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Abstract

This paper studies effectiveness in the domain of computability. In the context of model-theoretical ap-
proaches to effectiveness, where a function is considered effective if there is a model containing a repre-
sentation of such function, our definition relies on a model provided by functions between finite sets and
uses category theory as its mathematical foundations. The model relies on the fact that every function
between finite sets is computable, and that the finite composition of such functions is also computable.
Our approach is an alternative to the traditional model-theoretical based works which rely on (ZFC) set
theory as a mathematical foundation, and our approach is also novel when compared to the already existing
works using category theory to approach computability results. Moreover, we show how to encode Turing
machine computations in the model, thus concluding the model expresses at least the desired computational
behavior. We also provide details on what instances of the model would indeed be computable by a Turing
machine.
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1 Introduction

Together with the arrival of advanced computing machinery, the first half of the

20th century presented us with the concept of computability. Nowadays, a stan-

dard course on the subject should discuss models and results on computation and

in particular the Church-Turing thesis, which equates what can be effectively com-

puted, and what can be computed by a machine running an algorithm. In what

follows, the term algorithm is to be taken according to its current meaning. Effec-

tiveness, on the other hand, will be defined building upon its intuitive meaning of

what “is computable”.

Despite its apogee in the 20th century, effectiveness was already present in many

fields of the human knowledge in Ancient times. In our daily lives there are routines

we perform due to cultural heritage, while others are pervasive and encountered in

every culture. Such pervasive routines may be considered as universal or natural

aspects of our lives. Arithmetic is an example of such an universal aspect, it is

present in all known civilizations 4 , and (historically) a great part of our cognitive

life (was and) is dedicated to learn and develop algorithms on the basic operations

used to calculate with natural numbers and other number systems.

Besides arithmetic, the field of geometry has its realm of algorithms too. For

example, proposition I.1, in Book I of Euclid’s Elements, showing that given a line

segment, an equilateral triangle exists that includes the segment as one of its sides,

is obtained by describing an algorithm that constructs an equilateral triangle on a

(given) straight line, together with its own correctness proof. Many propositions in

Euclid’s Elements are proved in this way, i.e., the description of an algorithm and

its correctness companion argument.

Classical problems as squaring the circle or trisecting an angle using a finite

number of straightedge and compass operations can be understood as the search of

a method to solve a problem by means of a specialized algorithm. Both problems

were proved impossible to solve and it seems that only in mathematics such impos-

sibility proofs appear in a definite form. Posterior investigations have shown that

constructions with straightedge and compass together with the usual algorithms on

the four basic arithmetical operations are not sufficient as the representatives of

effectiveness in such problems.

Archimedes’ method of exhaustion provided a way to escape from these impos-

sibility proofs sacrificing perfection, namely exact results, in favor of feasibility (see

the quadrature of the parabolic segment [1]). Thus, since the ancient classical pe-

riod, it is known that the nature of the objects involved in the chosen method to

attack a problem determines the effectiveness of the respective method itself. Nowa-

days, such rule-of-thumb finds its place in the manual of best-practices of computer

programmers when deciding and designing the datatypes that the program manip-

ulates.

It took a pair of millenniums for us to realize that effectiveness should be firstly

considered as a kind of property on functions, and, that functions should be consid-

4 Furthermore, also primates, lions, and dolphins have arithmetical capabilities [2]
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ered as a relationship between inputs and outputs. The last century was successful

in characterizing which functions from a set of inputs A into a set of outputs B are

effective. A pair of decades after its beginning, partial functions instead of total

ones were admitted in the realm of effective functions. Furthermore, realizing that

the set of Natural Numbers, presented as a numeral system, should be considered

as the universe for the subsets A and B mentioned previously, was also a recent

development.

Historically, investigations on effectiveness followed mainly two non-exclusive

tracks. In the model-theoretical approach, a “model” M is presented and any

(partial) function f : N → N is called M-effective if and only if there is an instance

of the modelM, written asXf , that represents f . The meaning of the “instanceMf

represents f” is given informally by stating that whenever an input i submitted to

fM produces an output o then f(i) = o must be true. The meaning of “submitting”

and of “producing” is also, at least informally, defined when introducing the “model”

M.

In the proof-theoretical approach, a logical theory T is defined and f , a function

from A ⊆ N into B ⊆ B, is said to be T -effective if and only if f ∈ T . Of course

T is presented by a set of axioms and inference rules for deriving propositions on

membership to the theory T and on equivalences between functions f and g, i.e.,

of the form g ∈ T and f ≡ g respectively.

A typical example of a model-theoretic approach is the Turing machine based

effectiveness definition, whereas Gödel partial recursive functions exemplifies the

proof-theoretical one. The approaches for defining effectiveness are not exclusively

model-theoretical or proof-theoretical. One can consider lambda-calculus as a purely

proof-theoretical example if one ignores the underlying evaluation model provided by

the identity relationship. On the other hand, we can consider the lambda calculus as

a model-theoretical approach if one focus on the λ-terms evaluation model. Roger’s

theorem on the abstract axiomatization for the proof-theoretical approach on effec-

tiveness provides stronger 5 evidence for Church-Turing thesis (see [12] and mainly

[10] for a very appraisal discussion). Roger axiomatization is a proof-theoretical

attempt to precisely express the models for effectiveness in a truly abstract way.

Programs are numbers and models are families of Natural Number valued functions

indexed by the formers.

To the best of our knowledge, beyond its similarities it is worth mentioning

that almost all the model-theoretical approaches for effectiveness lie inside ZFC 6 .

Category Theory (CT), although an alternative that is not completely dissociated

from the ZFC and other set theoretical approaches to the foundation of mathemat-

ics, provides, nevertheless, an alternative ontology 7 . In CT, classes of objects and

morphisms form a category. Morphisms are typed by domain and co-domain. For

example let A and B be objects in a category C with f : A → B a morphism in C,
f has domain A and co-domain B.

5 Stronger than evidence provided by some concrete models, as those raised since Turing’s work
6 Zermelo Fraenkel set theory with the axiom of Choice
7 Terminology, in philosophical sense
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However, the meta-theory CT, apart from the parcel of ZFC that it uses, does

not provide meaning to propositions of the form A = B in C. Such theory only

provides meaning to assertions of the type f = g whenever f and g are morphisms.

Given that, one concludes that in SETS, the archetypal category of the class of all

sets and all functions between them, only the identity on functions have a precise

semantics 8 . Moreover, about the objects of SETS, i.e., the sets themselves, it

cannot be stated that any two sets are equal or not equal. The most that can

be said is that they are isomorphic or not 9 . This change of perspective is quite

interesting since it provides more ways to compare models of certain concepts than

if the concepts were formalized on top of ZFC.

This article follows the model-theoretical approach for defining effectiveness by

providing an alternative way to present effective functions using category theory.

Our proposal is different from the effective topos ([7]) and from the work presented in

a series of articles by prof. Robert Walters (see [16] for a brief and easy introduction

on the subject). In the next section we discuss the main motivation of our alternative

to the study of effectiveness.

2 Effectiveness and their categorical models

Higher-order logic (HOL) has been generally used to express and formalize con-

cepts in computer science ([9,14,15]). As a typed language, it is well suited to

the ubiquitous typing discipline in formal specification and validation. Contrary

to ZFC specifications that are usually untyped and use first-order logic, this typ-

ing discipline has deeper consequences than the simple fact of avoiding paradoxes.

Because of lack of space, we cannot discuss this here. The reader can see [5,8] for

a comprehensive presentation. From the model-theoretic counterpart, higher-order

logic theories have special categories, called Toposes, that serve as abstract mod-

els for these theories, the same way Heyting algebras serve as algebraic models for

Intuitionistic Propositional Logic.

Although having a simple definition, a topos describes an entire mathematical

universe of discourse for HOL theories. Any provable HOL formula is true in every

topos, and consequently in SETS. On the other hand, any topos has an internal

logic, such that, if a HOL formula is true in this topos, the formula is provable

in intuitionistic logic. The category SETS is a topos that has Classical HOL

as internal language, since every valid classical HOL formula is true in SETS.

On the other hand, the category of functors from the pre-ordered category ω =

{0, 1, 2, n, . . .} into SETS validates only the intuitionistically valid HOL formulas.

In this article the sub-category of finitely valued functors from ω into SETS is

central. This category is denoted by FinSetω.

What is the appropriate universe of discourse for effectiveness? Technically

speaking, we would like to know what is the adequate topos for studying effective-

ness. Our motivation for studying FinSetω comes from concluding that there is no

8 Equalizing functions is a known issue
9 A is isomorphic to B, iff, there are f : A → B and g : B → A, such that, f ◦ g = IdB and g ◦ f = IdA
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topos that satisfies the law of the excluded middle, has only computable functions

as morphisms, and has a Natural Numbers object. Thus, the universe of discourse

for effectiveness has to dropout at least one of these three properties, but let us first

examine such result.

The argument that follows can be found in [13] and specifically in [11] using the

language ofCT. Firstly, take the Strong Church Thesis (SCT) “Every function from

N in N is computable” into account. Considering that a function is computable if

and only if there is a program that computes it, and, any program can be expressed

by its code that by its turn can be viewed as a natural number. Thus, STC can be

expressed by the following first-order formula:

∀f ∃p ∀n ∃y · (T (p, n, y) ∧Out(y) = f(n)),

where T (p, n, y) is Kleene’s T predicate and Out(y) is Kleene’s output function.

Using the theory of Peano Arithmetic we can obtain T andOut as primitive recursive

predicate and function respectively. Thus, in any topos with a Natural Number

object, T and Out are primitive recursive too. Thus, in the typed HOL language,

SCT is of form:

∀fN
N∃pN∀nN∃yN(T (p, n, y) ∧Out(y) =N f(n)).

Considering an arbitrary topos having a Natural Numbers object, and having

classical logic as internal logic, it can be shown that SCT is inconsistent with this

situation, namely, in this topos SCT cannot hold. Using the fact that classical logic

satisfies the law of excluded middle, the definition for g as follows:

g(n) =

⎧
⎨

⎩

m+ 1 if ∃jN(T (n, n, j) ∧Out(j) = m)

0 otherwise

is provable to be defined for every n. Thus g is a total function, and hence by

SCT has a program p. However, any program p ∈ N that implements g is such

that g(p) = (g(p)) + 1, since there is j, such that, T (p, p, j) and Out(j) = m and

(g(p)) = m + 1. This is not possible, so SCT is inconsistent with the law of the

excluded middle in a topos having a Natural Numbers object.

Let us analyze the remaining alternatives when defining a topos. A topos may

have the following properties:

(i) The internal logic of the topos is classical;

(ii) Every morphism in the topos is effective, i.e., SCT holds in the topos;

(iii) The topos has a Natural Numbers object.

We’ve just shown that ii is inconsistent with i and iii, so either we drop out classical

logic or the existence of Natural Numbers object. If we define a topos with a

non-classical internal logic we end up revisiting the well studied effective topos.

On the other hand, if we drop out item ii, we obtain with i and iii the also well

studied classical theory of recursive functions. The last alternative is to drop out the

existence of a Natural Numbers object. In a naive setting, i and ii together entail

finite sets and first-order finite domain logic. In the category-theoretic setting,

FinSetω represents this alternative which we claim to deserve more study.
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3 Particularities of finite sets (FinSet)

The first step in defining the model of computation is the clarification of what is

a finite set. Such endeavour avoid misunderstandings in the following development

and due to its intuitive character one usually steps over formalities losing insight.

Finite set is defined in terms of finite which means limited and mathematically:

Definition 3.1 The empty set is finite. A non-empty set S is finite if there exists

a bijection from S to a prefix of the natural numbers, {1, · · · , n} ⊂ N. The number

n is usually termed the cardinality of the set.

Note that by relying on natural numbers to define finite sets we do not introduce

a Natural Numbers Object (NNO) in our computability model. One could easily

use a definition of finiteness using other alternatives as the ones studied in [6],

nevertheless the usage of N simplifies our characterization of finite sets.

Definition 3.2 The category with finite sets as objects and all functions between

such sets, denoted as FinSet, is the full subcategory of SETS where objects are

restricted to finite sets.

Our definition of FinSet sieves the category of all functions between sets and

drops every function that has an infinite set as domain or range, the following

proposition shows that the functions remaining in FinSet are finite.

Proposition 3.3 A function f : A → B with a finite domain, i.e. A is a finite set,

is finite, i.e. the cardinality of the set {(a, f(a)) | a ∈ A} is finite.

Proof. Let f be a function with type f : A → B where A is a finite set. As

f is a function, for each a ∈ A there must be only and only one element b ∈ B

such that b = f(a), therefore there are at most as many elements f(a) as elements

in a. As the number of elements in A is finite, so are the number of elements

{(a, f(a)) | a ∈ A}. �

As a corollary, every function in FinSet is finite. Let us now study the cardi-

nality of the hom-sets in FinSet, of functions between finite sets.

Proposition 3.4 Given finite sets A = {a1, · · · , an} and B = {b1, · · · , bm} the

function space BA is a finite set with mn elements.

We are now in a position where we can prove the following:

Proposition 3.5 For finite sets A and B every function f : A → B is computable.

Proof. Suppose A and B are finite sets, thus by (3.4) the space of functions BA is

finite. Therefore let us pick a function f : A → B. Let us show it is computable.

Because f is a function for each a ∈ A there exists a unique b ∈ B s.t. f(a) = b. As

A is finite by (3.1) it has some cardinality n and there is a bijection which we can

use to assert A = {a1, · · · , an}. Now one can apply f to each element of A obtaining
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input x;

output y;

parallel

: if x <> r1 then t2;

: if x <> r2 then t2;

: if x <> r3 then t1;

end

Fig. 1. Program computing K

the set {f(a1), · · · , f(an)}, the image of f usually written as f(A). Thus we devise

a program P computing f as a simple table lookup for the input x. �

As there is a pattern matching inherent to the table lookup argument in the

previous proof, one needs to study the cases where the elements pose problems to

the equality decision, for instance infinite sets, or undistinguishable sets.

Pattern matching finite sets with undistinguishable elements.

Let us start with possibly undistinguishable elements. When defining a function

of a finite set A with two elements, we assume the elements are distinguishable.

Such argument can be derived from the fact that isomorphic objects are considered

equal, thus as every finite set A with n elements can be put in bijection with the

set {1, · · · , n}. In practice, we abstract away the nature of the elements and work

with the natural number labels. In the pattern matching process elements e and

e′ that are not distinguishable outside FinSet will not be distinguishable inside as

well. In any case, given the fact that sets have no repeated elements, that is if

a ∈ A then {a} ∪ A = A, the set built with two indistinguishable elements {e, e′}
cannot be a two element set, as it would demand a bijection f : {e} → {0, 1}, but
the cardinalities differ.

Pattern matching finite sets containing infinite elements.

Proposition 3.5 holds even if the elements of A and B belong to a recursive

enumerable set that is not recursive. Let’s illustrate such case, we know that there

is no recursive identity relationship in R. We also known that the difference in R is

recursively enumerable. Let A = {r1, r2, r3} ⊆ R, B = {t1, t2} ⊆ R and K : A → B,

such that, K(r1) = K(r2) = t1 and K(r3) = t2. We can assume that real numbers

are represented by the processes/program that compute them. For example π can

be represented by any program that given a precision p provides π expanded until

this precision. Equivalently, we can consider the real numbers as programs that

list the decimal expansion of them. In this last case, π is any program that prints

3.141593..... and never stops. Using, this last representation of (computable) real

numbers, the function K is computed by the program in Figure 1. Where the

command parallel :< cmd1 >; . . . :< cmdn >; end runs all < cmdi >, i = 1, n, in

parallel, and stops whenever some of < cmdi > stops. The output of the parallel

command is the output of the < cmdi > that firstly stops. Programs like these,

entail the fact that any function between finite sets is computable, even in the case
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that the elements of the domain belong to a recursively enumerable data-type that

is not recursive.

Now that we solved the issues arising from the usage of pattern matching we can

proceed to prove how to build complex behaviours using finite functions as atomic

and computable steps.

Proposition 3.6 Let A, B, and C be finite sets and f and g be finite functions with

types f : A → B and g : B → C. The composition g · f is a finite and computable

function.

Proof. The composition g · f is a function, and has type A → C. As A and C are

finite sets, proposition 3.4 holds, meaning that g · f is member of the finite set of

functions CA, as a function it must map each element of A to an element of C, as

there are finite elements in A, g · f maps at most finite elements, thus it is a finite

function, thus by proposition 3.5 the composition g · f is computable. �

Thus, extending the previous argument we can prove that every morphism in

FinSet is computable, thus every finite composition of finite functions is com-

putable. To make such statement precise let us define finite composition of func-

tions.

Definition 3.7 Let n ∈ N be a fixed number. From n we obtain the pre-ordered

category with objects the numbers 1 to n, and all morphisms a → b when a ≤ b,

denoted as ↓ n, and depicted as:

0
��

������ 1
��

���� 2
��

���� · · · �� n
��

The category ↓ n is a finite linear pre-order .

Any functor from ↓ n into FinSet can is as a representation of finite composi-

tions of finite functions.

Thus, by Proposition 3.6 and fixing n, the functorial category FinSet↓n is a

category of computable functions. Despite such fact, the expressiveness of FinSet↓n

is not enough to capture all computations, for instance the computation of π. To

capture infinite behaviours we will study the case where ↓ n is substituted by ω, thus

studying FinSetω as model for computations. The limit just mentioned and the

reason why ω allows the capture of infinite behaviors is made clear in the following

section.

4 Expressing computations in FinSetω

In this section we define our base category FinSetω, we show that such category

is at least as expressive as the universal Turing machine model of computation,

and we observe that FinSetω also includes non-computable behaviours. Such final

observation leads to conjectures on what restriction should be applied to FinSetω

to restrict its expressive power to computable functions.
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4.1 Encoding computations as functors in FinSetω

Our standard model of computation is the Turing machine which is an automaton

with a non-empty finite set of states Q, a finite set of reading/writing symbols from

an alphabet Γ, a distinguished blank symbol b, a partial transition function δ de-

scribing the behaviour of the machine, a distinguished state qo which is corresponds

to the initial state of the machine and F ⊆ Q a set of final states.

Thus the tuple M = (Q,Γ, b,Γ\b, δ, q0, F ) corresponds to a Turing Machine, the

universal model of computation. To complete the model of computation the machine

M is usually coupled with a unbounded tape containing cells with symbols from

Γ, more precisely at each instant of time the machine has access to a cell and is

allowed to either move to the left(−1)/right(1) cell in the tape. Such movement is

ruled by δ as recorded in its type:

δ : (Q \ F )× Γ → Q× Γ× {−1, 1}

Turing machines stop when final (F) state is reached, thus the type of δ reads as “for

each defined non-final state and symbol the machine state changes, a new symbol

is written in the current cell and the machine positions itself to the right or the left

of the current cell.

To each machine M and tape the behaviour of the machine is well-defined and

is expressed in terms of sequences of configurations Ci where i a natural number

tracking the number of transitions that occurred. Thus the behaviour of a machine

M with a given tape is equivalent to a infinite sequence of configurations C0 · C1 ·
C2 · · · which encodes the stepwise execution of the machine. Such a sequence is

commonly termed a computation.

Thus, let us explain how to encode computation in our model. The configura-

tion behaviour is easily encoded in the FinSetω. Before any formal explanation

on why that is a fact, let the following drawing do the illustration of the infinite

configuration sequence. In fact it provides a geometrical perspective on the just

mentioned sequence.

C0
��C1

��C2
��Cn

��

0

��

�� 1

��

�� 2

��

�� n

		

��

Fig. 2. Computation in FinSetω

Let us now make the configurations Ci concrete, providing thus a rigorous state-

ment on the encoding using FinSetω. A configuration consists of a finite set con-

taining the state q ∈ Q in which the machine is, the current position (p) in the tape

and a finite string w ∈ Σ∗ with the contents of the tape. Thus each configuration is

a finite set indexed by a natural number, without further ado define T ∈ FinSetω
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as 10 :
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T0(i) = Ci = (q, p, w)

T1(i → i+ 1) = λ(q, p, w).(q′, p+ off, w′)

T1(i → j) = T1((j − 1) → j) · T1(i, (j − 1))

(1)

where (q′, γ, off) = δ(q, wp) and w′ is a copy of w except in position p the content

is w′
p = γ

Therefore our definition of effectiveness can be used to prove one of the im-

plications of the SCT thesis, Every Turing machine has a corresponding effective

computation model. It corresponds to the unfolding of the dynamic system cor-

responding to the machine executions. Therefore, the interesting question is the

contrapositive of the implication. What are the elements of FinSetω that corre-

spond to computations, i. e. the elements that could have been generated by a

Turing machine?

Before answering that question let us highlight an interesting join point between

our functorial expression of computations and the folk knowledge on computability

that expresses that computable functions should necessarily satisfy the following

condition: “to produce a finite amount of output only the inspection of a finite

amount of the input is necessary”. That statement can be observed in the con-

travariant functor definition of T1 in (1). Note how it states that given a time span

(i → j), to observe the outputed behaviour one needs only evaluate a finite amount

(in fact j − i+ 1 steps of applications of T1.

4.2 Which subcategory of FinSetω corresponds to computations?

Given that we have proved a result stating that functions between finite sets are

computable, and that composition of such functions are computable as well, one

would expect that given Figure 2 frames computations in terms of stepwise transi-

tions between finite sets, given that the framework is FinSetω, one could conjecture

that the functors of FinSetω are indeed the computable entities. But that is not

the case, the reason for that is that when substituting ↓ n by ω the argument of

finite function composition being again a finite function is lost.

We will now present a counterexample that evidences that more structure must

be present in the functor of FinSetω for it to be computable. The argument is

based in the following reasoning.

Assume for each i we attribute a finite set containing truth values  and ⊥.

We also assume an enumeration of Turing Machines. Then for each i attribute the

finite function

f(i) =

⎧
⎨

⎩

 if the ith machine halts

⊥ otherwise

The function f is a member of FinSetω, but as it solves the halting problem, it

10We adopt the T = (T0, T1) functor notation where T0 is an object mapping, and T1 a morphism mapping
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should not be computable. Therefore one should add more requirements to FinSetω

in order for it to correspond to a category of computations.

One interesting point to note is that f as described could be tabled into batches,

precomputed, or partialy-evaluated. For instance, for each i we could store the

results of the ith and following i + 1th machine in a table. Furthermore, we could

batch (table) enormous finite amounts of results of f , precomputing and storing the

results, but despite that one cannot precompute the whole function. It is like the

program running the algorithm must be infinite to be able to compute the function

to the whole domain of the input. Keeping that in mind we will develop the notion

of batching using natural transformations.

4.3 Encoding computations as natural transformations

An alternative view on the previous encoding of computations is to go higher in ab-

straction and use natural transformations between FinSetω functors, thus elements

η typed as η : FinSetω → FinSetω.

Let C and C ′ be functors in FinSetω where C corresponds to the computations

of some Turing machine and similar for the C ′ case. One is able to define a natural

transformation η : C → C ′ such that for each i ∈ ω we have ηi : C(i) → C ′(i). Take
C represented graphically:

C0
��C1

��C2
��Cn

��

0

��

�� 1

��

�� 2

��

�� n

		

��

and C ′ represented graphically:

0





�� 1





�� 2





�� n





��

C ′
0

��C ′
1

��C ′
2

��C ′
n

��

Then a natural transformation η : C → C ′ is depicted as:

C0
��

η0
��

C1
��

η1
��

C)
��

η2
��

Cn

ηn
��

��

0

��





�� 1

��





�� 2

��





�� n

��





��

C ′
0

��C ′
1

��C ′
2

��C ′
n

��

a structure transforming each element of C into and element of C ′ satisfying the

naturallity condition.

Before delving into naturality, let us present a simple example. Choose C as the

execution of some arbitrary Turing machine T and C ′ the execution configurations
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of a Turing machine that executes two steps of T at each time interval.

C0
��

η0
��

C1
��

η1
��

C2
��

η2
��

Cn

ηn
��

��

0

��





�� 1

��





�� 2

��





�� n



��

��

C2
��C3

��C4
��Cn+2

��

The fact that η is a natural transformation expresses the known fact that it is

possible to group the computation in batches. To realize that just pick the morphism

h : ω → ω in the ω category, where h(i) = i+2, which intuitively groups consecutive

elements of ω, that is, it creates covers in the topology of the departing ω, and it is

depicted as:

0 ��

��

1 ��

��

2 ��

��

n

��

��

h(0) = 2 �� h(1) = 3 �� h(2) = 4 �� h(n) = n + 2 ��

The property arising from naturality states that the following diagram commutes:

C0

η0

��

��C1

η1

��

��C2

η2

��

��Cn

ηn

��

��

0
h

��

��

�� 1

��

��

�� 2

��

��

�� n

��

��

��

2





�� 4





�� 6





�� n+ 2

��

��

C2
��C3

��C4
��Cn+2

��

and encodes the property which states one is able to compute an arbitrary number

of steps of computation and then look two states ahead. Or compute the same

arbitrary number of steps in batches.

The intuition behind the necessary condition to be able to model computable

functions is that the number of steps needed to perform a computation should be

finite. That is to say the inherent logic involved in the production of output is finite.

That corresponds to find a limit in the batching of steps.

lim
n→ω

ηn = ηt

Such condition is again necessary but not sufficient, if understood in the sequence

of configurations of the Turing machine it states that at some point in time t the δ

function is completely defined and can be stored as a finite table.

5 Which elements of FinSetω are computable?

Let us now look at it in the reverse direction: What are the functors that indeed

may be computed, or put in other words, that have a Turing machine associated?
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Our conjecture is that such functors are the ones for which there exists a cover of

the topology induced by F on ω. In other words, only functors F that are compact

should be considered effective.

To observe such cover and analyse the topology of FinSetω stepwise evolution

(computation steps) we augment the model by adding another layer of ω to track

batching, thus obtaining a functor (FinSetω)ω = FinSetω×ω as depicted in Fig.

3. By convention we assume the vertically growing ω encodes stepwise machine

execution, and that the horizontally growing ω encodes the batching transitions.

Using that encoding a transition of a Turing machine is a natural transformation

between FinSetω functors. Therefore, each horizontal step prescribes a morphism

η between Fi and Fi+1.

F0(m)

��

��F1(m)

��

��F2(m)

��

��Fn(m)

��

��

m

��

F0(2)

��

��F1(2)

��

��F2(2)

��

��Fn(2)

��

��

2

��

F0(1)

��

��F1(1)

��

��F2(1)

��

��Fn(1)

��

��

1

��

F0(0)

��

��F1(0)

��

��F2(0)

��

��Fn(0)

��

��

0

����

�� 1

��

�� 2

��

�� n

��

��

Fig. 3. The FinSetω×ω model.

We characterize the augmented model as a manifold, the computational mani-

fold, where each element Fn ∈ FinSetω, each (n − 1)-step computation trace is a

projection (a map in the usual manifold terminology) from the whole maifold (at-

las) FinSetω×ω satisfying the compatibility condition. Intuitively, such condition

ensures that maps depicting common points in the manifold should be compatible,

this is, the intersection of the maps in the neighbourhood of such point should have

the same shape. 5the characterization we will use the notion of bundle, sieve, and

the

Proposition 5.1 The category FinSetω
ω
can be put in correspondence with a sheaf

on the site (ω × ω,FinSetω)

Proof. Let T be a Turing machine, and the functor FT : FinSetsω×ω defined

as above. Equip ω × ω with the Grothendieck topology. Then FT satisfy the

compatibility condition, thus FT is a sheaf. �

As hinted, there is an injective mapping each Turing machine T into a member

of FinSetω×ω, with such T �→ FT injective mapping one is able to prove the objects
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of FinSetω×ω of the form FT for some Turing machine T form a subcategory Tur.

Thus, the question: What about computable elements in FinSetω×ω? What are

they?

Proposition 5.2 (Conjecture/Goal:) Is Tur a reflective subcategory of

(FinSetsω)ω? If yes we have that every computational sheaf C is essentially

FT for some T.M. T .

5.1 Effective functions as manifolds with programs as projections

In the tradition of Local/Global approaches for describing mathematical objects

where a “global” (non-functional) object as a sphere is studied using “local” (func-

tional) projections as maps of the whole atlas, we present a computational model

that we term a computational manifold Such modle is a manifold with extra struc-

ture as:

• Topological manifolds are objects that are locally continuous, i.e., each point has

a neighbor whose chart is a continuous function.

• Differential (Ck) manifolds are objects that are locally (Ck) differentiable, i.e.,

each point of the it has an open neighbour whose chart is Ck.

Our computational model is a manifold where objects are locally computable.

6 Conclusion

The status of our current approach to a model of effectiveness based on finite sets is

still ongoing, but as an outcome we already established some important steps. We

show how to encode Turing machine behaviors as a functor in FinSetω. We related

the functoriality to the necessary condition that to produce a finite amount of input

a Turing machine must consume only a finite amount of input. We express n-steps

(batches) of computation as a natural transformation, and use the notion of batches

to devise a restriction on the elements of FinSetω that are indeed computable by

a Turing machine.

Related work

We built a model realizing a model-theoretical approach for effectiveness using

CT that is different from the Effective Topos Eff and from [16]. It is different

from Eff, the topos emerging from a category of sets equipped with a symmetric

and transitive relation and equivalence classes of functional relations between such

sets, since it does use a simpler intuitionist topos without Natural Numbers Object

(NNO), while Eff uses a non-classical one and has a NNO. It is also different from

the approach described by [16] since it uses NNO too. Our framework has no infinite

object inside the category. We think that this can be seen as an advantage over [16]

that strongly depends on free objects, such as monoids for input and output data.

These input/output data are not essential in our approach.
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In [4], a categorical presentation of recursiveness is provided using CT. It ax-

iomatizes categories able to define primitive recursive morphisms in a completely

abstract way. Using the internal language of the category it is possible to precisely

define any primitive recursive function. This work is very interesting, since, it joins

in a quite harmonious way a model-theoretic definition with a proof-theoretic one.

The identity present in the meta-theory provides meaning for a theory of equality

between intentionally distinct ways of defining the primitive recursive functions.

Besides that no mention on a concrete numerical system of even richer definition of

natural number is needed, but the one need to define primitive recursiveness.

Recently there were attempts to change the status of the Church-Turing from a

unprovable thesis to a formal proof [3]. Our goal is not a proof such a huge result,

but first steps into the definition of effectiveness.

Future work

The model of computations presented does not model environmental input, the

input tape content is fixed at the beginning of computation. Even though the tape

content is passible of growing by action of the machine execution one cannot accept

infinite input that is being generated by another machine, for instance one machine

is producing an infinite decimal expansion of π while other machine is processing

such output as input. For that reason future work could address that issue either

by enriching the model or just reinterpreting FinSetω×ω. We also envision a better

and formalized proof of the claim equating turing machines with locally computable

sheaves in FinSetω×ω.

Another path for further study is the comparison and modeling of of other

paradigms of computability. For instance recursive functions on sequences of nat-

urals. And how our topological structure relates to the topologies arising from

domain theoretical studies, e.g. the Scott topology.
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