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Abstract

Even for similar residential buildings, a huge variability in the energy consumption can be observed. This variability is mainly
due to the different behaviours of the occupants and this impacts the thermal (temperature setting, window opening, etc.) as well as
the electrical (appliances, TV, computer, etc.) consumption.

It is very seldom to find direct observations of occupant presence and behaviour in residential buildings. However, given the
increasing use of smart metering, the opportunity and potential for indirect observation and classification of occupants’ behaviour
is possible. This paper focuses on the use of Hidden Markov Models (HMMs) to create methods for indirect observations and
characterisation of occupant behaviour.

By applying homogeneous HMMs on the electricity consumption of fourteen apartments, three states describing the data were
found suitable. The most likely sequence of states was determined (global decoding). From reconstruction of the states, depen-
dencies like ambient air temperature were investigated. Combined with an occupant survey, this was used to classify/interpret the
states as 1) Absent or asleep, 2) Home, medium consumption and 3) Home, high consumption. From the global decoding, the
average probability profiles with respect to time of day were investigated, and four distinct patterns of occupant behaviour were
observed. Based on the initial results of the homogeneous HMMs and with the observed dependencies, time dependent HMMs
(inhomogeneous HMMs) were developed, which improved forecasting. For both the homogeneous and inhomogeneous HMMs,
indications of common parameters were observed, which suggests further development of the HMMs as population models.

Keywords: Occupant behaviour, Indirect classification, Hidden Markov Models

1. Introduction

In building-design optimisation, energy diagnosis, perfor-
mance evaluation and building energy simulations, the impact
of the occupants’ behaviour is often under-recognised and over-
simplified. The influences of occupant behaviour are complex
and stochastic. In recent years, the importance of occupant be-
haviour has been recognised, and many new approaches have
been developed to model the effect of occupant behaviour. To
achieve an overview of the approaches in modelling occupant
behaviour in buildings, a small literature study has been carried
out.

In building-related models for occupant behaviour, there are
two main focus areas, (1) occupant presence and movement and
(2) occupant interaction with indoor climate (adjusting a ther-
mostat, opening a window for ventilation, turning on lights or
closing blinds). Studies related to these areas are typically re-
lated to either residential or commercial buildings [1, 2].

The following is a cursory review of the papers in the litera-
ture study.

In modelling occupant presence and movement in office
buildings, both homogeneous [3] and time-inhomogeneous [4,
1] Markov chains have been used. The models are used as in-
put for building energy simulations. In [1] a comparison of the
performance between homogeneous and time-inhomogeneous
models was carried out, and the inhomogeneous model was

found to be superior.
In the work on modelling overtime schedules in office build-

ings, [5] uses a binomial distribution to represent the number
of occupants working overtime and an exponential distribution
to describe the duration of overtime. The overtime model is
used to generate overtime schedules as input to building energy
simulations.

Based on seven years of measuring window opening and
closing behaviour, three modelling methods for prediction of
actions on windows were developed [6]. The methods are lo-
gistic probability distributions, Markov chains and continuous-
time random processes.

In a field study of the thermal comfort of office occupants
[7], logistic regression was used to predict the probability of
occupants’ actions.

In a simulation study of an adaptive automation system for
the visual comfort of office occupants [8], the models for
predicting occupants’ turning light on/off and opening/closing
blinds are based on Markovian state transition probabilities.

For air-conditioning in residences, [9] identifies on/off state
transition probability functions dependent on indoor and out-
door temperature. These functions are requisite for applying a
Markov model to a cooling schedule.

A methodology to predict residential occupants’ time-
dependent activities is presented in [10]. Using a time-use



survey, the model is calibrated based on three time-dependent
quantities: (1) the probability of being home, (2) the condi-
tional probability of starting an activity while at home, and (3)
the probability distribution function for the duration of the ac-
tivity. Transitions between activity types are modelled as an
inhomogeneous Markov process.

Studies in building energy simulations [11, 2] have investi-
gated the impact of changing from standardised occupant be-
haviour profiles to a probabilistic approach in simulating these
profiles. [2] showed a large increase in energy consumption,
with this approach.

Based on data mining using cluster analysis, [12] examines
the influences of occupant behaviour on building energy con-
sumption. A methodology for identifying energy-inefficient be-
haviour in residential buildings was developed.

[13] provides an overview of recent studies undertaking pre-
dictive and descriptive tasks in the building field. This is done
by using data-mining techniques to extract hidden but useful
knowledge. For occupant behaviour, a key issue is to under-
stand the interactions between occupant behaviour and other
influencing factors.

From this literature study, different approaches seem highly
problem-specific. Many use Markov chains/processes in the
description of the transition between presence, non-presence,
movement between rooms and transitions between activities.
This indicates that Markov chains/processes are highly useful
for modelling occupant behaviour in a wide range of settings.
With the idea to extract hidden knowledge from data, and using
Markov chains to model occupant behaviour, this has spurred us
to look at methods to observe occupant behaviour in an indirect
manner e. g. Hidden Markov Models (HMMs).

When measuring the electricity consumption in similar res-
idential buildings, the variability in the consumption is often
very large. This is mainly due to the diversity of occupant
behaviour. The occupants not only impact the electricity con-
sumption, but also the general energy consumption [14, 15, 16].
Due to privacy concerns, and the cumbersome work of obtain-
ing direct observations of occupant behaviour, indirect means
of classifying occupant behaviour are needed. Several models
have been developed for simulation purposes using data-mining
approaches [15]. Based on a time-use survey, it is suggested
that occupant behaviour in residential buildings could be clas-
sified according to the following three states: (1) at home and
awake, (2) sleeping, or (3) absent [14]. Given the increasing use
of smart metering by the utilities, the potential of using these
metering data for indirect classification of residential occupant
behaviour is now possible. Applying a homogeneous Hidden
Markov Model (HMM) to electricity consumption data from a
residence results in a number of states that could be interpreted
in a similar manner [17].

The focus of the study presented in this paper is to investigate
the applications of HMMs on frequent observations of electric-
ity consumption in residences. The study seeks to test the hy-
pothesis that, by applying HMMs on observations of electricity
consumption, we can:

1. Classify the states of the HMM, i. e. of the occupant(s) in

accordance to occupant behaviour.
2. Identify possible covariates/explanatory variables.
3. Forecast and simulate future energy consumption.

1), 2) and 3) can be solved by both homogeneous and time-
inhomogeneous models. It is suggested that to improve the ca-
pabilities for forecasting and simulation, covariates/explanatory
variables and time-inhomogeneous Markov chains, are needed
[1].

The study also seeks to investigate whether the HMMs for
each residence can be collected in population models [18] to
forecast or simulate groups of residences.

The aim is to present a modelling framework for HMMs on
frequent observations of electricity consumption, and then ap-
ply this framework to several residential apartments. Focus will
be on interpreting the states of the HMMs to validate the models
and suggest further development of these models.

The outcome is an initial framework for using HMMs on fre-
quent observations of electricity consumption and proposals for
further model development. This study is a further elaboration
of some of the results in [19].

Nomenclature

AIC Akaike information criterion

BIC Bayesian information criterion

HMM Hidden Markov Model

CRPS continuous rank probability score

cdf cumulative distribution function

pdf, p(x) probability mass or density function

m number of states

t, s a time stamp in discrete time

T maximum of t, i.e. t ∈ {1, ...,T }

N the natural numbers

R the real numbers

i, j, k ∈ Z integers

Ct the state of a Markov chain at time t

Xt the state of the random process {Xt} at time t

xt the observation of the random process {Xt} at
time t

A,Γ matrices

a, θ row vectors

a′ a column vector
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2. Methods

This section contains a brief introduction to Hidden Markov
Models and a description of the methods used in the implemen-
tation and validation of the Hidden Markov Models.

2.1. Hidden Markov Models
A Hidden Markov Model (HMM) consists of two compo-

nents; an independent mixture model and a Markov chain.
An independent mixture distribution consists of a finite num-

ber of component distributions, and a mixing distribution. The
component distributions can be either discrete or continuous.
For m components, the mixture distribution depends on m prob-
ability or density functions

component distribution δ1, · · · , δm

probability or density functions p1(x), · · · , pm(x)

The component is specified by the discrete random variable
C which performs the mixing where Pr(C = i) = δi for i ∈
{1, · · · ,m} and

∑m
i=1 δi = 1. Let X denote the random variable

which has mixture distribution. Then the probability or density
function of X is given by:

p(x) =

m∑
i=1

δi pi(x). (1)

The second building block of HMMs is Markov chains. A
sequence of discrete random variables {Ct : t ∈ N} is a discrete-
time Markov chain if, for all t ∈ N, the Markov property is
satisfied, i.e.

Pr(Ct+1|Ct, ...,C1) = Pr(Ct+1|Ct). (2)

The conditional probabilities, Pr(Cs+k = j|Cs = i), called
transition probabilities, are the probabilities of C = j at time
s + k given C = i at time s. If the transition probabilities do
not depend on time, then the chain is called homogeneous, oth-
erwise inhomogeneous. The k-step transition probability for a
homogeneous Markov chain is denoted as:

γi j(k) = Pr(Cs+k = j|Cs = i). (3)

In particular, γi j(1) is denoted γi j and can be collected in the
transition probability matrix Γ.

Γ =


γ11 · · · γ1m
...

. . .
...

γm1 · · · γmm

 . (4)

Further, it can be shown, (see e.g. [20]) that for a homogeneous
Markov chain Γ(k) = Γk.

Let X(T ) denote (X1, · · · , XT ) and C(T ) denote (C1, · · · ,CT ).
Collecting both parts, a first order HMM can be summarized
by:

Pr(Ct |C(T−1)) = Pr(Ct |Ct−1), t = 2, 3, ... (5)

Pr(Xt |X(T−1),C(T )) = Pr(Xt |Ct), t ∈ N (6)

Hence, the dynamics is described by the unobserved parameter
process {Ct : t = 1, 2, ...}, which describes the evolution of
the states in time. The observations are described by the state-
dependent process {Xt : t = 1, 2, ...} such that when Ct is known,
the distribution of Xt only depends on the current state Ct. The
structure of a first-order Hidden Markov Model is illustrated in
Figure 1.

CtCt−1 Ct+1

XtXt−1 Xt+1

Figure 1: Directed graph of a Hidden Markov Model.

2.1.1. Global decoding and other conditional probabilities for
HMMs

Given a HMM and observations, information can be deduced
about the states occupied by the underlying Markov chain. The
key inferential tools are conditional probabilities, and we will
consider some of them in the following.

Let X(−t) denote (X1, · · · , Xt−1, Xt+1 · · · , XT ), then the condi-
tional distributions of Xt given all other observations are given
by:

Pr(Xt = x|X(−t) = x(−t)). (7)

This is used for calculating pseudo-residuals to validate the
HMMs, as described later in Section 2.3.3.

Forecasting distributions are used for the likelihood estima-
tion, and are given by:

Pr(Xt+k = x|X(t) = x(t)). (8)

This can be used for forecasting in general. However, for max-
imum likelihood estimation of the model parameters we must
use k = 1.

Global Decoding is the determination of the most likely se-
quence of states conditioned on the observations. This sequence
is obtained by maximizing the conditional probability:

Pr(C(T ) = c(T )|X(T ) = x(T )). (9)

Loosely speaking, Equation (9) is the probability of c(T ) given
all observations and model. Hence c(T ) can be used to identify
model deficiencies.

2.2. Parameter estimation
The likelihood principle is used to estimate the parameters of

the models. The likelihood function is denoted L(θ, x(T )), where
θ is the parameters and x(T ) = (x1, ..., xT ) is the observations.
The maximum likelihood parameter estimates are found as:

θ̂ = arg max
θ

L(θ, x(T )) (10)
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Using the Markov property, this reduces to

θ̂ = arg max
θ

T∏
t=1

Pr(Xt = xt |X(t−1) = x(t−1)). (11)

In particular, the discrete likelihood [17] is used for the pa-
rameter estimation in this paper, which is calculated as:

L(θ, x(T )) =

T∏
t=1

Pr(Xt = xt |X(t−1) = x(t−1)) (12)

=

T∏
t=1

Pr(Xt = xt |Ct = i)Pr(Ct |X(t−1) = x(t−1)) (13)

=

T∏
t=1

m∑
i=1

δi · Pr(Xt = xt |Ct = i). (14)

To avoid unbounded values likelihood of the mixture, we
transform density to probability by:

Pr(Xt = xt |Ct = i) =

∫ bt

at

pi(x, θi)dx, (15)

with at = xt − ∆, bt = xt + ∆ for suitable ∆, and we have

L(θ, x(T )) =

T∏
t=1

m∑
i=1

δi

∫ bt

at

pi(xt, θ)dx. (16)

2.2.1. Estimation routine
The estimation is typically carried out by direct optimiza-

tion of the likelihood L(θ, x(T )). In R1 the optimizer used is
the nlm() optimisation function. This is an unconstrained op-
timizer, but the optimisation problem is constrained since the
parameters for the state-dependent distribution might be con-
strained. E.g. the gamma distribution has shape ki and scale θi

as parameters and these must be greater than zero.
For the transition probability matrix Γ, the rows must add to

one and all parameters γi j must be non-negative.
For the parameters in the state-dependent distributions, the

constraints can be circumvented by an appropriate transfor-
mation of the parameters ki and θi. This is done by defining
ηki = log ki and ηθi = log θi for i = 1, ...,m, then ηki , ηθi ∈ R.
After the maximisation of the likelihood with respect to the un-
constrained parameters, then the constrained parameters are ob-
tained by transforming back, i.e. k̂i = exp(η̂ki ) and θ̂i = exp(η̂θi ).

For the transition probability matrix Γ, there are m2 entries,
but only m(m−1) free parameters due to the row-sum constraint.
One possible transformation between the m2 constrained prob-
abilities γi j and the m(m − 1) unconstrained τi j ∈ R, i , j is
shown for m = 3. Define the matrix:

T =

 − τ12 τ13
τ21 − τ23
τ31 τ32 −

 , (17)

1https://www.r-project.org/

with m(m − 1) entries τi j ∈ R. Let g : R → R+ be a strictly
increasing function such as g(x) = exp(x). Then define

%i j =

{
g(τi j) for i , j

1 for i = j , (18)

and set γi j = %i j/
∑m

k=1 %ik.
The parameters γi j, ki and θi are referred to as the natural pa-

rameters [17],while the parameters τi j, ηki and ηθi are referred
to as the working parameters. Using these transformations of
Γ,k and θ the calculation of the maximum-likelihood parame-
ters can be calculated in two steps:

1. Maximise LT with respect to the parameter T = {τi j}, ηk =

(ηk1 , ..., ηkm ) and ηθ = (ηθ1 , ..., ηθm )
2. Transform the estimates of the working parameters to es-

timates of the natural parameters; i. e.

T̂→ Γ̂, η̂k → k̂, η̂θ → θ̂.

2.2.2. Covariates in the transition probabilities
One way to model time variations and seasonality in HMMs

is to drop the assumption of a homogeneous Markov chain and
assume that the transition probabilities are functions of time,
which leads to inhomogeneous Markov models. For m states,
the transition probability will be denoted by

tΓ =


tγ11 · · · tγ1m
...

. . .
...

tγm1 · · · tγmm

 . (19)

If we consider the same structure in the transformation as
for (17), then the seasonality should be modelled in all the off-
diagonal elements. Assuming p parameters are needed in each
of these elements, we have m(m − 1)p parameters to estimate.
This will increase parabolic for increasing m. To limit this in-
crease the seasonality has been modelled as follows.

Considering a model based on a m-state Markov chain {Ct}

with transition probability given by

Pr(Ct = j|Ct−1 = i) = tγi j, (20)

for i = j, we define the working parameter

tτii = βiy
′
t , (21)

this is the part where the seasonality is incorporated. yt is a
vector of p covariates modelling the seasonality, and βi is a
vector of p parameters. For i , j, tτi j ∈ R. Let g : R → R+

be a strictly increasing function such as g(x) = exp(x). Then
define

t%i j = g(tτi j), (22)

and set tγi j = t%i j/
∑m

k=1 t%ik, which is compliant with the row-
sum constraint

∑
j Γi j = 1.

The transition probability matrix, for transitions between
time t − 1 and t is then given by

tΓ =


exp(β11·y′t )

exp(β11·y′t )+
∑

j,1 exp(τ1 j)
· · ·

exp(τ1m)
exp(β11·y′t )+

∑
j,1 exp(τ1 j)

...
. . .

...
exp(τm1)

exp(βmm·y′t )+
∑

j,m exp(τm j)
· · ·

exp(βmm·y′t )
exp(βmm·y′t )+

∑
j,m exp(τm j)

 .
(23)
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With this approach of modelling the seasonality in tΓ, we
have m(m − 1) + mp parameters to estimate, this is still a
parabolic growth, but for m > 2 and p > 1 it is smaller than
m(m − 1)p.

An example for a model incorporating a r period seasonality
is shown below:

tτii = βi1 cos(2πt/r) + βi2 sin(2πt/r) for i ∈ {1, ...m}, (24)

and then calculating tΓ for t ∈ {1, 2, ..., r} with (23). Additional
sine-cosine pairs can be included to model more complex sea-
sonal patterns, if necessary. Using sine-cosine pairs, as in (24)
is equivalent to a Fourier series without the intercept. An im-
portant note for tτii is that no intercept should be included in
these, since the intercept would be confounded with the param-
eters tτi j and thus be non-identifiable [17].

2.2.3. Covariates in the state-dependent distribution
For a HMM where the state-dependent distributions are

gamma distributions, the conditional mean is tµi = tkiθi =

E(Xt |Ct = i) where k is the shape parameter and θ is the scale
parameter. This can be dependent on the vector yt of q covari-
ates and, for instance, described as follows:

logtµi = αiy′t , (25)

and then tki = exp(tµi)/θi.
It could also be considered to let covariates enter only one or

some of the state-dependent distributions.

2.3. Model selection

2.3.1. Information criteria
To choose an appropriate number of states or to choose

between competing state-dependent distributions, the Akaike
(AIC) and the Bayesian information criteria (BIC) are used
[17]. These are measures of the relative quality of a statisti-
cal model for a given set of data. A lower AIC or BIC value
indicates better quality of a model relative to a given data set.

2.3.2. Continuous Rank Probability Score
The Continuous Rank Probability Score (CRPS) compares

a probability distribution function (pdf) with an observation,
where both are represented as the cumulative distribution func-
tions (cdfs) (Figure 2). For model S the CRPS is given as

CRPS (S ) =
1
N

n∑
i=1

∫ x=∞

x=−∞

(
FS

i (x) − F0
i (x)

)2
dx, (26)

where N is the number of observations, FS
i (x) is the forecast

of the cdf at the i’th observation. F0
i (x) = 1(x ≥ xi) is the in-

dicator function for x greater or equal to the i’th observation
which represents the observed cdf [21]. Observations close to
the mean/steepest point of the forecast cdfs will get a low CRPS
value. The CRPS is used to compare the forecasting perfor-
mance between models, like comparing a homogeneous HMM
with an inhomogeneous HMM. A lower CRPS value indicates
better forecasting performance.

Figure 2: Example of the cdfs used to calculate the CRPS together with pdf and
observation.

2.3.3. Pseudo-residuals
Beside the use of information criteria to find a suitable

model, we need to assess whether the model is adequate or to
assess the goodness of fit, and to detect outliers relative to the
model. One way to do this is to use the pseudo-residuals [17].

For HMMs, two kinds of pseudo-residuals are useful. Those
that are based on the conditional distribution given all other
observations (Pr(Xt = xt |X(−t) = x(−t))), denoted ordinary
pseudo-residuals [17], and those given all preceding observa-
tions (Pr(Xt = xt |X(t−1) = x(t−1))); denoted forecast pseudo-
residuals. Here we will consider the ordinary pseudo-residuals.

For continuous observations, the ordinary pseudo-residuals
are defined as

zt = Φ−1
(
Pr(Xt ≤ xt |X(−t) = x(−t))

)
. (27)

For the discrete observations of electricity consumption, we
have defined the normal pseudo segment as [z−t ; z+

t ], where

z−t = Φ−1
(
Pr(Xt ≤ xt − ∆|X(−t) = x(−t))

)
, (28)

and
z+

t = Φ−1
(
Pr(Xt < xt + ∆|X(−t) = x(−t))

)
(29)

for suitable ∆.
The ordinary pseudo-residuals are used for validation of the

model and for outlier detection. If the model is valid, the or-
dinary pseudo-residuals should be standard normal distributed.
It should be noted that the pseudo-residuals might not be inde-
pendent.

3. Results

3.1. Data overview

The data are collected in and nearby an apartment building
in Catalonia, Spain (Figures A.19). The data consist of hourly
weather data from a nearby weather station and various smart
metering data from 44 apartments. The data were measured
from mid July 2012 till the end of December 2013. Further-
more, occupant surveys for most of the apartments were avail-
able.
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3.1.1. Weather data
To investigate whether the weather data (Table 1) could

be used as possible covariates/explanatory variables, an ex-
ploratory analysis was conducted on these time series. Diur-
nal seasonality was identified for Ta,G,Ws and Wd by using
cumulative periodograms [22]. For Ta annual seasonality was
also observed. This implies a possible use for these time series,
namely as covariates/explanatory variables.

Table 1: Description of weather data.
Variable description
Ta Ambient temperature in ◦C
G Solar radiation in W/m2

Ws Average wind speed in m/s
Wd Average wind direction in ◦

P Precipitation in mm

3.1.2. Smart metering data
Due to a large number of zero observations, the smart me-

tering data (Table 2) is aggregated from 10-minute intervals to
hourly intervals by summing over each hour. The space heating,
hot water and water measurements are integer, since the con-
sumption is measured in ticks. The electricity measurements
are discrete with increments of 0.01. Some periods where data
collection failed have been filled with the average value of these
periods. These periods have been removed from the time series
due to the lack of variation.

Table 2: Description of metering data.
Variable description
xe Electricity consumption in kWh
xsh Space heating in kWh
xhw Hot water consumption in kWh
xw Water consumption in litters

Due to the many zero observations (Table 3) for space heat-
ing, hot water and water consumption in the aggregated data,
electricity consumption is chosen as the response variable for
the HMMs.

Table 3: Count of zero observation from the smart metering data.
Apartment 2 5 18
Electricity 0 0 20
Space heating 10433 9370 8930
Hot water 12564 11600 11643
Water 10296 7786 7363
Total number of observations 12816 12816 12816

To investigate whether there are differences between week-
days and weekends, weekly averages were calculated for one
year of data (Figure A.17). For Apartment 2, no difference was
observed. For Apartment 18, the midday spike is gone/reduced
in the weekends. To limit the model complexity, weekly varia-
tion will not be considered in the following.

Looking at histograms (e.g. Figure A.18) of the electricity
consumption, they resemble multi-modal distributions which

fit the framework of the HMMs. It is suggested to use Pois-
son, normal, log-normal or gamma distributions in the state-
dependent distributions. Poisson is suggested because the elec-
tricity consumption is discrete and could be modelled as a
counting process. Using the discrete likelihood, the normal,
log-normal and gamma distribution can be used.

Because the support of the normal distribution is R, this
distribution might fail in forecasting, as negative consumption
might be produced (and predictive distributions will certainly
include negative values). Since some of the observations are
zero for the electricity consumption in some of the apartments,
a log transform of these data is also not suitable.

Since the data are discrete with increments of 0.01, we can
consider an observation as the interval [xi − 0.005, xi + 0.005),
when calculating the likelihood. For the zero observations, we
define the intervals as (0, 0.005). Then, by using the discrete
likelihood on these intervals, the gamma distribution is support-
ing all observations.

3.2. Homogeneous Hidden Markov Models
The models used for the electricity consumption are first-

order Hidden Markov Models (equations 5 and 6), and the
structure of this model is illustrated in Figure 1.

In the previous section, we found that Poisson and the gamma
distributions might be suitable. To choose the most suitable
distribution, the AIC and BIC values are compared (Table 4).
From these the gamma distribution is clearly preferred. Hence,
the suggested distribution for the state-dependent distribution is
the gamma distribution.

The models are fitted using one year of data. Estimated pa-
rameters are the shape ki, the scale θi, and the transition prob-
ability matrix Γ for i = {1, ...,m}, where m is the number of
states. Only m(m − 1) parameters must be estimated in Γ due
to the row sum constraints. The number of parameters in the
HMM with gamma distributions as state-dependent distribu-
tions is m(m + 1). For the gamma distribution, the mean and
variance are given by:

E[X] = kθ (30)

Var[X] = kθ2 (31)

These are used to interpret and classify the states.

3.2.1. Homogeneous HMM for Apartment 2
A series of models with 2-7 states was fitted to Apartment 2.

The AIC and BIC values (Table 4) point towards using many
states to describe the variation in the data. Since the goal is
to classify the states with respect to occupant behaviour and to
limit the model complexity, due to further model development
of inhomogeneous HMMs, a huge amount of states would be
too difficult to interpret, and would increase the number of pa-
rameters and thus the complexity of the model. This means a
suitable amount of states should be chosen. The decrease in
log-likelihood, AIC and BIC, is less drastic after three states
(Table 4), hence the gain of using a four-state HMM model in-
stead of a three-state HMM is much less than going from two to
three states, hence the three-state model is investigated further.
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Table 4: The log-likelihood, AIC and BIC for model fits using Poisson and gamma distributions, Apartment 2.
Distribution no. states no. parameters log-likelihood AIC BIC

gamma 2 6 35797 71606 71648
3 12 31492 63007 63092
4 20 31244 62527 62668
5 30 31011 62081 62292
6 42 30736 61556 61852
7 56 30588 61288 61682

Poisson 2 4 55662 111332 111360
3 9 37154 74326 74389
4 16 33275 66581 66694
5 25 31961 63971 64147
6 36 31368 62809 63062

Figure 3: Histogram and qq-plot of the ordinary pseudo-residuals for the three-
state HMM, Apartment 2.

To assess the goodness of fit of the three-state model, we look
at the ordinary pseudo-residuals (Figure 3) to check if there is
extreme deviance for the observation. From the plot of the his-
togram there does not seem to be any strong indication against
the model. This is also concluded based on the qq-plot, beside
that the discreteness of the data is observed. Hence, the model
chosen is the three-state HMM. The parameter estimates are
shown in Table 5.

From the parameter estimates, we can interpret the states by
the mean values of the state-dependent distributions. A first
interpretation of the states could be:

1. Low consumption
2. Medium consumption
3. High consumption

for states 1, 2, and 3, respectively.

3.2.2. Global decoding
The states for the fitted models have been colour-coded in

accordance with their mean values; green is low, yellow is
medium and red is high consumption. This colour code is used

in the rest of the paper. The most likely sequence of states is
estimated using global decoding (9).

From the average probability profile with respect to time of
day, a clear variation/dependence is observed (Figure 4). From
the average profile for time of year, there is a clear increase in
the probability for state 3 in the summer months July and Au-
gust. For the rest of the year, no significant differences are ob-
served between the months. For the average probability profile
for ambient temperature, the increase in temperature seems to
have an increasing effect on the probability of state 3. Profiles
for average wind velocity, average wind direction, precipitation
and solar radiation were also produced, but no significant vari-
ation in the probability profiles was observed.

Figure 4: Average probability profiles of being in given state, dependent on
time of day, time of year and ambient temperature, Apartment 2. The black
dots denote the relative amount of observations for each month or temperature
interval.

Given the average probability profile for time of day and
the knowledge from the occupant survey (Table 7), the ”low

Table 5: Estimated parameters for the three state HMM and calculated stationary distribution, mean and variance, Apartment 2.
State k θ γi1 γi2 γi3 δ Mean Variance

1 7.74 0.012 0.85 0.14 0.01 0.52 0.09 0.001
2 7.30 0.040 0.21 0.73 0.06 0.38 0.29 0.012
3 5.14 0.205 0.00 0.30 0.70 0.10 1.05 0.216
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consumption” state, could be interpreted as “absent or asleep”
due to the high probability for this state at night and in the
evening. The “medium consumption” state could be interpreted
as ”home medium consumption” due to the fact that the occu-
pant is retired and that the probability for this state is high dur-
ing the day and late evening. The ”high consumption” state
could be interpreted as ”home, high consumption”, based on
the knowledge that this apartment has air-conditioning and the
observed temperature dependence. To summarise, the new in-
terpretations of the states are:

1. absent or asleep
2. home, medium consumption
3. home, high consumption

3.2.3. Comparing obtained states with other metering data
To validate the new interpretation of the states, the global

decoding is compared with the data of water and hot water use.
The assumption is that no water is used when the occupant is
absent, hence a count of water use in the three states is done
(Figure 5), i.e. if the water-use data are greater than zero at a
given time, then this is counted as water use for the given state
from the global decoding at this time.

Figure 5: Counts of water and hot-water use given state and time of day, Apart-
ment 2.

Except for the transition between when the occupant is sleep-
ing and awake in the morning hours of the day, the probabil-
ity of water use is very small for the ”absent or asleep” state,
hence there is no strong evidence against this interpretation of
the state. For the two other states, it seems that the probability is
high for water use given these states, hence the interpretation of
high probability of the occupant being home given these states
seems fair.

3.2.4. Summary of all homogeneous model fits
Data from 44 apartments was available. Many of these did

not have a consistent consumption throughout the whole period
of data collection and only those that did have a consistent con-
sumption were chosen.

In total, models for 14 apartments were fitted with two-six
states. For 10 of them, three state models were found suitable
and for the rest, four state models were found suitable. A se-
lection of survey data and the number of states chosen for the

models are shown in Table 7. The choice of model for each
apartment is based on the AIC/BIC values and plots of the state-
dependent distributions (Figure A.18), as shown for Apartment
2.

A few more apartments were fitted, but for these the optimi-
sation of the likelihood only found local maxima for the param-
eters, and these results are therefore not presented.

3.2.5. Dependencies on explanatory variables
For all the apartments, clear diurnal dependencies were ob-

served from the average probability profiles with respect to time
of day. For some of the apartments, a dependency on ambient
temperature was observed (Table 6).

From the average probability profiles with respect to time of
year, the dependency on temperature seems to originate from
the summer period, mainly July and August. For Apartment 2,
the knowledge of an air-conditioner seems to help explain this
dependency in the high-consumption state. For the rest of the
apartments with temperature dependence, the medium or low
consumption states are affected, but we do not have any prior
knowledge that could explain these dependencies. No signif-
icant dependences on average wind velocity, average wind di-
rection, precipitation and solar radiation were found for any of
the apartments.

Table 6: Observation of temperature dependence (+) from the average proba-
bility profiles of ambient temperature.

Apartment 2 3 7 12 25 35
State

1 - - - - - -
2 - + + + + +

3 + - - - - +

4 -

3.2.6. Comparing average probability profiles with occupant
survey

From the average probability profiles with respect to time of
day, four distinct patterns were observed (Figure 6). The four
patterns have been classified as shown in Table 8.

For the four apartments with the pattern ”mostly at home”,
the prior knowledge from the occupant survey (Table 7), hours
absent on a weekday (less than two hours for all four), corre-
sponds well to these profiles, since they have low probability
of being absent during the day. Furthermore, there might be a
correspondence between low probability of being absent during
the day and the fact that three or more occupants are living in
the apartment, since this is the case for Apartments 3, 18 and
29.

For the ”mostly absent” pattern, the prior knowledge from
the occupant survey of Apartments 15 and 25 correspond well,
since hours absent on a weekday are more than 10 hours. There
might be a correspondence between high probability of being
absent during the day and the source of income being work,
since this is the case for Apartments 15 and 25. For Apartments
12 and 30, this is not the case. Common for all four apartments
is that they have only one occupant.
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Table 7: Selection of data from occupant survey and the number of states found suitable for each apartment.
Apartment No. occupants Air-condition Hours absent Source of income No. states

on weekday
2 1 yes 3 − 5 pension 3
1 NA NA NA NA 3
5 2 no > 10 work 4
7 2 no 3 − 5 scholarship 3
26 1 no 3 − 5 pension 4
35 1 no 6 − 8 pension 4
3 3 no < 2 pension 3
18 5 no < 2 work 3
29 3 no < 2 work 3
44 1 no < 2 pension 4
12 1 no 3 − 5 pension 3
15 1 no > 10 work 3
25 1 no > 10 work 3
30 1 no 6 − 8 subsidy 3

Figure 6: Observed distinct profiles. The low/medium state of Apartment 5 is
considered low based on the mean value of the state-dependent distribution.

Table 8: Apartments classified based on the average probability profile given
time of day.

Class Apartments
afternoon/evening absence 2
equal probability for being home or absent 1, 5, 7, 26 and 35
mostly at home 3, 18, 29 and 44
mostly absent 12, 15, 25 and 30

For the pattern ”equal probability for being home or absent”,
there is no distinct knowledge from the survey that is common
for a majority of these apartments. Comparing Apartments 26
and 35, they both have one occupant who receives a pension,
but the hours of absence on a weekday differ slightly. For
Apartment 26 it is 3-5 hours and for Apartment 35 it is 6-8
hours. When the profiles are compared, the probability of be-
ing home during the day is slightly higher for Apartment 26
than for Apartment 35. Apartments 5 and 7 both have two oc-
cupants. The main difference from the survey is that Apartment
5 is empty for more than 10 hours a day and Apartment 7 is
empty 3-5 hours a day. This is also observed when comparing

the probability of being home during the day. The reason why
Apartment 5 does not look like the profiles from Apartments 15
and 25 might be due to the number of occupants.

The pattern observed for Apartment 2 seems to stand out
compared to the others. Two have a tendency for a higher prob-
ability of being absent during the afternoon/evening, these are
Apartments 30 and 44. From the occupant survey, we know
they all have one occupant and both Apartments 2 and 44 are
receiving a pension.

With these observations, we have some indications of pos-
sible random or fixed effects that could enter in a popula-
tion model [18], where several apartments are collected in one
model with some common parameters and some apartment-
specific parameters.

To investigate whether the homogeneous models have com-
mon parameters, a series of box-plots was produced for the
three-state models (Figures 7 and 8).

For the parameter k, huge variation is observed for the low
and medium consumption states (Figure 7). For the high con-
sumption state, there is much less variation, and this might in-
dicate that this could enter a population model as a common
parameter. For the parameter θ, the opposite is observed; here
the high consumption state has huge variation between apart-
ments, and the low and medium consumption states have low
variation, which might indicate that the parameters for these
two states could enter a population model as common parame-
ters. Similar observations are seen for the four-state models.

Looking for common parameters in the transition probabili-
ties, low variance is observed for the transition probabilities in
the low consumption state, which might indicate common pa-
rameters (Figure 8). For medium and high consumption states,
a larger variance is observed, except for the transition probabil-
ity of going from the high consumption state to the low con-
sumption state which is almost zero. This indicates that the
transition from high to low is highly unlikely, and in order to
go from high to low, you have to go through the medium state.
Similar observations were seen for the fourstate models.

3.3. Time-inhomogeneous Hidden Markov Models
In the time-inhomogeneous models, the time dependence is

modelled in the transition probability matrix. Estimated param-
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Figure 7: Box-plots of the parameters estimates for the state-dependent distri-
butions, note the difference in the scales.

Figure 8: Box-plots of the transition probabilities for each state.

eters are the shape ki, and the scale θi for the state-dependent
distributions for i = {1, ...,m}, where m is the number of states.
One year of data is used. This is the same as for the homoge-
neous models.

The time-dependent transition probability matrix tΓ is de-
termined by Equation (23), hence the parameters are τi j for
i, j = {1, ...,m} and i , j, and τi j = βi · y′t for i = j where
βi is a vector of Fourier coefficients for state i and yt is a vector
of sin- cosine pairs to model the daily variation in the states.
Hence the number of β parameters depends on the length of yt
and the number of states.

The Fourier series are

p∑
k=1

βiksin sin
(

2πt
r

)
+ βikcos cos

(
2πt
r

)
for i = {1, ...,m} (32)

where t is the time, r the period and p is the number of sin- co-
sine pairs. The model chosen is based on the AIC/BIC values
and comparison of a model-generated probability profile, with
the profile generated from the data in the homogeneous model
fit. The number of parameters in the time-dependent inhomo-
geneous models is m(m + 2p + 1)

3.3.1. Time-dependent inhomogeneous HMM for Apartment 18
For Apartment 18, four models were fitted using one to

four sin- cosine pairs in the Fourier series with a period of

r = 24. The number of states found suitable for the homoge-
neous model fit was used, hence m = 3 is the number of states
in these models.

Table 9: The log-likelihood, AIC and BIC for each fitted model of Apartment
18.

Inhomogeneous
no. sin-cosine pairs no. parameters log-likelihood AIC BIC

1 18 31383 62801 62928
2 24 31268 62584 62753
3 30 31245 62550 62761
4 36 31237 62545 62766

Homogeneous
12 31710 63444 63528

From the BIC values (Table 9) we see that two sin- cosine
pairs in the Fourier series provide the best fit.

When checking the goodness of fit, by assessing the normal
pseudo-residuals (Figure 9) there is no strong evidence against
the model from the histogram of these. From the QQ-plot,
the tails are heavy and this indicates a lot of outliers for this
model. This implies that the model does not capture high-
consumption observations and small low-consumption obser-
vations very well. This is not a problem for classification of the
states by global decoding, since e.g. a very high observation
will have highest probability of being in the high-consumption
state. For forecasting distributions, this is a problem since there
is very low probability for high consumption using this model.

Figure 9: Histogram and qq-plot of the ordinary pseudo-residuals for the three-
state inhomogeneous HMM of Apartment 18, also plotted as a function of time.
The electricity consumption of the same period of time is shown with the mean
of the low consumption state.

To analyse why there is a heavy lower tail, a plot of the ordi-
nary pseudo-residual plotted as function of time is investigated
(Figure 9). From this we observe that the variation increases for
the lower pseudo-residuals over time. When this is compared
to the time series of the electricity consumption, we observe a
simultaneous increase in the variation, implying that electricity
consumption has many observations lower than before. This in-
dicates that the occupants have changed behaviour and suggests
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Table 10: Estimated parameters for the three-state HMM for Apartment 18
State k θ βi1sin

βi1cos βi2sin
βi2cos τi1 τi2 τi3

1 6.57 0.017 0.571 2.105 -0.931 0.153 - -2.87 -3.14
2 13.27 0.019 0.339 -0.624 0.619 -0569 -1.18 - -1.39
3 2.85 0.21 -0.095 -5.203 2.672 0.202 -0.46 2.18 -

that some kind of filtering or time-adaptive method should enter
the model. The parameter estimates are shown in Table 10.

The main difference between the homogeneous and time-
inhomogeneous models is the transition probabilities. We now
have the transition probabilities as a function of time of day
for each state. Looking at the forecasting distributions (Fig-
ure 10), it seems to resemble the daily probability profile when
considering the states as low, medium and high consumption.
The probabilities for high consumption (1 to 3 kWh) are very
low, this might explain the heavy upper tail in the QQ-plot of
the ordinary pseudo-residuals, since there are observations in
the electricity consumption for Apartment 18 on up to 3 kWh,
which has very low probability in the forecasting distributions.

Figure 10: Contour plot of forecasting distributions 48 hours ahead of the data
used to fit the model. The scale is relative to the largest probability in each
horizon, Apartment 18.

To check whether the inhomogeneous model is a better fit
than the homogeneous model, we first look at the AIC and BIC
values (Table 9). It is observed that there is an improvement of
the model with added time dependence.

To evaluate the forecasting performance, we use the forecast-
ing distribution Pr(XT+h = x|X(T ) = x(T )) for h = {1, 2, ..., 48},
where x(T ) is the data used to fit the model. The CRPS is then
calculated for the 48 forecast horizons using the 48 observations
after x(T ). This is done for the remaining half-year of data and
we then obtain around 4000 CRPS intervals with 48 horizons.
The mean value for each horizon is calculated. This is done for
both the homogeneous and the time-inhomogeneous model and
results are then compared (Figure 11). It is observed that for
horizon 1, they seem to be close, which is expected due to the
nature of a first-order Markov chain. When comparing the mean
values for the rest of the horizons, we observe a clear difference
between the two models, where the time-inhomogeneous model
has the better performance.

Overall, we have observed that time-dependence transition
probabilities lead to better forecasting performance, and hence
that the inhomogeneous models are to be preferred.

Figure 11: Comparison of the CRPS between homogeneous and time-
inhomogeneous models, Apartment 18..

3.3.2. Summary of all inhomogeneous model fits
For all the apartments, time-inhomogeneous models were fit-

ted with one to four harmonic pairs in the Fourier series in the
transition probabilities, as in Table 9. For the three-state mod-
els, two harmonic pairs were found adequate, and for the four-
state models three pairs were found adequate. For the models
where temperature dependence was found in the homogeneous
model (Table 6), the model-generated daily probability profiles
are less accurate than for the apartments were no temperature
dependence was found. For Apartments 3 and 7, they do not
resemble the homogeneous profile at all. This might indicate
that the temperature should enter these models.

Only small decreases are seen in the AIC/BIC values for all
the model fits adding extra sin- cosine pairs in the transition
probability. When comparing AIC/BIC values with the homo-
geneous models, improvements are seen for all the inhomoge-
neous models. When comparing the forecast performance with
the CRPS, a similar result as for Apartment 18 is observed for
all the apartments, i.e. the inhomogeneous models have better
forecast performance.

Figure 12: Box-plots of state-dependent parameters for the inhomogeneous
three-state models.

Investigating for common parameters, similar observations
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are seen for the state-dependent distribution parameter k and θ
(Figure 12), as for the homogeneous model fits.

For the τ parameters in the transition probabilities, the pa-
rameters for the low and medium state (denoted (1,j) and (2,j)
in the box-plot) have smaller variance than the ones for the high
consumption state. For the Fourier coefficients, there seems
to be a lot of variation in each state and also between states.
When comparing the transition probabilities for each state be-
tween apartments, very similar patterns are observed for many
of the apartments. These observations might indicate that some
of the parameters that determine the transition probabilities are
common for many of the models.

Figure 13: Box-plots of transition probability parameters for the inhomoge-
neous three-state models.

In general, the forecasting distributions resemble the daily
profiles well, but the very high consumption observations are
not captured by most of the models, as seen for Apartment 18.

3.4. Time inhomogeneous temperature-dependent Hidden
Markov Models

The models are basically the same as the time-
inhomogeneous model. The temperature dependence is
modelled in q states, then for these states the conditional mean
is modelled as in (25), where only the temperature is used as
covariate. Hence for each state dependent on temperature, the
means are given by

logt µi = αi1 + αi2yt (33)

where i is the state dependent on temperature and yt is the tem-
perature at time t. Given this implementation, the number of
parameters to be estimated is m(m + 2p + 1) + q

3.4.1. Time-inhomogeneous temperature-dependent HMM for
Apartment 2

For Apartment 2, temperature dependence was observed in
the high consumption state, hence the temperature dependence
is modelled in this state.

It is observed that the mean value of this state shows an an-
nual variation (Figure 14) with significantly higher mean values
in the summer period than the winter period.

Figure 14: Mean values of the high consumption state over one year.

To check whether the temperature-dependent model is a bet-
ter fit than the homogeneous and time inhomogeneous mod-
els, we first look at the AIC and BIC values (Table 11). It
is observed that there is an improvement of the model with
added time and temperature dependence, though it is a smaller
improvement from the time-dependent to the temperature-
dependent model than from the homogeneous to the time-
dependent model.

Table 11: Comparison of Homogeneous and Inhomogeneous models, Apart-
ment 2.

Model no. parameters log-likelihood AIC BIC
Homogeneous 12 31492 63007 63092

Inhomogeneous 24 30653 61355 61524
Temp. dependent 25 30461 60973 61149

When the CRPS is compared (Figure 15), we also see an
improvement in the forecasting performance for the time- and
temperature-dependent model.

Figure 15: CRPS comparison between the homogeneous model, time-
inhomogeneous and the time-inhomogeneous temperature-dependent models,
Apartment 2.

When the forecasting distributions are compared (Figure 16),
the differences between these models are observed. Clear vari-
ances from day to day are seen in the probabilities for the high
consumption in the temperature-dependent model.

Temperature-dependent models where also fitted for Apart-
ments 3, 7, 12, 25 and 35, but did not yield good results. This
might be due to the huge variation in the mean values during the
day, so a smoothing of these mean values is suggested. Apart-
ment 2 is less affected by this, since the probability of being in
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Figure 16: Contour plot of forecasting distributions for the inhomogeneous and
temperature-dependent model, Apartment 2. The scale is relative to the largest
probability in each horizon. The forecast is in the summer period.

the high consumption state is very low during most of the day,
except for the hours in the middle of the day.

4. Discussion/Conclusion

By applying homogeneous Hidden Markov Models on fre-
quent measurements of electricity consumption from smart me-
tering data, we have classified the obtained states in accordance
with occupant behaviour by global decoding for fourteen apart-
ments. The classification is:

• ”low consumption” and ”absent or asleep”

• ”medium consumption” and ”home”

• ”high consumption” and ”home, high consumption”

Given the hourly observations of the electricity consumption,
used in this study, the states have not been classified to specific
household appliances. This is because a sequence of different
appliances could have been used during one hour.

We have found diurnal dependencies for all the apartments
and ambient-temperature dependence for several. Hence, the
applications of the homogeneous models are to classify the
states in accordance with occupant behaviour and to identify
possible covariates/explanatory variables. With the sequence
of the global decoding, it is possible to select data from other
smart metering data, dependent on a certain state. As an ex-
ample, space heating data could be investigated for conditions
when the most probable state is ”absent or asleep”. By examin-
ing the average probability profiles with respect to time of day
for the apartments, four distinct patterns of daily occupant be-
haviour were observed. This suggests that we might be able to
classify the daily occupant patterns of the apartments.

These classifications of the states are relative to the individ-
ual apartments and the levels are determined by the underlying
distribution describing the consumption in an individual state.
Hence, the level of low, medium and high consumption varies

between apartments. Based on the diurnal average probabil-
ity profile and the levels of the states, consumers can optimize
their consumption and save money. The utilities can use these
models quantitatively to predict load forecasts in blocks, streets,
cities or regions and use these forecasts in trading electricity or
to discover peak loads more locally to optimise the dimension
of the grid.

Due to the fact that there are possibilities for multiple
changes of states, between successive observations (hourly), it
is suggested to investigate the application of continuous-time
Markov chains in the HMMs. This might also help to explain
the number of residents who are present in the apartments, by
adding more states in the HMMs leading to new interpretations
of these. In this case the continuous time formulation might
lead to a parametrization using less parameters than the corre-
sponding discrete-time Markov chain.

For the time-inhomogeneous models, we found that in gen-
eral the forecasting distributions resembled the homogeneous
data-driven probability profiles well. From the compari-
son of the homogeneous and time-inhomogeneous models by
CRPS, a clear improvement of the forecasting for the time-
inhomogeneous models was observed. The application of the
time-inhomogeneous models in this paper is to forecast elec-
tricity consumption and simulate occupants’ states.

In the implementation of these models, the number of pa-
rameters was increasing rapidly with the number of states. This
resulted in a big increase in computer execution time.

Given models with many parameters, the optimisation of the
likelihood could find local maxima instead of global. This can
be countered by choosing the start values of the parameters for
the optimisation in a clever way. This is very cumbersome and
will not always yield the desired outcome.

In the validation of the models, we observed that for some
of the apartments the occupants have tendencies to change their
behaviour slightly over the year. This is not captured in the
models and a solution to this could be to try some adaptive
method, by weighting the observations in the model fit or by im-
plementing seasonal varying coefficients in the state-dependent
distributions.

We also observed that, for all the models, the very high con-
sumption was not captured. The main reason for this is that
the state-dependent distributions for high consumption are in-
adequate in capturing this due to a very high variation in the
observations of these.

For the time-inhomogeneous temperature-dependent model
of Apartment 2, we observed a small increase in the perfor-
mance due to better forecasting in the high consumption state.
For the rest of the apartments, a smoothing of the temperature-
dependent mean values is suggested.

For the homogeneous models, we found clear indications of
common model parameters. By analysing the different occu-
pant patterns, several variables were found that might help de-
scribing the variation in the observations using fixed or ran-
dom effect terms in the models. This is a good indication of
a plausible further development of the homogeneous models as
population models. For the time-inhomogeneous models, we
also found common parameters, which also suggests develop-
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ing these further as population models.
We found some issues (e.g. computational) which must be

considered and solved for the time-inhomogeneous models and
the time-inhomogeneous temperature-dependent models before
taking the step to population models.
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Appendix A.

Figure A.17: Weekly averages of the electricity consumption, one year of data
was used.

Figure A.18: Histograms of the electricity consumption, one year of data was
used. Observations between 2-3 kWh are not shown.
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