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Abstract

Organic-inorganic halide perovskites have proven highly successful for photovoltaics,

but suffer from low stability which deteriorates their performance over time. Recent

experiments have demonstrated that low dimensional phases of the hybrid perovskites

may exhibit improved stability. Here we report first-principles calculations for isolated

monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2 where M=Pb,

Ge, Sn and X,Y=Cl, Br, I. The band gaps computed using the GLLB-SC functional

are found to be in excellent agreement with experimental photoluminescence data for

the already synthesised perovskites. Finally, we study the effect of different defects

on the band structure. We find that the most common defects only introduce shallow

or no states in the band gap indicating that these atomically thin two-dimensional

perovskites are likely to be defect tolerant.

Over the past five years photovoltaic (PV) devices based on organic-inorganic halide per-

ovskites have undergone an unprecedented increase in power conversion efficiency (PCE).1–3

Most notably, the MAPbI3 (MA: methylammonia) perovskite with a band gap of 1.5 eV,

strong light absorption, and long photocarrier lifetimes, has been demonstrated in several

solar cell architectures with above 15% PCE.4,5 Very recently a PCE above 20% efficiency

was reported by combining MAPbBr3 with FAPbI3 (FA: formamidinium).6 Two major dis-

advantages of these materials are that they contain toxic lead (Pb) and are unstable in

contact with moisture which may lead to pronounced defect formation, dissociation or me-

chanical failure.7 The replacement of lead by tin (Sn) has been found to yield PCEs of up

to 6%, but worsens the stability. A number of Pb-free perovskite oxides, e.g. BiFeO3 ,
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BiMnO3 and BiFe2CrO6, were found to have improved stability compared to the halides but

also significantly lower efficiencies.8,9 Finding ways of overcoming the stability issues of the

hybrid halide perovskites without compromising their PCE remains the main obstacle for

using these materials as basis for a viable PV technology.

Interestingly, two-dimensional (2D) phases of the hybrid halide perovskites have been

shown to have better stability than the MAPbI3 like bulk phases (due to a release of geo-

metric constraints as expressed by the Goldschmidt tolerance factor) and significant efforts

are presently being made to synthesize and characterize these novel materials.10–16 The

atomically thin 2D hybrid perovskites can be synthesised in solution and are thus relatively

simple to produce compared to many other atomically thin 2D materials which are made

by mechanical exfoliation or by chemical vapour/atomic layer deposition.15,17 Furthermore,

the atomically thin 2D regime of the hybrid perovskites provides unique opportunities for

tuning the electronic structure e.g. by substrate interactions, mechanical strain, quantum

confinement (layer thickness), stacking of different atomically thin 2D crystals to create

van der Waals heterostructures18 or by varying the size of the alkyl chains.19 The bottom-

up approach recently demonstrated for a layer-by-layer synthesis of the atomically thin 2D

perovskites has opened up a new frontier to synthesize and tailor the properties of these

compounds.15,20 Moreover, recent work by Liu et. al has demonstrated that the properties

of the defects occurring in the low-dimensional hybrid perovskites can be controlled via the

synthesis conditions.21

In this Article, we use first principles calculations to explore different derivatives of the

atomically thin 2D lead perovskites reported experimentally in Ref. 15. We stress that the

calculations are performed for isolated monolayers of the layered perovskites. In the following

we use the terms monolayer and 2D perovskites interchangeably. Specifically we investigate

the effect of mixing different halogen atoms and substituting lead with germanium and tin as

previously been demonstrated experimentally for the bulk perovskites.22 The substitution of

the lead atoms with germanium or tin not only provides an avenue for lead-free perovskites
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but is also way to modify the electronic structure, e.g. the size of the band gap. We find

that Pb-substitution by Sn and Ge generally lowers the band gaps from the 2.5-3.5 eV range

to the 1.7-2.5 eV range which is more relevant for single and multi-junction solar cells and

photoluminscence applications. Additionally, we find that all the 2D perovskites explored in

our work have direct band gaps and have low carrier effective masses which are a prerequisites

for efficient light absorption and good transport properties, respectively. We also explore

the effect of halogen and metal-halide vacancies on the band structure, in particular whether

they introduce deep or shallow states. We find that all the 2D perovskites largely preserve

their band structure upon introducing different vacancy defects indicating a strong degree

of tolerance to defects.

All the electronic structure calculations were performed using density functional theory

(DFT) as implemented in the GPAW code.23 For accurate calculations of lattice constants

the PBEsol functional24 was used and the atomic geometry was optimized with the BEEF-

vdW functional25 to account for the van der Waals forces between the organic parts of the

monolayers. The monolayers were separated by 15 Å vacuum to avoid interactions due to

the periodic boundary conditions. The Kohn-Sham single particle energy gap along with

the derivative discontinuity and the spin-orbit coupling was calculated with the GLLB-SC

functional26,27 which yields much improved band gaps for both bulk28 and 2D semiconduc-

tors29 as compared to semi-local functionals. The atomic structure of the pristine materials

as well as the materials with the defects were relaxed until the forces were below 0.05 eV/Å.

Using a more strict convergence criterion of 0.02 eV/Å for a prototypical system (Rb2GeI4)

changes the energy by less than 1 meV per unit cell, and therefore we used the criterion 0.05

eV/Å to lower the computational cost. The position of the defect levels were estimated from

the Kohn-Sham single particle band structure applying Slater-Janak transition state theory

for an accurate description of localised states in the band gap.30 The initial guess for the

atomic structure of the 2D perovskites (see Figure 1) was taken from the Ref. 15. It should

be noted that only the bulk structure is provided in Ref. 15. We thus extracted the struc-
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ture of a monolayer from the bulk to create the 2D perovskites. The different compounds

were then generated by elemental substitution and full atomic and unit cell relaxations were

carried out for all the structures. The z-direction of the unit cell was kept fixed in order to

preserve the vacuum between the monolayers.

Figure 1: Top and side view of the monolayer A2GeBr2I2 (A = C4H9NH3) perovskite,
respectively.

Figure 2 shows the calculated band gaps of the 27 monolayer perovskites A2MX2Y2 (A =

C4H9NH3, M=Sn, Ge, Pb; X, Y=Cl, Br, I). Since the mixed halides have different halogen

atoms in the axial and equatorial positions, they are represented with different letters ‘X’

and ‘Y’. In Figure 2, for brevity the organic part (A) is omitted from the chemical formula on

the x-axis. The first element represents the metal atom and the second and third elements

represent the equatorial and axial halogen atoms, respectively. The band gaps shown in

Figure 2 have been calculated with and without spin-orbit coupling (SOC). As expected,

SOC has the largest effect on the band structure of the lead containing perovskites where it

lowers the band gaps by around 1 eV due to splitting of the conduction band which consists

mainly of Pb p-states. The experimental values for the band gaps are from Refs. 15 and 22.

The band gaps are clearly different when the halogen atoms from the axial and equatorial

positions are swapped. This behavior can be intuitively understood in terms of ionic radii

of the halogen atoms. The ionic radii increases in the order Cl, Br, I and the in-plane
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lattice parameters are mainly governed by the ions within plane i.e. the equatorial position.

Therefore, the chlorine atoms in the equatorial plane give the smallest lattice constant and

the iodine atoms the largest. The splitting of the energy levels in the stretched lattice is not

so pronounced thus giving smaller band gaps as compared to the more compressed lattice

where the splitting of the energy levels is larger. Consequently, smaller halogen atoms within

the plane lead to larger band gaps.

In Ref. 15 the band gap of some of the Pb-based perovskites was calculated using the

PBE xc-functional without inclusion of spin-orbit coupling. Our results indicate that the

reasonable agreement with experiments highlighted in that work is fortuitous. Indeed, the

PBE xc-functional underestimates the band gap and inclusion of SOC would yield a band

gap around 1 eV smaller than the experimental value. The inclusion of the derivative dis-

continuity by the GLLBSC functional increases the band gap by around 1 eV restoring the

excellent agreement with experiments. In addition, deviations from the DFT calculations in

Ref. 15 are expected because our structure optimizations were performed using a van der

Waals xc-functional.

Our DFT-GLLBSC calculations predict the band gaps of the isolated monolayers to be

larger than the layered bulk phase by 0.1-0.2 eV. This is again in good agreement with

the experiments in Ref. 15 which found the position of the photoluminescence peak of the

A2PbBr4 perovskite to increase by 0.05 eV when going from bulk to the 3-layer thick per-

ovskite film. We mention that optical properties of 2D semiconductors, like the transition

metal dichalcogenides, typically show a strong dependence on the film thickness. This depen-

dence is due to (i) quantum confinement effects, i.e. interlayer hybridisation, which can affect

the qualitative feature of the band structure such as the nature of the band gap (whether

direct or indirect) and (ii) the strong reduction of the dielectric screening properties when

the film thickness is reduced towards the monolayer.31 Our calculations show that the effect

of quantum confinement is very weak. This is clearly a result of the relatively large distance

between the perovskite layers, resulting from the large size of the organic cations. We have
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not attempted to compute the difference in the dielectric function of the bulk and monolayers

due to the large computational demands of such calculations for the 78 atom unit cells, and

postpone a more detailed investigation of the electron-hole interaction and excitonic effects

in these materials to a future study.

Figure 2: The calculated band gaps of the the monolayers with and without the spin-orbit
interaction denoted by ‘SOC’ and ‘No SOC’, respectively. The compounds are arranged in
the order of the perovskites containing Ge, Sn and Pb respectively. The order for halogen
atoms is taken as I, Br and Cl. The compounds with the swapped position of the halogen
atoms are placed next to each other for comparing the effect of the swapping on the band
gap. The names of the compounds are abbreviated in such a way that the first element
represents the metal atom and the second and third element represent the in-plane and axial
halogen atoms respectively. The experimental values of the band gaps are taken from ref.
15 and 22.

Apart from the size of the band gap, the shape and nature of the bands, especially near

the band edges, also plays a crucial role in governing the electronic properties. Bands with

larger curvature leads to lower effective carrier masses which is desirable for high mobility

of the charge carriers. The orbital character of the bands near the band edges determine

7



the optical absorption strength and, to some extent, control the defect properties of the

material.21,30,32,33 Figure 3 (a) shows the PBE band structure of a representative compound,

A2PbI4, plotted along a high symmetry path. The figure clearly shows that A2PbI4 has a

direct band gap at the center of the Brillouin zone (Γ-point). In addition, the large curvature

of the band edge states implies low effective masses of the charge carriers, see Table 1 for the

numerical values of the effective masses. We should stress that we are referring to the in-plane

effective mass of the isolated 2D monolayer; the out-of-plane effective masses of the layered

bulk perovskites are practically infinite. The character of the bands of A2PbI4 near the band

edges can be seen in the projected density of states (PDOS) plotted in Figure 3 (b). The

valence band and conduction band edge states are mainly dominated by iodine p and lead

p states, respectively. The significantly different character of the valence and conduction

band edge states allude to high ionicity of A2PbI4.21 The remaining 26 compounds have

qualitatively similar band structures, i.e. direct band gap at the Γ-point, low effective

masses, and different orbital character of the band edge states.

Figure 3: a) PBE band structure of a representative compound, A2PbI4 plotted along a high
symmetry path. b) The density of states (in arbitrary units) projected onto atomic orbitals.
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Table 1: The band gaps and carrier effective masses. The compounds are named
in the same way as in Figure 2. m∗

e and m∗
h denote the electron and hole effective

masses, respectively. For the sake of completeness the band gaps (Eg) from
Figure 2 are also mentioned in the table.

Compound m∗
e m∗

h Eg Compound m∗
e m∗

h Eg Compound m∗
e m∗

h Eg
GeII 0.14 0.14 1.79 SnII 0.17 0.18 1.81 PbII 0.26 0.22 2.44
GeIBr 0.13 0.20 1.79 SnIBr 0.15 0.17 1.71 PbIBr 0.23 0.21 2.34
GeBrI 0.35 0.25 3.04 SnBrI 0.21 0.19 2.33 PbBrI 0.39 0.25 3.09
GeICl 0.13 0.19 1.68 SnICl 0.14 0.19 1.67 PbICl 0.20 0.20 2.29
GeClI 0.80 0.30 3.92 SnClI 0.33 0.32 3.11 PbClI 0.68 0.31 3.44
GeBrBr 0.22 0.23 2.94 SnBrBr 0.19 0.23 2.39 PbBrBr 0.28 0.26 3.17
GeBrCl 0.15 0.24 2.37 SnBrCl 0.18 0.24 2.32 PbBrCl 0.26 0.26 3.16
GeClBr 0.44 0.36 4.14 SnClBr 0.26 0.32 3.16 PbClBr 0.39 0.32 3.78
GeClCl 0.34 0.36 4.07 SnClCl 0.26 0.34 3.27 PbClCl 0.34 0.31 3.88

From a computational point of view, the large size of the organic molecules renders the

study of defects in the 2D organometallic perovskites rather demanding. At the same time,

it is known from the bulk perovskites that the organic molecules are typically not directly

involved in the formation of the bands closest to the Fermi energy, see Figure 3 (a). This

suggest that it may be possible to replace the organic molecule by a simpler anion without

altering the qualitative features of the electronic structure. Focusing on the particular case

of 2D lead perovskites, Liu et al. demonstrated with their calculations that the organic

part in the 2D perovskites can be substituted by rubidium (Rb) atoms without affecting

the electronic properties significantly.21 We have explored the effect of replacing the organic

molecule by Rb for all the 27 compounds. We find that in most of the cases of lead-containing

perovskites this is an excellent approximation. However, we also find that for many tin and

germanium perovskites, and for some of the lead perovskites, the substitution underestimates

the band gap significantly, see Figure 2. This mainly arises from differences in the atomic

structure of A2MX2Y2 and Rb2MX2Y2. Apart from the change in the band gap induced by

strain effects, the organic part distorts the octahedral coordination environment which has
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the effect of enlarging the band gap.34 Therefore, the different band gaps of A2MX2Y2 and

Rb2MX2Y2 is a combined effect of the distortion and the difference in lattice constants of

the two structures. However, to the best of our knowledge no experimental study has been

carried out for monolayer Rb2MX2Y2 perovskites.

Despite being structurally different and (as a consequence) introduce changes in the

size of the band gap, the rubidium substitution does not alter the nature of the states

near the valence band maximum (VBM) and the conduction band minimum (CBM). In

particular, the organic part in A2MX2Y2 and rubidium in Rb2MX2Y2 do not contribute

to the states near the band edges,21 see Figure 4 a&b. The VBM and CBM are mainly

Figure 4: (a) PDOS for A2PbI4. (b) PDOS for Rb2PbI4

composed of X-p and M-p states, respectively. This indicates that the VBM has an anti-

bonding character whereas the CBM is bonding in nature. The relationship between the

nature of the PDOS and their bonding and antibonding character has been established

in our earlier work for the case of 2D transition metal dichalcogenides.30 Briefly, we have

shown that the tendency of a 2D semiconductor to form mid-gap states upon introducing

vacancy defects can be quantitatively described by the similarity of the states composing the

band edges. The degree of similarity is estimated using a normalized orbital overlap (NOO)
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which measures the bonding/antibonding character of the VBM and CBM edge states.30

The average character of the edge states are described by an orbital fingerprint vector,30

α = c(ρν1 ,ρν2 , ..,ρνN ) (1)

where c is a normalization constant, νi are combined atom and angular momentum channel

indices and ρνi is the corresponding PDOS integrated over an energy window at either the

bottom of the conduction band or the top of the valence band. The normalized orbital

overlap, D, between the valence and conduction band edge states is then defined as the

inner product between the orbital fingerprint vector of the conduction and valence bands.

Semiconductors with an NOO value close to 1 (indicating a bonding-antibonding nature of

the band gap) have stronger tendency to form deep gap states upon introducing vacancies

compared to semiconductors with D values significantly less than 1 which tend to form only

shallow gap states.

Since the nature of the PDOS of A2MX2Y2 and Rb2MX2Y2 is similar near the band

edges, both classes of materials are expected to possess similar defect properties with regard

to the formation of deep/shallow gap states. In particular, from Figure 4 it is clear that

both classes of materials have significantly different orbital character of the VBM and CBM

and thus we expect low NOO and large tolerance towards defects. Figure 5 shows the

NOO values of the 2D halides A2MX2Y2 and Rb2MX2Y2. For reference, the NOO values

of MoS2 and WS2 are also shown. These two materials are known to form deep gap states

upon formation of sulfur vacancies. The figure clearly shows that all 2D perovskites have

significantly lower values of NOO as compared to the defect sensitive dichalcogenides. As

expected from Figure 4, the A2MX2Y2 and Rb2MX2Y2 structures have very similar NOO

values, indicating that the tendency to form defect states is also very similar for the two

classes of materials.

Figure 6 shows the DOS of A2PbI4 (a)-(c) and Rb2PbI4 (d)-(f) monolayers in the pristine
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Figure 5: Normalized orbital overlap (NOO) to measure the similarity of the states near
the VBM and CBM edges.30 The NOO values for the MoS2 and WS2 monolayers are also
shown (red circles) for comparison. The band edge states in MoS2 and WS2 have very
similar character thus giving high NOO values whereas the significantly different nature of
the edge states in A2MX2Y2 and Rb2MX2Y2 gives low NOO values (gree and blue circles,
respectively) for these class of materials.
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form and with defects. The three panels of Figure 6 (a)-(c) and (d)-(f) correspond to the

pristine materials, the materials with a halogen vacancy in the axial position and with a

halogen vacancy in the equatorial position, respectively. The systems with the vacancies

have been calculated with half an electron less in order to get reasonable estimates of the

defect level from the Kohn-Sham band structure as per the Slater-Janak theory.30,35 The

figure clearly shows that both A2PbI4 and Rb2PbI4 introduce shallow gap states close to

the CBM. Similar behaviors can be expected for other types of defects, e.g. PbI2 and RbI

(or AI) vacancies. Unfortunately, for the A2MX2Y2 monolayers these more complex defects

are computationally quite challenging because of the large supercells required to remove the

defect-defect interactions. We therefore focus on the simpler Rb2MX2Y2 compounds when

exploring larger defects, but expect the results to be representative also for the A2MX2Y2

compounds due to their qualitatively similar electronic structure.

Figure 7 shows the the DOS of a lead-free perovskite monolayer, Rb2GeBr4. Panel

(a) denotes the pristine monolayer while (b) and (c) correspond to the monolayer with a

halogen atom removed from the axial and equatorial position, respectively. Panels (d) and

(e) correspond to the monolayer with a GeBr2 and RbI vacancy, respectively. The figure

clearly shows that no deep gap states are formed upon introducing any of these different

types of vacancy defects Similar behavior is observed for the other 26 monolayer perovskites

(see Supporting Information). The behavior of preserving the band structure upon creating

the defects is a clear manifestation of defect tolerance in these 2D perovskites corroborating

with the inferences from Figure 5. Additionally, the similarity of the electronic structure of

the A2MX2Y2 and Rb2MX2Y2 compounds suggests that similar behavior can be expected

for other 2D perovskites with different organic chains or metal atoms.

Finally, we have investigated the thermodynamic stability of the A2MX2Y2 and Rb2MX2Y2

mixed halide 2D perovskites by calculating the energy of segregation into the pure per-
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Figure 6: The DOS plots of A2PbI4 in the panels a-c correspond to the pristine, halogen
vacancy in the axial position and the halogen vacancy in the equatorial position, respectively.
The panels d-f show the similar plot as a-c for Rb2PbI4. Red color denotes the states filled
up to the Fermi level while the blue color denotes the unoccupied states.
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Figure 7: The DOS plot of Rb2GeBr4. (a) denotes the pristine monolayer; b) and c) corre-
spond to the monolayer with halogen atom removed from the axial and equatorial position,
respectively; d) and e) correspond to the monolayer with GeBr2 and RbI vacancy, respec-
tively. Red color denotes the states filled up to the Fermi level while the blue color denotes
the unoccupied states.

ovskites,

∆Hsegr = E[A2MX2Y2]− 1
2(E[A2MX4] + E[A2MY4]) (2)

where ∆Hsegr is the heat of segregation and E represents the calculated total energy of the

compound. The same expression is used to calculate the segregation energy of Rb2MX2Y2.

The calculated ∆Hsegr is shown in Figure 8. A significant number of the compounds have

negative value of ∆Hsegr indicating that the mixed phase is thermodynamically stable. We

stress that inclusion of entropic effects (not considered here) would stabilise the mixed phases

under finite temperature conditions. Furthermore, the positive ∆Hsegr values are not too

large implying that the structures may be metastable. This aspect was previously explored

for the bulk hybrid pervoskites.36

In summary, the 2D hybrid perovskites explored in the present work show remarkable

properties of relevance for various opto-electronic applications. In particular, the lead-free

perovskites with direct band gaps in the range 1.7-2.5 eV, low charge carrier effective masses,

and high defect tolerance are promising candidates for photovoltaics. The preservation of
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Figure 8: Calculated segregation energy (∆Hsegr) of mixed halide 2D perovskites A2MX2Y2
and Rb2MX2Y2 to pure phases.

the band structure with respect to the creation of different vacancy defects was shown to be

the result of the bonding/anti-bonding nature of the conduction and valence band states,

respectively. We also found that the function of the organic chains is not only to donate

electrons to the metal-halogen cage but also to distort the cubic symmetry. By comparing to

the much simpler cubic Rb-substituted perovskites, it was found that this symmetry breaking

has the effect of enlarging the band gap. However, apart from this Rb-substitution does not

affect the qualitative features of the electronic states near the band edges. This indicates

that the band gap and optical properties of the 2D hybrid perovskites can be further tuned

by varying the organic chains without compromising its defect tolerance.
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