small red eddy of Figure 2.7 and use it to study the wavenum-
ber illustrated by the dashed black lines, then it is clear that the Lagrangian ve-
locity may lose coherence even when, as in this case, the blue eddy (which likely
contributes to the illustrated wavenumber) stays more or less coherent. Our as-
sumption is therefore that the evolution of the Lagrangian tensor is a combination
of eddy decay and the fluid particles moving relative to the eddies of which they
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Figure 2.8: Sum of covariances for all three components derived from the spectral
tensor (solid lines) compared to measured results for isotropic turbu-
lence presented in Ott and Mann (2005). To the left, Eulerian covari-
ance for various separations in space, r, and time. To the right, a
comparison between the Eulerian and the Lagrangian covariance for
r = 0.

are a part. Inspired by the Eulerian tensor and the above arguments, a model
for R̂L

ij(k, τ) of (1.5) is introduced in Paper D. In the right-hand graph of Figure
2.8, both tensors are validated versus measured data presented in Ott and Mann
(2005). We see that our models reproduce the cross-over of RL

ii(0, τ) and Rii(0, τ)
at approximately half the maximum value, a behavior also reported in Fung et al.
(1992).

The Lagrangian spectral tensor was a late discovery in the project, and it deserves
to be investigated and validated to a larger extent. It likely has applications, for
example, in the fields of dispersion and mixing, see the review in Yeung (2002) and
references therein.

2.6 The parameters of the spectral tensors

The Mann spectral tensor scales with the dissipation of turbulent kinetic energy,
ε, according to ε

2
3 . In practice it is convenient to combine ε

2
3 with the Kolmogorov

constant, to get αKε
2
3 . Furthermore the Mann spectral tensor depends on a length

scale parameter, LM , and a dimensionless parameter Γ and can thus be written

R̂ij

(
αε

2
3 , LM ,Γ,k, 0

)
.

For many applications, it is not obvious how to set the values of these input param-
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eters, and they can instead be determined by fitting the spectra as derived from the
spectral tensor to measured spectra (Mann, 1994). Paper C investigates how the
values of αε

2
3 , LM and Γ of the Mann spectral tensor, vary with height for the off-

shore site Rødsand II. Although the Mann spectral tensor was developed for neutral
atmospheric stability, Paper C follows Peña et al. (2010) and Chougule (2013) and
applies it also to non-neutral stability conditions.

The general behavior of the parameter values, obtained from the fitting procedure,
are consistent with the observations in Chougule (2013) and Peña et al. (2010)
except for the value of the parameter Γ, which in Paper C and in Chougule (2013)
decreases with degree of stability, while Peña et al. (2010) reports a more complex
behavior. The observed ratio between the mixing length, lmix = u∗/

(
∂U1

∂z

)
and LM ,

agrees reasonably well with the 1
1.70
≈ 0.59 presented in Peña et al. (2010).

High energy levels at low wave numbers are observed in the spectra, especially in
the streamwise and the transversal components, and are not matched in the Mann
spectral tensor spectra. Paper C argues that this is a contribution from the very
large scale quasi-geostrophic turbulence, discussed e.g. in Lindborg (1999) and
Tung et al. (2003), which is not included in the Mann spectral model description.

The spectral tensor of Paper D depends on the same input parameters as the
Mann (1994) tensor, except that it uses a slightly modified definition of Γ, and to
avoid confusion the new variant is instead denoted G. In the paper, the relationship
between the input parameters LM and G and the physical properties ε, u∗ and ∂U1

∂z

is investigated. A key result of this investigation is the left-hand graph of Figure

2.9, which shows the relationship between G and M
u2∗

∂U1
∂z

α
3/(2)
K ε

. The latter quantity can

be interpreted as the ratio between the turbulent energy production from the shear

gradient, u2∗
∂U1

∂z
, and the dissipation of kinetic energy, ε, times a constant Mα

− 3
2

K .
After G has been determined, LM is given explicitly. In the right-hand graph of
Figure 2.9, LM is related to the mixing length, lmix. This result can be compared to
the empirical investigation of the relationship between LM and lmix in Peña et al.
(2010).

In Paper D, we thus show that values of the input parameters for the spectral ten-
sor(s), αKε

2
3 , LM and G, are uniquely determined by ε, u∗ and ∂U1

∂z
, all being physi-

cal properties of the flow. We conclude by noting that if the production of turbulent
kinetic energy from the shear gradient, u2∗

∂U1

∂z
, is assumed to be equal to the dissi-

pation of kinetic energy, ε, then we have in Paper D shown that the friction velocity
and the mixing length determine the spectral tensor, that is, at least for neutral
atmospheric stratification.
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versus G shows that G is uniquely deter-

mined by the ratio between the turbulent energy production from the
shear gradient and the dissipation or turbulent kinetic energy. The
right-hand graph shows that the ratio lmix

LM
depends on G and thereby,

also this quantity depends on the ratio between the turbulent energy
produced from the shear gradient and the dissipation.
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Chapter 3

Conclusions and Outlook

Wind turbines within offshore wind farms spend considerable time operating in the
wake of neighboring wind turbines. An important contribution to the loads on a
wake-affected wind turbine is the slow movement of the wake from the upstream
wind turbine across the rotor of the wake-affected wind turbine. A new approach
to this so called wake meandering is proposed. Beyond the advantage of higher
physical realism, the new approach also offers practical advantages, compared to
the current state-of-the-art method of simulating meandering within a 3D field of
frozen turbulence.

An input to the new meandering approach is the time evolution of the spectral
velocity tensor. A spectral tensor, including such features, is therefore developed
based on a set of intuitive basic assumptions. For neutral atmospheric stratification,
the resulting spectral tensor predicts spatial correlations comparably to the Mann
(1994) tensor, and temporal coherence better than any of the models evaluated in
Ott and Mann (2005). As part of the framework, a spectral tensor for Lagrangian
correlations in space and time is also developed and validated versus measured
isotropic turbulence data. Combined, the models reproduce the cross-over point
between Eulerian and Lagrangian temporal covariances. This balance between
the Eulerian and Lagrangian temporal covariances could be further investigated in
order to validate some of the underlying modeling assumptions in more detail.

The values of all input parameters of the spectral tensor are shown to be uniquely
determined by the friction velocity, the shear and the dissipation of turbulent kinetic
energy, all of them physical properties of the flow. If local equilibrium between
the turbulent kinetic energy produced by shear and the turbulent kinetic energy
dissipated as heat, is assumed, then, for neutral atmospheric stratification, the
friction velocity and the mixing length uniquely determine the spectral tensor. The
problem of quantifying all correlations in space and in time (which has a large range
of engineering applications) is thus reduced to describing a handful of measurable
physical properties as function of observation height.

The developed spectral tensor depends on a dimensionless quantity M , and it
would be beneficial if this quantity can be determined with higher accuracy. An
experiment with this objective, studying the ratio between different components of
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the cross-spectra at known shear, is proposed in Paper D. Future work could also
include investigating if a Rapid Distortion formulation that also includes a term for
buoyancy effects, is needed in order to make accurate predictions for non-neutral
atmospheric stratification.

The next logical step would be to update the meandering model of Paper B, making
use of one of the spectral tensors of Paper D. If so, simplifications should be con-
sidered in the meandering approach, e.g. including the so called wake transport
velocity in a less complicated way. In Paper C, large scale quasi-geostrophic tur-
bulence (Lindborg, 1999; Tung et al., 2003) is observed, and it would be interesting
to investigate its contribution to wind turbine wake meandering.

As mentioned in the introduction the spectral tensor can be applied in the context of
lidar assisted feed forward control of wind turbines, as it quantifies the correlation
between the fluctuations measured at a distance and the turbulence that reaches
the rotor plane. The spectral tensor likely has numerous other applications.

The Lagrangian spectral tensor was a late discovery in the project, and it can be
investigated and validated to a larger extent. Presumably it also has applications in
the fields of dispersion and mixing.
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Appendix

Here our objective is to explore the consequences of setting

(1)R̂iso
ij (k, τ) = R̂iso

ij (k, 0)e−
1
2
a2〈u1u1〉|k|2τ2 .

It turns out that we can show that, for high Reynolds number flows, a approaches
1 in the inertial sub-range.

In the inertial subrange of high Reynolds number flows, viscosity should have neg-
ligible direct effect. We can then make the simplification of removing the viscous
term from the Navier-Stokes equations, which lands us with the Euler equations:

(2)
∂ũi(x, t)

∂t
+ ũj(x, t)

∂ũi(x, t)

∂xj
= −∂p(x, t)

∂xi

(3)
∂ũi(x, t)

∂xi
= 0.

Inserting ũ(x, t) = (x3
∂U1

∂z
, 0, 0) + u(x, t) for ∂U1

∂z
= 0 into (2) and using (3) yields

(4)
∂ui(x, t)

∂t
+
∂ (ui(x, t)uj(x, t))

∂xj
= −∂p(x, t)

∂xi
. .

As in Paper D, we will avoid the Fourier-Stieljes representation, and instead use
the more intuitive (but less stringent) notation

(5)u(x, t) =

∫∫∫
û(k, t)eik·xd3k.

for the Fourier transform of the wind field.
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Inserting (5) into (4) gives us

∂ûi(k, t)

∂t
=− i kj

∫∫∫
ûi(κ, t)ûj(k − κ, t)d3κ− i kip̂(k, t), (6)

where p̂(k, t) has been introduced such that p(x, t) =
∫∫∫

p̂(k, t)eik·xd3k.

We now limit the analysis to a specific wave number, k1 = (k1, 0, 0), within the
inertial subrange, for which we study only the second velocity component, i.e. i =
2, which means that the pressure term disappears, since k2 = 0. If we then multiply
both sides by their respective complex conjugates, we get〈

∂û2(k1, t)

∂t

∂û2(k1, t)

∂t

〉
=

〈
i k1

∫∫∫
û2(κ, t)û1(k1 − κ, t)d3κ (7)

i k1

∫∫∫
ζ

(
û2(ζ, t)û1(k1 − ζ, t)

)
d3ζ

〉
=

〈
k21

∫∫∫ ∫∫∫
û2(κ, t)û1(k1 − κ, t)

û2(ζ, t)û1(k1 − ζ, t)d3ζ d3κ
〉
.

We are working under the assumption that the turbulence field is homogeneous,
which means that all statistics should be invariant under translation. For the inte-
grand of right-hand side of (7), this implies that

(8)

〈
û2(κ, t) û1(k1 − κ, t) û2(ζ, t) û1(k1 − ζ, t)

〉
=
〈
e− iκ · r û2(κ, t) e

i(k1−κ) · r û1(k1 − κ, t)

ei ζ · r û2(ζ, t) e
− i(k1−ζ) · r û1(k1 − ζ, t)

〉
=
〈
û2(κ, t) û1(k1 − κ, t) û2(ζ, t) û1(k1 − ζ, t)

〉
ei(2ζ−2κ) · r

is true for an arbitrary r. This means that both sides of (8) has to be zero for ζ 6= κ.
Multiplying both sides of (7) by d3k = dk1dk2dk1 and applying (8) we get〈

d3k
∂û2(k1, t)

∂t

∂û2(k1, t)

∂t

〉
=

〈
d3k k21

∫∫∫ ∫∫∫
û2(κ, t)û1(k1 − κ, t)

û2(ζ, t)û1(k1 − ζ, t)d3ζ d3κ
〉

=k21

∫∫∫ 〈(
d3κ
)2 |û2(κ, t)|2 |û1(k1 − κ, t)|2

〉
d3κ

=k21

∫∫∫
R̂22(κ, 0)R̂11(k1 − κ, 0)d3κ, (9)
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where in the last step we have assumed

Cov
(
|û2(k, t)|2, |û1(κ, t)|2

)
= 0 (10)

for k 6= ±κ. This assumption seems reasonable to make, since there is no reason
to be believe that |û2|2 and |û1|2 are correlated for different wave numbers, when û2
and û1, due to homogeneity, are not. We note, however, that we can alternatively
show the last step of (9) by assuming that the Fourier components of the wind field
are jointly Gaussian and then applying Isserlis’ Theorem (Isserlis, 1916).

Regarding the left-hand side of (9)

(11)
〈

d3k
∂û2(k1, t)

∂t

∂û2(k1, t)

∂t

〉
= −∂

2R̂22(k3, 0)

∂τ 2

= k21a
2〈u1u1〉 R̂22(k1, 0).

where in the last step, we have inserted (1). Combining (11) with (9) and isolating
a2 gives us

(12)
a2 =

∫∫∫
R̂22(κ, 0)R̂11(k1 − κ, 0)d3κ

R̂22(k1, 0)〈u1u1〉

≈
R̂22(k1, 0)

∫∫∫
R̂11(κ, 0)d3κ+ R̂11(k1, 0)

∫∫∫
R̂22(κ, 0)d3κ

R̂22(k1, 0)
∫∫∫

R̂11(κ, 0)d3κ
= 1.

In the approximation step of (12) we have, in the numerator, used the fact that
outside the energy containing range R̂ij(k, 0) is both slowly varying and very small,

and in the last step, we have used R̂11(k1, 0) = 0 owing to incompressibility.
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Abstract  
The present study investigates a new approach for capturing the effects of atmospheric stability on wind 
turbine wake evolution and wake meandering using the dynamic wake meandering model. The most 
notable impact of atmospheric stability on the wind is the changes in length and velocity scales of the 
atmospheric turbulence. The length and velocity scales in the turbulence are largely responsible for the 
way in which wind turbine wakes meander as they convect downstream. The hypothesis of the present 
work is that appropriate turbulence scales can be extracted from the oncoming atmospheric turbulence 
spectra and applied to the dynamic wake meandering model to capture the correct wake meandering 
behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, 
where the effects of non-neutral atmospheric stability are approximated by the selection of input 
parameters.  
 
In order to isolate the effect of atmospheric stability, simulations of neutral and unstable atmospheric 
boundary layers using large-eddy simulation are performed at the same streamwise turbulence intensity 
level. The turbulence intensity is kept constant by calibrating the surface roughness in the 
computational domain. The changes in the turbulent length scales due to the various atmospheric 
stability states impact the wake meandering characteristics and thus the power generation by the 
individual turbines.  
 
The proposed method is compared with results from both large-eddy simulation coupled with an 
actuator line model and field measurements where generally good agreement is found with respect to 
the velocity, turbulence intensity, and power predictions. 
 

Introduction 
The dynamic wake meandering (DWM) model is a low-fidelity wind turbine wake model which was first 
developed at Risø DTU in 2003 (Madsen et al. [1, 2] and Larsen et al. [3]). The objective of the DWM 
model is to capture the large-scale meandering motion of the wake deficit as it convects downstream 
and predict the resulting wind turbine loads and power production, with a computational cost 
significantly lower than computational fluid dynamics (CFD). The wake deficit development and its 
meandering motions have been identified through field observations as the dominant factors in the 
production of wind turbine fatigue loads. An important observation is that large-scale movements of the 
wake deficit affect the loads of a wind turbine differently than small-scale turbulence. This implies that 
describing the wake turbulence with a single turbulence intensity parameter, as in the case of the 
Frandsen model [4], is not sufficient to accurately account for the effects of wake operations on a wind 
turbine. 

 



34 Paper A

 

DTU Wind Energy PhD-0012 (EN) 192 

 
In the DWM model, this effect is captured by assuming a split in turbulence scales in which the small-
scales affecting the wake deficit evolution can be treated independently from the large turbulent scales 
that drive the meandering of the wake. Larsen et al. [3] provide a thorough description of the wake 
meandering method in the DWM, and propose a “cut-off eddy size,” which distinguishes the small-scale 
turbulence (affecting the wake deficit evolution) from the large-scale turbulence (governing the wake 
meandering) of two rotor diameters. The meandering approach is validated with measurement data 
from the Tellus rotor (Bingöl et al. [5] and Trujillo et al. [6]). The wake meandering motion was 
measured using a LIDAR unit mounted on top of the nacelle. 
 
The wake deficit model implemented in the DWM is based on the work of Ainslie [7, 8]. Ainslie applied a 
thin shear layer approximation of the Navier-Stokes (N-S) equations in which the turbulent closure is a 
simple eddy viscosity formulation. This method predicts the mean wake flow behind a wind turbine. 
Recently, an improved eddy viscosity model was proposed by Keck et al. [9], where a two-dimensional 
eddy viscosity model was included in the DWM model to better represent the radial distribution of the 
turbulent energy.  
 
The DWM model also includes an expression to account for wake-added turbulence, turbulence created 
in the wake shear layer that is in addition to the ambient turbulence. Madsen et al. [10] implemented a 
wake-added turbulence formulation based on the local depth and the radial gradient of the wake deficit. 
While this correction well accounts for additional mechanical loads caused by the small-scale 
turbulence, it is not coupled to the wake deficit evolution and does not affect the development of the 
wakes of downstream rotors. An alternative method to capture wake-added turbulence is described by 
Keck et al. [11], where the turbulent stresses in the oncoming wake are used to calculate the wake 
turbulence intensity level at the next downstream turbine. Furthermore, the wake-added turbulence in 
this formulation is coupled to the wake deficit evolution at the downstream rotor, allowing for increased 
turbulence to build-up over a row of wind turbines.  
 
The present work is aimed at developing a model to capture atmospheric stability effects in the DWM 
model. The impact of atmospheric stability on turbine wake evolution has been shown in the past. 
Ainslie [7] investigated the effect of atmospheric stability on meandering wakes as early as in the 1980s. 
However, as pointed out by Barthelmie et al. [12], few current engineering wake models incorporate the 
effects of atmospheric stability.  
 
The fundamental process of atmospheric stability is well described by Obukhov [13] and Monin and 
Obukhov [14], in which the buoyancy-induced momentum and heat transfer affect both the turbulent 
length and velocity scales of the atmospheric boundary layer (ABL). A correction for the effects of stable 
stratification was proposed by Businger et al. [15]. The effect on ABL shear was later verified 
experimentally by Kirchhoff and Kaminsky [16]. In later work, a simple model for the effects of 
atmospheric stability on shear was also proposed by Irvin et al. [17], including a correction for stable 
stratification by Zoumakis [18]. 
  
The effect of atmospheric stability on wake evolution, turbine loads, and power production has become 
an emerging research topic. A number of studies have documented the influence of the atmospheric 
stability on turbine loads and power both experimentally (Barthelmie et al. [19], Wharton et al. [20], 
Schepers et al. [21], and Hansen et al. [22]) and numerically (Sathe et al. [23], Churchfield et al. [24], Lee 
et al. [25], and Lavely et al. [26]). The physical mechanism of the non-neutral ABL is to enhance 
(unstable) or dampen (stable) turbulent fluctuations through buoyancy forces. A modified turbulence 
length scale is another important feature of the non-neutral ABL. Peña et al. [27] showed that modelling 
atmospheric stability effects by modifying the turbulence intensity alone is not sufficient. Both the shift 
in length and velocity scale should be explicitly modelled to capture the full effect of the non-neutral 
atmosphere.  
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The work presented in this paper is a continuation of the research described by Keck et al. [11]. An 
important aspect of that article was that a strain-rate contribution from the ABL needs to be included in 
the wake deficit calculations to accurately model the turbulent stresses in the DWM model. The effect 
of the strain-rate contribution and the build-up of turbulence over a row of turbines were shown for 
neutral stratification. The present study will build upon the previous model augmentations to capture 
the effect of atmospheric stability on the wake dynamics. Since the length and velocity scales of the 
atmospheric turbulence change as a function of atmospheric stability, the fraction of ambient turbulent 
energy that affects the wake deficit evolution and the fraction that affects wake meandering, as well as 
the ABL shear, will change.  
 
The objectives of this work are to: 

1. Incorporate the effect of non-neutral stratification on the wake evolution in the DWM model 
2. Quantify the effects on the flow field and power production of wake-affected turbines by the 

proposed correction 
3. Validate the atmospheric stability corrected DWM model to reference data.  

 
The article will first give a description of the DWM model as formulated prior to the atmospheric 
stability effect implementation to serve as baseline in the code frame-work development. This is 
followed by a brief description of the large-eddy simulation (LES) combined with an actuator line (AL) 
rotor model used to validate the proposed method. The next sections briefly describe the fundamental 
physics of the atmospheric stability followed by the formulation of the stability model in DWM. Finally, 
the result section shows 1) the effect of atmospheric stability on the ambient turbulent spectra, wake 
meandering, and the power production of wake-affected turbines; 2) the effect of the included 
atmospheric stability formulation in the DWM model; and 3) a validation of the proposed DWM model 
to predict the wake evolution in non-neutral atmospheric conditions by comparing the flow field and 
power production to the LES-AL model and field data from the North Hoyle and OWEZ offshore wind 
farms.  
 

Dynamic Wake Meandering model 
The baseline version of the DWM model used in this study is based on Madsen et al. [2], but employs 
the two-dimensional eddy viscosity model proposed by Keck et al. [9] and the wake-added turbulence 
with a strain-rate contribution from the ABL, also proposed by Keck et al. [11]. The wake meandering 
applied is based on the same principles as proposed by Larsen et al. [3]; however, a wake transport 
velocity equal to 80% of the free-stream velocity (as proposed by Keck at al. [28]) is employed rather 
than using the full free-stream velocity as proposed by Larsen et al. [3]. 
 

Wake deficit module 
The wake deficit in the DWM model is governed by the steady state, axisymmetric thin shear layer 
approximation of the Navier-Stokes (N-S) equations in which momentum is governed by 
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) (1) 

 
and continuity is maintained through 
 
 

 

 

  
     

  

  
   (2) 

 
In these equations, the velocity components u and v are in the mean flow (x) and radial (r) directions, 

respectively, and t is the eddy viscosity. The turbulent diffusion is accounted for with an eddy viscosity 
formulation based on the following mixing length model described in dimensionless from by the 
equation, 
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           |

  

  
|

     
 (3) 

 
where kamb DWM  and k2 DWM are model constants (the kamb DWM constant includes a length scale based on a 
hub-height equal to 2R), TIamb and Uamb is the ambient turbulence intensity (std(u)/ Uamb) and mean 
velocity at hub-height, and l* is the turbulence mixing length of the wake-added turbulence. F1 and F2 
are filter functions that govern the development of turbulent stresses in the absence of a transport 
equation for turbulence. The details and motivation for this turbulence formulation are provided in Keck 
et al. [9] and the boundary condition and filter functions applied in this work are descried in Keck et al. 
[11].  
 
Before applying the eddy viscosity from eq. (3) in eq. (1), it is scaled to include a strain-rate contribution 
due to the ABL shear, du/dz ABL by eq. (4) and (5). 
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 (5) 

where du/dr DWM is the azimuthally average wake velocity gradient in the wake deficit region modelled 
by the DWM model, du/dr TOTAL is total velocity gradient with the ABL shear contribution included, and α 

is the angular locations where the effect of the atmospheric shear in cylindrical coordinates is larger 

than the wake deficit shear. α1 and α2, are found by arcsin(
  

     
 

  

     
) and π-α1 respectively. The 

details of this correction can be found in Keck et al. [11]. The equation system described by eqs. (1) - (5) 
is solved using a finite-difference scheme, in which a second-order central-difference scheme in the 
radial direction and a first-order upwind scheme in the mean flow direction are applied. As information 
only moves along the mean flow direction, a solution can be obtained by “marching” downstream, 
solving each axial position sequentially.  
 

Turbulence intensity in the deficit module 
The wake-added turbulence in the DWM model is used to include the contribution of small-scale 
turbulence generated by the shear layer in the wake at the downstream turbine. This affects the loads 
and induction of the downstream turbine; however, the most important effect is the influence on the 
wake evolution of the wake-receiving turbine. The wake-added turbulence is calculated directly by the 
turbulent stresses in the wake deficit calculation as  
 

              (√
 

      (    
      

 )
                   )   (6) 

 
where the coefficient Cu’w’ and the ratio     

      
  describe the relationship between axial and radial 

turbulent fluctuations in the wake. These relations are different compared to atmosphere turbulence 
due to the significantly smaller length scale and the increased degree of anisotropy of wake turbulence. 
In this work, the correlation coefficient is given the value 0.3, and the ratio     

      
  is set to unity 

based on the findings of Larsen et al. [29]. The subscript MFoR denotes “meandering frame of 
reference”, i.e., expressed in the reference frame following the centre of the wake deficit and the 
meandering movements.  
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The effect of wake meandering  
The DWM deficit module outputs the wind speed and turbulence intensity distribution in MFoR (i.e., 
without any large-scale movements). The meandering can be viewed as a series of wake segments in 
which the wake centre has a stochastic offset in lateral and vertical direction according to some 
statistical distribution. If the distribution of the meandering is known, it is possible to calculate the 
average wind field and turbulence intensity in the FFoR as the convolution of the deficit in the MFoR 

(both wind speed and variance, i.e., the square of            from eq. (6)) and the distribution of the 
wake centre in the vertical and lateral direction due to wake meandering as follows: 
 
               ∬                                        (7) 
 
In this equation,   represent the wind speed or variance, y-ym and z-zm are the local coordinates in the 
MFoR, and PDFm is the probability density function for the meandering distribution. The subscripts FFoR 
and MFoR refer to fixed and meandering frame of reference (i.e., the probability of finding the wake 
centre at a certain location in a fixed plane perpendicular to the flow direction). The method used to 
find this meandering distribution is described in the “wake meandering as a function of atmospheric 
stability” section. The distribution of mean velocity and turbulence intensity in FFoR, given by eq. (7), is 
used to 1) estimate the “ambient conditions” at downstream rotors to allow for intra-turbine coupling, 
and 2) find the mean flow field in the simulation domain.  For more information see Keck et al. [11].  
 

Atmospheric stability  
Atmospheric stability is related to the vertical distribution of virtual potential temperature, which has an 
important effect on the turbulence in the atmosphere due to buoyancy effects. Virtual potential 
temperature is the absolute temperature, with the temperature change due to expansion with altitude 
and moisture effects removed. In a stable atmosphere, the buoyancy forces suppress the vertical 
fluctuations, whereas the vertical fluctuations are enhanced in an unstable atmosphere. The neutral 
condition, in which buoyancy effects have negligible influence on the vertical turbulence, is only 
experienced a fraction of the time in the atmosphere (see Sathe et al. [23]).  
 
The stability of the atmosphere is dictated by the direction of the heat transfer at the surface. When 
heat is transferred from the surface upwards this leads to an unstable ABL in which air of higher virtual 
potential temperature lies under air of virtual lower potential temperature.  When the heat flux is 
directed into the surface, the air becomes cooler near the surface, and the ABL is stable. In simple 
terms, this can be expressed by saying that when the surface is warmer than the air, an unstable 
atmosphere will develop and when the surface is cooler than the air, the ABL will be stable (Stull [30]).  
 
The most common measure to characterise atmospheric stability is the Monin-Obukhov length scale (M-
O length), see Obukhov [13],  
 

    
  
̅̅̅̅   

 

  (    
 ̅̅ ̅̅ ̅̅ ̅)

 

 (8) 

 
where θv is the virtual potential temperature, κ is the von Karman coefficient, g is the gravitational 
constant, and u* is the friction velocity. The overbar denotes time averaging and the prime symbol (‘) 
denotes fluctuation about the mean value. The physical meaning of the M-O length scale is that it is the 
height above the ground at which the production of turbulent energy due to buoyancy effects is equal 
to turbulent production due to the strain-rate of the velocity field.  It is thus an estimate of the height at 
which buoyancy effects become important for the turbulence dynamics (Wyngaard [31]). This 
interpretation of the M-O length shows that numbers of large absolute value indicate near-neutral 
atmospheric stability, since it indicates that buoyancy-driven turbulence is negligible in a large part of 
the boundary layer, and numbers of small absolute value represent strong influence of buoyancy. The 
sign of the length scale indicates the direction of the heat flux and, thereby whether the atmosphere is 
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stable or unstable. The exact numbers used to characterise the stability classes as a function of M-O 
length varies between sources. For this investigation, the definition of Peña et al. [27], given in table 1, is 
used. 
 
Table 1, the classification of atmospheric stability as a function of Monin-Obukhov length 
Stability class very 

stable 
stable near 

stable 
neutral Near 

unstable 
unstable very 

unstable 
M-O Length 10 < L < 

50 
50 < L < 

200 
200 < L < 

500 
abs(L) > 

500 
-500 < L < 

-200 
-200 < L < 

-100 
-100 < L < 

-50 
 

Mann turbulence model 

The Mann turbulence model [32, 33] combines an eddy-lifetime assumption with rapid distortion theory 
to transform an isotropic spectral tensor to an anisotropic spectral tensor. The anisotropic spectral 
tensor,      , depends on three input parameters to characterise the turbulence: the product of the 

spectral Kolmogorov constant and the rate of dissipation to the power of two-thirds (      , turbulence 
length scale (     ), and degree of anisotropy (Γ). The Mann turbulence model can be used to generate 
a three-dimensional box containing random incompressible anisotropic turbulence. In applications it is 
customary to interpret the streamwise dimension as dependent on time using Taylors frozen turbulence 
assumption. 

The spectral tensor can be used to find the power density spectra of any Reynolds stress component in 
any direction by spectral integration in the spectral tensor in Fourier space.  
 

        ∫ ∫             
 

  

 

  
 (9)   

 
As the spectral tensor itself is the Fourier transform of the (idealised) correlation function of the 
turbulence, it can also be used directly to calculate statistical properties of the synthetic turbulence by 
inverse Fourier transform according to the relation, 

       ∫        
       

 

  
             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (10) 

From this it follows that the integral turbulent length scale in any direction can be found by eq. (11). 

    ∫
      

      

        

 
   (11) 

As indicated by the upper integration limit, the integration should only be carried out over the initial 
region with positive correlation. The turbulence velocity scale (or friction velocity),     can also be 
obtained by the correlation function using eq. (12), where R13(0) is the equivalent to the shear stress 
<    ̅̅ ̅̅ ̅̅ >.  

    √|      |  (12) 

The Mann turbulence model is derived to generate atmospheric turbulence in neutral stratification. 
However, Peña et al. [27] showed that with appropriate parameter selection the Mann model can be 
used to generate atmospheric turbulence with similar characteristics as non-neutral atmospheric 
turbulence. By applying the Mann parameters suggested by Peña et al. [27] and using eqs. (9)-(12) it is 
possible to estimate Reynolds stresses and turbulent length and velocity scales of the atmospheric 
turbulence in non-neutral atmospheric conditions.  
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Incorporating atmospheric stability effects into the DWM model 
The eddy viscosity formulation used in the DWM model was not derived to include buoyancy effects due 
to non-neutral atmospheric stability. The hypothesis of this work is that the effects of atmospheric 
stability can be emulated in the DWM model by changing the length and velocity scales of the 
atmospheric turbulence. The characteristic length scale for an unstable atmosphere is larger than for a 
neutral or stable atmosphere. The effect of this shift in turbulent length scale spectra of the atmospheric 
turbulence is illustrated in Figure 1. The turbulence, which affects the wake meandering versus the wake 
deficit evolution, can be separated by applying filter based on the jinc-function (Goodman [34], for more 
details see eq. (15)). It can then be seen that the atmosphere turbulence spectra in an unstable 
atmosphere (top row) has a smaller portion of energy in the scales affecting the wake deficit evolution 
(right figures), and a larger portion in the wake meandering scales (middle figures) compared to the 
stable case (bottom row). The black line included in the left figures shows the jinc-function filter. 

To illustrate the effect of atmospheric stability on wake simulations with the DWM model, consider the 
situation in which atmospheric stability is varied while maintaining constant turbulence intensity (where 
turbulence intensity only accounts for variance in the streamwise flow). The atmospheric turbulence 
velocity scale (  

   ) will be approximately constant as a consequence of the constant the turbulence 
intensity. The turbulence length scale of the atmosphere (     ), however, will vary as a function of 
atmospheric stability. This will have three important effects on the wake dynamics of the DWM model: 
 

1. The ABL shear that is input to the DWM model deficit equation via eq. (4) would increase with 
increasing atmospheric stability. Shorter length scales means larger vertical velocity gradients. 
 
  

     
 

  
   

     
 (13) 

 
2. The turbulent energy in scales larger than 2D, affecting the wake meandering, decreases with 

increasing atmospheric stability.  
 

3. For a given turbulence intensity, the amount of energy in scales smaller than 2D, which is 
assumed to affect the wake deficit evolution, increases with increasing atmospheric stability. 

 

ABL length and velocity scales as a function of atmospheric stability 
By applying the parameters suggested by Peña et al. [27] in the Mann model, the turbulent energy 
spectra in the non-neutral atmosphere can be approximated. The resulting spectral tensor can be used 
to estimate the atmospheric turbulent length scale as a function of atmospheric stability using eq. (11). 
The velocity scale of the atmospheric turbulence can be computed from eq. (12), but as the ambient 
turbulence intensity is an input parameter to the DWM model, it is more practical to relate the 
turbulence velocity scale to the turbulence intensity. This is achieved by integrating the energy content 

of the normal stress in flow direction (    ̅̅ ̅̅ ̅̅ ) and the shear stress (-    ̅̅ ̅̅ ̅̅ ) in the Mann turbulence spectra 
given by eq. (9). The ratio of the two Reynolds stresses is now a function of atmospheric stability and 
can be used to calculate the normalized turbulent velocity scale in all atmospheric stability classes from 
the ambient turbulence intensity using the relation, 
 

  
    [(     

      ̅̅ ̅̅ ̅̅ ̅

    ̅̅ ̅̅ ̅̅ ̅ )]

 
 ⁄

 (14) 

 
The parameters suggested by Peña et al. [27] are given as a function of height, which means that the 
resulting turbulence scales in the DWM model will be height dependent. In the previous version of the 
DWM model, the length scale of atmospheric turbulence is not explicitly given, and is invariant with 
respect to the height of the tower relative to the rotor radius (i.e., the length scale normalized with 
turbine radius has been assumed to be constant). However, as the length scale of the atmospheric 
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turbulence needs to be explicitly included in the wake deficit calculation of the DWM model to capture 
the effect of atmospheric stability, the height dependence on the turbulence length scale may also be 
incorporated.  
 
Figure 2 shows the dependence of the turbulent velocity scale (left), length scales (middle), and shear 
(right) of the ABL on height and atmospheric stability at a fixed turbulence intensity. From the figure it 
can be seen that the turbulence velocity scale, which is related to turbulent shear stress, in the ABL is 
nearly invariant with both height and atmospheric stability. The fact that the velocity scale is nearly 
invariant with height is expected, as the turbulent shear stress is nearly constant in the lower part of the 
boundary layer.  However, the fact that the velocity scale in the boundary layer is constant as 
atmospheric stability is varied is interesting. This requires the shear stress to be invariant with 

atmospheric stratification. The shear stress can be rewritten as:      ̅̅ ̅̅ ̅̅ = u’RMSw’RMSCu’w’, where u’RMS and 
w’RMS are the standard deviation of the fluctuation velocities in streamwise and vertical direction, and 
Cu’w’ is the correlation coefficient between the two fluctuating components. This means that the 
decrease in vertical turbulence (w’RMS) in stable stratification is balanced by the stronger correlation 
between streamwise and vertical fluctuations (Cu’w’), which is presumably due to the increased ABL 
shear. 
 

 
Figure 1, the turbulent energy spectra for very unstable (top row) and very stable (bottom row) 

atmospheric conditions derived using the Mann model with the parameters suggested by Peña et al. 

[27]. The left figures show the turbulent energy spectra in all scales, the middle figures show the 

turbulent scales which affect the wake meandering, and the right figures show the turbulence which 

affects the wake deficit evolution. The black line in the right figures show the filter based on the “jinc” 

function applied to separate the turbulence affecting the wake meandering and the wake deficit 

evolution. 
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Figure 2: turbulent velocity scale, length scales, and shear in the ABL as a function of height and 

atmospheric stability. 

 

Wake meandering as a function of atmospheric stability 
The wake meandering in the DWM model is calculated based on the turbulent eddies experienced by a 
circular disc in the oncoming wind field, as described by see Larsen et al. [3]. This approach is motivated 
by the assumption that the wake acts as a passive tracer in the turbulence field (i.e., the movements of 
the wake are completely dictated by the large-scale turbulent fluctuations of the oncoming flow). Based 
on this assumption, the effect of atmospheric stability can be included directly by using the Mann 
turbulence corrected for non-neutral atmospheric turbulence, as described by Penã et al. [27], as input 
to the meandering algorithm.  
 
The physical principle used to find the wake meandering is as suggested by Larsen et al. [3], but two 
modifications to the method are made. The wake transport velocity applied to the meandered wake 
deficit in the turbulence field is reduced to 80% of free-stream velocity based on the results of Keck et 
al. [28]. The effect of this modification is shown in Figure 3. 
 

 
Figure 3: Wake meandering in the DWM model using a wake transport velocity of 80% (dashed lines) 

and 100% (solid lines) of the ambient wind speed. 
 

 
Furthermore, the computational algorithm used in this work is different. Instead of averaging the wind 
field over the disc at every time step, as is the current method, a more computationally efficient 
technique is to “pre-multiply” the wind field with the circular disc to form “the wind field as seen by a 
circular disc”. This pre-multiplication operation is a convolution and can be carried out as a 

 



42 Paper A

 

DTU Wind Energy PhD-0012 (EN) 200 

multiplication in Fourier space, provided that the wind field and the circular disc have Fourier 
transforms. As the random wind field is generated in Fourier space and the transform of the circular disc 

is given by:  
   | |  

| | 
 (Goodman [34]), where    is a Bessel function of the first kind,   is the wave number 

and   is the rotor radius, in this application this is a feasible approach. For wake meandering under the 
passive tracer assumption, the turbulent wind speed should be averaged over the disc. Assuming that 
the rotor disc is oriented perpendicular to the x-axis, the filter equivalent to the rotor averaging 
becomes eq. (15), which as mentioned above is often called the bessinc or jinc function, 
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 (15) 

 
In order to apply eq. (15) to the spectral tensor in the Mann model, the spectral tensor is expressed in 

polar coordinates (√  
    

                    and   ) and the integration in eq. (9) is performed 

over the two latter coordinates, resulting in eq. (16). 
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In eq (16), the jinc-function is squared as a result of the multiplication of two wind speeds in eq. (10). 
Note that this squared jinc-filter can be applied outside of the integration, and this is the reason for 

using √  
    

  as the dependent variable, e.g., in figure 2.  

 
The algorithm used in this work to simulate meandering then becomes as follows: 

1. Use the Mann turbulence model to generate random Fourier coefficients in three dimensions.  
2. Multiply each Fourier component with eq. (15). 
3. Wake-segments are released at the wake-emitting turbine at a frequency of 1Hz. The wake-

segments travel downstream with a velocity of 80% of the ambient wind speed (based on the 
findings of Keck et al. [28]), which is referred to as the “wake transport velocity” (Uwake). The 
frozen turbulence box travels along the flow with the ambient wind speed. Consequently, the 
wake deficit travels at a negative speed of -20% of the ambient wind speed relative to the 
frozen turbulence field.  

4. At every time step, the position of each emitted wake-segment is updated based on the 
fluctuating velocities in the streamwise, lateral and vertical direction, which are calculated 
based on the current position in the turbulence box. To avoid interpolation as the wake-
segments move relative to the turbulence box, which otherwise causes a reduction of turbulent 
energy, the velocity at the location of the wake-segment is found by applying the definition of 
inverse Fourier transform (which is continuous and can be used to find the velocity at any 
location in the field, contrary to the inverse fast Fourier transform (IFFT) to generate turbulent 
fluctuations in a box of fixed spatial resolution as is commonly done). 

5. Finally, when all the wake-segments have reached the desired downstream distance, the wake 
meandering is scaled by a factor determined by the square root of the ratio of the expected 
meandering energy to the total captured meandering energy. This ratio is a function of the 
dimensions of the turbulence box chosen.  

 
Figure 4 shows the wake meandering as a function of atmospheric stability class and height. The wake 
meandering is quantified as the standard deviation of the wake centre position in lateral and vertical 
direction normalized by the rotor radius. The dependence on atmospheric stability is dominant 
compared to that of tower height, with the selected levels.  
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Figure 4: Wake meandering 6D downstream of the wake-emitting turbine as a function of height and 

atmospheric stability. 

 

Wake deficit evolution as a function of atmospheric stability 
Based on the assumption of the “split in scales” in the DWM model, the part of the ambient turbulence 
that affect the wake meandering is assumed not to influence wake deficit evolution in meandering 
frame of reference. Therefore the effect of the ambient turbulence on the wake deficit evolution can be 
calculated by subtracting the energy contributing to the wake meandering. As discussed in the previous 
section, the meandering process uses a disc-averaged turbulent wind speed. This averaging operation is 
equivalent to multiplication of the spectral tensor in Fourier space by the filter described by eq. (15). 
The remaining part of the spectral tensor thus results in the relation, 
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The length scale of the wake deficit turbulence can be found by applying the spectra tensor for the wake 
deficit turbulence,         , in eq. (11). The normalized velocity scale of the wake deficit turbulence 

(  
   ) is related to the atmospheric stability and the ambient turbulence intensity by the ratio of 

Reynolds stresses in the “deficit scales”, eq. (17). 
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λ represents the wavelength of a turbulent eddy. Consequently, the subscript λ<2D in eq. (18) indicates 
that the spectral integration is effectively only carried out over turbulent eddies smaller than 2 rotor 

diameters, as the rightmost term of eq. (17) removes most of the energy in scales where   
  

 √  
    

 
 

  . Thus the rightmost term of eq. (17) works as a high pass filter.  
 
The length and velocity scale on the ambient turbulence, including the effect of atmospheric stability, is 
described by eqs. (11) and (17), and eq. (18), respectively. By applying these expressions into the first 
term of eq. (3), it is possible to form an expression for eddy viscosity which incorporates stability effects. 
This is done by explicitly including the turbulent length scale of atmospheric turbulence in the equation 
(it was previously included in                                   ), and replacing TIamb by   

   . 
 

 



44 Paper A

 

DTU Wind Energy PhD-0012 (EN) 202 

             
    

 
    

     
  |

  

  
|

     
 (19) 

 
Note that the new model constant for eddy viscosity due to ambient turbulence (k1 DWM), no longer 
includes a length scale, and is dimensionless. Instead, the length scale is explicitly given as a function of 
atmospheric stratification and hub-height. 
 
Figure 5 shows the dependence of the turbulent velocity (left) and turbulent length (middle) scales and 
of wake deficit turbulence on height and atmospheric stability, together with the eddy viscosity in the 
DWM deficit evolution that is dependent on the ambient turbulence (right). Similar to the behaviour 
with the wake meandering, it can be seen that atmospheric stability has a much stronger influence on 
the eddy viscosity in the wake than tower height, with the selected levels. Furthermore, it can be seen 
that the eddy viscosity of the wake deficit increases approximately linearly in stable stratification but is 
close to invariant with height above 1,5R in unstable stratification. 
 

 
Figure 5: Turbulent velocity and length scales which affect the wake deficit evolution, together with the 

eddy viscosity contribution due to ambient turbulence as a function of height and atmospheric stability.  
 

Large-Eddy Simulation and Actuator Line Model  
Validation of the atmospheric stability effects in the DWM is performed by comparing the turbulence 
and velocity fields with results from large-eddy simulation (LES) coupled with actuator lines (AL). The 
LES-AL simulations are performed with tools created at the U.S. National Renewable Energy Laboratory’s 
(NREL) as part of the Simulator for Off/Onshore Wind Farm Applications (SOWFA) [35]. The tools are 
based on the Open-source Field Operation and Manipulation (OpenFOAM) [36] computational fluid 
dynamics (CFD) toolbox, which is a collection of libraries, written in object-oriented C++, that is meant to 
solve complex partial differential equations using the finite-volume formulation. Parallelization is 
included in these libraries using the Message-Passing Interface (MPI). OpenFOAM comes with a number 
of standard solvers and libraries for different physical models, such as models for turbulence. The 
creation of custom solvers and libraries is fairly straightforward because of the highly layered object-
oriented nature of the code. The solver used for these LES-AL simulations is a custom OpenFOAM-based 
solver designed specifically for LES of the atmospheric boundary layer. It is coupled to a custom AL wind 
turbine model library. A more thorough description is given by Churchfield et al. [24] 
 

Simulation Process 
Simulations were carried out over flat terrain under either neutral or stable conditions. The domain size 
in each case is 4 km in each horizontal direction and 1 km in the vertical direction. The driving pressure 
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gradient is adjusted such that the hub-height mean wind is out of the southwest, and a capping 
inversion is initially placed at 700 m above the surface.  
 
First, a precursor atmospheric boundary layer LES is performed with no turbines on a mesh of uniform 
12 m resolution. The lateral boundary conditions are periodic, the top is treated as a stress-free wall, 
and the surface stress model is applied to the lower surface. Time stepping is such that the local 
maximum Courant number never exceeds 0.75. Once the simulation reaches a quasi-equilibrium state, 
in which the mean wind begins to undergo gentle inertial oscillations and turbulence is fully developed 
up to the top of the boundary layer (which is capped by the capping inversion), the velocity and 
potential temperature field on the south and west boundaries are saved every time step for 2000 
additional seconds. Also, the volume velocity and temperature field are saved once, at the start of quasi-
equilibrium. For the neutral and unstable simulations, the quasi-equilibrium state is reached at 16000 s 
and 14000 s, respectively. The saved boundary and volume data are used as boundary and initial 
conditions, respectively, for the subsequent wind farm simulation. The surface temperature flux used in 
the neutral and unstable conditions was 0 and 0.02 K-m/s, respectively, and the surface roughnesses 
were 0.0003 m and 0.0002 m, respectively. These conditions yielded nearly the same hub height 
turbulence intensity (based on the variance of flow in the mean wind direction), but significantly 
different hub height turbulent kinetic energy (based on all three components of the velocity). 
 
Once the precursor simulation is complete, the wind farm simulation is performed. It uses the same 
overall domain, but regions of local grid refinement down to 1.5 m resolution around the turbines and in 
their wakes are included to capture the smaller scales generated in the wake. The inflow lateral 
boundary conditions use the boundary data generated during the precursor stage, and the outflow 
lateral boundary conditions are set to have a zero normal gradient. The upper boundary is still treated 
as a stress-free wall, and the lower boundary continues to use Moeng’s surface stress model (Moeng 
[37]). Time stepping is such that the tip of an AL rotor never traverses through more than one grid cell 
per time step, which is more restrictive than the normal Courant condition, but is required to properly 
resolve the wake formation. A few hundred seconds are required for the wakes to propagate and for the 
flow to come to quasi-equilibrium. Once that state is reached, the simulation continues for at least 
another ten minutes over during which averages and statistics are taken. 
 

Extracting Meandering from the LES-AL simulations 
In the LES-AL simulations, the vertical and horizontal meandering time series are extracted from a 
vertical and horizontal plane passing through the turbine position, respectively. For each time step and 
downstream position the best fit between the downstream wind component and a simplified wake 
shape is calculated. The simplified wake profile used is given by, 
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The wake shape depends on both the offset from the centre line, and the downstream distance from 
the wind turbine and is constructed by two Gaussian distributions. The first Gaussian represents the 
whole wake deficit and the “full width at half maximum” is taken to be 2R. The second term is included 
to represent the “aerodynamic hole” in the centre of the rotor and is taken to be 0.2R wide. In the far-
wake the second term vanished, and the whole assumes a Gaussian shape. 
 
Figure 6 shows the wake meandering found by applying the proposed algorithm. From the figures, it can 
be seen that the algorithm performs well for the near wake situation (left figures). However, as the 
wake meandering increase, the wake deficit occasionally meanders outside of the planes where data are 
collected. An example of this is shown in the right figures of figure 6, where the top figure shows that 
the wake centre is located between 2-3R off the wake enter axis for a ~50s time-period around 100s into 
the simulation. In this situation, the wake deficit is difficult to detect in the vertical data plane, and the 
vertical wake centre position is thus relatively uncertain. As a consequence, cases with more wake 
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meandering will have higher uncertainty in the meandering statistics by the proposed method. In the 
figures below, the left set of figures has a lateral standard deviation of the wake centre position of 
0.45R, and the right set of figures has a lateral standard deviation of 0.86R. It appears that these kinds of 
effects which create meandering magnitude uncertainty, begin to occur somewhere between the levels 
of meandering simulated in this study. 
 

 
Figure 6: Horizontal (top row) and vertical (bottom row) wake meandering as a function of time 

extracted from an AL simulation 3D (left column) and 6D (right column) downstream of the rotor under 

unstable atmospheric conditions. 
 

 Description of investigation: 
As mentioned above, the overall objectives of the present study are to: 

1. Investigate the influence of atmospheric stability on the ambient turbulence characteristics, 
wake meandering, and the turbulence and wind speed distributions in a wind turbine wake.  

2. Develop a method to model the most important effects of non-neutral atmospheric stability in 
the DWM model.  

 
A complication that occurs when characterizing the effect of atmospheric stability on the ambient 
turbulence and wake evolution is that atmospheric stability is closely related to the turbulence intensity 
level. Furthermore, both quantities are known to be positively correlated to the turbulent mixing in the 
wake, and thereby increase the recovery of the turbine wake. To draw firm conclusions, and to be able 
to quantify the effect by atmospheric stability, it is therefore desirable to isolate the atmospheric 
stability from the turbulence intensity. This is difficult to achieve in field observations as the oncoming 
turbulence intensity is dominantly a function of wind speed, atmospheric stability, and terrain. As a 
consequence, most previous studies have discussed the effects of atmospheric stability and turbulence 
intensity together.  
 
In this investigation, the effect of atmospheric stability is isolated by conducting a set of LES-AL 
simulations in unstable and neutral atmospheres at the same ambient turbulence intensity. 
(Unfortunately, the flow solver capability for stable atmospheric conditions is not developed yet.) This is 
achieved by calibrating the surface roughness in the domain for each stability class to yield turbulence 
intensity close to 6.2%. The simulations are conducted to mimic the conditions along rows of turbines 
from the offshore wind farms of OWEZ, which consist of 36 V90-3MW turbines, and North Hoyle, which 
consist of 30 V80-2MW turbines (See table 2).  
 
These sets of simulations allow detailed investigations of atmospheric stability impact on the ambient 

turbulence spectra and the wake meandering. Unfortunately, the wake deficit evolution cannot be 

studied independent of the wake meandering, as are performed in Keck et al. [11], since the data 

required to extract the deficit in meandering frame of reference are not available (such analysis would 

require the data in planes perpendicular to the mean flow direction). Instead, the effect of atmospheric 
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stability on the wind speed and turbulence intensity evolution in fixed frame of reference (i.e., both 

meandering and wake deficit together) is studied.  

Table 2: A list of simulation cases to study the effect of atmospheric stability on ambient turbulence and 

wind turbine wake evolution.  The abbreviations “N” and “U” denote neutral and unstable conditions, 

respectively, and the abbreviation “N.H” denotes the North-Hoyle wind farm case.  

Case Turbine WS TI L  Nr WTG Spacing  

N-N.H. row A V80 8m/s 6.12% -∞ 4 11D 

U-N.H. row A V80 8m/s 6.16% -83.6 4 11D 

N-N.H. row B V80 8m/s 6.12% -∞ 4 10D 

U-N.H. row B V80 8m/s 6.16% -83.6 4 10D 

N-N.H. row C V80 8m/s 6.12% -∞ 5 4.4D 

U-N.H. row C V80 8m/s 6.16% -83.6 5 4.4D 

N-OWEZ row A V90 8m/s 6.12% -∞ 3 13D 

U-OWEZ row A V90 8m/s 6.16% -83.6 3 13D 

N-OWEZ row B V90 8m/s 6.12% -∞ 3 11D 

U-OWEZ row B V90 8m/s 6.16% -83.6 3 11D 

 
The second part of the investigation focuses on verifying the effect and accuracy of the proposed 
atmospheric stability correction for the DWM model. The atmospheric stability correction is evaluated 
by comparing the result of the baseline DWM model and the modified DWM model to the unsteady AL 
results in table 2. The accuracy of the DWM model is determined by the standard error (STE) between 
the mean flow field calculated by the DWM model and the AL reference data in fixed frame of reference 
(FFoR) using the relation, 
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The indexes d, and r correspond to downstream distance and radial position, and θ is the property 
studied. In this investigation, mean wind speed and turbulence intensity have been evaluated. The STE 
metric is sensitive to misalignment of the mean wake deficit of the two models as it based on the square 
difference between the models at each calculation node. This means that misalignment causes 
increased STE even though the mean level and shape are correct, as shown in figure 7. 
 
 

 
Figure 7: An illustration of the misalignment of the wake deficit of the DWM model (solid lines) and the 

AL model (dashed lines) behind the first turbine for the case “U-N.H. row B”. This misalignment causes 

the STE to increase. 
 
 
The misalignment mainly occurs as a consequence of the relatively short simulation time, roughly 10 
minutes, of the LES-AL calculations. An estimation of the uncertainty due to wake centre misalignment 
for similar simulations was given in Keck et al. [11], where the uncertainty of the mean flow field based 

 



48 Paper A

 

DTU Wind Energy PhD-0012 (EN) 206 

on 10 min of simulation data in 6% ambient turbulence intensity and neutral conditions was estimated 
to 0.07m/s and 0.28 percentage points (i.e., “ΔTI”, from here on denoted pp) for wind speed and 
turbulence intensity respectively. As the wake meandering is roughly twice as large in very unstable 
atmospheric conditions the uncertainties in these cases are about 0.14m/s and 0.56pp.  
 
Another source which contributes to the uncertainty is that the mean velocity at the hub height plane 
and away from the turbines and wakes in the LES-AL simulations is not uniform for the 10 min time 
series, as shown in figure 8. Streaks of higher and lower wind speed and turbulence intensity are present 
in the simulation domain. The uncertainty due to these streaks is estimated based on extracting a 
standard deviation of mean wind speed and turbulence intensity at hub height on the inflow 
boundaries. The non-uniform ambient conditions in the domain are estimated to yield an uncertainty of 
0.10 m/s and 0.53pp for wind speed and turbulence intensity, respectively, in neutral conditions. The 
same values in the very unstable conditions are 0.11m/s and 0.71pp.  
 

 
Figure 8: Contours of mean velocity normalized by hub-height free stream speed (left figures) and 

resolved-scale turbulent kinetic energy normalized by the square of hub-height free stream speed (right 

figures) in a horizontal plane at hub height in neutral (top row) and very unstable (bottom row) 

conditions for the North Hoyle case.  
 
 
As the two sources of uncertainty can be assumed to be independent from each other, the combined 
uncertainty is found, as the root-square-sum, to be 0.12m/s and 0.60pp in neutral conditions and 
0.18m/s and 0.92pp in very unstable conditions. When basing the comparison of the models on eq. (21), 
the uncertainty on the mean flow field increases the STE linearly. This means that if the true model 
mean profiles were identical, the STE would be equal to uncertainty of the AL simulations.  
 

Results and discussion: 
 

Verification of input wind field 
The input turbulence fields of the two models are generated by fundamentally different methods. The 
ABL turbulence of the DWM is estimated using the Mann turbulence model with the input parameters 
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suggested by Peña et al. [27], whereas the ABL turbulence applied in the LES-AL simulations is created 
using a precursor LES in which the N-S equations dictate the flow.  The turbulent energy spectra of the 
applied input velocity field are shown in figure 9. The turbulence spectra of the two models in neutral 
stratification are in fair agreement for all wave numbers above the cut-off frequency of the LES 
precursor simulation. This cut-off is grid-induced filtering in the LES precursor simulation. For the 
unstable case, however, the LES model contains more turbulent energy in the large scales of the lateral 
turbulence spectra, compared to the turbulence applied in the DWM simulation. The higher turbulence 
levels are seen in the range of k1 0.002 to 0.006, corresponding to turbulent eddies of 1 to 3km in size. In 
this range the turbulent energy level of the LES simulations are approximately four times as high as that 
in the Mann turbulence of the DWM model (although it should be noted that the energy levels fluctuate 
largely due to the few realizations). The highest energy level in the lateral spectra of LES-AL turbulence is 
seen at k1= 0.003 (2km). The corresponding number in the Mann spectra turbulence is k1= 0.02 (250m). 
The findings are consistent with the findings presented by Larsen et al. [38] for using the Mann 
turbulence model with calibrated input parameters to simulate unstable atmospheric conditions. In the 
unstable cases, the LES model resolves long lines of updrafts on the scale of 1 to 3 km, which is the 
range in which the LES turbulence has higher lateral energy than the Mann turbulence. 
 

 
Figure 9: The turbulence energy spectra of the wind field generated by Mann model (thick lines) and that 

generated with by precursor LES simulations (thin lines).  
 
 
As a consequence of the large length scales in the LES precursor turbulence, the most energy-containing 
turbulent eddies are only realized 2-3 times during the 10 min simulation time. This results in a high 
uncertainty in the STE comparison due to the inhomogeneous mean flow field and the alignment of the 
wake meandering (see figures 7 and 8). Furthermore, as seen in the subsequent analysis, the difference 
in the input spectra affects the lateral wake meandering for the unstable cases. 
 
The cause of these differences in the lateral input turbulence requires further investigation. To reduce 
the effect of the discrepancies on the DWM validation, it would be interesting to conduct longer LES-AL 
simulations to obtain fully converged mean conditions for the comparison. Unfortunately, lengthening 
these calculations is too computationally expensive for the present study; a simulation to resolve the 
most energy containing structures ~30 times would require in the order of 5 million CPU-hours per case.  

 

Validation of wake meandering with the DWM method 
Figure 10 shows the lateral (left) and vertical (right) wake meandering as a function of downstream 
position and atmospheric stability, as calculated by the DWM method (black), the EllipSys3D LES-AL 
model (red) (data from Keck et al. [28]) and the OpenFOAM LES-AL model. The figure shows that the 
wake meandering applied in the DWM model is in fair agreement with the two LES-AL data sets for the 
neutral cases. For the unstable cases, however, the lateral wake meandering of the DWM model is 40% 
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lower compared to that of the OpenFOAM LES-AL model. This is attributed to the differences in the 
input spectra, as discussed above and shown in figure 9. The vertical wake meandering and the input 
spectrum of vertical turbulence seen in figure 9 in the unstable atmosphere of the two models correlate 
well, which strengthens the conclusion that the deviations in lateral wake meandering are due to the 
difference in lateral input turbulence.  
 

 
Figure 10: Wake meandering as calculated by the DWM (black), EllipSys3D LES-AL (red) and OpenFOAM 

LES-AL models (blue) for a rotor of 80m in diameter and 70m hub height operating in 8m/s wind speed 

and 6% turbulence intensity. The left figure show the lateral meandering and the right figure show the 

vertical meandering, both expressed as the standard deviation of the wake centre normalised by R.  
 

Effect of the atmospheric stability correction in DWM 
This section shows the effect of including the atmospheric stability correction in the DWM model. In the 
first analysis the STE of all unsteady cases in table 2 are calculated both with the modified (DWM B) and 
the unmodified (DWM A) versions of the DWM model to verify that the suggested correction increases 
the ability to predict the flow field under unstable atmospheric conditions, see table 3. By comparing the 
results it can be concluded that the atmospheric stability correction reduces the average STE by 19% in 
terms of wind speed and 28% in terms of turbulence intensity 

 

Table 3: The STE (eq. (21)) of the DWM model without (A) and with (B) the atmospheric stability 

correction compared to the OpenFOAM LES-AL simulations for the unsteady simulations listed in table 2. 

 STE WS 

DWM A 

[m/s] 

STE WS 

DWM B 

[m/s] 

Ratio B/A  

STE TI 

DWM A 

[%] 

STE TI 

DWM B 

[%] 

Ratio B/A 

N.H. row A 0.53 0.39 0.74 2.9 2.0 0.69 

N.H. row B 0.60 0.45 0.75 3.4 2.4 0.71 

N.H. row C 0.71 0.63 0.89 2.1 2.0 0.95 

OWEZ row A 0.48 0.40 0.83 2.0 1.2 0.60 

OWEZ row B 0.52 0.43 0.83 1.7 1.1 0.65 

Mean 0.57 0.46 0.81 2.4 1.7 0.72 

 

To illustrate the effect of the atmospheric stability correction, the velocity and turbulence intensity 

profiles behind the two first turbines in the “U-N.H. row A” case are plotted in figure 11. It can be seen 

that the velocity deficit of the modified DWM model is more shallow and wider with higher average 

turbulence intensity.  
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Figure 11: The velocity (top) and turbulence intensity (bottom) profiles at hub height and 3, 4, 5 and 6D 
(from left to right) behind the two turbines in the “U-N.H. row A” case. The top row of group depicts the 
result behind the first turbine and the bottom row show the result behind the second turbine in the row.  
 

In the second analysis, the modified DWM version is used to investigate the effect on power production 
in single-wake operations as a function of incoming flow angle and atmospheric stability, as shown in 
figure 12. The ambient wind speed at hub-height is 8m/s and the turbulence intensity is 6%. The two 
turbines are located 7D apart. It can be seen that for this configuration the power deficit (one minus the 
ratio of the mean power of the second to the first turbine) is 45% larger in the very stable atmosphere 
(0.58) compared to a very unstable atmosphere (0.4) when the incoming flow is aligned with the axis of 
the two turbines. The difference decreases with increasing inflow angle to the turbines, and at a mean 
wind direction of 7

o
 the power deficit is independent of atmospheric stability. For inflow direction 

between 7
o
 and 15

o 
the power deficit is slightly increased in an unstable atmosphere. These effects are 

predominately governed by the wake meandering. By integrating over-all wind directions in figure 12, 
the loss of production due to the single wake for a site with a uniform wind distribution can be found. 
This yields a reduction in annual energy production (AEP) of 1.7%, 1.6%, and 1.4% for very stable, 
neutral, and very unstable atmosphere, respectively (under the assumption that no power loss is 
experienced in the 330

o
 that are not shown in the figure). The same analysis for a range of atmospheric 

conditions and turbine spacings is presented in figures 13 and 14.  
 
The amount of increased turbulence intensity level experienced at the downstream turbine is also 
affected by the atmospheric stability. The wake-added turbulence is a combination of small-scale 
turbulence generated by the shear layer of the wake and “apparent” turbulence due to the wake 
meandering. The deeper wake deficit in stable stratification creates more shear layer generated 
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turbulence, whereas the apparent wake contribution is a combination of the depth of the wake deficit 
and the amount of wake meandering (see figure 15 to see how the ratio of the two components vary 
with atmospheric stability). For the case presented in figure 12, the increase in turbulence intensity at 
the second turbine is 5.4, 4.4, and 3.7 percentage points (pp) for very unstable, neutral and very stable 
atmosphere, respectively.  
 
The same trends as in the case presented in figure 12 are seen throughout the study: 

1. Stable atmospheric conditions causes larger power losses in single wake operations 
2. Unstable atmospheric conditions are more turbulent at the second turbine. This is mainly due 

to a larger “apparent” turbulence contribution. 
3. The neutral cases are, on average slightly closer to the very stable cases than the very unstable 

cases. The average difference for the tested cases is 0.22% in AEP from very stable to neutral 
and 0.33% from very unstable to neutral stratification. 

 
 

 
Figure 12: The power deficit (left) and turbulence intensity profiles (right) as a function of the 

atmospheric stability and inflow direction at a wake-affected turbine 7D downstream of the wake-

emitting turbine. 

 

 

 
Figure 13: Loss of AEP in % at the 2

nd
 rotor as a function of distance, turbulence intensity and 

atmospheric stability in single wake operation. The AEP integration of power is performed over 360
o
.  
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Figure 14: Average turbulence intensity level at the 2

nd
 rotor as a function of distance, turbulence 

intensity and atmospheric stability in single wake operation. The turbulence intensity is averaged in a -

10
o
 to +10

o 
sector.  

 
Apart from an increase in the turbulence intensity (shown in figure 12), atmospheric stability also 
influences the composition of the wake turbulence. Figure 15 shows the composition of the wake 
turbulence in a cross section 6D downstream of the first turbine. The simulations are conducted in an 
ambient wind speed of 8 m/s and a turbulence intensity of 6%, under very stable (left), neutral (middle), 
and very unstable (right) atmospheric conditions. As mentioned above, the total turbulence experienced 
by a downstream rotor (TITot) consists of small-scale turbulence (TISmall-scale) and the apparent turbulence 
created by the meandering of the wake deficit (TIM). From the figure it can be seen that the relative 
contribution to the turbulence intensity due to wake meandering is approximately twice as large in the 
very unstable case compared to the very stable case. The increased amount of turbulence in 
meandering scales will affect the fatigue loads of the wake-receiving turbine (see Madsen et al. [1], 
Sathe et al. [23] and Crespo et al. [39]), whereas the small-scale turbulence will mainly affect the wake 
deficit evolution of the wake-affected turbine.  

 

Figure 15: The composition of turbulence intensity in the wake as a function of atmospheric stability.  

 

Wake velocity and turbulence intensity with the modified DWM model 
Table 4 show the STE based on wake velocity and turbulence intensity for all the conducted cases. The 
average STE for the conducted cases under neutral conditions is 0.25 m/s in terms of wind speed and 
1.48 pp for turbulence intensity. The average STE for the unstable cases is 0.42 m/s for wind speed and 
2.78 pp for turbulence intensity. An explanation for part of this increase in STE for the unsteady cases is 
the higher degree of uncertainty due to wake meandering and the non-uniform inflow conditions in the 
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computational domain. As discussed above, the uncertainty in the AL results increase the STE linearly. 
According to the estimations presented above, the uncertainty of 0.12 m/s and 0.60 pp in neutral 
conditions and 0.18 m/s and 0.92 pp in very unstable conditions for wind speed and turbulence 
intensity, respectively, is responsible for 45% of the STE of wind speed and 36% of the STE of turbulence 
intensity. 
 

Table 4: The STE (see eq. (21)) of the DWM model with the 

proposed atmospheric stability correction compared to the 

conducted AL simulations.  

Cases: STE WS [m/s] STE TI [%] 

N-N.H. row A 0.31 1.6 

U-N.H. row A 0.39 2.0 

N-N.H. row B 0.35 1.3 

U-N.H. row B 0.45 2.4 

N-N.H. row C 0.57 2.2 

U-N.H. row C 0.63 2.0 

N-OWEZ row A 0.27 1.2 

U-OWEZ row A 0.40 1.2 

N-OWEZ row B 0.28 1.2 

U-OWEZ row B 0.43 1.1 

 

Figures 16 and 17 show the velocity and turbulence profiles for the “N-OWEZ row B” and “U-N.H. row C” 

cases as computed with the DWM and LES-AL.  The results show the overall agreement with the range 

of STE achieved by the DWM model. By observing the “U-N.H. row C” case, it can be seen that both the 

velocity and the turbulence intensity field has the correct shape and good agreement with field data 

even at the higher STE numbers presented in table 12.  

 

 
Figure 16: Comparison of the velocity (top) and turbulence intensity (bottom) profiles for the “N-OWEZ 

row B” case found with the LES-AL model (dashed lines) and the modified DWM model (solid lines). The 

thick solid lines show the rotor positions. 
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Figure 17: Comparison of the velocity (top) and turbulence intensity (bottom) profiles for the “U-N.H. row 

C” case found with the LES-AL model (dashed lines) and the modified DWM model (solid lines). The thick 

solid lines show the rotor positions. 
 

Power production with the modified DWM model 
Figure 18 shows a comparison of the power production estimates of the modified DWM model field 
data from the North Hoyle wind farm. All modelled cases are computed with a hub-height mean wind 
speed of 8 m/s and turbulence intensity of 6%, which correspond to the mean conditions of the field 
data. The columns represent very stable, neutral and very unstable conditions from left to right; and the 
rows represent 11D, 10D, and 4.4D turbine spacing from the top down (i.e., row A to C of in table 4).  
 
The field data in Figure 17 show lower wake losses compared to the numerical results. This may be due 
to a larger bin size of incoming wind direction. In the DWM model, only wind aligned with the row of 
turbines is considered.  
 
The main motivation for the study of power production is to verify that the DWM model can capture the 
average effect on power production due to non-neutral atmospheric stability by implementing the 
suggested modifications. The average normalized power production of the wake affected turbines for 
the OWEZ and the North Hoyle wind farm cases are presented together with field data in table 5.  
 
Both the DWM model and the field data show that increasing the atmospheric stability causes larger 
wake effects in wind farms, even when the turbulence intensity is maintained constant. By comparing 
the average wake losses in the table, it is seen that the wake losses in very unstable conditions are 10% 
and 6% smaller compared to neutral stratification for the DWM model and the field data, respectively 
(however, it should be noted that the power production in neutral atmosphere for the N.H 10D case is 
an outlier and influences the field data result, as seen in table 5; excluding the N.H 10D case yields a 13% 
difference between unstable and neutral atmospheric conditions instead of the current 6%). Comparing 
the average wake losses in very stable conditions and neutral conditions, the DWM model predicts 12% 
higher losses and the field data show 13% higher losses.  
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Figure 18: The power production for all turbines in the rows from the simulation cases at the North Hoyle 

wind farm compared to field data. The ambient hub-height conditions in all cases are wind speed of 8m/s 

and a turbulence intensity of 6%. The column represent atmospheric stability class (very stable, neutral 

and very unstable from left to right) and the rows show different turbine spacing (11, 10 and 4.4D from 

top to bottom). 

 

Table 5: Average power production of all wake affected turbines, normalized against the first turbine of 

the row, in the North Hoyle and OWEZ simulations compared to field data. The ambient conditions in all 

cases are wind speed of 8m/s and a turbulence intensity of 6%.  

 

  
Field data-

VS 
DWM-VS 

Field data-

N 
DWM-N 

Field data-

VU 
DWM-VU 

OWEZ 11D 0.62 0.57 0.71 0.61 0.72 0.67 

OWEZ 13D 0.74 0.63 0.79 0.67 0.81 0.70 

N.H 4.4D 0.39 0.28 0.44 0.35 0.54 0.38 

N.H 10D 0.62 0.53 0.69 0.59 0.65 0.64 

N.H 11D 0.66 0.56 0.67 0.61 0.70 0.67 

Mean of 

COL 
0.61 0.51 0.66 0.57 0.68 0.61 

 

Conclusions 
The present findings show that atmospheric stability influences the wake effects experienced in a wind 
farm, even when the ambient turbulence intensity (based on wind speed variance in the mean flow 
direction, as is typically done) is held constant. This suggests that the impact of atmospheric stability on 
the turbulent length scale is important for wind farm dynamics, and that the turbulence intensity alone 
is not sufficient to describe wake dynamics in the atmospheric boundary layer.  It also suggests that 
turbulence intensity based on the component of flow in the mean wind direction only is insufficient and 
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that all three components must be considered. Specifically, the presented data show that atmospheric 
stability affects the length scale of the atmospheric turbulence, and that this shift in length scale 
influences both the wake meandering and the wake deficit evolution. Furthermore, it is shown that the 
effect of atmospheric stability on the AEP of a wind turbine influenced by a single wake (the turbine is 
only in wake in a 30

 o
 sector, but the AEP is calculated over 360

o
) is in the order of 0.50% comparing very 

unstable to very stable conditions (this is equivalent to ~25% of the AEP loss due to the wake). Although 
0.5% seems small, it can translate into millions of dollars over the lifespan of a large modern wind plant, 
so having the capability to account for stability on AEP in the DWM model is important. The power 
produced by a row of wind turbines aligned with the wind direction is reduced by about 10% in very 
stable conditions compared to very unstable conditions, based on results from both field data and 
simulations of the North Hoyle and OWEZ wind farms.  
 
The proposed increase in functionality of the DWM model to include the effects of atmospheric stability 
shows an improved agreement with the reference data sources compared to the baseline model. STE 
between the AL model and the modified DWM model are reduced by ~19% in terms of velocity field and 
~28% in terms of turbulence intensity field on average.  
 
The largest deviations are seen in the generated input turbulence in unstable atmospheric stability, 
where the turbulence field generated by the Mann model with the parameters suggested by Peña et al. 
[27] is found to contain less energy in the largest turbulence scales of the lateral component, compared 
to the LES precursor calculations. These findings are in agreement with the conclusions drawn by Larsen 
et al [38], where the calibrated Mann model was found to contain less large-scale lateral turbulence in 
unstable atmospheric conditions compared to field data. For the undertaken study, a consequence of 
the large length scale of the LES precursor turbulence (which is about 8 times larger than expected from 
the Mann model in unstable atmosphere) is that the eddies containing the largest amount of energy 
only pass through the domain a few times during the LES-AL simulations. This will yield an increased 
uncertainty of the local mean flow field of the LES-AL computations, affecting the STE comparison, and a 
larger lateral wake meandering in the LES-AL results compared to the DWM results. Suggested further 
work is to run the LES-AL cases longer to reduce the uncertainty, and to compare the unstable ABL 
turbulence fields generated by each method in detail. As mentioned above, no reference data is 
available for stable atmospheric conditions as this functionality is currently not available in the LES 
model used.  
 
In this investigation, is has not been possible to verify the wake deficit evolution independently of the 
wake meandering, as is done in Keck et al. [11], as the LES-AL data required to extract the deficit in a 
meandering frame of reference is not available. Instead, the LES-AL and DWM flow fields in fixed frame 
of reference (i.e., both the velocity deficit and the wake meandering observed together) are compared. 
A good agreement is achieved in both magnitude and evolution of downstream profiles of mean velocity 
and turbulence intensity. The STE in terms of mean velocity is 0.36 m/s in neutral conditions and 0.46 
m/s in very unstable conditions; and for turbulence intensity it is 1.50 pp in neutral conditions and 1.74 
pp in very unstable conditions. These numbers are also influenced by the uncertainty of the LES-AL 
results due to the relatively short simulations times, which increase the STE linearly (as the STE is the 
root-square of the difference in the flow field of the DWM and the AL results). The uncertainties for the 
simulated cases are 0.12 m/s and 0.60 pp in neutral conditions and 0.18 m/s and 0.92 pp in very 
unstable conditions for wind speed and turbulence intensity, respectively. The uncertainty accounts for 
approximately 37% of the STE in terms of wind speed and 46% of turbulence intensity. 
 
The effect of atmospheric stability on the power production of a row of wind turbines agrees well 
between the DWM model and the field data from the rows of wind turbines at the North Hoyle and 
OWEZ wind farms. Both show that the very stable stratification leads to about 13% higher wake losses 
than in neutral conditions and that very unstable conditions lead to about 10% lower wake losses 
compared to neutral conditions.  
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Abstract

The meandering of a wind turbine wake is an important input to aero-elastic simulation of a wind
turbine operating in the wake of other wind turbines. The current state-of-the-art method for simulating
the meandering motion, models the wake as a passive tracer emitted in a frozen turbulence field.

The approach presented here replaces the frozen turbulence assumption and models the wake me-
andering motion by a process that could be described as a wavelength dependent random walk. The
model output includes statistics of the meandering motion at any downstream position and these are
compared to data from large eddy simulations with wind turbines represented as actuator lines, and to
the afore-mentioned frozen turbulence method.

The presented model opens a new and promising avenue for efficient modelling of the downstream
movement of a wind turbine wake.

1 Introduction

When designing the layout of wind farms, it is important to be able to assess accurately the loads and pro-
duction of a wind turbine operating in the wake of another wind turbine. In the Dynamic Wake Meandering
model, see e.g. [4], one of the leading models for this use, a wind speed deficit meanders downstream due
to large scale turbulent eddies. The turbulent eddies are simulated using a large frozen turbulence field
moving with the mean wind speed, in which the deficit is moving as a passive tracer.

Attempting an alternative approach to wake meandering, we start by deriving a simple model for the
displacement of a thin line of a passive tracer, emitted in dynamically evolving turbulence. This model will
then be applied to the process of wake meandering.

2 Preliminaries

Before we start modelling we first need to introduce a number of useful tools and concepts, starting with
the velocity covariance tensor, Rij ,

(1)Rij(r,∆t) =

〈
ui(x, t0) · uj

(
x+ r +

∂U

∂z
(x3 + r3) ∆t, t0 + ∆t

)〉
where ui(x, t) is the instantaneous wind speed at x. Note that the coordinate system in which x is defined
is Galilean, moving with, U , the mean wind speed at x3 = 0. We assume the velocity field to be stationary,
so, consequently, Rij does not depend on t0, and also to be homogeneous, so that Rij does not depend
on x. We futhermore assume that Rij is symmetric such that

(2)Rij(r,∆t) = Rji(r,∆t)

1
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The spatial Fourier transform, Φij , of Rij is defined by

(3)Φij(k,∆t) =
1

(2π)
3

∫∫∫
Rij(r,∆t)·e−ik·rdr1dr2dr3

The cross-spectra, χij (k1,∆t), are defined as

(4)χij (k1,∆t) =
1

2π

∫
Rij((r1, 0, 0) ,∆t)·e−ik1r1dr1

and can also be derived from Φij as

(5)χij(k1,∆t) =

∫∫
Φij((k1, κ2, κ3) ,∆t)dκ2dκ3

Using logic inspired by [4] the wind fluctuations assumed to advect a segment of a wake is approximated
by the spatial averaging over a disc with a radius equal to rotor radius R

uRi (x, t) =
1

πR2

∫∫
y2+z2<R2

ui(x+ (0, y, z) , t)dydz (6)

Using this averaged wind speed we define RRij analogously to eq. (1) and ΦRij analogously to eq. (3). If so,
it can be shown that ΦRij relates to Φij as

ΦRij(κ,∆t) = jinc

(
R·
√
k2

2 + k2
3

)2

·Φij(κ,∆t) (7)

where the jinc-function, also called the bessinc-function, is defined such that the 2-dimensional Fourier
transform of a unit disc is given by π ·jinc(|k|). Analogous to eq. (4) we define the cross-spectra of the rotor
averaged wind speed

χRij(k1,∆t) =

∫
ΦRij((k1, κ2, κ3) ,∆t)dκ2dκ3 (8)

We introduce XL,R
t0 (x0, t), the position at t of a rotor-sized passive tracer released at x0, at time, t0.

This position is by definition related to the wind speed, uR(x, t), by

(9)
∂XL,R

t0 (x0, t)

∂t
= uR

(
XL,R
t0 (x0, t), t

)
and

(10)XL,R
t0 (x0, t0) = x0

Inspired by eq. (10) a rotor averaged Lagrangian wind speed is introduced and defined as

(11)uL,Rt0 (x0, t) = uR
(
XL,R
t0 (x0, t), t

)
In [1] and [3] it was found that the wake is not translated downstream with the mean wind speed, U ,

but, in the case of full induction, with a wake transport velocity, UWT , which is more like 0.8·U . Introducing
WT = UWT −U which is the wake transport speed relative to the moving coordinate system, we can define
XL,R
t0 (x0, t,WT ) such that

(12)
∂XL,R

t0 (x0, t,WT )

∂t
= uR

(
XL,R
t0 (x0, t,WT ), t

)
+ (WT , 0, 0)

= uL,Rt0 (x0, t,WT ) + (WT , 0, 0)

where also uL,Rt0 (x0, t,WT ) has been introduced.

2
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3 Studying a streamwise timeline

Before addressing wake meandering we will study a related, but less complicated situation. Let us define

(13)LRt0(x1, t,WT ) = XL,R
t0 ((x1, 0, 0) , t,WT )− (x1 +WT ·t, 0, 0)

If WT and R are zero then LRt0 denotes the displacement of a so-called timeline, i.e. a line of passive
tracers, released along a line in the streamwise direction, at t0. In the more complicated case where
WT and R are not equal to zero LRt0 consequently denotes the displacement of rotor-sized passive tracers,
released at t0 along a line in the streamwise direction, having a wake transport velocity, WT , superimposed
on the velocity induced by the turbulent wind.

Equations (12) and (13) give

(14)
∂LRt0(x1, t,WT )

∂t
= uL,Rt0 (x1, t,WT )

where x1 = (x1, 0, 0) has been introduced.
We will attempt to make a model for ΛR the cross spectra of LRt0 , defined by

(15)ΛRij(k1,∆t,WT ) =
1

2π

∫ 〈
LRι,t0(x1, t0 + ∆t,WT ) · LRj,t0(x1 + r1, t0 + ∆t,WT )

〉
e−ik1r1dk1

We can analyse the evolution of ΛRij (k1,∆t,WT ) by investigating its derivative

(16)

∂ΛRij(k1,∆t,WT )

∂∆t
=

1

2π

∫
∂
〈
LRi,t0(x1, t,WT )·LRj,t0(x1 + r1, t,WT )

〉
∂t

e−ik1r1dr1

=
1

2π

∫ (〈
∂LRi,t0(x1, t,WT )

∂t
LRj,t0(x1 + r1, t,WT )

〉

+

〈
LRi,t0(x1, t,WT )

∂LRj,t0(x1 + r1, t,WT )

∂t

〉)
e−ik1r1dr1

wherein, and from here on t = t0 + ∆t. For clarity we now focus on the first term in the paranthesis of the
integrand, on the RHS of eq. (16), i.e.

(17)

〈
∂LRi,t0(x1, t,WT )

∂t
Lj,t0(x1 + r1, t,WT )

〉
=

〈
∂LRi,t0(x1, t,WT )

∂t

∫ t

t0

∂LRj,t0(x1 + r1, τ,WT )

∂τ
dτ

〉

=

∫ t

t0

〈
∂LRi,t0(x1, t,WT )

∂t

∂LRj,t0(x1 + r1, τ,WT )

∂τ

〉
dτ

=

∫ t

t0

〈
uL,Ri,t0 (x1, t,WT ) · uL,Rj,t0 (x1 + r1, τ,WT )

〉
dτ

≈
∫ t

t0

〈
uL,Ri,t0 (x1, t0,WT ) · uL,Rj,t0 (x1 + r1, τ,WT )

〉
dτ

where r1 = (r1, 0, 0). In the last step of eq. (17) we have used the approximation〈
uL,Ri,t0 (x0, t,WT ) · uL,Rj,t0 (x0 + r, t− τ,WT )

〉
≈
〈
uL,Ri,t0 (x0, t0,WT ) · uL,Rj,t0 (x0 + r, t0 + τ,WT )

〉
(18)

As illustrated in figure 1 it seems plausible that the approximation of eq. (18) performs well as long as the
separation between the particles released at x0 and x0 + r is kept i.e. as long as

(19)XL
t0(x0 + r, t,WT )−XL

t0(x0, t,WT ) ≈ r

3
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(x0 + r, t0,WT )

uL,R
i,t0

(x0, t,WT ) uL,R
j,t0

(x0 + r, t,WT )

uL,R
j,t0

(x0 + r, t − τ,WT )

uL,R
j,t0

(x0 + r, t0 + τ,WT )

r

Figure 1: Illustration of two path lines, XL
t0(x0, t,WT ) and XL

t0(x0 + r, t,WT ), of particles released
at time, t0, a distance, r, apart. The approximation of eq. (18) likely performs well as long as
XL
t0(x0 + r, t,WT )−XL

t0(x0, t,WT ) ≈ r.

However for a large t eq. (19) is no longer true and then it is hard to imagine the approximation in eq. (18)
performing well. From this arguement it is clear that the results from here will loose validity as t becomes
large.

We will now continue with both terms of eq. (16) and we will start by making the following approximation〈
uL,Ri,t0 (x0, t0,WT ) · uL,Rj,t0 (x0 + r, t0 + ∆t,WT )

〉
≈
〈
uRi (x0, t0) · uRj (x0 + r + (WT ·∆t, 0, 0) , t0 + ∆t)

〉
(20)

where, as seen, the wind speed is Lagragian on the LHS, and Eulerian on the RHS. For WT and R equal
to zero this is an extension of an assumption attributed to Corrsin who assumed eq. (20) with r = 0. That,
less general, version of eq. (20) was validated for isotropic turbulence in [6].

Using equations (17) and (20), eq. (16) continues,

(21)

∂ΛRij (k1,∆t,WT )

∂∆t
≈ 1

2π

∫ (∫ t

t0

〈
uL,Ri,t0 (x1, t0,WT ) · uL,Rj,t0 (x1 + r1, τ,WT )

〉
dτ

+

∫ t

t0

〈
uL,Ri,t0 (x1, τ,WT ) · uL,Rj,t0 (x1 + r1, t0,WT )

〉
dτ

)
e−ik1r1dk1

≈ 1

2π

∫ (∫ t

t0

〈
uRi (x1, t0) · uRj (x1 + r1 + (WT ·τ, 0, 0) , τ)

〉
dτ

+

∫ t

t0

〈
uRi (x1 + (WT ·τ, 0, 0) , τ)·uRj (x1 + r1, t0)

〉
dτ

)
e−ik1r1dk1

=

∫ ∆t

0

(
1

2π

∫
RRij((r1 +WT ·τ, 0, 0) , τ)e−ik1(r1+WT ·τ)eik1WT ·τdk1

+
1

2π

∫
RRij((r1 −WT ·τ, 0, 0) , τ)e−ik1(r1−WT ·τ)e−ik1WT ·τdk1

)
dτ

=

∫ ∆t

0

(
χRij(k1, τ)eik1WT ·τ + χRij(k1,−τ)e−ik1WT ·τ

)
dτ

= 2

∫ ∆t

0

χRij(k1, τ) cos(k1WT ·τ) dτ

4
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In order to get further we crudely approximate χRij by a tent function, i.e.

(22)χRij(k1,∆t) ≈ χRij(k1, 0)
TRij,χ(k1)− 1

2 |∆t|
TRij,χ(k1)

Θ

(
TRij,χ(k1)− 1

2
|∆t|

)
where Θ(t) is the Heaviside step function and TRij,χ is an integral time scale of the coherence of χRij , defined
as

(23)TRij,χ(k1) =

∫∞
0
|χRij(k1, τ)|dτ√

χRii(k1, 0)χRjj(k1, 0)
,

with no summation over the repeated indexes in the denominator intended. Approximating χRij by eq. (22) is
an implicit assumption that wind speed at t only contributes to ΛRij for a particular wave number, k1, until on
average t+ 2TRij,χ(k1), i.e. until the tent function in eq. (22) reaches zero. After this time the contribution to
ΛRij from the wind speed is uncorrelated with the contribution at t, thus the process can thought of as a wave
number dependent random walk, in which ΛRij gets a new and uncorrelated contribution every 2TRij,χ(k1).

Using eq. (22) we can carry out the integration of eq. (21) to obtain
∂ΛR

ij(k1,∆t,WT )

∂∆t . Integrating once
more we get

(24)

ΛRij (k1,∆t,WT ) =
χRij(k1, τ)

k3
1 ·W 3

T ·TRij,χ(k1)

(
k1 ·WT ·

(
|∆t|+2TRij,χ(k1)

)
− k1 ·WT

(
|∆t|−2TRij,χ(k1)

)
cos(k1 ·WT ·T )

2 − 2 sin
(
2k1 ·WT ·TRij,χ(k1)

)
+

Θ

(
TRij,χ(k1)− 1

2
|∆t|

)
·
(
k1 ·WT ·

(
|∆t|−2TRij,χ(k1)

) (
cos(k1 ·WT |∆t|) + cos

(
2k1 ·WT ·TRij,χ(k1)

))
− 2 sin(k1 ·WT |∆t|) + 2 sin

(
2k1 ·WT ·TRij,χ(k1)

)))

4 Modelling wake meandering

We are interested in studying a wake released at a stationary point that, say, has coordinate (0, 0, 0) at
t = 0. As our coordinate system is moving with U , our source accordingly has a streamwise coordinate
given by x1(t) = −U ·t. Furthermore, let us assume that the separation between the release point and
the observation point, i.e. the downstream wind turbine affected by the wake, is s. A wake reaching the
observation point at t must have been released at t − s/UWT from our release point, which then had
streamwise coordinate −U ·(t− s/UWT ). In terms ofXR

t0(x1, t,WT ) we are, with the above notation, thus
interested in

(25)mR(t, s, U, UWT ) = XL,R
t−s/UWT

(−U ·(t− s/UWT ) , t, UWT − U)− (−Ut+ s, 0, 0)

Note the subscript t− s/UWT ofXL,R
t−s/UWT

which means that the release time is not the same for all wake
segments. This situation is fairly complicated so we choose to introduce

(26)nR(τ, s, U, UWT ) = XL,R
t0=0(−U ·(τ − s/UWT ) , s/UWT , UWT − U)

− (−U ·τ + s, 0, 0)

where, as seen, the release time is again fixed, to t0 = 0. We will assume that nR in suitable ways is similar
to mR, although mR as shown in figure 2 denotes wake segments being emitted continoulsy from a point
source, while nR denotes wake segments being emmitted all at once along a line, and being studied after
a fixed time.

5
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nR(2
s

UWT
, s, U, UWT )

mR(
s

UWT
, s, U, UWT )

nR(
s

UWT
, s, U, UWT )

U
s

UWT s

Figure 2: Snapshot of pathlines of wake segment at t = s
UWT

. All wake segments shown in the figure were
released at t0 = 0. The wake segment released at this moment from the left-most wind turbine will reach

the right-most wind turbine at 2 s
UWT

, and will thus be denotedmR
(

2 s
UWT

, s, U, UWT

)
. The corresponding

wake segment nR
(

2 s
UWT

, s, U, UWT

)
was, as shown in the figure, released at t0 = 0, from a point well

upstream of both wind turbines. It so happens that the captured moment, i.e. t = s
UWT

, is the exact

moment the displacements of all wake segments denoted nR should be observed.

The precise assumption we will make is

(27)
〈
mR
i (t1, s1, U, UWT ) ·mR

j (t2, s2, U, UWT )
〉
≈
〈
nRi (t1, s1, U, UWT ) · nRj (t2, s2, U, UWT )

〉
Although not very clear from its formulation, eq. (27), similarly to the frozen turbulence assumption, as-
sumes that the spatial and temporal spectra are very closely related. It should however be noted that
eq. (27) does not go as far as to actually impose frozen turbulence.

By noting that

(28)nR(τ, s, U, UWT ) = LRt0=0(−U ·(τ − s/UWT ) , s/UWT , UWT − U)

we can now estimate MR, the cross-spectra of mR with respect to frequency, f ,

(29)

MR
ij (f, s, U, UWT ) =

∫ 〈
mR
i (t, s, U, UWT )·mR

j (t+ τ, s, U, UWT )
〉
e−iτ2πfdτ

≈
∫ 〈

nRi (t, s, U, UWT )·nRj (t+ τ, s, U, UWT )
〉
e−iτ2πfdτ

=

∫ 〈
LRi,t0=0(−U ·(t− s/UWT ) , s/UWT , UWT − U)·

LRj,t0=0(−U ·(t+ τ − s/UWT ) , s/UWT , UWT − U)
〉
e−iτ2πfdτ

=

∫ 〈
LRi,t0=0(−U ·(t− s/UWT ) , s/UWT , UWT − U)·

LRj,t0=0(−U ·(t− s/UWT )− r1, s/UWT , UWT − U)
〉
e−ir1

1
U 2πf 1

U
dr1

=
2π

U
ΛRji(

2πf

U
, s/UWT , U − UWT ))

where ΛR
ji can be evaluated using eq. (24).

6
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5 Validation

To test the validity of our model we study the wake meandering in Large Eddy Simulations (LES), where
wind turbines are represented by actuator lines. We use the simulations described in [2], where the turbine
diameter is 80m, the hub height is 70m, the free wind speed is 8m/s and the turbulence intensity is between
0.06 and 0.07.

The preferred starting point for evaluating our model is to know Φij(k,∆t) and with this objective in
mind, we start by choosing Φij(k, 0) as the Mann spectral tensor, see [5], with parameters αε

2
3 = 0.0239,

LMann = 28.4 and Γ = 2.675 . Figure 3 shows a comparison between the spectra as derived from the
Mann spectral tensor compared to the spectra of the LES.
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Figure 3: Comparison between the temporal spectra from the simulations and the temporal spectra derived
from the Mann spectral tensor, with parameters αε

2
3 = 0.0239, LMann = 28.4 and Γ = 2.675,

As the LES spectra in figure 3 trails off faster than k−5/3
1 due to numerical dissipation, only αε

2
3 was

determined according to the method outlined in [5]. The other two parameters, LMann and Γ, were instead
extracted from [7].

We proceed by generalising an expression for longitudinal coherence per wavenumber

(30)Φisoij (k,∆t) = Φisoij (k, 0)e−
1
2 0.52〈u1u1〉|k|2

which was tested for isotropic turbulence in [6], for the case of anisotropic turbulence, obtaining

(31)Φij(k,∆t) = Φij(k, 0)e−
1
2 0.52〈uiuj〉kikjt2

From Φij(k,∆t) we calculate χRij(k1, 0) according to (7) and (8), as well as TRij,χ(k1) according to (23),
and obtain χRij(k1,∆t) according to (22). We now calculate MR

ij (f, s, U, UWT ) according to (24) and (29).
Following the procedure described in [2] we extract meandering time series, shown in figure 4, from the

LES and calculate spectra. In figure 5 we compare these spectra to MR
ij (f, s, U, UWT ), as well as spectra

calculated using the frozen turbulence method, as described in [2].
We conclude from figure 5 that our model performs better than the frozen turbulence method. We also

conclude that the model is valid, at least for the tested case, for the range most relevant for aero-elastic
simulation.

7
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Figure 4: Extracting meandering time series (the black line)

10
−3

10
−2

10
−1

10
0

0

50

100

150

frequency, [Hz]

f⋅M
(f

),
 [m

2 /s
2 ]

3D downstream

 

 

Large Eddy Simulation
Frozen turbulence method
New model

10
−3

10
−2

10
−1

10
0

frequency, [Hz]

9D downstream

Figure 5: Comparison of MR
ij (f, s, U, UWT ) to auto-spectra calculated from the timeseries shown in figure

4, as well as spectra calculated using the frozen turbulence method described in [2].

6 Conclusions

We have developed a model for the displacement of the wind turbine wake as it is transported downstream.
The approach presented here aims at eventually replacing the frozen turbulence assumption which is the
current state-of-the-art approach for meandering. Our new approach models instead the wake meandering
motion by a process that could be described as a wavelength dependent random walk.

To make use of the model, knowing the velocity covariance tensor, Rij(r,∆t), is preferable. This
information can be obtained by combining the Mann spectral tensor with an assumption for the longitudinal
coherence per wavenumber.

The model output, spectra of the meandering motion at any downstream position, was compared to
meandering in LES and was found to perform better than the current state-of-the-art method.

8
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Abstract. Simulated wind fields are very useful when predicting loads on structures subjected
to turbulent winds, wind turbines being a prime example. Knowledge of statistical properties
such as the spatial and temporal correlations of real turbulent wind fields increases the realism
of the simulated simulated wind fields. The statistical properties of real turbulent wind fields
have been shown to depend on quantities such as the surface roughness, the mean wind speed,
measurement height and atmospheric stability. The Mann spectral tensor attempts to predict all
spatial correlations of shear generated turbulence given only three input parameters. The most
suitable such input values have been investigated for different onshore surface roughnesses, but
so far not for typical offshore conditions. The meteorological mast at the Rødsand II offshore
wind farm has among other instruments sonic anemometers mounted at 15, 40 and 57 meters
above sea level. Wind speed spectra at the three heights are calculated and binned with respect
to both wind speed and atmospheric stability. The three parameters of the Mann spectral
tensor are determined to ensure best fit to the spectra of each of the bins and are presented as
a function of mean wind speed, measurement height and atmospheric stability. The behaviour
of the presented parameters values are largely consistent with the previous onshore results. The
parameter values are also compared to potentially related quantities and a constant quantity is
derived. Given optimal parameters the spectral tensor is found to reproduce the surface layer
generated turbulence well, also for different atmospheric stabilities, however in the wind speed
spectra a contribution from the very large scale quasi-geostrophic turbulence is also observed, a
contribution the spectral tensor does not attempt to model.

1. Introduction

The Mann spectral tensor [3] attempts to predict all second order spatial statistics of shear
generated turbulence given only three input parameters, αε2/3, LM and Γ. The tensor can for
example be used to generate realistic simulated turbulent wind fields, see [4]. These simulated
wind fields are very useful as input to aero-elastic simulation of structures subjected to turbulent
flows, wind turbines being a prime example.

The statistical properties of real turbulent wind fields has been shown to depend on quantities
such as the surface roughness, the mean wind speed, measurement height and atmospheric
stability. Although the Mann spectral tensor is developed for neutral atmospheric stability, the
parameter values which describe the turbulence best for different atmospheric stabilities has been
investigated using onshore measurements, see e.g. [1] and [6]. We will attempt to determine the
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parameter values suitable for offshore conditions, at different wind speed, measurement height
and atmospheric stability.

2. Methodology

The data was collected at the meteorological mast at the Rødsand II offshore wind farm, which
is situated just south of the Danish island Lolland, from February 2010 to October 2012. We
select wind directions from 255◦ to 285◦ where the wind has a fetch over water of approximately
100km. Among other instruments the mast has 3 Campbell Scientific sonic anemometers, a type
that includes a temperature sensor, at 15, 40 and 57 meters above sea level. We will quantify
atmospheric stability based on the Monin-Obukhov length [5], which is defined as

L = − u∗0
3T0

κgu3Θ′v0

(1)

where u∗0 =
√
−u1u3 is the friction velocity, T0 is the absolute temperature, κ ≈ 0.4 is the von

Karman constant and Θ′v is the fluctuation in virtual potential temperature, all at the surface.
We approximate these surface values with values measured at 15 m.

We employ Taylor’s frozen turbulence assumption in order to estimate the spatial cross-spectra
defined as

Fij (k1) =
1

2π

∫
〈ui(x, t) uj(x + (r1, 0, 0) , t)〉 e−ik1r1dr1 (2)

from 30-minute periods of measured wind velocities. These calculated cross-spectra are
compared to cross-spectra derived from the spectral tensor, see [3].

We bin the data simultaneously for the 3 atmospheric stability classes shown in in table 1 and
3 wind speed bins, 8, 10 and 12 ms−1 ± 1 ms−1, based on the anemometer at 15 m, resulting in
a total of 9 bins per measurement height.

Table 1: Atmospheric stability bins

Atmospheric stability class Monin-Obukhov length interval (m)

Unstable (U) −200 ≤ L ≤ −100
Neutral (N) 500 ≤ |L|
Stable (S) 50 ≤ L ≤ 200

In each bin the spectra are normalized with the for each time period corresponding u∗0. The
normalized spectra are averaged using the method of bins with respect to log(k1), using a bin
size of 0.2 log(10). In order to make the fitting algorithm more robust we depart from the
fitting procedure outlined in [3] in that we first determine LM by fitting all parameters only
to F33 (k1) and F13 (k1). Keeping LM constant we then use F11 (k1), F22 (k1) and F33 (k1) to
determine which αε2/3 and Γ that gives the best fit. In this last step we only use one decade
of the spectra, centered around k1 = L−1

M . For bins where both algorithms performed well, no
systematic change in the resulting parameter values due to the change in method was observed.

The vertical wind speed gradient, ∂U
∂z , is calculated by fitting a logarithmic profile to the mean

wind speeds at the 3 measurement heights. This method is robust but not very precise as the
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Figure 1: Spectra, k1E(k1)/u∗0
2 versus log(k1) for the bins Stable and Unstable at 15 meters. The

top row graphs shows spectra from the wind speed bin 12 ms−1 and bottom row show the wind speed
bin 8 ms−1. The broken lines are the best fit of spectra derived from the Mann spectral tensor. For the
F11 and F22 components we notice high energy levels at low wave numbers which are not matched in the
Mann spectral tensor spectra, especially for the lower wind speed bin (bottom row).

wind profile is expected to be logarithmic only for the neutral case and then only close to the
ground where u∗ is approximately constant. We see in the graph to the right in figure 7 that
assuming u∗ to be constant is a not a good approximation in this case.

3. Results and discussion

The performance of the fitting algorithm is exemplified in figure 1 where the calculated spectra
from a few bins are shown. We notice relatively high energy levels at low wave numbers which are
not matched in the Mann spectral tensor spectra, especially in the lower wind speed bin. This
behavior is not present in the vertical (red) component, which suggests that we are observing the
high wave number end of the very large scale quasi-geostrophic turbulence, discussed e.g. in [2]
and [8]. In figure 2 spectra using 90 minutes instead of 30 minutes of data are shown for the bins
Stable and Unstable at 15 meters. The streamwise and lateral component shows a |k|−5/3-slope
for low wave numbers, which is consistent with this being quasi-geostrophic turbulence.

In figures in 3 to 5 the resulting parameter values are plotted as a function of measurement height
and wind speed. We notice that the wind speed has almost no influence on the parameter values
while both atmospheric stability and measurement height are important factors. The results
in figures 3 to 5 are consistent with what was observed in [1] and [6] except for the value of the
parameter Γ which here and in [1] decreases with stability, while [6] reports a more complex
behavior.

Studying the equation for turbulent kinetic energy which can be derived from the Navier-Stokes



78 Paper C

Stable

10
−4

10
−2

10
0

10
−2

10
0

10
2

10
4

 

 

F
11

F
22

F
33

log(k1)

Unstable

10
−4

10
−2

10
0

10
−2

10
0

10
2

10
4

 

 

F
11

F
22

F
33

log(k1)

Figure 2: Spectra using 90 minutes of data, log(E(k1)) versus log(k1), for the bins Stable and Unstable
at 15 meters. The solid lines highlight the |k|−5/3-slope of E(k1) for low wave numbers. The fact that
the wind speed bin is 12 ms−1 shows that this contribution is present also for high wind speeds.
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Figure 3: The parameter αε2/3 (normalized with measurement height z and u∗0) as a function of
measurement height and wind speed U . A small random offset has been added to the measurement
height and wind speed for readability. Note that the x-axis of the left plot is the y-axis of the right plot.

equation the energy transfer from the mean flow is −u1u3
∂U
∂z . In the left plot of figure 6 we see

this turbulent energy production to the power 2
3 divided by αε2/3. If the production and the

dissipation were in perfect balance we would expect this ratio to be 1
α . In [7] the value 0.5 of Ck,

the Kolmogorov constant for the one-dimensional spectra, is proposed, and this value combined
with α = 55

18Ck gives 1
α ≈ 0.65.

In the plot to the right in figure 6 we see the ratio between the mixing length defined by
lmix

∂U
∂z = u∗, and LM . The result agrees reasonably but not perfectly with the 1

1.70 ≈ 0.59
reported in [6].

In [3] the so called eddy life time, τ(|k|), is given by

τ(|k|) = Γ
∂U

∂z

−1 |k|−2/3L
−2/3
M√

2F1

(
1
3 ,

17
6 ,

4
3 ,−|k|

−2L−2
M

) . (3)
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Figure 4: The parameter LM as a function of measurement height z and wind speed U . A small
random offset has been added to the measurement height and wind speed for readability. Note that the
x-axis of the left plot is the y-axis of the right plot.

2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

z

 

 

S
N
U

Γ
5 10 15

2.5

3

3.5

4

4.5

 

 

S
N
U

U

Figure 5: The parameter Γ as a function of measurement height z and wind speed U . A small random
offset has been added to the measurement height and wind speed for readability. Note that the x-axis of
the left plot is the y-axis of the right plot.

For |k| LM � 1 the hypergeometric function 2F1

(
1
3 ,

17
6 ,

4
3 ,−|k|

−2L−2
M

)
≈ 1. Thus for a k in the

inertial subrange

(4)τ(|k|) ≈ Γ
∂U

∂z

−1

|k|−2/3L
−2/3
M .

Alternatively we can argue that, in the inertial subrange, τ should only be a function of |k| and
the energy dissipation, ε, which using dimensional analysis leads to

(5)τ(|k|) ∝ |k|−2/3ε−1/3.

Eliminating τ(|k|) by combining (4) and (5) leads us to the conclusion that Γε1/3

∂U
∂z

L
2/3
M

should be
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∗0
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2/3

αε2/3
which we expect to be approximately equal to 1

α ≈ 0.65

versus measurement height. To the right the ratio lmix

LM
versus measurement height agrees reasonably

but not perfectly with the 1
1.70 ≈ 0.59 presented in [6]. A small random offset has been added to the

measurement height.
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√
α Γε1/3
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2/3
M

, which we expect to be constant, plotted versus

measurement height. If we focus exclusively on the Neutral case (green) then
√
α Γε1/3

∂U
∂z L

2/3
M

≈ 3. In

the graph to the right u∗(z)
u∗0

versus measurement height illustrates that we are not generally measuring
in the surface layer, as if so u∗ would be approximately constant. A small random offset has been added
to the measurement height.

constant. In the left graph of figure 7 the quantity
√
α Γε1/3

∂U
∂z

L
2/3
M

is plotted versus measurement

height. There is a lot of scatter in the graph but if we should assign a value we recommend√
α Γε1/3

∂U
∂z

L
2/3
M

≈ 3 as the neutral data is likely most reliable due to the method used to derive ∂U
∂z .

The graph to the right in figure 7 illustrates that we are not generally measuring in the surface
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layer, and this could explain some of the scatter in figures 6 and 7 as they show results derived
using ∂U

∂z which, as mentioned is calculated using a methodology suitable to the surface layer.

4. Conclusions

The parameter values giving the best fit of spectra calculated from the Mann spectral tensor to
measured spectra was observed using data from the offshore meteorological mast at Rødsand II.
Given optimal parameters the spectral tensor reproduces 3-dimensional turbulence contribution
well, also for different atmospheric stabilities.

The results are consistent with what was observed in [1] and [6] except for the value of the
parameter Γ which here and in [1] decreases with stability, while [6] reports a more complex
behavior.

It was argued that the quantity
√
α Γε1/3

∂U
∂z

L
2/3
M

should be constant and the value≈ 3 for was proposed

for this constant.

At the low wavenumber end of the spectra a contribution from quasi-geostrophic turbulence was
observed.
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Abstract We develop a model that predicts all two-point correlations in high
Reynolds number turbulent flow, in both space and time. This is accomplished
by combining the design philosophies behind two existing models, the Mann
spectral velocity tensor, in which isotropic turbulence is distorted according
to rapid distortion theory, and Kristensen’s longitudinal coherence model, in
which eddies are simultaneously advected by larger eddies as well as decay-
ing. The model is compared with data from both observations and large eddy
simulations and is found to predict spatial correlations comparably to the
Mann spectral tensor and temporal coherence better than any known model.
Within the developed framework, Lagrangian two-point correlations in space
and time are also predicted, and the predictions are compared with measure-
ments of isotropic turbulence. The required input to the models, which are
formulated as spectral velocity tensors, can be estimated from measured spec-
tra or be derived from the rate of dissipation of turbulent kinetic energy, the
friction velocity and the mean shear of the flow. The developed models can,
for example, be used in wind turbine engineering, in applications such as
lidar-assisted feed forward control and wind turbine wake modelling.

1 Introduction

Renewed interest in the spatio-temporal structure of sheared turbulence comes
from research in wind energy, and whether forward-looking light detection
and ranging (lidar) systems can reduce mechanical loads on wind turbines
by anticipating incoming gusts (Pao and Johnson, 2011; Bossanyi et al., 2012;
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Mikkelsen et al., 2013). The potential for both extreme and fatigue load reduc-
tion seems obvious, but to model the complex interactions between lidar-sensed
turbulence and wind turbine control and aerodynamics it is necessary to have
a realistic model for the spatio-temporal structure of turbulence (Bossanyi,
2013).

Most turbine-mounted lidars are placed close to the centre of the rotor,
either on the nacelle or in the spinner, the aerodynamically shaped cover of
the wind turbine rotor hub. Fluctuations along the direction of the mean flow
constitute the most important turbulence component of the loads on the ro-
tor. However, if a lidar is to measure these fluctuations over a rotor sized area
upwind of the turbine, it would for geometrical reasons have to measure quite
far upstream. The question arises whether the turbulent fluctuations measured
there would arrive unchanged to the rotor a short time later, or equivalently,
whether departures from Taylor’s frozen turbulence hypothesis are important.
For a nacelle-mounted lidar Simley et al. (2014) found that measurements
made approximately one rotor diameter upstream reproduce most faithfully
the gusts that impinge on the rotor. If measured further upstream, decorrela-
tion during the advection to the rotor starts to become important. If measured
closer to the rotor, fluctuations in directions other than along the mean flow
will contaminate the measurements. Related questions pertain to how many
beam directions will cover the rotor in an optimal way (Schlipf et al., 2013),
and how the significant probe volume of the lidar influences the measurements
(Sathe and Mann, 2013). All these issues depend on the spatial and temporal
structure of sheared turbulence, the subject of the present study.

Wind turbine wakes are important not only because they affect the energy
production adversely for downwind turbines in a wind farm but also because
they increase dynamic loads on rotors intersecting them. Dynamic loads arise
mainly because the blades of a downwind turbine partly in the wake of another,
go in and out of the region with the wake velocity deficit. Another important
effect is that wakes can meander such that the entire rotor of a downwind
turbine alternately experiences unaffected flow and the reduced flow velocity
of the wake. This typically creates dynamic loads that are greater than those
on a free standing turbine. A popular way to model wake meandering assumes
wakes to be advected passively in a frozen turbulence field (Larsen et al., 2008).
A more realistic wake-meandering model may include the temporal evolution
as well. Such a model would then likely require both the spatial and temporal
structure of sheared turbulence as input.

Spatial correlations are tractable to describe in the Fourier domain by
the use of a spectral velocity tensor (see e.g. Pope 2000). In Mann (1994),
rapid distortion theory was employed to produce a spectral velocity tensor
describing turbulence subjected to uniform shear. That model was recently
tested over homogeneous terrain for different values of aerodynamic roughness
length by Chougule et al. (2014) and for offshore conditions by de Maré and
Mann (2014). Alternative rapid distortion formulations include a formulation
with blocking effects from the ground also explored in Mann (1994), and for-
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mulations including buoyancy effects, investigated e.g by Hanazaki and Hunt
(2004) and Chougule (2013).

In Kristensen (1979), a model was developed to predict the correlation
between two wind measurements separated in the streamwise direction. This
model primarily predicts temporal correlations, and it has recently been im-
plemented and used by Bossanyi (2013) in the context of lidar-assisted wind
turbine control.

In Sect. 2, after first introducing definitions, we attempt to combine the
design philosophy of the Mann (1994) tensor, in which isotropic turbulence is
distorted by uniform shear, with the design philosophy of Kristensen (1979), in
which eddies are simultaneously advected randomly by larger eddies as well as
decaying. In Sect. 3, we discuss the implementation of the developed model as
well as strategies for obtaining the necessary input information. Finally in Sect.
4, we compare the predictions of our model to data from experiments, data
from large eddy simulations (LES) and where applicable, to the predictions of
the Mann (1994) tensor.

Saffman (1963), Hunt et al. (1987), and more recently Wilczek and Narita
(2012) and Wilczek et al. (2014), suggested the temporal evolution of the
velocity tensor to be given by wavenumber-dependent Gaussian functions. A
number of such models were evaluated for isotropic turbulence in Ott and
Mann (2005). As the validation section includes comparisons with those same
experiments, comparisons with the models evaluated in Ott and Mann (2005)
are implicitly made.

2 Modelling

2.1 Preliminaries

It is common to assume statistical stationarity (as well as ergodicity) and
decompose the three-dimensional flow velocity, ũ(x, t), into a mean velocity,
U(x), and a fluctuating part, u(x, t). We define the coordinate system to move
with a suitable velocity, U0, so that in our coordinate system U(0) = 0. We

further assume a constant and non-negative shear, dU1/dz, such that

ũ(x, t) = U(x) + u(x, t) = (x3
dU1

dz
, 0, 0) + u(x, t), (1)

where z and x3 are used interchangeably. Provided that u(x, t) is statistically
homogeneous, we can define a covariance tensor

(2)Rij(r, τ) = 〈ui(x, t) uj(x+ r +U(x+ r)τ , t+ τ)〉 .

In (2) we have accounted for the mean velocity of the flow varying with height
by introducing the term U(x+ r)τ , thereby modifying the traditional defini-
tion of the covariance tensor. The role of this term is easiest to demonstrate
for r = 0, when it causes the right-hand side of (2) to denote the covariance at
a point that moves with the mean flow velocity, U(x). The spectral velocity
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tensor (or velocity-spectrum tensor), R̂ij , is the spatial Fourier transform of
(2),

(3)R̂ij(k, τ) =
1

(2π)
3

∫∫∫
Rij(r, τ) e− ik·r d3r,

where d3r = dr1 dr2 dr3. From the spectral velocity tensor a number of quan-
tities can be derived, for example the (one-dimensional) spatial cross-spectrum

(4)
χij(k1, r, τ) =

1

2π

∫
Rij((ξ1, 0, 0) + r, τ) e− i k1 ξ1 dξ1

=

∫∫
κ1=k1

R̂ij(κ, τ) eiκ·r d2κ,

and the closely related quantity

(5)χ̊ij(k) =

∫∫
|κ|=k

R̂ij(κ, 0) d2κ.

From the spatial cross-spectra the spatial spectral coherence is in turn derived
as

(6)cohij(k1, r, τ) =
|χij(k1, r, τ)|2

χii(k1, r, 0)χjj(k1, r, 0)
,

where, as our only exception, no summation over repeated indices is intended.
Batchelor (1953) used a generalized stochastic Fourier-Stieltjes decompo-

sition of the fluctuating part of the wind velocity, however, as we find this
notation somewhat unintuitive we use the less stringent notation

(7)u(x, t) =

∫∫∫
û(k, t) eik·x d3k.

We find that

(8)

u

(
(x1 + x3

dU1

dz
τ, x2, x3), t+ τ

)
=

∫∫∫
û(κ, t+ τ) eiκ· (x1+x3

dU1
dz τ,x2,x3) d3κ

=

∫∫∫
û

(
(k1, k2, k3 −

dU1

dz
τ k1), t+ τ

)
eik·x d3k,

where in the last step the variable transformation

κ = (κ1, κ2, κ3) = (k1, k2, k3 −
dU1

dz
τ k1) (9)

has been used. Combining (8) with (2) and (3) it is possible to show that

(10)R̂ij(k, τ) =
〈
ûi(k, t)ûj(k(τ), t+ τ) d3k

〉
,
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where we have introduced notation for complex conjugation, and k(τ) has
been introduced as

k(τ) = (k1, k2, k3 −
dU1

dz
τ k1). (11)

Formulating a model for R̂ij(k, τ) is one of our goals. For comparison,

Mann (1994) developed a model for R̂ij(k, 0) and Kristensen (1979) developed
a model for coh11(k1,0, τ). We are also interested in the Lagrangian covariance
tensor defined by

(12)RL
ij(r, τ) =

〈
ui(x, t0) uj

(
XL
t0(x+ r, t0 + τ), t0 + τ

)〉
,

where XL
t0(x, t) is the position at time t of a fluid particle, which at t0 was

located at x. Therefore we also attempt to model the Lagrangian spectral
velocity tensor defined through

(13)R̂L
ij(k, τ) =

1

(2π)
3

∫∫∫
RL
ij(r, τ) e− ik·r d3r.

We will frequently sacrifice physical realism for mathematical tractability.
One such example is our assumption of constant shear, which in reality would
create infinitely large turbulent eddies. This particular problem is handled by
having a turbulent length scale as a model input. Due to such simplifications, in
the end, it will be the prediction capabilities of the final models that determine
their applicability.

2.2 Analysis of eddy decay

The focus here is the evolution of turbulent eddies in the presence of vertical
shear, excluding turbulent advection of small-scale eddies by larger eddies, a
topic we address instead in the next section. We start from the rapid distortion
equation for sheared flow derived by Moffatt (1967) and Townsend (1976),

(14)
D ûi(k(t), t)

D t
=

dU1

dz

(
−δi1 + 2

kik1

|k(t)|2

)
û3(k(t), t),

where

(15)k(t) = (k1, k2, k30 − k1
dU1

dz
(t− t0)).

Equation 14 does not include any term for buoyancy effects, so the results may
or may not be valid for non-neutral atmospheric stratification. More elaborate
rapid distortion formulations are in use (Kaneda and Ishida, 2000; Hanazaki
and Hunt, 2004; Salhi and Cambon, 2010; Chougule, 2013), however, we stay
with the above version for now.

In Fig. 1 we show a sequence of snapshots of conceptual turbulence; the
sequence of snapshots is continued in Fig. 2, in which the dashed black lines
illustrate the distortion of a sample wavenumber according to (15).
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Fig. 1 The three frames show a sequence of snapshots of conceptual turbulence being
distorted by shear (illustrated by the black arrows). The two green eddies are being distorted
(from circles to ellipses) by the shear while at the same time decaying (illustrated by the
shift from solid lines to dashed lines). We note that the smaller, dark green, eddy appears
to decay more rapidly than the larger, light green, eddy. We also note the newborn blue and
red eddies in the middle and right-most frames, respectively.

We now write û(k, t) as

(16)û(k, t) =

∫ t

−∞
η(k0, t0, t− t0) dt0,

where we have introduced η(k0, t0, t− t0) dt0 as the contribution to û(k, t)
from eddies that were created between t0 and t0 + dt0. The newborn eddies in
Fig. 1 would thus contribute to different η than the older eddies in the same
frames. In (16) k0 is derived from k by inverting (15),

k0 = (k1, k2, k30) = (k1, k2, k3 + k1
dU1

dz
(t− t0)). (17)

It follows from homogeneity that for a fixed t, the η’s contributing to
different wavenumbers are uncorrelated. We, however, go beyond homogeneity
and postulate that

(18)
〈
ηi(k0, t0, t− t0)ηj(κ0, τ0, t− τ0 + τ) d3k dt0

〉
= 0

unless τ0 = t0 and κ0 = k0. This assumption reduces our objective of deter-
mining R̂ij , to quantifying〈

ηi(k0, t0, t− t0)ηj(k0, t0, t− t0 + τ) d3k dt0

〉
, (19)

as we can then use (10) and (16) to find R̂ij . Direct validation of (18) would
require isolating the contribution of newly formed eddies, from the contribu-
tions of older eddies, an objective that may be challenging, to say the least, in
practice.

We introduce the expected contribution from newborn eddies,

(20)Nij(k0) =
〈
ηi(k0, t0, 0)ηj(k0, t0, 0) d3k dt0

〉
,
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which is constant in time due to stationarity. As the eddies are expected to
decay over time the contributions cannot, however, be expected to be statis-
tically stationary with respect to t− t0.

Townsend (1976) suggested that the time evolution of an eddy can be
described as a superposition of rapid distortion and viscous decay. Inspired by
this argument and Mann (1994) we introduce a term where the eddy viscosity
depends on k(t) into the rapid distortion equation. Continuing to disregard
advection by larger eddies, we thus postulate that the contributions, η, evolve
in time according to the deterministic equation,

(21)

D ηi(k0, t0, t− t0)

D t
=

dU1

dz

(
−δi1 + 2

kik1

|k(t)|2

)
η3(k0, t0, t− t0)

− 1

2 τe(k(t))
ηi(k0, t0, t− t0),

where the eddy viscosity term is the last term on the right-hand side. We will
refer to the process described by (21) as eddy decay.

For the isotropic case, where dU1/dz = 0 and therefore k(t) = k0, the
solution to (21) is simply

(22)ηISO(k0, t0, t− t0) = ηISO
t0 (k0, t0, 0) exp

(
− t− t0

2 τe(k0)

)
.

From this solution it can be seen that the expected lifetime of the energy of
eddies created at the same time is∫∞

t=t0
ηISO(k0, t0, t− t0) · ηISO(k0, t0, t− t0) dt

ηISO(k0, t0, 0) · ηISO(k0, t0, 0)
=

∫ ∞
t=t0

e−
t−t0

2 τe(k) e−
t−t0

2 τe(k) dt

=τe(k). (23)

Based on (23) we refer to τe(k) as the eddy lifetime, even though this is not

an entirely accurate term when dU1/dz 6= 0. In Fig. 1 we have illustrated the
dependence of τe on k by the smaller eddies decaying more rapidly than the
large ones.

The general solution to (21) can be written

(24)η(k0, t0, t− t0) = B(k0, t− t0) η(k0, t0, 0),

where

(25)B(k0, t− t0) = e−(Ω(k0,t−t0)−Ω(k0,0))

1 0 ζ1
(
k0,

dU1

dz (t− t0)
)

0 1 ζ2
(
k0,

dU1

dz (t− t0)
)

0 0 |k0|2/|k(t)|2

 ,
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and where in turn ζ1(k0, β) and ζ2(k0, β), derived in Mann (1994) and Townsend
(1976), are

(26)
ζ1(k0, β) =

βk2
1

(
|k0|2 − 2k2

30 + βk1k30

)
|k(t)|2 (k2

1 + k2
2)

− k2
2|k0|2

k1 (k2
1 + k2

2)
3/2

arctan

(
βk1

(
k2

1 + k2
2

)1/2
|k0|2 − βk1k30

)
,

(27)
ζ2(k0, β) =

k2βk1

(
|k0|2 − 2k2

30 + βk1k30

)
|k(t)|2 (k2

1 + k2
2)

+
k2|k0|2

(k2
1 + k2

2)
3/2

arctan

(
βk1

(
k2

1 + k2
2

)1/2
|k0|2 − βk1k30

)

and Ω(k0, t− t0) has been introduced such that

(28)
∂Ω(k0, t− t0)

∂t
=

1

2 τe(k(t))
.

For comparison, in Mann (1994) the eddies are not continuously decay-
ing. Instead the eddy lifetime, τe(k), is used as the typical time the eddies
contributing to k have been subjected to the rapid distortion.

We end by noting that eddy decay can be applied sequentially, i.e that

(29)Bim(k(t), τ)Bmj(k0, t− t0) = Bij(k0, t− t0 + τ).

2.3 Modelling advection by larger eddies

Kristensen (1979) attributed loss of longitudinal coherence to a combination
of eddies decaying, and large eddies advecting smaller eddies, causing them to
miss the downstream anemometer. The latter process, which is not captured
by rapid distortion theory, is illustrated in Fig. 2. A straightforward way of
modelling this advection by larger eddies, is to assume that an eddy moves as
a suitably sized sphere. To be more exact, let us assume that an eddy with a
size corresponding to wavenumbers of magnitude k, positioned at x at time
t, has a velocity uRki (x, t), which is the average velocity over a sphere with
radius Rk, i.e.,

(30)uRki (x, t) =

∫∫∫
|r|<Rk ui(x+ r, t) d3r

4
3πR

3
k

.

Assuming that eddies move like spheres may not be entirely realistic because
a sphere ends with a well-defined edge whereas an eddy most likely does not.
It can also be argued that owing to eddy decay the shape of a typical eddy
would be better represented by an ellipsoid, rather than by a sphere.
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Fig. 2 The three frames are a continuation of the sequence of conceptual turbulence in Fig.
1. The left-most frame is identical to the last frame of Fig. 1, except that the shear is now
illustrated by the dashed black lines which represent a wavenumber evolving according to
k(τ) = (k1, k2, k3 − dU1

dz
τ k1). In the two right-most frames we notice that the blue eddy

advects the smaller red eddy, causing it to move relative to the illustrated wavenumber.

If we, inspired by (3), were to define a spectral velocity tensor based on
the averaged wind velocity of (30) we would, for τ = 0, get

(31)R̂Rkij (κ, 0) = H2
k(|κ|)R̂ij(κ, 0).

In (31),

(32)Hk(κ) = −3
κRk cos(κRk)− sin(κRk)

κ3R3
k

is the Fourier transform of the “averaging sphere” convolution kernel, which,
we may add, effectively acts as a low-pass filter. The right-hand side of (32)
is a scaled version of the Bessel function J3/2(x). Based on the argument that
eddies do not advect themselves, we select Rk such that kRk equals the first
zero of J3/2(x), i.e.

Rk ≈
4.4934

k
. (33)

We note that Rk = π
k or Rk = π

2k would be just as natural choices as (33).
We will briefly return to this topic when discussing the cross-over point of
Eulerian and Lagrangian covariances in Sect. 4.2.

From R̂Rkij (κ, 0) in (31) we can, among many other quantities, derive the

standard deviation of uRki (x, t) along any vector. We take the opportunity
to introduce, s(k), the standard deviation of the velocity of the eddies with
radius R|k|, in the direction of k,

s(k) =

√〈
kikj
|k|2

u
R|k|
i (x, t)u

R|k|
j (x, t)

〉
=

√∫∫∫
kikj
|k|2

H2
|k|(|κ|)R̂ij(κ, 0) d3κ =

=

√∫ ∞
0

kikj
|k|2

H2
|k|(κ)χ̊ij(κ) dκ. (34)

Now, let us again consider the blue eddy in Fig. 2. If we denote the illus-
trated wavenumber k(t) and assume that R|k| happens to be the characteristic
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size of the blue eddy, then, according our definitions, the blue eddy moves with
a velocity

(35)vblue(t) =
ki
|k(t)|

u
R|k|
i (xblue(t), t),

in the direction of k(t), i.e. perpendicular to the dashed black lines. If the blue
eddy was the only eddy described by η(k0, t0, t− t0), then η(k0, t0, t− t0 + τ)
would be equal to

(36)B(k, τ)η(k0, t0, t− t0) e− iφblue(τ),

with φblue(τ) the “distance travelled in radians” given by

(37)φblue(τ) =

∫ t+τ

t

vblue(τ ′)|k(τ ′)|dτ ′.

Now, η(k0, t0, t− t0) does not only represent the blue eddy, but all eddies of
approximately the same size and age as the blue eddy. Equation 34 introduced
the standard deviation of the velocity of these eddies in the direction of k, as
s(k), and we assume that s(k), analogously to (37), can be integrated to give
the standard deviation of the distance in radians travelled by the eddies,

(38)Θ(k, τ) =

∫ t+τ

t

s(k(τ ′))|k(τ ′)|dτ ′.

We further assume that the distances in radians travelled by the eddies in
question are normally distributed,

(39)
1

Θ(k, τ)
√

2π
exp

(
− φ2

2Θ2(k, τ)

)
,

a choice supported by the fact that this distribution has maximal entropy for
given first and second moments. Combining (36) with (39) leads to〈

ηi(k0, t0, t− t0)ηj(k0, t0, t− t0 + τ) d3k dt0

〉
=

〈
ηi(k0, t0, t− t0)

(∫ ∞
−∞

1

Θ(k, τ)
√

2π
e
− φ2

2Θ2(k,τ) Bjn(k, τ)

ηj(k0, t0, t− t0 + τ) e− iφ(τ) dφ

)
d3k dt0

〉
(40)

=
〈
ηm(k0, t0, t− t0)e−

1
2 Θ2(k,τ)Bjn(k, τ)ηn(k0, t0, t− t0) d3k dt0

〉
= e−

1
2 Θ2(k,τ)Bim(k0, t− t0)Nmn(k0)Bjn(k0, t+ τ − t0),

where in the last step we have used (20) and (29). The last line of (40) de-
scribes newborn eddies, Nmn(k0), which, since their birth at t0, have been
subjected to eddy decay, Bij(k0, t− t0). Moreover, if observed twice, at t and
t+ τ , advection by larger eddies has caused unalignment resulting in a loss of
correlation according to exp

(
− 1

2Θ2(k, τ)
)
.
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We can now, using (10), (16), (18) and (40), derive an expression for

R̂ij(k, τ),

R̂ij(k, τ) =
〈
ûi(k, t) ûj(k(τ), t+ τ) d3k

〉
=

〈∫ t

−∞
ηi(k, ξ0, t− ξ0) dξ0

∫ t

−∞
ηj(kτ , ζ0, t− ζ0) dζ0 d3k

〉
=

∫ t

−∞

〈
ηi(k0, t0, t− t0)ηj(k0, t0, t+ τ − t0) d3k dt0

〉
dt0

=

∫ t

−∞
e−

1
2 Θ2(k,τ)Bim(k0, t− t0)Nmn(k0)Bjn(k0, t+ τ − t0) dt0,

(41)

where k0 and and Θ(k, τ) are given by (17) and (38), respectively. We note that
Θ(k, τ) by definition is equal to 0 for τ = 0 and it is therefore not a problem

that R̂ij(k, 0) is used, through the definition of s(k), to define Θ(k, τ). Owing
to stationarity, the right-hand side of (41) does not depend on the value of t.

We cannot evaluate (41) numerically just yet because we have neither in-
troduced an expression for the eddy lifetime nor an expression for the added
energy due to newborn eddies, Nij(k0). Before addressing these needs, we turn

our attention to the Lagrangian covariance tensor, R̂L
ij , defined in (13).

2.4 A model for the Lagrangian tensor

The Lagrangian approach can be described as observing the flow by tracking
fluid particles and recording their instantaneous velocities. If we follow one
of the fluid particles within the small red eddy of Fig. 2 and use it to study
the wavenumber illustrated by the dashed black lines, then it is clear that the
Lagrangian velocity may lose coherence even when, as in this case, the blue
eddy (which likely contributes to the illustrated wavenumber) stays more or
less coherent. Our assumption is therefore that the evolution of the Lagrangian
tensor is a combination of eddy decay and the fluid particles moving relative
to the eddies of which they are a part.

If we want to quantify the movement of a point within the small red eddy,
relative to the red eddy itself, then the fact that the blue eddy is advecting
both the red eddy and our observation particle should be of little importance.
Similarly, if we are interested in the point’s movement, relative to the blue
eddy, then the fact that it is also moving within the small red eddy likely has
limited impact. Based on these arguments we quantify the velocity of a particle
relative to an eddy of size R|k|, as the velocity of the particle minus both the
velocity contribution from eddies that are large enough to move the eddy
of interest, H|k|(|κ|)ûi(κ, 0), and the velocity contribution from eddies that
are small enough to be moved by the eddy of interest, H|κ|(|k|)ûij(κ, 0). The
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Fig. 3 The velocity of a particle relative to an eddy of size R|k|=1 is quantified as the
velocity of the particle minus both the velocity contribution from eddies that are large
enough to move the eddy of interest, H|k|=1(|κ|)ûi(κ, 0), and the velocity contribution from
eddies that are small enough to be moved by the eddy of interest, H|κ|(|k|= 1)ûi(κ, 0).

The resulting factor (1−H1(κ)−Hκ(1))2 is illustrated (in red) versus a linear as well as a
logarithmic κ. We note that the choice of expression for Rk in (33) ensures that H1(κ) = 0
for κ = 1.

standard deviation of the velocity with which a fluid particle moves relative
to its eddy in the direction of k can then be quantified as

(42)

sL(k) =

√∫∫∫
kikj
|k|2

(
1−H|k|(|κ|)−H|κ|(|k|)

)2
R̂ij(κ, 0) d3κ

=

√∫ ∞
0

kikj
|k|2

(
1−H|k|(|κ|)−H|κ|(|k|)

)2
χ̊ij(κ) dκ.

The factor
(
1−H|k|(|κ|)−H|κ|(|k|)

)2
is illustrated for |k|= 1 in Fig. 3.

Using similar arguments as the ones leading from (38) to (40) we arrive at

modelling R̂L
ij(k, τ) as

R̂L
ij(k, τ) =

∫ t

−∞
e−

1
2 Θ2

L(k,τ)Bim(k0, t− t0)Nmn(k0)Bjn(k0, t+ τ − t0) dt0,

(43)

where k0 is given by (17), however, contrary to the Eulerian expression in
(38), ΘL(k, τ) is now given by

(44)ΘL(k, τ) =

∫ τ

0

sL(kτ ′)|k(τ ′)|dτ ′,

where k(τ ′) = (k1, k2, k3 − dU1

dz τ
′ k1) and sL(k) is given by (42).

In terms of studying turbulence by tracking fluid particles and record-
ing their instantaneous velocities, the right-hand side of (43) is the sum of
the energy from newborn eddies, Nmn(k0), that have been subjected to eddy
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decay, Bij(k0, t− t0) since their birth at t0. When attempting to make the
observation, however, the tracked particles used for the observation have left
their original positions relative to their designated eddy, and, therefore, lost
correlation according to exp

(
− 1

2Θ2
L(k, τ)

)
.

2.5 Remaining modelling choices

In order to evaluate (41) and (43) numerically we need expressions both for
the added energy due to newborn eddies, Nij(k0), and for the eddy lifetime,
τe(k).

With the first objective in mind, we follow Kolmogorov (1968) and assume
that the isotropic energy spectrum, E(|k|), which is closely related to the
isotropic spectral velocity tensor, is only a function of |k| and the rate of dis-
sipation of turbulent energy, ε, in the inertial subrange. Dimensional analysis
then leads to

(45)E(|k|) ∝ |k|− 5
3 ε2/3.

An isotropic energy spectrum with this property was suggested by von Kármán
(1948) as

(46)E
(
αKε

2/3, LM , |k|
)

= αKε
2/3 |k|4(

L−1
M + |k|2

)17/6
,

where αK is the Kolmogorov constant. With (46) we can write the isotropic
spectral velocity tensor as

(47)R̂ISO
ij

(
αKε

2/3, LM ,k
)

=
E
(
αKε

2/3, LM , |k|
)

4π|k|2

(
δij |k|2 − kikj

|k|2

)
.

Now, if we attempt to evaluate (41), for dU1/dz = 0 and τ = 0, using (23) we
get

(48)

R̂ISO
ij (k0, 0) =

∫ t

−∞

〈
ηi(k0, t0, t− t0)ηj(k0, t0, t− t0) d3k dt0

〉
dt0

=

∫ t

−∞
e−

t−t0
τe(k)

〈
ηi(k0, t0, 0)ηj(k0, t0, 0) d3k dt0

〉
dt0

= τe(k0)Nij(k0).

Thus we have, for the isotropic case, quantified the added energy due to new-
born eddies as

(49)Nij(k0) =
R̂ISO
ij (k0)

τe(k0)
,

and we will assume that (49) is approximately true also for the non-isotropic
case. Equation 49 thus follows Mann (1994) in that the eddies start out
isotropic and become anisotropic through rapid distortion.
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Regarding the eddy lifetime, we can argue that in the inertial subrange,
τe(k) should only be a function of |k| and the rate of dissipation of turbulent
energy, ε, and use dimensional analysis to arrive at

(50)τe(k) ∝ |k|− 2
3 ε−

1
3 .

Although somewhat simplistic, we will, going forward, assume

τe(k) = τe(|k|) =
M
√
αK
|k|− 2

3 ε−
1
3 , (51)

where the constant M is introduced, also outside the inertial subrange. The
Kolmogorov constant has been included in (51) because we find it convenient
to keep the quantity αKε

2/3 intact. We can now integrate (28) which, for
dU1/dz > 0, gives us

Ω(k0, t− t0) =

(
−k30 + dU1

dz k1 (t− t0)
)

10M dU1

dz k1

∣∣∣∣(k1, k2, k30 −
dU1

dz
k1 (t− t0))

∣∣∣∣2/3(
3 + 2 2F1

(
5/6, 1, 3/2,−

(
k30 − dU1

dz k1 (t− t0)
)2

k2
1 + k2

2

))
√
αKε

1/3,

(52)

where 2F1 is the hypergeometric function. For dU1/dz → 0, we expect (52) to

approach t−t0
2τe(k0) plus an integration constant.

One way of determining the constant M would be to use that in the inertial
subrange

χ13 (k1, 0)→
∫∫

κ1=k1

τe(κ)
2

(
− 1

τe(κ)

d R̂ISO
13 (κ0(0))

dt0
(53)

+
D
〈
η1(κ0, 0, 0) η3(κ0, 0, 0) d3κ dt0

〉
D t

 d3κ

→
∫∫

κ1=k1

dU1

dz

5k2
1k

2
3 − 3k2

2|k|2

12π|k|6
τe(κ)E(|κ|) d3κ = − 33

1729

dU1

dz
τe(k1)E(k1),

in which κ0(t− t0) = (κ1, κ2, κ3 + κ1
dU1

dz (t− t0)). Inserting the asymptotic
behavior of τe(k1) and E(k1) we see that the right-hand side of (53) scales as

k
− 7

3
1 ε1/3, which is consistent with observations (Wyngaard and Coté, 1972).

To remove its dependence on ε we can divide the square of χ13 (k1, 0) with

χ11(k1, 0), which correspondingly approaches 9
55k
− 5

3
1 αKε

2/3. In Section 4 we
will follow this line of reasoning and study

M∗(k1) =

√
k3

1 χ13(k1, 0)
2

χ11(k1, 0)

1729

33

√
9

55

dU1

dz

−1

, (54)
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where M∗(k1) consequently should approach M in the inertial subrange. Equa-
tion 54 thus indicates that studying the ratio between different components of
the cross-spectra at known shear could be interesting in terms of determining
M .

This section introduced an expression for the added energy due to newborn
eddies, Nij(k0), as well as an expression for the eddy lifetime, τe(k). It can be
argued that these expressions are on the simplistic side and that they should
depend on, for example, Rij . The counter argument would be that coupling
the building blocks of the model to the end result in such a way would make
the model significantly harder to evaluate. The section ended with implicitly
suggesting an experiment for determining M (introduced in (51)), which is a
key quantity of the framework.

3 Practical application of the models

3.1 Implementing the spectral velocity tensor for τ = 0

When implementing the spectral velocity tensor(s) it is convenient to introduce

(55)G =
M

√
αKε1/3

dU1

dz
L

2/3
M ,

which, for dU1/dz > 0, enables us to write (51) as

(56)τe(k) = G
dU1

dz

−1

L
− 2

3

M |k|
− 2

3

and (52) can then, for G > 0, be written as

(57)
Ω(LM , G,k0, β) =

(−k30 + k1β)

10Gk1
|(k1, k2, k30 − k1β)|2/3

L
2/3
M

(
3 + 2 2F1

(
5/6, 1, 3/2,− (k30 − k1β)

2

k2
1 + k2

2

))

with β = dU1

dz (t− t0). This in turn allows us to write (25) as

(58)

B(LM , G,k0, β)

= e−(Ω(LM ,G,k0,β)−Ω(LM ,G,k0,0))

1 0 ζ1(k0, β)
0 1 ζ2(k0, β)
0 0 |k|2/|(k1, k2, k30 − k1β)|2
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with ζ1 and ζ1 still given by (26) and (27). We can now reformulate (41) for

τ = 0 and dU1/dz > 0 according to

R̂ij(k, 0) =

∫ t

−∞
Bim(k0, t− t0)

1

τe(k0)
R̂ISO
mn (k0)Bjn(k0, t− t0) dt0

=

∫ ∞
0

Bim(LM , G,k0, β)
L

2/3
M |k0|2/3

G
R̂ISO
mn

(
αKε

2/3, LM ,k
)
Bjn(LM , G,k0, β) dβ

= R̂ij

(
αKε

2/3, LM , G,k0

)
, (59)

where k0 = (k1, k2, k3 + k1
dU1

dz (t− t0)) = (k1, k2, k3 + k1β). In the last step of

(59) we have introduced R̂ij
(
αKε

2/3, LM , G,k
)

for G > 0. For G = 0 (which

corresponds to dU1/dz = 0) we set

(60)R̂ij

(
αKε

2/3, LM , 0,k
)

= R̂ISO
ij

(
αKε

2/3, LM ,k
)
,

with R̂ISO
ij given by (47). As RL

ij(x, 0) = Rij(x, 0) it should come as no surprise

that also R̂L
ij can be simplified to R̂ij

(
αKε

2/3, LM , G,k
)

for τ = 0.
The spectral velocity tensor defined in (59) is closely related to the Mann

(1994) tensor, which can similarly be written R̂ij
(
αKε

2/3, LM ,Γ,k
)
. The dif-

ference between the two tensors lies in how τe(k), which in Mann (1994) is
given by

(61)Γ
dU1

dz

−1 |k|−
2
3L
− 2

3

M√
2F1

(
1
3 ,

17
6 ,

4
3 ,−|k|

−2
L−2
M

)
instead of (56), is combined with the rapid distortion equation. As previously
mentioned, instead of decaying continuously, the eddies in Mann (1994) are
subjected to rapid distortion according to their current age, which is set to
exactly τe(k). This way of assigning a typical age to the eddies enables the
Mann (1994) tensor to avoid the integration over eddy birth times seen e.g.
in (41). As has been shown before and will be demonstrated again in Sect.
4.1, the Mann (1994) tensor performs very well for the case τ = 0, despite its
simplified approach to eddy decay.

Next, we consider the case τ 6= 0, a situation in which the Mann (1994)
tensor is not applicable.

3.2 Implementing the spectral velocity tensor for τ 6= 0

Using (29) and (59) we can simplify (41) to

R̂ij

(
αKε

2/3, LM , G,k, τ
)

= e−
1
2 Θ2(k,τ)R̂im

(
αKε

2/3, LM , G,k
)

(62)

Bjm

(
LM , G,k,

G
√
αKε

1/3

ML
2/3
M

τ

)
,
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where Bij is given by (58), and where Θ(k, τ) is defined in (38). Though not
clear from the notation, Θ(k, τ) depends also on αKε

2/3, LM and G.
Equation 43 can analogously be simplified to

R̂L
ij

(
αKε

2/3, LM , G,k, τ
)

= e−
1
2 Θ2

L(k,τ)R̂im

(
αKε

2/3, LM , G,k
)

(63)

Bjm

(
LM , G,k,

G
√
αKε

1/3

ML
2/3
M

τ

)
,

with ΘL defined in (44).
Evaluating (62) or (63) for τ 6= 0 can, however, be very computationally

intensive. The reason is that, in the process, we evaluate (38) or (44), and then
integrate (34) and (42), respectively, both of which in turn integrate (59). One
solution to this problem is to first evaluate χ̊ij

(
αKε

2/3, LM , G, |k|
)
, defined

in (5), for a range of |k|-values and use interpolation in the resulting look-up
table when evaluating (34), or (42). The look-up table can be calculated once
and for all if the relationship

(64)R̂ij(1, 1, G, LMk) =
R̂ij
(
αKε

2/3, LM , G,k
)

αKε2/3L
11/3
M

,

which leads to

(65)χ̊ij

(
αKε

2/3, LM , G, |k|
)

= αKε
2/3 L

5/3
M χ̊ij(1, 1, G, LM |k|),

is used and the look-up table is constructed in two dimensions, G and LM |k|.
Next, we discuss two different strategies for obtaining the necessary input

information required to evaluate the presented models, an objective that, as-
suming knowledge of the constants αK and M , is equivalent to finding suitable
values of the parameters αKε

2/3 , LM and G.

3.3 Deriving parameter values from ε, u∗ and dU1/dz

Assuming knowledge of the rate of dissipation of turbulent kinetic energy, ε, the

friction velocity, u∗, and the shear, dU1/dz, then clearly αKε
2/3 is given directly

by the rate of dissipation, ε, and the Kolmogorov constant, αK. With the

objective of deriving LM and G from ε, u∗ and dU1/dz, we start by rearranging
(55) to

(66)M =
G
√
αKε

1/3

dU1

dz L
2/3
M

and multiplying both sides by
u2
∗

dU1
dz

α
3/2
K ε

to obtain

M
u2
∗

dU1

dz

α
3/2
K ε

=
G
√
αKε

1/3

dU1

dz L
2/3
M

u2
∗

dU1

dz

α
3/2
K ε

=
Gu2
∗

αKε2/3L
2/3
M

= −G
∫∫∫

R̂13(1, 1, G, ξ) d3ξ,

(67)
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Fig. 4 To the left, the left-hand side of (67) versus G shows that G is uniquely determined
by the ratio between the turbulent energy production from the shear gradient and the rate
of dissipation or turbulent kinetic energy. To the right, the left-hand side of (69) divided by

M shows that the ratio lmix/LM depends on G and thereby, also this quantity depends on
the ratio between the turbulent energy produced from the shear gradient and the rate of
dissipation.

where, in the last step, we have used (64). We note that the right-hand side
of (67) is a function of G only. In Fig. 4, this quantity is displayed for a
typical range of G. The left-hand side of (67) can be interpreted as the ratio
between the shear production of turbulent kinetic energy, u2

∗
dU1

dz , and the rate
of dissipation of turbulent kinetic energy, ε, multiplied by a constant. As seen
in Fig. 4, this ratio determines G uniquely.

Having determined G, then LM is given by (55) as

(68)LM =
G3/2α

3/4
K ε1/2

dU1

dz

3/2
M3/2

.

Digressing slightly, we divide the definition of the mixing length, lmix =
u∗/

dU1

dz , with (68) and obtain

lmix
LM

=
u∗/

dU1

dz(
G3/2α

3/4
K ε1/2

dU1
dz

3/2
M3/2

) =
M

G

√√√√u2
∗

dU1

dz M

Gα
3/2
K ε

=
M

G

√
−
∫∫∫

R̂13(1, 1, G, ξ) d3ξ,

(69)
where in the last step we have used (67). In the right-hand graph of Fig. 4 we
see how lmix

LM
/M depends on G.

In this section we have shown that knowledge of ε, u∗ and dU1/dz is suffi-
cient to derive the necessary input information for the spectral velocity tensor.
In the process we have also shown that both G and the ratio lmix

LM
are given

uniquely by the ratio between the shear production of turbulent kinetic energy,
u2
∗

dU1

dz , and the rate of dissipation of turbulent kinetic energy, ε.
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Fig. 5 Comparison of spatial spectra from the spectral velocity tensor (left) and the Mann
(1994) tensor (right) for neutral stratification at 16 ms−1. The spectral velocity tensor fits
the components of the measured spectra at least as well as the Mann (1994) tensor, and it
does not, at least in this example, over-predict the u1u3 cross-spectrum as Mann (1994) has
been reported to do. The resulting parameters of the spectral velocity tensor vs. the Mann
(1994) tensor are αKε

2/3 = 0.070 m4/3s−2 vs. αKε
2/3 = 0.085 m4/3s−2, LM = 63.3 m vs.

LM = 51.2 m and G = 3.46 vs. Γ = 3.49. The experience so far is that the difference in
the resulting parameters is smaller than the uncertainty incurred by the choices made when
designing the fitting procedure.

3.4 Determining parameter values from measured spectra

For many applications the physical properties ε, u∗ and dU1/dz are not known,
and it can be advantageous to use the alternative strategy outlined in Mann
(1994), of measuring spectra and determining which set of tensor parameter
values best reproduces the measured spectra.

Finding tensor parameters in this way requires repeated evaluation of (4),
and with this in mind it may be beneficial to first produce a look-up table of
χij(1, 1, G, LMk1) and interpolate to find

(70)χij

(
αKε

2/3, LM , G, k1

)
= αKε

2/3 L
5/3
M χij(1, 1, G, LMk1).

In Fig. 5 this method is applied to spectra measured at 80 m height and 16
m s−1 at Høvsøre, Denmark, for neutral atmospheric stability. The resulting
values of αKε

2/3, LM and G are not identical to the closely related parame-
ters of the Mann (1994) tensor αKε

2/3, LM and Γ. However, the differences
between the resulting parameter values of the two tensors are dwarfed by the
uncertainty owing to the choices made in the fitting procedure, i.e. a small
change in the fitting procedure would change the comparison result. The spec-
tral velocity tensor fits the components of the measured spectra at least as well
as the Mann (1994) tensor. We note that the spectral velocity tensor does not,
at least in this example, over-predict the u1u3 cross-spectrum as apparently
the case using the Mann (1994) tensor, see Peña et al. (2010).

We have not taken into consideration the fact that the measured spectra
in this case were not truly spatial spectra, but obtained using a stationary
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Fig. 6 To the left, fitting the spectral velocity tensor to spatial LES spectra, resulting in
parameter values: αKε

2/3 = 0.0085 m4/3s−2, LM = 57.7 m and G = 3.23. To the right, an
attempt to determine M using (54), where, as we recall, the quantity, M∗, is expected to
approach M asymptotically in the inertial subrange. The solid line shows the quantity in
question using the spectral velocity tensor with the set of parameter values resulting from
the afore-mentioned spectral fitting. As expected, the curve approaches the value given by
(66) for high values of k1. The corresponding LES results indicates a higher trajectory than
the solid line, before trailing off, presumably due to the finite resolution of the calculation
grid.

anemometer. The spectra corresponding to a stationary anemometer can be
derived from R̂(k, τ) by first calculating R(x− (U0 +U(x)) τ, τ). This av-
enue is, however, not pursued here because it appears quite computationally
intensive. When attempting this, one may keep in mind that x1 of the spectral
velocity tensor is not defined as aligned with the mean wind, U0 +U(x), but

with the direction of the shear, dU/dz.

4 Validation

4.1 Lateral and longitudinal coherence

To investigate the spectral velocity tensor’s ability to predict coherences, we
turn to data from LES performed on a 600 × 600 × 400 cell mesh with a
resolution of 4×4×2.5 m. We choose data from a height of 100 m of a neutrally

stratified simulation, and here we define x1 as being parallel to dU/dz. For
more information regarding the LES see Sullivan and Patton (2011) and Berg
et al. (2013).

Given that we have access to whole planes of data we can calculate spatial
spectra, and in Fig. 6 we have determined the parameter values of the spectral
velocity tensor that best reproduces the LES spatial spectra. The resulting
values, αKε

2/3 = 0.0085 m4/3s−2, LM = 57.7 m and G = 3.23, together

with dU1/dz = 0.0083s−1 correspond to M = 2.40. Determining M from
the parameters resulting from the fitting of measured spectra was tried in
de Maré and Mann (2014) in which the value M = 3 was proposed, however,
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Fig. 7 To the left, lateral coherence, cohij(k1, r, 0) for r = (0, 14.2m, 0). Both the spectral
velocity tensor (solid lines) and the Mann (1994) tensor (dashed) perform well for this
distance. To the right, the same quantity for r = (0, 44.9m, 0). The Mann (1994) tensor
performs better for the streamwise component (blue), whereas the situation is reversed for
the transversal component (green). Both tensors over-predict the vertical component (red).

the uncertainty using this methodology is considerable. Perhaps a better way
of determining M is to use (54), and this method is demonstrated in the
right-hand graph of Fig. 6 where the LES results indicate a higher value than
the afore-mentioned M -value of 2.40. Using LES to determine M in this way
is, however, not ideal owing to the finite resolution of the calculation grid.
Therefore, we recommend using M = 3 for now, however, based on the above
considerations, the uncertainty in this value is currently 20% or more.

It is worth mentioning that, with the look-up table of χij(1, 1, G, LMk1),
mentioned in Sect. 3.4, it is straightforward to verify the formal manipulations
of (53) (which is the basis for (54)). If the derivation is correct then the quantity

G−1k
7/3
1 L

7/3
M χ13(1, 1, G, LMk1) (71)

should, according to (53) combined with (51), (66) and (70), approach − 33
1729

in the inertial sub-range.
In Fig. 7, to the left, we compare lateral coherence, cohij(k1, r, 0), for

r = (0, 14.2 m, 0) derived from the spectral velocity tensor with the same
quantity extracted from the LES data. The right-hand graph of Fig. 7 shows
the same quantities for r = (0, 44.9 m, 0). In the graphs of Fig. 7, lateral
coherence derived from the Mann (1994) tensor is shown for comparison, and
it is found that the new spectral velocity tensor performs on par with the Mann
(1994) tensor. Both tensors over-predict coherence for the vertical component
at separations larger than 0.5LM in the lateral direction.

Coherence in the vertical direction is not addressed at this point, as the lack
of homogeneity makes this direction less straightforward. When addressing
such coherences, the methodology of Mann (1994) can be used as inspiration.

In Fig. 8, to the left, we compare the longitudinal coherence, cohij(k1,0, τ),
derived from the spectral velocity tensor with the same quantity extracted
from the LES data, for k1 = 0.33/lmix = 0.71/LM . The Mann (1994) tensor
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Fig. 8 To the left, longitudinal coherence derived from the spectral velocity tensor (solid
lines) for k1 = 0.33/lmix = 0.71/LM is compared to the same quantity extracted from the
LES data. To the right, an integral time scale constructed from the longitudinal coherence.
The value of k1 in the left-hand graph corresponds to the left-most dot(s) in the right-hand
graph.

is not included in the graphs because, combined with Taylor’s assumption of
frozen turbulence, it would predict cohij(k1,0, τ) = 1 for all time lags. The
right-hand graph of Fig. 8 shows an integral time scale constructed as∫∞

0

√
cohij(k1,0, τ) dτ .

4.2 Eulerian and Lagrangian two-point correlations in isotropic turbulence

We also compare how the spectral velocity tensor and its Lagrangian counter-
part perform compared to measured results for isotropic turbulence presented
in Ott and Mann (2005). In Fig. 9, we see the Eulerian covariance, Rii(r, τ), for
different separations r and τ , as well as the Lagrangian covariance, RL

ii(0, τ),
and the Eulerian covariance, Rii(0, τ). Both quantities are predicted signifi-
cantly better than by any of the models presented in Ott and Mann (2005).

The cross-over point of the Eulerian and Lagrangian covariances, seen in
the right-hand graph of Fig. 9, is sensitive to the choice of expression for
Rk, see (33). As seen in the graph, the chosen expression predicts a cross-
over at approximately half the maximum value, a behavior reported in e.g
Fung et al. (1992) and Ott and Mann (2005). For comparison, no cross-over
point is predicted, if one the alternative expressions mentioned in section 2.3,

is used instead. In the evaluation of the models we have used dU1/dz = 0,

αKε
2/3 = 0.00622 m4/3s−2, LM = 0.0273 m and M = 3.

5 Conclusions

A spectral velocity tensor has been developed to predict all two-point corre-
lations in space and time in sheared homogeneous turbulence. This was ac-
complished by combining the design philosophies behind two existing models,
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Fig. 9 Sum of covariances for all three components derived from the spectral velocity
tensor (solid lines) compared to measured results for isotropic turbulence presented in Ott
and Mann (2005). To the left, Eulerian covariance for various separations in space and time.
To the right, a comparison between the Eulerian and the Lagrangian covariance for r = 0.
We see that our model reproduces the crossover of RL

ii(0, τ) and Rii(0, τ) at approximately
half the maximum value, a behaviour also reported in Fung et al. (1992).

the Mann spectral velocity tensor, in which isotropic turbulence is distorted
according to rapid distortion theory, and Kristensen’s longitudinal coherence
model, in which eddies are simultaneously advected by larger eddies as well as
decaying.

The model is built on simplified physics and assumptions such as that ed-
dies created at different times are uncorrelated, and that larger eddies displace
smaller eddies as if the smaller eddies were shaped like spheres. Assumptions
such as these can be challenging to validate directly, and are here instead seen
as indirectly validated by the prediction capabilities of the resulting model.

The model needs values of three parameters, αKε
2/3, LM and G, as input.

It was shown that these values can be derived from the following physical
properties of the flow: the rate of dissipation of turbulent kinetic energy, ε,

the friction velocity, u∗, and the shear, dU1/dz. Alternatively, the values of
the input parameters can, as with the closely related parameters of the Mann
(1994) tensor, be derived from measured spectra.

The resulting model predicts spatial correlations comparably to the Mann
(1994) tensor and temporal coherence better than any of the models evaluated
in Ott and Mann (2005). As part of the framework, a spectral velocity tensor
for Lagrangian correlations in space and time is also developed and validated
versus measurements of isotropic turbulence. Combined, the models reproduce
the cross-over point between Eulerian and Lagrangian temporal covariances.
As per the scope of the validation, the developed models can be used, for
example, in wind turbine engineering applications such as lidar-assisted feed
forward control and wind turbine wake modelling.

Future work might include experiments to better determine the introduced
quantity M . An experiment with this objective, studying the ratio between dif-
ferent components of the cross-spectra at known shear, is implicitly proposed
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in Sect. 2.5. Other developments could include investigating the implications of
using a rapid distortion formulation that also includes, e.g., buoyancy effects.
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