
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Detailed characterization of CW- and pulsed-pump four-wave mixing in highly
nonlinear fibers

Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, L.; Oxenløwe, Leif Katsuo

Published in:
Optics Letters

Link to article, DOI:
10.1364/OL.41.004887

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Lillieholm, M., Galili, M., Grüner-Nielsen, L., & Oxenløwe, L. K. (2016). Detailed characterization of CW- and
pulsed-pump four-wave mixing in highly nonlinear fibers. Optics Letters, 41(21), 4887-4890. DOI:
10.1364/OL.41.004887

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84000527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1364/OL.41.004887
http://orbit.dtu.dk/en/publications/detailed-characterization-of-cw-and-pulsedpump-fourwave-mixing-in-highly-nonlinear-fibers(96673afe-b730-4778-9df6-28a43ec19c6f).html


Detailed Characterization of CW- and Pulsed-Pump 
Four-Wave Mixing in Highly Nonlinear Fibers 

M. LILLIEHOLM,1,* M. GALILI,1 L. GRÜNER-NIELSEN2 AND L. K. OXENLØWE1 
1DTU Fotonik, Dept. of Photonics Engineering, Technical University of Denmark, Ørsteds Plads Bldg. 343, DK-2800 Kgs. Lyngby, Denmark 
2OFS, Priorparken 680, DK-2605, Brøndby, Denmark 
*Corresponding author: madsl@fotonik.dtu.dk 

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX 

 
We present a quantitative comparison of continuous-
wave- (CW) and pulsed-pump four-wave mixing (FWM) 
in commercially available highly nonlinear fibers 
(HNLFs), and suggest properties for which the CW and 
pulsed FWM bandwidths are limited in practice. The CW- 
and pulsed-pump parametric gain is characterized 
experimentally for several HNLFs with various 
dispersion properties, including zero-dispersion 
wavelength fluctuations, and the results are interpreted 
in conjunction with detailed numerical simulations. It is 
found that a low third order dispersion (TOD) is essential 
for the pulsed-pump FWM bandwidth. However, an 
inverse scaling of the TOD with the dispersion 
fluctuations, leads to different CW-optimized fibers, 
which depend only on the even dispersion-orders. 

OCIS codes: (060.4370) Nonlinear optics, fibers; (190.4380) Nonlinear 
optics, four-wave mixing; (260.2030) Dispersion. 
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Four-wave mixing (FWM) in highly nonlinear fibers (HNLFs) [1] 
has been proven to enable a number of important functionalities 
for ultrafast optical signal processing (OSP). For continuous-wave 
(CW) pumps such OSP includes fiber-optic parametric 
amplifiers [2] and optical phase conjugation [3,4], whereas 
broadband pulsed pumps enable e.g. sub-picosecond resolution 
optical sampling [5] and optical Fourier transformation [Error! 
Reference source not found.,7] based on the optical time lens 
principle [8]. It is possible to achieve very high efficiency in 
HNLFs [9] and FWM bandwidths have been reported up to 
140 nm using a CW pump [10] which in principle depends only on 
the even dispersion orders [11]. However, the pulsed-pump 
performance is rarely characterized. The fiber requirements for 
pulsed-pump FWM (pulsed FWM) in HNLFs are generally more 
demanding than for CW-pumped FWM (CW FWM), with 
tolerances decreasing for larger pump bandwidths due to walkoff, 
which is often limited by the third order dispersion (TOD) for a 
fixed length of fiber. Another consequence of TOD is for chirped 
pump pulses, where the phase matching conditions change 

depending on which part of the pump spectral content is 
overlapping with the signal temporally, as is the case in e.g. a FWM-
based time lens. Finally, the strength of Raman interactions may 
vary considerably depending on the type and concentration of the 
fiber core dopants [12], affecting the Raman-induced frequency 
shift for ultrashort pulsed-pump FWM. In this letter we compare a 
range of HNLF types with different dispersion properties, to 
characterize their potential for CW and pulsed FWM respectively. 
As part of the characterization, the parametric gain is measured on 
standard HNLF, dispersion-flattened HNLF (DF-HNLF) and for 
different variations of the highly dispersion-stable HNLF-
SPINE [13]. To complement the experimental results, a detailed 
numerical fiber model is used to simulate the CW and pulsed fiber 
performance for varied dispersion parameters, including the 
Raman effect and estimation of the zero-dispersion wavelength 
(ZDW) fluctuations. It is suggested that fundamental differences 
between the fibers are related to the dynamic between the 
dispersion slope and ZDW fluctuations, which make fibers with a 
relatively large dispersion slope potentially more suitable for high 
performance CW FWM, whereas fibers with a low dispersion slope 
are promising for pulsed FWM applications. 
 The primary frequency dependence, and hence bandwidth 
limitation, of the FWM process is due to the linear phase mismatch 
. Note that herein it is assumed that the bandwidth is not limited 
by polarization-mode dispersion (PMD) [14,15]. When expanded 
around the pump frequency, p, the phase mismatch is [11]:  
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Here 2 and 4 are the second and fourth order fiber dispersion 
coefficients at the pump frequency respectively, s is the signal 
frequency and higher order terms have been neglected. Hence, the 
phase mismatch dependence on the fiber stems from 2 and 4. As 
2 can be tuned by moving the pump frequency and 4 is assumed 
relatively constant within a practical bandwidth, the optimization 
procedure is straightforward [11], although it is complicated 
somewhat by the inclusion of the nonlinear phase term. For 
pulsed-pump FWM, walkoff must be considered; even for a CW 
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input signal where there in principle is no pump-signal walkoff, as 
the resulting pump-idler walkoff affects the FWM bandwidth 
similarly to pump-signal walkoff. For the conventional method of 
phase mismatch minimization which places the pump near the 
ZDW, the walkoff increases with the pump-signal wavelength 
detuning. Thus, the bandwidth is limited to the point where the 
walkoff approaches the pump pulse-duration, regardless of the 
phase mismatch. Unlike the phase mismatch due to dispersion, 
which depends only on even dispersion orders, the walkoff 
additionally depends on the odd. Expansion of the group delay, 1L, 
around the pump frequency leads to the pump-signal walkoff two: 
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which shows the added dependence on the TOD, 3, for pulsed 
FWM in a fiber of length L. As 2(p) is kept small in practice, the 
walkoff will typically be dominated by the 3-term for a fixed fiber 
length. As a special case, the temporally local interaction for 
chirped pump pulses is narrowband compared to the pump 
bandwidth, p, and the FWM efficiency depends on the phase 
mismatch for individual spectral pump components. Hence, 2 
may vary by up to 2 = p3, which can limit the bandwidth in 
e.g. a time lens system using a HNLF with large 3 or a large pump 
bandwidth, which has been demonstrated up to 1.6 THz [16]. 
 To test our assumption that pulsed FWM is sensitive to 3, 
whereas CW FWM depends only on 2 and 4, the parametric gain 
for both CW and pulsed FWM is measured for four different 500-m 
fibers, with an order of magnitude difference between the highest 
and lowest dispersion slope at the ZDW, S0 (∝ 3). Table 1 lists 
relevant parameters for the fibers under test (FUT) with assigned 
IDs A to D. Fiber A is a DF-HNLF, B is a standard HNLF, C is the 
HNLF-SPINE and D is a variation on the HNLF-SPINE, engineered 
to lower the value of 4 (HNLF-SPINE 4↓). The dispersion 
parameters have been derived from a five-term Sellmeier 
polynomial fitted to the group delay [17], which was measured 
using an Agilent 86037C dispersion test set. Fig. 1(a) shows a 
schematic diagram of the experimental setup, with the pulsed 
waveform traces shown as an inset. Fig. 1(b) shows the 
significantly different pulsed FWM spectra for fibers A and C. For 
the CW characterization, the pump is generated from an external 
cavity laser (ECL) source, then phase modulated using four radio-
frequency tones to suppress stimulated Brillouin scattering [18], 
and amplified to obtain 28 dBm average power after a 0.8-nm 

Table 1. Parameters for highly nonlinear fibers under test. 
ID 0 [nm] S0 [ps/(nm2km)] 4 [ps4/km] 

A 1541.3 0.0074 2.6 × 10-4 
B 1546.7 0.017 1.3 × 10-4 
C 1542.9 0.072 -3.0 × 10-4 
D 1545.4 0.070 -1.1 × 10-4 

D-PM* 1562.2 0.069 -0.93 × 10-4 
ID L [m] [dB/km]  [W-1km-1] 

A 506 0.76 10.8 
B 500 0.74 11.3 
C 508 0.83 9.7 
D 498 0.47 6.7 

D-PM* 497 0.49 6.7 

*D-PM is a polarization-maintaining version of D used to test the 
accuracy of the scalar numerical model. 

 
Fig. 1. Experimental setup for CW- and pulsed-pump parametric gain 
measurements. The inset shows the pulsed waveforms (a). Selected 
pulsed FWM spectra, indicating pump, signal and idler (b). 

Gaussian optical bandpass filter (OBPF) at the input to the FUT. 
The signal source is an ECL launching -12 dBm power into the FUT. 
40-GHz Mach-Zehnder modulators (MZMs) are inserted after the 
ECLs for the pulsed characterizations, to carve out 50% duty cycle 
pulses with 11 ps full-width at half maximum (FWHM). The pulsed 
pump is amplified to 25 dBm average power at the FUT input after 
a 3-nm Gaussian OBPF, to obtain a peak power comparable to the 
CW pump power. The average pulsed signal power is amplified to 
0 dBm, thus increasing the detected idler power at the attenuated 
optical spectrum analyzer (OSA), which is low in some cases. No 
gain saturation was observed. The parametric gain is defined as 
the ratio of the signal power at the output to the signal power at 
the input of the FUT, and the signal power is calculated by 
integrating over the signal spectrum, measured using the OSA. For 
pulsed measurements, the delay and polarization was optimized 
for each point, whereas fast tunable laser sweeps were used for the 
CW measurements, with the polarization optimized for 
s = 1550 nm. Fig. 2 shows the parametric gain as a function of the 
pump-signal detuning for fibers A to D. For A and B with low 
slopes, the pulsed gain spectrum closely resembles the CW gain 
spectrum. For C and D with larger slopes, the pulsed gain drops off 
for a detuning >20 nm compared to the CW gain, supporting that 
the value of the TOD significantly impacts the pulsed performance.  
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Fig. 2. The CW- (open symbols) and pulsed-pump (solid symbols) 
parametric gain measured for fibers A-D with p at 1547.53 nm, 
1548.30 nm, 1542.86 nm and 1545.32 nm respectively. 

 Fluctuations of the ZDW add a z-dependence for 2(p, z) 
which limits the FWM bandwidth via . Hence, as a further 
characterization of the fibers, the average ZDW was measured on 
several adjacent pieces from the same preforms, with lengths 
ranging from ~0.1 km to ~1 km, resulting in low-resolution ZDW 
maps over ≥6 km for the different HNLF variations, shown in Fig. 3. 
Even for a modest resolution, very large differences can be 
observed for the different HNLF variations. The DF-HNLF exhibits 
ZDW fluctuations up to 52 nm, the standard HNLF up to 9 nm and 
1.3-1.4 nm is observed for the standard HNLF-SPINE and the 
HNLF-SPINE 4↓. The origin of the differences lies mainly with the 
effect of core-radius fluctuation artifacts from the fiber drawing 
process on the dispersion, which can be approximately modeled as 
a vertical translation of the 2 vs. frequency curve [19]. The 
simplified model is illustrated in Fig. 4(a) for two different 
dispersion slopes, S > 0. For S = x (low 3) the incremental ZDW 
fluctuation 0 is doubled compared to S = 2x (high 3), for the 
same incremental dispersion (2) change D. As a consequence, 
controlling the ZDW in the direction of propagation is extremely 
challenging for DF-HNLFs in particular. Conversely, for a fixed 
ZDW fluctuation the change in dispersion is proportional to the 
dispersion slope. For this model, the relation D = S0, can be used 
to express a first order approximation for the variation of , 
 = -2cD × (p/s - 1)2. Based on the observed data, the 
fluctuations may increase faster than the slope decreases, 
suggesting that  is minimized for higher slope values.  
 To complement the experimental findings, a detailed scalar 
numerical fiber propagation model was created, including ZDW 
fluctuations and the Raman effect. The model solves the 
generalized nonlinear Schrödinger equation using a 4th order 
Runge-Kutta in the interaction picture (RK4IP) method [20], with 
an adaptive step size [21]. The Raman response function is 
implemented using the model proposed by Lin and Agrawal 
[Error! Reference source not found.] and the Raman fraction, fR, 
is reduced by approximately 20% compared to pure silica, to 
match the weighted GeO2 (germania) concentration of ~20 mol % 
for the tested HNLFs [10]. Note that the Raman response herein 
overestimates the gain for a >15 THz Raman frequency shift. This 
is compensated by using fR = 0.245 for silica instead of the typical 
value of fR = 0.18, to yield accurate results in the 0-15 THz 
range [22]. Hence, the germania-modified 

 
Fig. 3. ZDW maps of the different tested HNLF variations from ZDW 
measurements (symbols), with the positions for fibers A to D indicated 
on each of the graphs. Lines are shape-preserving cubic polynomial fits.  

 
Fig. 4. Illustration of dispersion changes on the ZDW due to core radius 
variations for different dispersion slopes (a). Measured and simulated 
parametric gain spectra for test fiber D-PM (p = 1561.9 nm) (b). 

Raman fraction is fR ≅ 0.2. The ZDW fluctuations are modeled by 
modifying the linear dispersion operator for each step, according 
to the change due to the translated 2 at the reference frequency. In 
general, the ZDW fluctuations are assumed to follow stochastic 
processes, with independent variations on both short (<1 m) and 
longer length scales in reality [23]. However, for the following the 
simple z-dependent linear variation 0(z) = 0(z/L - 1/2) + 0,avg is 
used, which was found to reliably predict experimental gain 
spectra with minor non-reciprocal behavior. The ZDW 
fluctuations, 0, was fitted to match one of several measured gain 
spectra. This first order approximation of the fluctuations may be 
useful because fluctuations on a short scale do not significantly 
impact the gain spectrum in practice [23]. Whereas 0 cannot be 
attributed an exact physical significance, it is expected to be 
correlated with the magnitude of the random fluctuations on a 
long length scale. To test the model, the CW parametric gain 
spectrum was measured for a polarization-maintaining (PM) 
variant of fiber D (D-PM, cf. Table 1) with a polarization extinction 
ratio of 21 dB. The measured parametric gain at 28 dBm pump 
power, and the simulated gain for 0 = 7.1 nm, are shown in Fig. 
4(b), indicating extremely good agreement between the 
experimental and simulated results. As a reference, the simulated 
gain spectrum for 0 = 0 nm is shown without the detailed 
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oscillations exhibited by the experimental gain spectrum. The best 
0-fit is larger than expected for a version of the HNLF-SPINE (cf. 
Fig. 3), however an adjacent length of fiber from the same preform 
was measured to have 0 = 1555 nm (0 = 1562.2 nm for fiber 
D-PM), which supports that the fluctuations are relatively large. It 
is supposed that the insertion of stress rods to induce 
birefringence destabilizes the dispersion. The simulation model 
was similarly used to estimate the ZDW fluctuations for fibers A to 
D, by selecting values of 0 which simultaneously achieve the best 
parametric gain spectrum fit at one pump wavelength, and enable 
the reproduction of other gain spectra for the same fiber. The 
results are listed in Table 2, indicating reasonable ZDW fluctuation 
estimates compared to the experimental measurements shown in 
Fig. 3. To investigate the parametric gain behavior for varying 
dispersion slopes, CW and pulsed FWM was simulated using the 
fiber parameters of D as a basis, including the estimated dispersion 
fluctuations. The simulated pump and signal pulses are ideal MZM- 
carved 50% duty cycle pulses synchronized at the fiber input, with 
a 40 GHz repetition rate, 12.5 ps FWHM and 28 dBm peak power. 

Table 2. List of best simulated 0 fits. 
A B C D D-PM 

13 nm 4.8 nm 0.30 nm 0.16 nm 7.1 nm 

The slope is varied from 0.01 to 0.09 ps/(nm2km), and the pump 
wavelength is changed to maintain the phase matching conditions 
by keeping a constant average 2 of ~7 × 10-3 ps2/km. The 
simulated parametric gain spectra, normalized with respect to the 
gain near the pump wavelength, are shown in Fig. 5, with the 
experimental measurements as references. It can be seen that the 
CW peak gain changes by <1 dB for different dispersion slopes 
with constant 2. The variations are mainly due to the fixed value 
of 0 = 0.16 nm, which impacts the gain more strongly for larger 
slopes. For pulsed FWM, the gain bandwidth is close to the CW 
bandwidth with a slope of 0.01 ps/(nm2km), whereas the gain 
bandwidth rapidly diminishes for larger slopes. Fig. 5(b) shows the 
corresponding pump-signal walkoff for the different slope values, 
with the pump half-width at half maximum (HWHM) indicated as 
a suggested threshold for negligible walkoff. The HWHM is chosen 
instead of the FWHM since the pump and signal pulses are aligned 
at the input. The gain peaks present for CW FWM at a detuning of 
~45 nm, vanish for slopes ≥0.03 ps/(nm2km) where the walkoff 
exceeds the pump HWHM, thus explaining the significant 
differences. A slope of ~0.03 ps/(nm2km) is common for good 
HNLFs, and yet it can result in significant bandwidth limitations for 
pulsed FWM in a 500-m HNLF for a modest walkoff tolerance 
<10 ps. The walkoff can be reduced by choosing shorter lengths of 
fiber, but that may not be feasible if a certain parametric gain or 
conversion efficiency is required for the application. On the other 
hand, the slope does not affect the bandwidth for CW- pumped 
FWM, and it may be that superior performance can be obtained in 
high-slope HNLFs due to increased dispersion stability, which 
appears to scale favorably with the dispersion slope.   

In conclusion, we have measured the parametric gain using 
CW and pulsed pumps for different HNLF variations. Large 
bandwidth penalties were observed for a pulsed pump compared 
to a CW pump, in 500-m HNLFs with dispersion slope values of 
~0.07 ps/(nm2km). Conversely, the pulsed gain spectrum 

 
Fig. 5. Simulated CW and pulsed parametric gain spectra for the 
dispersion slope varied from 0.01 to 0.09 ps/(nm2km). Symbols 
reference experimental results for fiber D (a). Pump-signal walkoff for 
various dispersion slopes as a function of pump-signal detuning (b). 

resembles the CW gain spectrum for slopes <0.02 ps/(nm2km) and 
a detuning of up to ~50 nm. Detailed numerical simulations were 
used to estimate the zero-dispersion wavelength fluctuations for 
different fibers, and to verify that the differences between the CW 
and pulsed FWM bandwidth depend mainly on the walkoff due to 
the dispersion slope. Zero-dispersion wavelength fluctuation 
measurements indicate that the fluctuations increase faster than 
the dispersion slope decreases. Hence, it is suggested that the 
optimum CW-pumped FWM performance, which does not depend 
on the dispersion slope, may be achieved for high-slope HNLFs. 
Conversely, a large pulsed-pump FWM bandwidth is highly 
dependent on a low slope. Hence, it is important to choose a fiber 
optimized for a specific application, which is likely different 
depending on whether a CW- or pulsed-pump is required. 
Funding. The Danish Council for Independent Research (DFF) 
Sapere Aude Advanced Grant, NANO-SPECs (DFF-4005-00558B). 
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